塔里木盆地和四川盆地海相烃源岩成烃演化模式探讨

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第52卷 增刊Ⅰ 2007年9月

论 文

塔里木盆地和四川盆地海相烃源岩成烃演化模式探讨

张 斌 赵 喆 张水昌 陈建平

(中国石油勘探开发研究院石油地质实验研究中心, 北京 100083. E-mail: zhangbin01@)

摘要 通过系统分析源岩沉积样式并结合区域地温场, 综合研究了塔里木盆地下古生界和四川盆地古

生界海相烃源岩的热演化特征, 建立了相应的成烃模式, 探讨了各自的生烃潜力. 海相烃源岩可划分为4种成烃演化模式: 早期快速演化型、中期快速演化型、持续演化型和多期演化型. 其中, 早期快速演化型对形成工业性油气藏直接贡献不大, 以寻找古油藏或原油裂解气为主; 中期快速演化型虽然已发现较多气藏, 但总体规模有限; 后两种类型都取决于前期的演化程度, 若较低后期仍可生成液态原油, 否则以生气为主. 四川盆地古油藏得以较好地保存, 源岩普遍经历了干酪根-油-气的演化过程, 这对于塔里木盆地天然气勘探具有一定的借鉴意义.

关键词 热演化模式 海相烃源岩 生烃潜力 沉积样式 叠合盆地

2006-12-20收稿, 2007-4-28接受

国家重点基础研究发展计划项目(编号: 2006CB202307)资助

中国海相烃源岩分布广泛, 包括塔里木盆地、四川盆地、鄂尔多斯盆地、华北盆地等均有发现, 油气资源丰富, 展示了良好的勘探前景[1~6]. 烃源岩演化是源岩评价一项重要内容, 是动态研究油气成藏过程的基础. 关于海相烃源岩的热演化特征此前有过一些研究[7~9], 但一般主要针对某一个盆地或者一个较小的区块, 将不同盆地、不同层位烃源岩对比分析的文献并不多见. 本文以塔里木盆地下古生界和四川盆地古生界海相烃源岩为例, 结合源岩的沉积埋藏史和地温场, 系统总结源岩的演化规律并建立相应的演化模式, 同时探讨各种模式下的生烃潜力.

塔里木盆地台盆区下古生界发育两套海相烃源岩. 其中, 中、下寒武统烃源岩以灰质硅质泥岩/页岩、泥灰岩、泥晶灰岩/白云岩为主, 属于欠补偿盆地相和蒸发沉氵舄 湖相沉积, 生油母质主要是浮游藻类生物, 有机质丰度高、类型好; 中、上奥陶统烃源岩以泥质泥晶灰岩、泥质灰岩、页岩为主, 属台缘斜坡相和半闭塞-闭塞海湾相沉积, 生油母质有浮游藻和浅海底栖叶状植物[10, 11]. 油源对比结果表明, 目前所发现的海相气藏主要来源于寒武系, 部分来源于奥陶系, 而油藏主要来源于中、上奥陶统[12].

四川盆地发育了多套海相烃源岩, 包括下寒武统、下志留统以及上、下二叠统. 其中下寒武统源岩主要在川东、川东北、川南和川中南地区形成了大规模的天然气聚集, 下志留统源岩的贡献主要在川东和川东北, 上、下二叠统烃源岩全盆地均有发育, 主

要为碳酸盐岩烃源岩, 部分地区为煤系烃源岩. 总体来看, 川东北烃源岩发育层数最多, 质量较好, 是烃类富集最为有利、勘探潜力最大的地区; 而川南、川中南部和川西南部源岩层数相对较少, 最终聚集的资源量也相对较少[5, 6].

1 地层沉积样式

塔里木盆地台盆区总体上表现为“两头厚、中间薄”的特征, 即下古生界和新生界地层厚度大, 而上古生界—中生界地层厚度较薄; 四川盆地恰恰相反, 古生代沉积厚度有限, 部分地区遭受较大剥蚀, 印支-燕山期是一个非常重要的沉积时期, 沉积速率快, 地层沉积厚度巨大, 喜山期普遍处于抬升剥蚀阶段[13]. 归纳起来, 可将塔里木盆地和四川盆地海相源岩划分为4种沉积样式(图1): (1) 持续沉降前期深埋型: 典型的塔里木盆地台盆区下古生界沉积特征. 地层沉积基本连续, 前期沉积速率快, 厚度巨大, 后期沉积速率大为减缓. 满参1井位于满加尔凹陷腹部, 其上奥陶统沉积速率高达100 m/Ma, 海西期以来沉积速率大为减缓, 泥盆纪至今平均沉积速率仅为12 m/Ma; 阿瓦提凹陷腹部丰南1井上寒武-下奥陶统沉积速率也达到近100 m/Ma, 海西-燕山期末平均沉积速率仅为10 m/Ma, 喜山期有所加快. 塔北隆起和塔中隆起也有类似的特征, 只是前期沉积厚度远小于凹陷区(图1(a)). (2) 持续沉降后期深埋型: 典型的四川盆地尤其是川东和川东北地区地层沉积特征. 古

第52卷 增刊Ⅰ 2007年9月

图1 塔里木盆地和四川盆地海相烃源岩地层沉降样式示

意图

(a) 持续沉降前期深埋型; (b) 持续沉降后期深埋型; (c) 深埋-抬升-浅

埋型; (d) 浅埋-抬升-深埋型

生代沉积基本连续, 偶有间断或剥蚀, 但一般剥蚀厚度和持续时间都较为有限. 印支-燕山期以来地层急剧沉降, 接受三叠-白垩系巨厚沉积, 沉积平均速率达到30 m/Ma 以上, 较古生代的9 m/Ma 要大得多; 川东地区古生代平均沉积速率仅为10 m/Ma, 印支-燕山期平均沉积速率高达20 m/Ma 以上; 喜山期四川盆地普遍抬升(图1(b)). (3) 深埋-抬升-浅埋型: 主要分布在塔里木盆地隆起部位如塔东低凸起和巴楚隆起等. 塔东低凸起由于早期接受了中、上奥陶统巨厚的沉积, 随后强烈抬升, 海西-印支期长时间遭受剥蚀, 直到燕山期以来才再次接受沉积, 喜山期沉积速率明显加快, 沉积厚度较大, 但烃源岩的埋藏深度仍然没有超过加里东期的最大埋藏深度. 巴楚隆起在寒武纪—二叠纪沉积基本连续, 除缺失泥盆系外, 地层基本完整, 剥蚀有限, 二叠纪末寒武系底界埋藏深度达到最大. 二叠纪以来一直处于抬升剥蚀阶段, 直到喜山期才再次沉降接受少量沉积(图1(c)). (4)浅埋-抬升-深埋型: 与第三种类型有一定相似性, 主要是后期的埋藏深度超过前期的最大埋深. 塔里木盆地英东构造带和草湖凹陷加里东期都经历了一定程度埋深, 随后抬升剥蚀, 白垩纪再次沉降接受沉积, 喜山期以来沉积速率进一步加快, 现今最大埋藏深度超过5000 m. 四川盆地川中和川南也有类似的情形. 以川中高科1井为例, 寒武系底界在志留纪末埋深达到2000 m, 随后由于地层整体抬升遭受剥蚀, 印支期以来再次沉降快速沉积, 至侏罗纪末寒武系底界埋深超过8000 m, 白垩纪出现沉积间断, 喜山

期遭受一定剥蚀(图1(d)).

2 烃源岩热演化模式

根据油气生成理论, 温度和时间是烃源岩演化主要的控制因素, 二者在油气生成中的作用可以通过化学动力学方法计算出来, 用目前的盆地模拟商业软件都可以很好地实现, 在此不再赘述. 众所周 知, 地层温度等于地温梯度与埋藏深度的乘积. 一般来说, 盆地的地温梯度不是一成不变的, 盆地的地温场与构造背景及演化规律密切相关. 塔里木盆地由于发育在古老的克拉通背景之上, 存在着地温场退火的现象, 古地温相对较高, 而今地温较低[14]. 四川盆地整体来看地温梯度要高于塔里木盆地, 二叠纪地温梯度最高, 从印支运动、燕山运动至今, 总体上表现为一由高向低转变的趋势[15].

对于中国东部断陷盆地, 可以通过烃源岩的沉积样式来确定其演化模式, 二者基本上是一一对应的[16,17]. 但对于西部叠合盆地而言, 在相同的沉积样式下, 由于埋藏深度的不同, 或者地温梯度的差异, 烃源岩的演化模式可能完全不同, 即使在同一个地区, 由于存在多套烃源岩, 它们各自的演化也不同步. 因 此, 尽管沉积样式是烃源岩成熟演化的重要影响因素, 但二者并非一一对应, 还需要考虑各套烃源岩埋藏时间的早晚、深浅以及地温场的高低等多方面的影响.

本文在沉积样式和地温场基础上, 应用PetroMod 模拟软件, 根据实测镜质体反射率标定结果, 反演了塔里木盆地和四川盆地不同地区海相烃源岩的热演化史, 并建立了如下4种成熟演化模式(图2~5).

(ⅰ) 早期快速演化型. 典型代表是塔里木盆地满加尔凹陷腹部以及塔东低凸起寒武系烃源岩, 生烃的主要特征是早而快, 后期没有烃类生成. 满加尔凹陷由于早期强烈沉降, 沉积速率快, 寒武系烃源岩在很早开始生烃, 并迅速演化很快就已经达到过成熟演化阶段, 处于生油窗内的时间非常短暂, 加里东末期R o 值接近3.0%, 即达到生气“死亡线”1), 后期虽然地层温度继续升高, 但由于烃源岩生烃潜力早已消耗殆尽, 没有烃类生成(图2(a)). 塔东低凸起寒武

1) 张水昌. 台盆区寒武系源岩晚期生气潜力评价. 研究报告, 2005

相关文档
最新文档