捷联惯导详细讲解
第六章 捷联惯导
第六章捷联惯导6-1捷联惯导的原理¾捷联惯导系统概述•捷联惯性技术的发展过程•捷联惯导系统与平台惯导系统的对比¾捷联惯导系统的基本力学编排方程•捷联惯导系统的算法概述•捷联惯导系统原理框图的说明•姿态方程的解算(1)姿态和航向角的计算(2)姿态矩阵的微分方程(3)四元数的运动学微分方程(4)等效旋转矢量法及其微分方程(5)位移角速率方程(6)速度方程•导航位置方程(1)游动方位系与地球系之间的方向余弦矩阵(2)载体位置计算(3)方向余弦矩阵计算•垂直通道阻尼¾捷联惯性器件的余度技术•单自由度陀螺仪的配置方案(1)四陀螺仪配置方案(2)六陀螺仪系统•二自由度陀螺仪的配置方案¾捷联惯导的数值计算方法•数值积分法(1)欧拉法(2)四阶龙格-库塔法•角速率信息的提取“捷联(Strapdown)”这一术语的英文原义就是“捆绑”的意思。
因此,所谓捷联惯性系统也就是将惯性敏感元件(陀螺与加速度计)直接“捆绑”在载体上,从而完成制导和导航任务的系统。
V-2导弹“阿波罗-13”宇宙飞船“海盗”火星降落器从捷联技术的发展过程中我们已经看到捷联系统的优越性已越来越突出的显示出来,并在许多方面已日渐代替平台系统。
为什么会出现这种情况呢?为了回答这一问题,这里从生产与使用的角度将捷联系统与平台系统做一对比。
(1)硬件和软件的复杂程度由于捷联系统没有平台框架及相连的伺服装置,因而简化了硬件;代价是增加了计算机的负担,需要一个比较复杂的实时程序。
(2)可靠性捷联系统的可靠性要比平台系统高,其原因是它的机械构件少,加之容易采用多敏感元件配置,实现余度技术。
(3)成本与可维护性由于平台系统在机械结构上要复杂得多,而对于捷联系统只是算法复杂些,因而从制造成本上看捷联系统的成本要比平台系统低。
从市场供应的情况来看,数字计算机的价格一直在下降,而平台系统的价格一直在上升。
此外,捷联系统比平台系统具有较长的平均故障间隔时间,加之模块设计简化了维修,从而捷联系统的可维护性比平台系统大为提高了。
捷联惯性导航系统的解算方法
捷联惯性导航系统的解算方法捷联惯性导航系统(Inertial Navigation System,简称INS)是一种利用陀螺仪和加速度计等惯性测量单元测量物体的加速度和角速度,然后通过对这些测量值的积分计算出物体的速度和位置的导航系统。
INS广泛应用于航空航天、无人驾驶车辆和船舶等领域,具有高精度和自主性等特点。
INS的解算方法一般分为初始对准、运动状态估计和航位推算三个主要过程。
初始对准是指在启动导航系统时,通过利用外部辅助传感器(如GPS)或静态校准等方法将惯性传感器的输出与真实姿态和位置进行初次校准。
在初始对准过程中,需要获取传感器的初始偏差和初始姿态,一般采用标定或矩阵运算等方法进行。
运动状态估计是指根据惯性传感器的测量值,使用滤波算法对物体的加速度和角速度进行实时估计。
常用的滤波算法包括卡尔曼滤波、扩展卡尔曼滤波和粒子滤波等。
其中,卡尔曼滤波是一种最优估计算法,通过对观测值和状态进行线性组合,得到对真实状态的最佳估计。
扩展卡尔曼滤波则是基于卡尔曼滤波的非线性扩展,可以应用于非线性INS系统。
粒子滤波是一种利用蒙特卡洛采样技术进行状态估计的方法,适用于非高斯分布的状态估计问题。
航位推算是指根据运动状态估计的结果,对物体的速度和位置进行推算。
INS最基本的航位推算方法是利用加速度值对速度进行积分,然后再对速度进行积分得到位置。
但是,在实际应用中,由于传感器本身存在噪声和漂移等误差,导致航位推算过程会出现积分漂移现象。
为了解决这个问题,通常采用辅助传感器(如GPS)和地图等数据对INS的输出进行校正和修正。
当前,还有一些先进的INS解算方法被提出,如基于深度学习的INS 解算方法。
这些方法利用神经网络等深度学习模型,结合原始传感器数据进行端到端的学习和预测,以实现更高精度的位置和姿态估计。
综上所述,捷联惯性导航系统的解算方法主要包括初始对准、运动状态估计和航位推算三个过程。
其中,运动状态估计过程利用滤波算法对传感器的测量值进行处理,得到物体的加速度和角速度的估计。
捷联惯导系统解读
Q cos
u sin
2(q1q2 q0 q3 )
2 2 q0 q12 q22 q3
2(q2 q3 q0 q1 )
2(q1q3 q0 q2 ) 2(q2 q3 q0 q1 ) 2 2 q0 q12 q2 q32
T11 T21 T31 C bn T T T 12 22 32 T13 T23 T33
1 sin (T32 ) T31 1 tan ( ) 主 T 33 1 T 主 tan ( 12 ) T22
b nb x b 0 nby b 1 cos tan nb z 0
cos cos sin
当 90 时,方程退化,故不能全姿态工作。
捷联惯导系统
2.2 方向余弦法(九参数法)
n C n ωbk C b b nb
0 [ G ] Gz Gy
Gz
0 Gx
Gy Gx 0
K x [ K ] 0 0
0
Ky
0
0 0 Kz
捷联惯导系统
捷联惯导系统误差方程
b b b n n ωnb ωib Cn Cnωin
矢量的方向余弦表示姿态矩阵的方法; 可全姿态工作,但需要解含有九个未知量的线性方程组,计算量大, 工程上不实用。
捷联惯导系统
2.3 四元数法(四参数法)
2.3.1 四元数基本概念 四元数是由一个实数单位1和一个虚数单位i、j、k组成的含有四个 元的数。(超复数) Q q0 , q1, q2 , q3 q0 q1i q2 j q3k 四元数的大小——范数
捷联惯性导航系统的解算方法课件
02
CATALOGUE
捷联惯性导航系统组成及工作 原理
主要组成部分介绍
惯性测量单元
包括加速度计和陀螺仪,用于测量载体在三个正交轴上的加速度 和角速度。
导航计算机
用于处理惯性测量单元的测量数据,解算出载体的姿态、速度和 位置信息。
控制与显示单元
用于实现人机交互,包括设置导航参数、显示导航信息等。
工作原理简述
学生自我评价报告
知识掌握情况
学生对捷联惯性导航系统的基本原理、解算 方法和实现技术有了深入的理解和掌握。
实践能力提升
通过实验和仿真,学生的动手实践能力得到了提升 ,能够独立完成相关的实验和仿真验证。
团队协作能力
在课程项目中,学生之间的团队协作能力得 到了锻炼和提升,能够相互协作完成项目任 务。
对未来发展趋势的预测和建议
捷联惯性导航系统的解算 方法课件
CATALOGUE
目 录
• 捷联惯性导航系统概述 • 捷联惯性导航系统组成及工作原理 • 捷联惯性导航系统解算方法 • 误差分析及补偿策略 • 实验验证与结果展示 • 总结与展望
01
CATALOGUE
捷联惯性导航系统概述
定义与基本原理
定义
捷联惯性导航系统是一种基于惯性测量元件(加速度计和陀螺仪)来测量载体(如飞机、导弹等)的加速度和角 速度,并通过积分运算得到载体位置、速度和姿态信息的自主导航系统。
01
高精度、高可靠性
02
多传感器融合技术
随着科技的发展和应用需求的提高, 捷联惯性导航系统需要进一步提高精 度和可靠性,以满足更高层次的应用 需求。
为了克服单一传感器的局限性,可以 采用多传感器融合技术,将捷联惯性 导航系统与其他传感器进行融合,提 高导航系统的性能和鲁棒性。
捷联惯导算法与组合导航原理讲义
捷联惯导算法与组合导航原理讲义一、捷联惯导算法捷联惯导(Inertial Navigation System,INS)是一种通过测量惯性传感器的运动参数实现导航定位的技术。
惯性导航系统中包括了加速度计和陀螺仪等传感器,通过测量物体的加速度和角速度,可以推算出物体的位置、速度和姿态等信息。
1.1加速度计加速度计是一种测量物体加速度的传感器。
常见的加速度计有基于压电效应的传感器和基于微机电系统(Microelectromechanical System,MEMS)的传感器。
加速度计的原理是通过测量物体受到的惯性力,推算出物体的加速度。
由于加速度是速度对时间的导数,因此通过对加速度的积分操作,可以计算出物体的速度和位移。
1.2陀螺仪陀螺仪是一种测量物体角速度的传感器。
常见的陀螺仪有机械陀螺仪和MEMS陀螺仪等。
陀螺仪的原理是基于角动量守恒定律,通过测量转动惯量的变化,推算出物体的角速度。
与加速度计类似,通过对角速度的积分操作,可以计算物体的姿态。
1.3捷联惯导算法离散时间模型中,位置、速度和姿态等状态变量通过积分加速度和角速度来更新。
由于加速度计和陀螺仪测量结果存在噪声,因此在积分操作时需要加入误差补偿算法来消除误差。
常见的误差补偿算法有零偏校正和比例积分修正等。
连续时间模型中,位置、速度和姿态等状态变量通过微分方程来描述,并通过求解微分方程来更新状态。
由于计算量较大,通常需要使用数值积分方法来求解微分方程。
常见的数值积分方法有欧拉法、中点法和四阶龙格-库塔法等。
二、组合导航原理组合导航是一种融合多种导航技术的导航方式。
常见的组合导航方式有捷联惯导与GPS组合导航。
组合导航通过融合多种导航系统的测量结果,可以提高导航定位的精度和可靠性。
2.1捷联惯导与GPS组合导航捷联惯导与GPS组合导航是一种常见的组合导航方式。
在这种方式下,捷联惯导提供了高频率的惯导数据,可以提供较高的定位精度,但是由于其测量结果累积误差较大,会逐渐偏离真实轨迹。
§3.7捷联式惯导系统介绍4
而
Ctb = (Cbt ) −1 = Cbt
位置信息 重力计算
gt
固连于载体 坐标系的加 速度计
哥氏校正
fb
比力测量值 的分解
ft
∑
∑
速度ve 和 位置的估 计值
t
导航计算
Cbt
固连于载体 的陀螺
ω
速度和位置的初始估计值
b ib
姿态计算
t t ωie + ωet
姿态的初始估值
图 捷联式惯性导航系统——地理坐标系机械编排
重力加速度
r r v v r g = G − ωie × [ωie × r ]
于是
i &ei = f i − ωie v × vei + g i
加速度计提供的载体坐标系中比力的测量值,用向量 f b 表示。为 了建立导航方程,加速度计的输出必须分解到惯性系中,得到 f i
f i = Cbi f b
式中 Cbi 是一个 3 × 3 的矩阵,定义了载体坐标系相对于 i 系的姿态。利 用陀螺提供的角速度的测量值,可求解方向余弦矩阵 Cbi
b 标系 Oe X iYi Z i 的角速度 ωib ,上角标 b 表示该角速度在 b 坐标系上的投 b 进行姿态矩阵 Cbi 计算。由于姿态矩阵 Cbi 中的元素是 影。利用 ωib
OX bYb Z b 相对 OX iYi Z i 的航向角、横滚角、俯仰角的三角函数构成,
所以当求得了姿态矩阵 Cbi 的即时值,便可进行加速度计信息的坐标 变换和提取姿态角的大小。 这三项功能实际上就代替了平台式惯性导 航系统中的稳定平台的功能, 这样计算机中的这三项功能也就是所谓
第二,在平台式系统中,计算机只完成导航计算并对惯性元件的 误差进行简单补偿。而在捷联式系统中,计算机除完成导航计算外 捷联式系统对计算机的容量、 速度和精度要求要比平台式惯导系统高 得多。计算机问题是捷联式惯导系统发展的另一障碍。但是近年来, 由于计算技术的惊人发展,满足捷联式系统购要求已不成问题,它已 经成为促进捷联式导航系统发展的积极因素。 第三,捷联式系统比平台式系统可靠性高,这是它的一个突出优 点。 这首先是由于捷联式系统用数字电路代替了平台式系统的复杂的 框架。 提高机电系统的可靠性要比提高电子部件特别是数子电路的可 靠性困难得多。 另外, 如果平台发生故障, 必须用另一个备用平台(包 括三个陀螺、三个或两个加速度计)取而代之才能继续完成导航任务。 而在捷联式系统中,任何一个惯性元件发生故障,只要用一个备用惯 性元件取而代之就行了。美国有人对 100 套惯导系统作过统计,由液 浮陀螺组成的平台式系统平均每工作 100 万小时发生故障 1832 次, 而捷联式系统只有 744 次。 第四,捷联式系统另一个突出优点是成本比较低。这主要是因为 在平台式系统中框架及其有关的元部件占去成本的大部分。另外,捷 联式系统维护比较简单方便,又进—步降低了维护费用。—套平台式 惯导系统的成本约为 6 万美元, 而相应的捷联式系统成本只需 2 万美 元。 第五,捷联式系统由于取消了笨重的框架结构、力矩电机、角度
捷联惯导详细讲解
捷联惯导系统从20世纪60年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。
捷联式惯性导航(strap-downinertialnavigation),捷联(strap-down)的英语原义是“捆绑”的意思。
因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。
一、捷联惯导系统工作原理及特点惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。
捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。
由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位置参数。
如采用指令+捷联式惯导捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位置信息来确定运载体的方位、位置和速度的自主式航位推算导航系统。
在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。
它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。
所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。
除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。
捷联惯导系统
作业思考题
1、简要说明捷联惯导系统的基本组成和原理。 2、什么是数学平台?它有什么作用?
惯性导航系统
第四十四讲 捷联惯导系统 力学编排方程(一)
捷联式惯导系统(SINS)
加速度计
fb
数学平台
姿态矩阵 Cbp
f p 导航 速度、位置
计算机 姿态、航向
姿态矩阵计算
陀螺
ibb
pbb
b ip
姿态航向
-
C11 C21 C31
Cep 1 Cep T
C12 C13 1 C11 C21
C22
C23
C12
C22
C32 C33 C13 C23
C11 C22C33 C23C32 C21 C13C32 C12C33 C31 C12C23 C22C13
C31
C32
C33
位置矩阵微分方程组
Cep 0 f 0,0,0
1
p p epx epy
g g egx egy
R VeggxVeggy
VeppxVeppy
三、位置速率方程
11
p p epx epy
g g egx egy
RN RE
捷联惯导的发展
1、1950年起,德雷珀实验室捷联系统得到成熟的探索; 2、1969年,在“阿波罗-13”宇宙飞船,备份捷联惯导系统; 3、20世纪80~90年代,波音757/767、A310民机以及F-20战 斗机上使用激光陀螺惯导系统,精度达到1.85km/h的量级; 4、20世纪90年代,美国军用捷联式惯导系统已占有90% 。光 纤陀螺的捷联航姿系统已用于战斗机的机载武器系统中及波 音777飞机上。 5、国内由90年代挠性捷联惯导到现在激光捷联惯导、光纤陀 螺捷联航姿系统。
捷联惯导
坐标系的定义
1. 地理坐标系(下标为t)—— OXtYtZt :O 取载体质心,Xt 轴指向东,Yt 轴指向北,Zt 轴沿垂线指向天。 2. 导航坐标系(下标为n)—— OX nYnZn :O 取载体质心,Zn与 Zt 重合,Xn 与 Xt,Yn 与 Yt 相差一个游动方
C13
C23
C33
位置速率
p ep
位置速率是由飞行器地速的水平分量引起的,由于平台坐标系与地理坐标系相差 一个游动方位角,
可得:
VVENtt
cos sin
sin cos
VEp VNp
p ep
可写成
p epE
C32 C31
180 ,180
1.求纬度的真值L
L L 反正弦函数的主值域与L的定义域一致,因此:
主
2.求经度的真值
反正切函数的主值域是 90 ,90 与 的定义域不一致,因此需要在 的定义域内确定经度的真值。
由: 主
tan 1
C32 C31
tan 1
cos L sin cos L cos
其中:
.
V ep 平台系相对地球的加速度向量
f 加速度计测量的比力向量
2ie ep V ep 无明显物理意义,又称有害加速度
g 重力加速度向量
整理上式可得:
.
VEp
.
VNp
.
VUp
f
p E
捷联惯导结算原理
0 cos sin , Rz sin 0 cos
sin cos 0
0 0 1
cos cos sin sin sin cos cos sin sin cos sin cos T11 T12 T13 Ry Rx Rz cos sin cos cos sin T21 T22 T23 sin cos cos sin sin sin sin cos sin cos cos cos T T T 31 32 33 b 由姿态矩阵 C n 反解飞行器姿态欧拉角:
(5) 速度的计算
t t t t t 0 2iez etz ety 2iey Vxt Vx 0 t t b t t t t 0 2iex etx Vyt 0 Vy Cb f 2iez etz t Vz g Vzt 2 t t 2 t t 0 iey ety iex etx
o o sin 1 T23 , 90 , 90
tg 1
T13 180o , 180o , T33
tg 1
T21 o o , 180 , 180 T 22
图 6 东向北向速度变化曲线
阶段总结:1.学习了平台式和捷联式惯导的惯导解算方法并进行了仿真计算。 2.平台式惯导物理平台时刻跟踪当地水平东北天地理系, 加速计的比 力信息直接投影在导航系中,可直接进行导航速度和位置解算。载体的姿态可直 接从平台框架直接得出;而捷联式惯导用数学平台取代实体的物理平台,通过求
捷联惯性导航原理概要
捷联惯性导航原理概要捷联惯性导航(Inertial Navigation System,简称INS)是一种基于惯性力学原理运行的导航系统,用于测量和跟踪物体的位置、速度和加速度。
它通过内部的陀螺仪和加速度计来测量物体在空间中的运动状态,并根据质量、力和运动的基本原理来计算物体的位置和速度。
通过将陀螺仪和加速度计的输出信号转换为数字信号,并通过计算机处理,可以获得物体相对于初始参考点的位置和速度。
这些数据可以通过与地图或导航系统的集成来确定物体的位置和方向。
捷联惯性导航系统的原理是基于牛顿运动定律和旋转不变性原理。
根据牛顿第一定律,当物体处于惯性坐标系中且不受任何力的作用时,它将保持静止或匀速直线运动。
根据牛顿第二定律,当物体受到外力作用时,它将产生加速度。
根据旋转不变性原理,即物理量在不同坐标系下具有相同的数值,陀螺仪和加速度计可以测量物体的角速度和加速度,从而得到物体的位置和速度。
捷联惯性导航系统具有高精度和高稳定性的优势,尤其适用于无法使用其他导航系统(如GPS)或需要高精度导航的环境。
然而,它也存在一些局限性。
首先,由于陀螺仪和加速度计的测量误差和漂移,容易导致导航误差的累积。
其次,捷联惯性导航系统无法提供绝对位置信息,需要与其他导航系统集成才能获得绝对位置。
为了提高捷联惯性导航系统的性能,可以采用多传感器融合技术。
通过将多种导航系统(例如GPS、地图、惯性导航)的输出数据进行融合,可以提高导航的精度和可靠性,同时减少漂移和误差的影响。
总之,捷联惯性导航系统是一种基于惯性力学原理运行的导航系统,利用陀螺仪和加速度计测量物体的运动状态,并根据质量、力和运动的基本原理计算物体的位置和速度。
它具有高精度和高稳定性的优势,但也存在一些局限性,需要与其他导航系统集成才能获得绝对位置信息。
通过多传感器融合技术的应用,可以进一步提高捷联惯性导航系统的性能。
6.7 捷联式惯性导航系统
加速度信息
位置信息
导航计算机
陀螺旋矩信息
速度信息
陀螺输出信息
控制平台 信息
稳定回路
变态信息
捷联式惯性导航系统
捷联式惯性导航系统特点
• 由于将陀螺仪和加速度计直接固连于运载体,省去复杂的框架系 统、电气稳定系统及接触滑环等,所以其可靠性高于平台式惯导 系统。
• 由于直接将惯性元件固连在运载体上,所以惯性元件测量范围大, 工作环境恶劣,要求苛刻,要求惯性元件的动态特性要好。
cos
0
sin
0
1 0
H
sin
纵摇横摇航向角
H
1 cos
sin
sin sin
0 0 cos
cos x
sin cos
y
载体相对地理坐标系角速度
H y0
捷联式惯性导航系统
捷联姿态矩阵
cos cos H sin sin sin H
Tbt cos sin H sin sin cos H
sin cos
cos sin H cos cos H
sin
sin cos H cos sin sin H
3
捷联式惯性导航系统
从算法的角度看,捷联式惯导系统必须根据陀螺输出的角速度或 角增量计算维持一个数学平台。
sin cos z
3
捷联式惯导系统工作原理
加速度计
载体
陀螺
由机体坐标系至 平台坐标系的方
向余弦矩阵
沿平台坐标系 的比力分量 导航
捷联惯性导航原理
捷联惯性导航原理捷联惯性导航(Inertial Navigation System,简称INS)是一种基于捷联惯性测量单元(Inertial Measurement Unit,IMU)的导航系统。
该系统通过测量物体在空间中的加速度和角速度,进而推导出它的位置、速度和航向等导航信息。
捷联惯性导航系统由三个主要组件组成:加速度计、陀螺仪和计算机。
加速度计用于测量物体的加速度,陀螺仪用于测量物体的角速度,而计算机则用于整合和处理这些测量数据。
加速度计和陀螺仪通常被组合在一起形成IMU,IMU被安装在导航系统的载体上。
加速度计是用来测量物体的线性加速度的设备。
它的作用类似于测力仪,通过测量物体所受的力,可以计算出物体的加速度。
加速度计一般使用压电传感器或气泡级感应器来测量物体的加速度。
陀螺仪则是用来测量物体的角速度的设备。
它的原理基于陀螺效应,通过测量物体围绕轴线旋转的角速度来推导物体的旋转状态。
陀螺仪分为一体式陀螺仪和光纤陀螺仪两种类型,一体式陀螺仪主要使用电子仪器的原理,而光纤陀螺仪则使用光学原理。
在捷联惯性导航系统中,加速度计和陀螺仪的输出数据会被输入到计算机中进行处理。
计算机通过积分和滤波等算法,对加速度和角速度进行处理,推导出物体的位置和速度等导航信息。
计算机还会结合其他传感器如GPS等,以提高导航系统的精度和稳定性。
然而,捷联惯性导航也存在一些局限性。
首先,由于加速度计和陀螺仪的精度和稳定性有限,导致导航系统随着时间的推移会产生累积误差。
其次,在长时间的运动过程中,加速度计和陀螺仪可能受到震动、振动和温度变化等外界因素的影响,进而导致导航系统的精度下降。
为了解决这些问题,通常将捷联惯性导航系统与其他导航系统如GPS进行组合导航。
通过将两种导航系统的输出数据进行融合,可以克服各自的缺点,提高导航系统的精度和鲁棒性。
总结起来,捷联惯性导航是一种基于物体惯性特性的导航系统,通过测量物体的加速度和角速度,推导出物体的位置、速度和航向等导航信息。
惯导原理捷联惯导基本算法与误差课件
目录
惯导系统概述捷联惯导系统惯导系统的误差补偿技术惯导系统在各领域的应用未来惯导技术的发展趋势总结与展望
01
CHAPTER
惯导系统概述
惯性导航系统(INS)是一种自主式导航系统,通过测量载体在三个轴上的加速度和角速度,结合初始位置、速度和姿态信息,计算出载体当前的位置、速度和姿态。
总结与展望
随着科技的进步,提高惯导系统的精度是未来的重要发展方向。
更高精度
多模融合
微型化与集成化
人工智能优化
将惯导与其他导航手段(如GPS、北斗等)进行融合,以提高导航定位的可靠性和精度。
随着微电子和集成电路技术的发展,实现小型化、低功耗的惯导系统是未来的趋势。
利用人工智能技术对惯导系统进行优化,提高其性能和适应性。
THANKS
感谢您的观看。
定义
不依赖外部信息,隐蔽性好;可在各种复杂环境中工作;导航信息连续性好;但误差随时间积累,长时间工作导航精度较低。
特点
02
CHAPTER
捷联惯导系统
捷联惯导系统是一种基于陀螺仪和加速度计的导航系统,通过测量载体相对惯性空间的角速度和加速度,计算出载体相对于地球的位置、速度和姿态信息。
陀螺仪能够测量载体相对惯性空间的角速度,加速度计能够测量载体相对于地球的加速度,通过积分运算,可以得到载体的位置、速度和姿态信息。
地球模型误差主要包括地球赤道隆起、地球重力场模型误差等,可以采用高精度地球模型进行减小或消除。
加速度计误差主要包括零点误差、刻度因数误差和非线性误差等,可以采用数字补偿或离线校准等方法进行减小或消除。
捷联惯导系统的误差主要包括陀螺仪误差、加速度计误差、地球模型误差和信号处理误差等。
第1讲:捷联惯导系统(1-1)Allan方差
捷联惯导系统 的关键问题捷联系统的导航任务关键问题(光学陀螺捷联惯导系统): (一)惯性器件误差的分析与补偿1.随机误差2.温度漂移误差(二)初始对准初始对准的任务是确定捷联矩阵的初始值。
初始对准的误差将会对捷联惯导系统的工作造成难以消除的影响,导致对准误差的主要因素:1.惯性器件误差;2.干扰运动。
因此,滤波技术对捷联系统尤为重要。
(三)姿态解算中的动态误差补偿高频动态环境下,必须补偿如下的整流误差:1.圆锥误差(姿态误差)2.划船误差(速度误差)3.涡卷误差(位置误差)第一部分惯性器件误差的 分析与补偿1.光学陀螺的数学模型与主要性能指标 1.1 光学陀螺的工作原理Sagnac环形干涉仪1.2 数学模型与性能指标由IEEE 标准给出的光学陀螺输入输出模型为160]101][[)/(−−+++=∆∆K D E I t N S ε (1-1)式中:为标称的标度因子,单位:(角秒/脉冲数);0S /P "t N ∆∆/为输出脉冲速率,单位:(脉冲数/秒); s /P I 为输入角速度,单位:(角秒/秒);s /"E 为环境敏感误差,主要由温度变化引起,单位:; s /"D 为漂移误差,单位:;s /"k ε为标度因子误差,单位:。
ppm 表征光学陀螺的主要性能指标有标度因数、零偏、零漂、随机游走系数,其中后三项用于描述光学陀螺输出中的漂移误差。
标度因数:陀螺仪输出量与输入角速度的比值,通常取/P′′(脉冲数/角秒)的量纲。
零偏:是当输入角速度为零时陀螺仪的输出,以规定时间内测得的输出量平均值相应的等效输入角速度表示,习惯上取(度/小时)的量纲。
h/o零漂:又称为零偏稳定性。
通常,静态情况下光学陀螺长时间稳态输出是一个平稳随机过程,即稳态输出将围绕零偏起伏和波动,表示这种起伏和波动的标准差被定义为零漂,其单位用表示。
h/o随机游走系数:由白噪声产生的随时间积累的输出误差系数,其量纲为h/o,它反映了光学陀螺输出随机噪声的强度。
P15捷联惯导系统算法导航原理教学课件
舰船导航应用
舰船导航概述
01
舰船在航行过程中需要精确的导航信息,以确保航行安全和任
务执行。
舰船导航应用案例
02
介绍了P15捷联惯导系统在舰船导航中的实际应用案例,包括海
上巡逻、救援行动等。
舰船导航优势
03
详细阐述了P15捷联惯导系统在舰船导航中的优势,如高精度、
稳定性、可靠性高等。
其他领域应用
其他领域概述
系统初始化
01
02
03
初始化流程
系统上电后,首先进行硬 件和软件的初始化,包括 传感器、微处理器、存储 器等。
初始参数设置
根据系统要求和导航需求, 设置初始参数,如初始位 置、初始速度、地球模型 等。
校准与标定
对系统中的传感器进行校 准和标定,确保其测量精 度和可靠性。
数据采集与预处理
ห้องสมุดไป่ตู้
数据采集
通过传感器采集原始数据, 如加速度、角速度等。
算法验证
通过模拟实验和实际测试,验证算 法的正确性和有效性。
导航解算与
导航解算
根据算法处理后的数据,进行导 航解算,包括位置、速度、姿态
等计算。
数据融合
将捷联惯导系统与其他导航系统 (如GPS)的数据进行融合,进
一步提高导航精度。
输出结果
将解算得到的导航信息输出,为 其他系统或设备提供准确的导航
服务。
除了无人机、车辆和舰船等应用领域,P15捷联惯导系统还广泛 应用于其他领域。
其他领域应用案例
列举了P15捷联惯导系统在其他领域中的实际应用案例,如机器 人、航空航天等。
其他领域应用优势
详细阐述了P15捷联惯导系统在其他领域应用中的优势,如高精 度、稳定性、可靠性高等。
捷联式惯性导航原理
捷联式惯性导航原理捷联式惯性导航(Inertial Navigation System,简称INS)是一种基于惯性测量装置的导航系统。
它通过测量线性加速度和角速度来得出加速度、速度和位置信息,从而实现航海、航空和航天等领域的精确导航和定位。
捷联式惯性导航系统由多个惯性传感器组成,包括加速度计和陀螺仪。
加速度计用于测量线性加速度,而陀螺仪则用于测量角速度。
这些传感器安装在导航系统的载体上,并与导航系统的计算单元相连。
捷联式惯性导航系统的原理可分为两个主要步骤:传感器测量和姿态解算。
传感器测量是指测量加速度计和陀螺仪输出的信号。
加速度计通过测量导航系统相对于载体的线性加速度来估计速度和位移。
陀螺仪则通过测量导航系统相对于载体的角速度来估计转角和航向。
这些测量值由传感器输出,并发送给导航系统的计算单元进一步处理。
姿态解算是指根据传感器测量值计算导航系统相对于载体的三维方向。
这个过程基于四元数算法和方向余弦矩阵等数学模型。
根据加速度计的测量值,可以得到系统的重力矢量,从而计算出系统相对于地球的姿态。
陀螺仪的测量值则用于校正角速度误差和姿态的漂移。
通过不断地积分和更新测量值,导航系统可以保持准确的姿态信息。
捷联式惯性导航系统的优势在于其自主性和抗干扰能力。
由于不依赖于外部信号源,如卫星或地面控制点,INS可以在任何环境中进行导航。
同时,由于惯性传感器对外部扰动的响应速度很快,导航系统可以及时纠正估计误差,从而实现高精度的导航和定位。
然而,捷联式惯性导航系统也存在一些缺点。
由于惯性传感器存在漂移和积分误差,INS的导航信息随着时间的推移会变得不准确。
此外,惯性传感器的准确性和稳定性也会受到温度、振动和电磁干扰等因素的影响。
为了解决这些问题,通常需要与其他导航系统,如全球定位系统(GPS)或地面测量系统(如激光测距仪),进行组合导航。
总的来说,捷联式惯性导航系统是一种基于惯性传感器测量的导航系统。
它通过测量线性加速度和角速度,计算出加速度、速度和位置信息。
惯导原理捷联惯导基本算法与误差课件
由于陀螺仪和加速度计随时间变 化的稳定性问题导致的偏差,这 种误差通常需要通过实时滤波和 数据融合技术来减小。
05
提高捷联惯性导航精度的策
略
采用高性能的惯性传感器
陀螺仪
陀螺仪是惯性导航系统中的重要组成部分,能够测量载体在三个轴向的角速度。 采用高性能的陀螺仪可以提高捷联惯性导航系统的精度。
粒子滤波是一种基于贝叶斯推断的非线性滤波算法,能够处理非线性、非高斯系统。采用粒子滤波可以提高捷联 惯性导航系统在复杂环境下的性能。
利用外部信息进行修正
GPS修正
全球定位系统(GPS)是一种高精度的导航系统,能够提供准确的位置和时间信息。利用GPS信息对 捷联惯性导航系统进行修正可以提高其精度。
无线通信修正
利用无线通信网络,接收外部信息对捷联惯性导航系统进行修正可以提高其精度。例如,接收差分 GPS信号、无线电导航信号等。
06
捷联惯性导航发展趋势与挑
战
技术升级与改进
器件性能提升
随着微电子、精密制造等技术的 进步,捷联惯性导航系统的器件 性能得到不断提升,为实现更高
精度的导航提供了基础保障。
算法优化
04
捷联惯性导航误差分析
系统误差
零偏误差
由于陀螺仪和加速度计的 制造和安装偏差导致的固 定偏差,这种误差通常很 难通过校准消除。
刻度系数偏差
由于陀螺仪和加速度计的 刻度系数不准确导致的误 差,需要通过校准消除。
安装误差
由于陀螺仪和加速度计在 系统中的安装位置不准确 导致的误差,这种误差通 常很难通过校准消除。
随机误差
陀螺仪随机漂移误差
由于陀螺仪内部的热噪声和机械噪声导致的随机偏差,这种误差通常需要通过 滤波和数据融合技术来减小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
捷联惯导系统从20世纪60年代初开始发展起来,在1969年,捷联惯导系统作为"阿波罗"-13号登月飞船的应急备份装置,在其服务舱发生爆炸时将飞船成功地引导到返回地球的轨道上时起到了决定性作用,成为捷联式惯导系统发展中的一个里程碑。
捷联式惯性导航(strap-downinertialnavigation),捷联(strap-down)的英语原义是“捆绑”的意思。
因此捷联式惯性导航也就是将惯性测量元件(陀螺仪和加速度计)直接装在导弹需要诸如姿态、速度、航向等导航信息的主体上,用计算机把测量信号变换为导航参数的一种导航技术。
一、捷联惯导系统工作原理及特点
惯导系统基本工作原理是以牛顿力学定律为基础,通过测量载体在惯性参考系的加速度,将它对时间进行积分,之后将其变换到导航坐标系,得到在导航坐标系中的速度、偏航角和位置信息等。
捷联惯导系统(SINS)是一种无框架系统,由三个速率陀螺、三个线加速度计和微型计算机组成。
由于惯性元器件有固定漂移率,会造成导航误差,因此导弹通常采用指令、GPS或其组合等方式对惯导进行定时修正,以获取持续准确的位置参数。
如采用指令+捷联式惯导
捷联惯导系统能精确提供载体的姿态、地速、经纬度等导航参数,是利用惯性敏感器、基准方向及最初的位置信息
来确定运载体的方位、位置和速度的自主式航位推算导航系统。
在工作时不依赖外界信息,也不向外界辐射能量,不易受到干扰破坏。
它完全是依靠载体自身设备独立自主地进行导航,它与外界不发生任何光、声、磁、电的联系,从而实现了与外界条件隔绝的假想的“封闭”空间内实现精确导航。
所以它具有隐蔽性好,工作不受气象条件和人为的外界干扰等一系列的优点。
除此以外捷联惯导系统的最大特点是没有实体平台,即将陀螺仪和加速度计直接安装在机动载体上,在计算机中实时的计算姿态矩阵,通过姿态矩阵把导航加速度计测量的载体沿机体坐标系轴向的加速度信息变换到导航坐标系,然后进行导航计算。
同时,从姿态矩阵的元素中提取姿态和航向信息.由此可见,在捷联惯导系统中平台的作用已由计算机及其软件的作用代替了,捷联式惯导系统采用的是数学平台。
力学编排就是按照合适的数学模型由观测量计算出导航定位参数。
具体地讲,利用陀螺仪测得的载体相对于惯性参照系的旋转角速度,计算出载体坐标系至导航计算坐标系之问的坐标转换矩阵;将测量的比力(加速度计测量载体相对于惯性空间的线加速度)变换至导航坐标系,并经过两次积分得到所需的速度位置信息。
二、捷联惯导系统有以下独特优点:
(1)去掉了复杂的平台机械系统,系统结构极为简单,
减小了系统的体积和重量,同时降低了成本,简化了维修,提高了可靠性。
(2)无常用的机械平台,缩短了整个系统的启动准备时间,也消除了与平台系统有关的误差。
(3)无框架锁定系统,允许全方位(全姿态)工作。
(4)除能提供平台式系统所能提供的所有参数外,还可以提供沿弹体三个轴的速度和加速度信息。
三、捷联惯导系统现状及发展趋势
目前,捷联惯导系统已在军民领域被广泛应用,对于飞航式地地战术导弹,由于其全程均在稠密大气层内飞行,且射程远,飞行时间长,容易受到大气干扰的影响,因此,采用捷联惯导系统是唯一可选的制导方式;对于中远程的空空导弹,因导弹的发射距离远,具有攻击多目标的能力,捷联惯导系统也是比较理想的中制导方式;采用捷联惯导系统也可简化设计降低成本,提高性能价格比。
不管惯性器件的精度多高,由于陀螺漂移和加速度计的误差随时间逐渐积累(这也是纯惯导系统的主要误差源之一,它对位置误差增长的影响是时间的三次方函数),惯导系统长时间运行必将导致客观的积累误差,因此在不断探索提高自主式惯导系统的精度外,还要寻求引入外部信息,形成组合式导航系统,这是弥补惯导系统不足的一个重要措施。
组合导航系统通常以惯导系统作为主导航系统,而将其他导航
定位误差不随时间积累的导航系统如无线电导航、天文导航、地形匹配导航、GPS等作为辅助导航系统,将辅助信息作为观测量,对组合系统的状态变量进行最优估计,以获得高精度的导航信号。
这样,既保持了纯惯导系统的自主性,又防止了导航定位误差随时间积累。
随着GPS的普及,SINS/GPS组合导航系统显示出巨大的发展潜力。
程序算法姿态矩阵T、矩阵的即时修正算法四元数法
PL12的陀螺是三轴激光陀螺
四、系统的主要误差源
1、惯性仪表的安装误差和表读因子误差;
2、陀螺的漂移和加速度计的零位误差;
3、初始条件误差,包括导航参数和姿态航向的初始误差;
4、计算误差,主要考虑姿态航向系统的计算误差,也即数学平台的计算误差;
5、载体角运动所引起的动态误差
分类
对上述几种误差源进行分类,则捷联惯导系统的误差可分为四类。
1.数学模型的近似性所引起的误差
当捷联系统的数学模型建立得不够精确时会引起系统
误差。
数学模型的选取应达到其近似性可以忽略的程度,否则就应该探讨更精确的数学模型。
2.惯性仪表的误差
惯性仪表(包括陀螺及加速度计)由于原理、加工与装配工艺的不完善等均可造成仪表输出的误差,从而导致系统的误差。
在实际中,这部分误差在系统误差中占很大一部分。
3.计算机的算法误差
对于捷联式惯导系统,当加速度计与陀螺的输出被采集到计算机中以后,剩下的工作由计算机承担,而所有的捷联计算都存在着算法误差,从而导致系统的误差。
4.初始对准误差
系统初始对准的误差是由惯性仪表的误差及初始对准过程中的算法误差等所造成。