小学五年级奥数整除问题

合集下载

小学五年级奥数题数的整除问题

小学五年级奥数题数的整除问题

2019年小学五年级奥数题数的整除问题做奥数题有助于我们能力的提升,不仅在数学方面,其他方面也是很有帮助的,主要是让我们多动脑思考。

下面是查字典数学网为大家分享的五年级奥数题数的整除问题,希望对大家有帮助!奥数题数的整除问题从左向右编号为1至1991号的1991名同学排成一行,从左向右1至11报数,报数为11的同学原地不动,其余同学出列;然后留下的同学再从左向右1至11报数,报数为11的留下,其余同学出列;留下的同学第三次从左向右1至11报数,报到11的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是()号。

分析:第一次报数留下的同学,最初编号都是11的倍数;这些留下的继续报数,那么再留下的学生最初编号就是11×11=121的倍数,依次类推即可得出最后留下的学生的最初编号.解:第一次报数后留下的同学最初编号都是11倍数;第二次报数后留下的同学最初编号都是121的倍数;第三次报数后留下的同学最初编号都是1331的倍数;所以最后留下的只有一位同学,他的最初编号是1331;其实,任何一门学科都离不开死记硬背,关键是记忆有技巧,“死记”之后会“活用”。

不记住那些基础知识,怎么会向高层次进军?尤其是语文学科涉猎的范围很广,要真正提高学生的写作水平,单靠分析文章的写作技巧是远远不够的,必须从基础知识抓起,每天挤一点时间让学生“死记”名篇佳句、名言警句,以及丰富的词语、新颖的材料等。

这样,就会在有限的时间、空间里给学生的脑海里注入无限的内容。

日积月累,积少成多,从而收到水滴石穿,绳锯木断的功效。

答:从左边数第一个人的最初编号是1331号.家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。

我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。

我和家长共同配合,一道训练,幼儿的阅读能力提高很快。

五年级奥数第一讲:整除初步

五年级奥数第一讲:整除初步

五年级奥数第一讲:整除初步例题1,判断下面12个数的整除性。

23487,3568,8875,6765,5880,7538,198954,6512,93625,864,407,91301301。

(1)哪些数能被4整除?--末尾2位数。

分析:3568、5880、198954、6512、864都是4的倍数,因为末尾2位数都是4的倍数。

(2)哪些数能被8整除?--末尾3位数。

分析:3568、5880、6512、864都是8的倍数,末尾三位数是8的倍数即可。

(3)哪些数能被25整除?---末尾2位数。

分析:8875、93625都是25的倍数,因为末尾2位数是25倍数。

(4)哪些数能被125整除?---末尾3位数。

分析:8875、93625,末尾三位数都是125的倍数。

(5)哪些数能被3整除?-----数字和是3的倍数。

分析:23487、6765、5880、198954、864、91301301都是3的倍数,因为数字和都是3的倍数。

(6)哪些数能被9整除?---数字和是9的倍数。

分析:198954、864,因为数字和是9的倍数。

(7)哪些数能被11整除?--截位判别法或奇偶位和差分析法。

分析:6765、6512、407是11的倍数。

(8)哪些数能被13整除?-截位判别法。

分析:91301301,末尾三位数和末尾三位数之前的数的差是13的倍数。

练习1:在数列3124,312,3823,45235,5289,5588,661,7314中。

(1)哪些数能被4整除?--末尾2位数。

分析:3124、312、5588的末尾两位数都是4的倍数,所以是4的倍数。

(2)哪些数能被3整除?---数字和。

分析:312、5289、7314都是3的倍数,因为数字和是3的倍数。

(3)哪些数能11整除?--截位判别法或奇偶位和差分析法。

分析:3124、5588是11的倍数。

例题2,173()是一个四位数,在括号内依次输入三个数字,分别得到三个四位数,依次分别能被9,11,8整除。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论.什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中,探索出很多奇妙的数学规律,正是这些富有魅力的规律,吸引了古往今来的许多数学家,于是就出现了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过:“数学是科学的皇后,数;论是数学的皇冠” ?整除的定义如果整数a 除以整数 b ( b 0 ),除得的商是整数且没有余数,我们就说a 能被b 整除,也可以说b 能整除a,记作b | a .「丁M 丄[EfiAI邑九牛城帀,琴百捨吧円样的方式冉境OOOKH3C01B.以G 、乩出卞城布可胯号毀離00001 'oooowjja 序谏次脫锂A- B- C,懵快.軒iHflt 反应境闻瞭面丈旳埠茶逾稲伸只记聲车壇忙¥2.鼻、4. $、隔一亍?貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡豪酊r.舌方境出了颯珂停!* w<?帀的T/如果除得的结果有余数,我们就说a 不能被b 整除,也可以说b 不能整除 a.整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位,,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1)这些数中,有哪些数能被4整除?哪些数能被8整除?(2)哪些数能被25整除?哪些数能被125整除?(3)哪些数能被3整除?哪些数能被9整除?(4)哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不妨根据整除特性判断一下.练习 1.在数列3124、312、3823、45235、5289、5588、661、7314 中哪些数能被4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被3整除;同样的,如果将其中能被11整除的数相加或相减,会发现得到的结果同样能被11整除.从中我们可以总结出如下规律:和整除性与差整除性:两个数如果都能被自然数a 整除,那它们的和与差也都能被a|能被2, 5整除的数的特征:个位数字能被2或5整除.||能被4, 25整除的数的特征:末两位能被4或25整除. 1[能被8, 125整除的数的特征:末三位能被8或125整除.1数字求和法能被3, 9整除的数的特征:各位数字之和能被3或9整除.|(1) (2) (3)2.整除.例题2. 17石是一个四位数?文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题?下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上?但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除?我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除?你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请?也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数?想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被 4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289?其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 ?其中能被11整除的有哪些?4. 是一个四位数?王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除? ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 ?要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8?要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填 6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 ?先来看最小的数?要让前面数位上的数字尽量小,可以是1CD5 ?要满足它是9的倍数且最小,应该是10395 ?再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 ?要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或 6.要想被 5 整除,空格中可填0或 5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

五年级上册数学试题-奥数:数论之数的整除性(解析版)全国通用

五年级上册数学试题-奥数:数论之数的整除性(解析版)全国通用

第三讲 数论之数的整除性卷Ⅰ 1. 熟练掌握整除性质及特殊数的整除特征; 2. 巧妙运用整除性质及特殊数的整除特征解决数的整除问题;答案:因为432165a a a a a a 能被5整除,所以4a 是5;由于165432a a a a a a 、321654a a a a a a 和543216a a a a a a 分别能被2、4、6整除,因此1a 、3a 、5a 是偶数,取值为2、4、6,进而知道2a 、6a 是1和3;上述能被4整除的那个六位数的末两位32a a 应是4的倍数,而2a 是奇数,所以3a 只能为2和6.根据上面的分析,为使原六位数最大,1a 可取最大的数字6,2a 取1、3中的大数3,这样其余各数分别是3a =2,4a =5,5a =4,6a =1,所以最大值为632541.教学目标专题精讲 想 挑 战 吗?用数字1、2、3、4、5、6排列成一个六位数654321a a a a a a ,将1a 移到最后,所得的六位数165432a a a a a a 能被2整除;再将2a 移到最后,所得的六位数216543a a a a a a 能被3整除;……;最后把5a 移到最后,所得的六位数543216a a a a a a 能被6整除,那么654321a a a a a a 的最大可能值是多少? 数的整除性质: [性质1] 如果a 能被b 整除,b 能被c 整除,那么a 一定能被c 整除. 例如,48能被16整除,16能被8整除,那么48一定能被8整除. [性质2] 如果a 、b 都能被c 整除,那么(a ±b ) 也一定能被c 整除. 例如,21与15都能被3整除,那么21+15及21-15都能被3整除. [性质3] 如果c 能分别被两个互质的自然数a 、b 整除,那么c 一定能被ab 整除. 例如,126能被9整除,又能被7整除,且9与7互质,那么126能被9×7=63整除.①一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;……②一个数各位数数字和能被3整除,这个数就能被9整除;一个数各位数数字和能被9整除,这个数就能被9整除;③如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.④如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.⑤部分特殊数的分解:111=3×37;1001=7×11×13;11111=41×271;10001=73×137;10101=3×7×13×37;1995=3×5×7×19;1998=2×3×3×3×37;2007=3×3×223;2008=2×2×2×251;2007+2008=4015=5×11×73.(一)整除的性质【例1】某自然数,它可以表示成9个连续自然数的和,又可以表示成10个连续自然数的和,还可以表示成11个连续自然数的和,那么符合以上条件的最小自然数是多少?分析:可以表示成连续9个自然数的和说明该数能被9整除,可以表示成连续10个自然数的和说明该数能被5整除,可表示成连续11个自然数的和说明该数能被11整除,因此该数是[9,5,11]=495,因此符合条件的最小自然数是495.注意:本题易错答案为990,提醒同学们注意.(拓展)一个各位数字均不为零的三位数能被8整除,将其百位数字、十位数字、个位数字分别划去后可以得到3个两位数(例如,按此方法由247将得到47、27、24).已知这些两位数中一个能被5整除,另一个能被6整除,还有一个能被7整除.那么原来的三位数是多少?分析:那个能被5整除的两位数的个位数字是0或5,且应是原三位数的十位数字或个位数字.注意到各位数字均不为零且本身是偶数,故必须有原三位数的是十位数字是5.三位数能被8整除意味着末两位数应能被4整除.在51~59之间只有52、56是4的倍数,但52不是5、6、7中任何一个数的倍数,故题设中的三位数个位数字一定是6.由上述分析可知,百位数字和6组成的两位数是6的倍数,可能为36、66、96,则得到三个三位数:356、656、956,经检验只有656是8的倍数.【例2】1)从1~3998这3998个自然数中,有多少个能被4整除?(2)从1~3998这3998个自然数中,有多少个数的各位数字之和能被4整除?分析:(1)第一问比较简单,3998÷4=999…6所以1~3998中有996个能被4整除的(2)考虑数字和,如果一个一个找规律我们会发现规律是不存在的,因此我们考虑分组的方法,我们补充2个数,0000和3999,此外所有的一位两位三位数都在前面加上0补足4位,然后对这4000个数做如下分组:(0000,1000,2000,3000),(0001,1001,2001,3001),(0002,1002,2002,3002),…(0999,1999,2999,3999),共1000组,容易发现每一组恰好有个数字和是4的倍数,因此共有1000个数字和是4的倍数,但注意到我们补充了一个0000进去.所以原来的3998个数里,有999个数字和是4的倍数.【例3】在1、2、3、4……2007这2007个数中有多少个自然数a能使2008+a能被2007-a整除?分析:如果2008+a 能被2007-a 整除,那么2008+a 2007-a 为自然数,2008+a 2008200712007-a 2007a++=-也是自然数, 4015能被(2007-a )整除,所以4015=5×11×73,4015的约数中小于2007的数有1、5、11、73、55、365、803, 所以当a 取2006、2002、1996、1934、1952、1642、1204能使2008+a 能被2007-a 整除.【例4】 已知两个三位数abc 与def 的和abc def +能被37整除,证明:六位数abcdef 也能被37整除. 分析:abcdef =abc ×1000+def =abc ×999+(abc +def ),因为999能被37整除,所以abc ×999能被37整除,而(abc +def )也能被37整除,所以其和叶能被37整除.(前铺)已知□△×△□×□〇×☆△=□△□△□△,其中□、△、〇、☆分别表示不同的数字,那么四位数〇△□☆是多少?分析:因为□△□△□△=□△10101⨯,所以在题述等式的两边同时约去□△即得△□×□〇×☆△=10101.作质因数分解得37137310101⨯⨯⨯=,由此可知该数分解为3个两位数乘积的方法仅有371321⨯⨯.注意到两位△□的十位数字和个位数字分别和另外的两位数□〇和☆△中出现,所以△□=13,□〇=37,☆△=21.即〇=7,△=1,□=3,☆=2,所求的四位数是7132.(前铺)证明:形如abcabc 的六位数一定能被7,11,13整除. 分析:1001,100171113abcabc abc =⨯=⨯⨯,所以得证.(拓展)若4b+2c+d=32.试问abcd 能否被8整除?请说明理由.分析:由能被8整除的特征知,只要后三位数能被8整除即可.10010bcd b c d =++,有(42)9688(12)bcd b c d b c b c -++=+=+,所以abcd 能被8整除.(拓展)已知a ,b 是整数,求证a+b,ab 、a-b 这三个数之中,至少有一个是3的倍数.分析:若a,b 之一是3的倍数,则ab 是3的倍数;若a,b 都不是3的倍数:1)a=b=3k+1或3k-1 (都余1或都余2),则a-b 是3的倍数;2)a,b 一个是3k+1 一个是3k-1 (一个余1,一个余2),则a+b 是3的倍数;所以a+b,ab,a-b 这三个数之中,至少有一个是3的倍数.(拓展)五位数abcde 是9的倍数,其中abcd 是4的倍数,那么abcde 的最小值是_______.分析:1)若a、b、c、d、e不同的字母代表相同的数值时,abcde=abcd×10+e=(abcd+e)+ abcd ×9,因为abcde是9的倍数,所以(abcd+e)是9的倍数,要abcde最小,我们希望abcd和e都能取最小,这样和也就最小.abcd是4的倍数,所以最小是1000,要让(abcd+e)是9的倍数,e最小是8,所以abcde最小值是10008.2)若a、b、c、d、e不同的字母代表不同的数值时,abcd是4的倍数,所以最小是1024,但e为2,矛盾,所以abcd最小是1028,即abcde最小值是10287.(二)整除的特征【例5】把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末十三位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:乘积末尾的零的个数是由乘数中因数2和5的个数决定的,有一对2和5乘积末尾就有一个零.由于相邻两个自然数中必定有一是2的倍数,而相邻5个数中才有一个5的倍数,所以我们只要观察因数5的个数就可以了.5,15=5×3,20=5×4,25=5×5,30=5×6,35=5×7,40=5×8,45=5×9,50=5×5×2,55=5×11,发现只有25、50、75、100、……这样的数中才会出现多个5,写到55时共出现11+1+1=13个因数5,所以至少应当写到55,最多可以写到59.[前铺] 从50到100的这51个自然数的乘积的末尾有多少个连续的0?分析:首先,50、60、70、80、90、100中共有7个0.其次,55、65、85、95和任意偶数相乘都可以产生一个0,而75乘以偶数可以产生2个0,50中的数字5乘以偶数又可以产生1个0,所以一共有++147=+个0.124[巩固] 11个连续两位数的乘积能被343整除,且乘积的末4位都是0,那么这11个数的平均数是多少?343=,则可知,在11个连续的两位数种,至多只能有2个数是7的倍数,所以其中有一分析:因为37个必须是49的倍数,那就只能是49或98.又因为乘积的末4位都是0,就是说这连续的11个自然数应该“含有”4个5.连续的11个自然数中至多只能有3个是5的倍数,至多只能有1个是25的倍数,所以其中有一个必须是25的倍数,那么就只能是25、50或75.所以这11个数是40,41,42,43,44,45,46,47,48,49,50,它们的平均数即为它们的中间项45.[拓展] 975×935×972×□,要使这个连乘积的最后4个数字都是0,那么在方框内最小应填什么数?分析:积的最后4个数字都是0,说明乘数里至少4个2和4个5.975=5×5×39,935=5×187,972=2×2×243,共有3个5,2个2,方框内至少是2×2×5=20 答:在方框内最小应填20.卷Ⅱ【例6】 已知四十一位数55…55□99…99(其中5和9各20个)能被7整除,那么中间方格内的数字是多少?分析:因为555555和999999都是7的倍数,如果原数是能被7整除,那么由5个205555□ 9个209999=5个205555□99999910999969个14+⨯知 5个205555□ 9个149999也能被7整除;又 5个205555□ 9个149999可以表示成 5555552910⨯+ 5个145555□ 9个149999,说明 5个145555□9个149999也能被7整除, 相当于将原数的前后分别去掉555555和999999后整除性不变,依次下去,得到55□99.因此□44是7的倍数,□3是7的倍数,所以得□=6.[前铺1] 已知10□8971能被13整除,求□中的数.分析:10□8-971=1008-971+□0=37+□0.上式的个位数是7,若是13的倍数,则必是13的9倍,由13×9-37=80,推知□中的数是8.[前铺2] 在四位数56□2中,被盖住的十位数分别等于几时,这个四位数分别能被9,8,4整除?分析:如果56□2能被9整除,那么5+6+□+2=13+□应能被9整除,所以当十位数是5,即四位数是5652时能被9整除;如果56□2能被8整除,那么6□2应能被8整除,所以当十位数是3或7,即四位数是5632或5672时能被8整除;如果56□2能被4整除,那么□2应能被4整除,所以当十位数是1,3,5,7,9,即四位数是5612,5632,5652,5672,5692时能被4整除.[巩固1] 在六位数11□□11中的两个方框内各填入一个数字,使得这个六位数能够被17和19整除,那么方框中的两位数是多少?分析:(法1)这个六位数能够被17和19整除,那么也应当能被17×19=323整除,因为119911减去某个数□□00就可能是323的倍数.119911=323×371+78,说明119911应当减去的四(三)位数满足□□00除以323也余78,也就是满足□□22除以323应当能够除尽.说明□□22是4522,那么□□00是4600,因此所求的六位数是119911-4600=115300.[巩固2] 应当在如下的问号“?”的位置上填上哪一个数码,才能使得所得的整数可被7整除?(其中数码6和5各重复了50次)666...66?555 (55)分析:可在“?”的位置上填上2或9.事实上,111111(6个1)可被7整除,因此如果将我们的数的头和尾各去掉48个数码,并不改变其对7的整除性,于是还剩下66?55.从中减去63035,并除以10,即得3?2.此时不难验证,具有此种形式的三位数中,只有322和392可被7整除.所以?上填2或9.[拓展] 应当在如下的“□□”的位置上填上哪两个数码,才能使得所得的整数可被63整除?(其中数码2和7都重复了25次.222...22□□77 (777)分析:63=7×9,所以中间□□两个数的和能被9整除,又111111(6个1)可被7整除,所以去掉首尾24个数字后,剩下的2□□7,也能被7整除,2007=7×286+5,所以□□5也能被7整除,□□5-35能被7整除,所以两位数□□被7除余3,在两位数中被7除余3,且能被9整除的只有45. □□中所填的数是45.【例7】 (★★全国小学数学奥林匹克)200820082008200808n 个能被99整除,那么,n 的最小值为多少?分析:由于99=9×11,所以200820082008200808n 个能被11和9整除,200820082008200808n 个中奇位数减偶位数的差为(8-2)n+8=6n+8,当n=6、17、28……时,(3n+1)是11的倍数,所以n 的最小值是6. 200820082008200808n 个各位数字之和为(2+8)×n+8=10n+8,所以当n=1、10、19、28……等数时,能被9整除,所以n 的最小值为28.[前铺] 如果200520052005200501n 个能被11整除,那么n 的最小值是 .分析:200520052005200501n 个中奇数位减偶数位的差为(5-2)n +1=3n +1,当n=7时,(3n +1)是11的倍数,所以n 的最小值是7.【例8】 已知多位数55…5599…99□□(其中5和9各n 个)能被7整除,那么当n 取值为什么时,方格内的数字的不同的情况数为定值,并求出这个定值?分析:由例题1知当n=6k (k 为自然数),100÷7=14…2,所以共有15种不同的情况;当n ≠6k (k 为自然数),情况不定.[前铺1] 如果六位数1992□□能被105整除,那么它的最后两位数是多少?分析:199300÷105余10,199300-10=199290,即它的最后两位数是90.[前铺2] 已知200520052005□□是72的倍数,求末两位数是多少?分析:72=8×9,因为被9整除,所以末两位数字和是被9除余6的,因为被8整除,注意到百位是奇数,所以末两位被8除余4,满足这2个条件的2位数就只有60.[拓展] 已知多位数□□55…5599…99(其中5和9各n 个)能被77整除,那么方格内的数字是多少?分析:由例题知当n=6k (k 为自然数),100÷77=1…23,方格内的数字是77;当n ≠6k (k 为自然数),情况不定.【例9】 已知四十一位数55…55□7□99…99(其中5和9各19个)能被77整除,那么方格内的数字分别是多少?分析:由上题知可化为5□7□9能被7整除,50709÷77=658…43,所以□0□0+43=7 k (k 为自然数),即□0□0+1=7 k (k 为自然数),又21+□+□=11 k (k 为自然数),所以□+□=10,设第一个□为x ,则第二个□为(10-x ),有1000x+10(10-x )+1=7 k (k 为自然数),,所以x=6,即第一个□为6,所以第二个□为4,即所求的数为56749.[前铺1] 五位数329A B 能被72整除,问:A 与B 各代表什么数字?分析:已知329A B 能被72整除.因为72=8×9,8和9是互质数,所以329A B 既能被8整除,又能被9整除.根据能被8整除的数的特征,要求29B 能被8整除,由此可确定B =6.再根据能被9整除的数的特征,329A B 的各位数字之和为A +3+2+9+B =A +3-f -2+9+6=A +20,因为l ≤A ≤9,所以21≤A +20≤29.在这个范围内只有27能被9整除,所以A =7.[前铺2] 在□里填上适当的数字,使得七位数□7358□□能分别被9,25和8整除.分析:分别由能被9,25和8整除的数的特征,很难推断出这个七位数.因为9,25,8两两互质,由整除的性质知,七位数能被 9×25×8=1800整除,所以七位数的个位,十位都是0;再由能被9整除的数的特征,推知首位数应填4.这个七位数是4735800.[拓展1] 买28支价格相同的钢笔共付人民币9□.2□元.已知□处数字相同,请问每支钢笔多少元?分析:∵9□.2□元=9□2□分,28=4×7,∴根据整除“性质2”可知4和7均能整除9□2□.4|2□可知□处能填0或4或8.因为79020,79424,所以□处不能填0和4;因为7|9828,所叫□处应该填8.又∵9828分=98.28元,98.28÷28=3.51(元),即每支钢笔3.51元.[拓展2] 仓库有两个箱子,其中一个装了74个大杯子,另一个装了75个小杯子.地上有两个价格牌,一个写着总价“132.××元”,另一个写着“总价123.××元”.已知这两个价格牌原来贴在箱子上,但现在已经弄不清楚哪个价格牌贴在哪个箱子上了,唯一知道的是大杯子的单价比小杯子的贵,那么小杯子的单价是多少元?分析:设大杯子和小杯子的价格分别为S和s.如果s×75=132.××,S×74=123.××,因为S>s,所以s>132.××-123.×× > 8元.可是如此小杯子的总价格大于8×75=300元,不符合题目要求.所以123.××是小杯子的总价钱.由此可得出123××是75=3×25的倍数,则××可以为00、25、50、75,经实验12300和12375是75的倍数.相应的s分别为:12300÷75=1.64元、12375÷75=1.65元.【例10】求最小的自然数,它的各位数字之和等于56,它的末两位数是56,它本身还能被56所整除.分析:所求的数写成100a+56的形式.由于100a+56能被56整除,所以a能被14整除,所以a应是14的倍数.而且a的数字和等于56-5-6=45.具有数字和45的最小偶数是199998,但这个数不能被7整除.接下来数字和为45的偶数是289998和298998,但前者不能被7除尽,后者能被7整除,所以本题的答数就是29899856.[前铺] 求最小的偶数,它的各位数数字之和为40.分析:各位数数字之和为40的数,至少有5位,万位上的数至少为4,否则,各位数数字之和最多为3+9+9+9+9=39,当万位数上的数为4是,这个数只能是49999,不是偶数,所以最小的偶数只能是59998.[拓展]在五位数中,能被11整除且各位数字和等于43,这样的数有多少?分析:因为5×8=40,5个数字的和等于43时,其中至少有3个9,并且只有以下两种情况.(1)数字中4个9、1个7,则奇数位数字和减去偶数位数字和只能是3×9-(9+7)=11,这样的书有99979和97999,(2)数字中3个9,一个7,则奇数位数字和减去偶数位数字的和只可能是3×9-2×8=11,这样的数有98989.专题展望数的整除性是数论中最基本的内容,在数论问题中经常被用到,而奇偶性质是数的整除性中的特殊情形,有关奇偶数性质的运用将在下一讲中详细教授.练习三1. (例1)有些数既能表示成3个连续自然数的和,又能表示成4个连续自然数的和;还能表示成5个连续自然数的和,例如:30满足上述要求,因为30=9+10+11;30=6+7+8+9;30=4+5+6+7+8.请你找出700至1000之间,所有满足上述要求的数,并简述理由.分析:3个连续自然数的和,一定能够被3整除;4个连续自然数的和,一定能够被2整除,且除以2所得的商是奇数,也就是说它不能被4整除,也即除以4所得余数为2;5个连续自然数的和,一定能够被5整除.3、4、5的最小公倍数是60.60以内满足上述三个条件的数是30,所以60的整数倍加上30就可以满足条件.700=60×11+40,所以第一个符合题意的数是750=60×12+30,最大的一个数是990=60×16+30,共计16-12+1=5个数,分别为750、810、870、930、960.关键是让学生把该问题转化到整除问题,也可简单复习连续自然数求和与项数的关系.2. (例3)在1,2,3,……,1995,这1995个数中找出所有满足下面条件的数a 来:(1995+a )能整除1995×a.分析:1995a 1995+a ⨯是自然数,所以1995a 199519951995-=1995+a 1995+a⨯⨯也是自然数,即1995+a 是1995×1995的约数.因为:1995×1995=32×52×72×192,,它在1995与2×1995之间的约数有32×192=3249,7×192=2527,3×72×19=2793,52×7×19=3325,32×5×72=2205,3×52×72=3675,于是a 的值有6个,即3249-1995=1254,2527-1995=532,2793-1995=798,3325-1995=1330,2205-1995=210,3675-1995=1680.3. (例4)已知p 、q 都是大于1的整数,并且qp 12-和p q 12-都是整数,那么p +q 的值是多少? 分析:根据对称性,不妨设p q ≥,于是21q p-为大于0、小于2的整数,只能等于1.由于21q p -=,可将21p q -化为34q-,这样3q =,5p =,所以8p q +=.4. (例5)把若干个自然数1、2、3、……连乘到一起,如果已知这个乘积的最末53位恰好都是零,那么最后出现的自然数最小应该是多少?最大是多少?分析:1到10的乘积里会出现2×5和10两次末尾添零的情况,估算从200开始,是49个0,还要扩大至220时加4个0,所以最小的数应该是220,而最大应该是224.5. (例6)二百零一位数11…1□22…2(其中1和2各有100个)能被13整除,那么中间方格内应填什么数?分析:由111111被13整除,而100=6×16+4,故原来被13整除的算式即变为13|1111□2222;还可变为13|333-1□2,即可知方格应填1.6. (例7)已知数022983298329832983个 n 能被18整除,那么n 的最小值是多少?分析:13n+2=9k ,所以k=6 时,n=4位最小值.人生要学会遗忘人生在世,忧虑与烦恼有时也会伴随着欢笑与快乐的.正如失败伴随着成功,如果一个人的脑子里整天胡思乱想,把没有价值的东西也记存在头脑中,那他或她总会感到前途渺茫,人生有很多的不如意.所以,我们很有必要对头脑中储存的东西,给予及时清理,把该保留的保留下来,把不该保留的予以抛弃.那些给人带来诸方面不 利的因素,实在没有必要过了若干年还值得回味或耿耿于怀.这样,人才能过得快乐洒脱一点.众所周知,在社会这个大家庭里,你要想赢得别人的尊重,你首先必须尊重别人,多记住别人的优点,而学会遗忘别人的过失.其次,一个人要学会遗忘自己的成绩,有些人稍微做了一点成绩就骄傲起来,沾沾自喜,这显然是造成失败的一个原因.成绩只是过去,要一切从零开始,那样才能跨越人生新的境界.同时,一个人自己对他人的帮助,应该看作是一件微不足道小事,以至于遗忘.这样,你的处事之道方能获得他人的赞许.人生需要反思,需要不断总结教训,发扬优点,克服缺点.要学会遗忘,用理智过滤去自己思想上的杂质,保留真诚的情感,它会教你陶冶情操.只有善于遗忘,才能更好地保留人生最美好的回忆.成长故事。

小学数学思维能力(奥数)《整除》练习题

小学数学思维能力(奥数)《整除》练习题

小学数学思维能力(奥数)《整除》练习题1、三个数的和是555,这三个数分别能被3、5、7整除,而且商都相同,求这三个数及相同的商。

2、在1~13中任意取两个不同的数相乘,可以得到许多不相等的乘积,在所有这些不同的乘积中有多少个能被6整除?3、小马虎买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辩认,总价数字也不全,只能认出:□11.4□元(□表示不明数字)。

你能帮助小马虎找出不明数字吗?4、小明买了六支铅笔、两支圆珠笔、三本笔记本和七块橡皮,总共用去二元九角钱。

已知圆珠笔三角九分一支,橡皮六分一块,售货员算错帐了吗?5、商店里有六箱货物,分别重15、16、18、19、20、31千克,两个顾客买走了其中五箱。

已知一个顾客买的货物重量是另一个顾客的2倍。

问:商店剩下的一箱货物重多少千克?6、有一水果店进了六筐水果,分别装着香蕉和桔子,重量分别为8、9、16、20、22和27千克。

当天只卖出一筐桔子,在剩下的五筐中香蕉的重量是桔子重量的2倍。

问:这天水果店进了多少千克香蕉?7、减数、被减数与差三者之和除以被减数,商是多少?8、55个苹果分给甲、乙、丙三人,甲的苹果个数是乙的2倍,丙最少但也多于10个。

问:三人各得多少苹果?9、四名学生做加法练习:任写一个六位数,把它的个位数字(不等于0)拿到这个数最左边一位数字的左边得到一个新的六位数,然后与原六位数相加,他们的得数分别为172535、568741、620708、845267,结果只有一名同学做对了。

问:正确答案是几?10、五年级七个班都有同学参加了春游,一至七班参加的人数依次为4、6、7、8、9、12、17,其中有六个班的同学爬山和划船,爬山的人数是划船人数的4倍,另外一个班的同学去观赏植物。

问:观赏植物的是哪个班?11、证明:任意两个连续奇数的和一定是4的倍数。

12、证明:任意两个连续偶数的乘积是8的倍数。

13、证明:任意三个连续偶数的和一定是6的倍数。

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性

五年级奥数竞赛之数的整除性数的整除性整除的基本性质:性质1 如果a、b都能被m整除,那么它们的和a,b与差a,b都能被m整除。

它可记为:若m/a,m/b,则m/(a?b)。

m能同时整除a、b,即m既是a的约数,又是b的约数,则称m是a、b的公约数。

如果两个数只有唯一的公约数1,则称这两个数互质。

例如1与12,4与5,5与9,3与25等。

性质2 如果a/m,b/m,且a和b互质,那么a和b的乘积也能整除m,即(a×b)/m。

例如:3/72,4/72,且3和4互质,那么3与4的乘积12/72。

性质2中,“两数互质”这一条件是必不可少的。

6/72,8/72,但6与8的乘积48不能整除72,这就是因为6与8不互质。

根据性质2,我们常常可有如下解题思路:要使m被a×b整除,而a与b互质,就可以分别考虑m被a整除与m被b整除。

性质3 (传递性)如果c/b,且b/a,那么c/a。

特别是若b/a,m为整数,则有b/(a×m)。

1、形如1993 1993…1993 520,且能被11整除的最小数是。

n个19932、所有数字都是2且能被66…6整除的最小自然数是多少,3、500名士兵排成一列横队,第一次从左到右1,2,3,4,5(1至5)名报数;第二次反过来从右到左1,2,3,4,5,6(1至6)报数,既报1又报6的士兵有多少名,4、一个六位数的各位数字都不相同。

最左边一个数字是3,且此六位数能被11整除。

这样的六位数中的最小的数是。

5、已知一个两位数恰好是它的两个数字之和的六倍,求这个两位数是 ,6、已知a、b、c、d是各不相同的数字,a,b,c,18,b,c,d,23,四位数badc被5除余3,求四位数abcd是。

7、用1,6六个数字组成一个六位数abcdef其中不同字母代表1,6中的数字,要求ab是2的倍数,abc是3的倍数,abcd能被5整除,zbcdef是6的倍数,求这样的六位数有个,各是。

五年级奥数题:数的整除性

五年级奥数题:数的整除性

五年级奥数题:数的整除性数的整除性一、填空题1. 四位数“ 3AA1”是9的倍数,那么A= _____ .2. 在“ 25口79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____ .3. 能同时被2、3、5 整除的最大三位数是_____.4. 能同时被2、5、7 整除的最大五位数是_____.5. 1 至1 00以内所有不能被3整除的数的和是____ .6. 所有能被3 整除的两位数的和是 _____ .7. 已知一个五位数口691 □能被55整除,所有符合题意的五位数是______ .8. 如果六位数1992口□能被105整除,那么它的最后两位数是_______ .9. 42 □ 28□是99的倍数,这个数除以99所得的商是 ______ .10. 从左向右编号为1 至1991 号的1991 名同学排成一行, 从左向右1 至11报数,报数为11 的同学原地不动,其余同学出列;然后留下的同学再从左向右 1 至11报数,报数为 1 1的留下,其余同学出列;留下的同学第三次从左向右1至11 报数,报到1 1的同学留下,其余同学出列,那么最后留下的同学中,从左边数第一个人的最初编号是_______________ 号.二、解答题11. 173 □是个四位数字.数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除.”问:数学老师先后填入的3个数字的和是多少?12 .在1992 后面补上三个数字,组成一个七位数,使它们分别能被2、3、5、11 整除,这个七位数最小值是多少?13.在“改革”村的黑市上,人们只要有心,总是可以把两张任意的食品票换成3张其他票券,也可以反过来交换.试问,合作社成员瓦夏能否将1 00张黄油票换成1 00张香肠票,并且在整个交换过程中刚好出手了1 991张票券?14.试找出这样的最小自然数,它可被11整除,它的各位数字之和等于13.1. 7已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1 —定是9的倍数,可能是9的1倍或2倍,可用试验法试之.设3+A+A+1=9,则A=2.5,不合题意.再设3+A+A+1=18,则A=7,符合题意.事实上,3771 9=419.2. 1这个数奇数位上数字和与偶数位上数字和之差是0或是11的倍数,那么这个数能被11整除.偶数位上数字和是5+7=12,因而,奇数位上数字和2+口+9应等于12, □内应填12-2-9=1.3. 990要同时能被2和5整除,这个三位数的个位一定是0.要能被3整除,又要是最大的三位数,这个数是990.4. 99960解法一:能被2、5整除,个位数应为0,其余数位上尽量取9,用7去除999 □ 0,可知方框内应填6.所以,能同时被2、5、7整除的最大五位数是99960.解法二:或者这样想,2,5,7的最小公倍数是70,而能被70整除的最小六位是100030.它减去70仍然是70的倍数,所以能被2,5,7整除的最大五位数是100030-70=99960.5. 3367先求出1~100这100个数的和,再求100以内所有能被3整除的数的和,以上二和之差就是所有不能被3整除的数的和.(1+2+3+ ...+100)- (3+6+9+12+ (99)=(1+100) 2 100-(3+99) 2 33=5050-1683=33676. 1665能被3整除的二位数中最小的是12,最大的是99,所有能被3整除的二位数如下:12,15,18,21, …,96, 99这一列数共30个数,其和为12+15+18+…+96+99=(12+99) 30 2=16657. 96910 或46915五位数A691B能被55整除,即此五位数既能被5整除,又能被11整除.所以B=0或5.当B=0时,A6910能被11整除,所以(A+9+0)-(6+1)= A+2能被11整除, 因此A=9;当B=5时,同样可求出A=4.所以,所求的五位数是96910或46915.8. 90因为105=3 5 7,根据数的整除性质,可知这个六位数能同时被3、5和7整除。

小学五年级数学奥数数的整除(附练习及详解)

小学五年级数学奥数数的整除(附练习及详解)

一、基本概念和知识1.整除例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

③能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

④能被5整除的数的特征:个位是0或5。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是0或11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

练习及详解例题1. 四位数“3AA1”是9的倍数,那么A=_____。

(小五奥数)解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。

练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。

小学五年级奥数数的整除问题例题

小学五年级奥数数的整除问题例题

小学五年级奥数数的整除问题例题奥数注重学生分析、解决问题能力的培养,有它独特的解题思路和方法,快来做做奥数题来锻炼自己吧!下面是为大家收集到的五年级奥数数的整除问题例题,供大家参考。

试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.
点:数的整除特征.
分析:根据题意,可采用假设的方法进行分析,100个自然数任意的5个数相连,可以分成20个组,使得在任何5个相连的数中,都至少有两个数可被3整除,那么会有40个数是3的倍数,事实上在1至100的自然数中只有33个是3倍数,所以不能.
解答:假设能够按照题目要求在圆周上排列所述的100个数,按所排列顺序将它们每5个分为一组,可得20组,
其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3的倍数.
从而一共会有不少于40个数是3的倍数.但事实上在1至100的这100个自然数中只有33个数是3的倍数,
以上是查字典数学网为大家准备的五年级奥数数的整除问
题例题,希望对大家有所帮助。

小学五年级数学奥数题五篇

小学五年级数学奥数题五篇

小学五年级数学奥数题五篇1.小学五年级数学奥数题1、用一个数去除30、60、75,都能整除,这个数是多少?答案:∵要求的数去除30、60、75都能整除,要求的数是30、60、75的公约数。

又∵要求符合条件的的数,就是求30、60、75的公约数。

解:∵(30,60,75)=53=15这个数是15。

2、以除代乘①48×25②568×125③3.44×0.05分析与解①48×25=48×(25×4)÷4=4800÷4=1200②568×125=568×(125×8)÷8=568000÷8=71000③344×0.05=344×5×0.0001=344×10÷2×0.001=0.0172一分数分别与5、25、125相乘,可以先把这个数分别扩大10倍、100倍、1000倍,然后再分别除以2、除以4、除以8,这种方法叫做以除代乘法。

2.小学五年级数学奥数题1、一位少年短跑选手,顺风跑90米用了10秒钟。

在同样的风速下,逆风跑70米,也用了10秒钟。

问:在无风的时候,他跑100米要用多少秒?答案与解析:顺风时速度=90÷10=9(米/秒),逆风时速度=70÷10=7(米/秒)无风时速度=(9+7)×1/2=8(米/秒),无风时跑100米需要100÷8=12.5(秒)2、李明、王宁、张虎三个男同学都各有一个妹妹,六个人在一起打羽毛球,举行混合双打比赛。

事先规定。

兄妹二人不许搭伴。

第一盘,李明和小华对张虎和小红;第二盘,张虎和小林对李明和王宁的妹妹。

请你判断,小华、小红和小林各是谁的妹妹。

解答:因为张虎和小红、小林都搭伴比赛,根据已知条件,兄妹二人不许搭伴,所以张虎的妹妹不是小红和小林,那么只能是小华,剩下就只有两种可能了。

五年级奥数专题-数的整除

五年级奥数专题-数的整除

五年级奥数专题-数的整除如果整除a 除以不为零数b,所得的商为整数而余数为0,我们就说a 能被b 整除,或叫b 能整除a.如果a 能被b 整除,那么,b 叫做a 的约数,a 叫做b 的倍数.数的整除的特征:(1) 能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除.(2) 能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除.(3) 能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除.(4) 能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除.(5) 能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除.(6) 能被7(或11或13)整除的数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除.(7) 能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除.(8) 能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除.一、例题与方法指导例1. 一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能或又 23056088=2620238568÷88=2711所以,本题的答案是2620或2711.例2. 123456789□□,这个十一位数能被36整除,那么这个数的个位上的数最小是_____.思路导航:因为36=9⨯4,所以这个十一位数既能被9整除,又能被4整除.因为1+2+…+9=45,由能被9整除的数的特征,(可知□+□之和是0(0+0)、9(1+8,8+1,2+7,7+2,3+6,6+3,4+5,5+4)和18(9+9).再由能被4整除的数的特征:这个数的末尾两位数是4的倍数,可知□□是00,04,…,36,…,72,…96.这样,这个十一位数个位上有0,2,6三种可能性.所以,这个数的个位上的数最小是0.例3. 下面一个1983位数33…3□…4中间漏写了一个数字(方框),已 991个 991个知这个多位数被7整除,那么中间方框内的数字是_____.思路导航:33...3□44 (4)991个个=33...3⨯10993+3□4⨯10990+44 (4)990个 990个因为111111能被7整除,所以33…3和44…4都能被7整除,所以只要990个 990个3□4能被7整除,原数即可被7整除.故得中间方框内的数字是6.例4. 有三个连续的两位数,它们的和也是两位数,并且是11的倍数.这三个数是_____.思路导航:三个连续的两位数其和必是3的倍数,已知其和是11的倍数,而3与11互质,所以和是33的倍数,能被33整除的两位数只有3个,它们是33、66、99.所以有当和为33时,三个数是10,11,12;当和为66时,三个数是21,22,23;当和为99时,三个数是32,33,34.所以,答案为 10,11,12或21,22,23或32,33,34.[注]“三个连续自然数的和必能被3整除”可证明如下:设三个连续自然数为n,n+1,n+2,则n+(n+1)+(n+2)=3n+3=3(n+1)所以,)2+nn+n能被3整除.(+)1(+二、巩固训练1.有这样的两位数,它的两个数字之和能被4整除,而且比这个两位数大1的数,它的两个数字之和也能被4整除.所有这样的两位数的和是____.2.一个小于200的自然数,它的每位数字都是奇数,并且它是两个两位数的乘积,那么这个自然数是_____.3.任取一个四位数乘3456,用A表示其积的各位数字之和,用B表示A的各位数字之和,C表示B的各位数字之和,那么C是_____.4.有0、1、4、7、9五个数字,从中选出四个数字组成不同的四位数,如果把其中能被3整除的四位数从小到大排列起来,第五个数的末位数字是_____.1. 118符合条件的两位数的两个数字之和能被4整除,而且比这个两位数大1的数,如果十位数不变,则个位增加1,其和便不能整除4,因此个位数一定是9,这种两位数有:39、79.所以,所求的和是39+79=118.2. 195因为这个数可以分解为两个两位数的积,而且15⨯15=225>200,所以其中至少有1个因数小于15,而且这些因数均需是奇数,但11不可能符合条件,因为对于小于200的自然数凡11的倍数,具有隔位数字之和相等的特点,个位百位若是奇数,十位必是偶数.所以只需检查13的倍数中小于200的三位数13⨯13=169不合要求,13⨯15=195适合要求.所以,答案应是195.3. 9根据题意,两个四位数相乘其积的位数是七位数或八位数两种可能.因为3456=384⨯9,所以任何一个四位数乘3456,其积一定能被9整除,根据能被9整除的数的特征,可知其积的各位数字之和A也能被9整除,所以A有以下八种可能取值:9,18,27,36,45,54,63,72.从而A的各位数字之和B总是9,B的各位数字之和C也总是9.4. 9∵0+1+4+7+9=21能被3整除,∴从中去掉0或9选出的两组四个数字组成的四位数能被3整除.即有0,1,4,7或1,4,7,9两种选择组成四位数,由小到大排列为:1047,1074,1407,1470,1479,1497….所以第五个数的末位数字是9.三、拓展提升1. 找出四个互不相同的自然数,使得对于其中任何两个数,它们的和总可以被它们的差整除,如果要求这四个数中最大的数与最小的数的和尽可能的小,那么这四个数里中间两个数的和是多少?2.只修改21475的某一位数字,就可知使修改后的数能被225整除,怎样修改?3. 500名士兵排成一列横队.第一次从左到右1、2、3、4、5(1至5)名报数;第二次反过来从右到左1、2、3、4、5、6(1至6)报数,既报1又报6的士兵有多少名?4. 试问,能否将由1至100这100个自然数排列在圆周上,使得在任何5个相连的数中,都至少有两个数可被3整除?如果回答:“可以”,则只要举出一种排法;如果回答:“不能”,则需给出说明.答案1. 如果最小的数是1,则和1一起能符合“和被差整除”这一要求的数只有2和3两数,因此最小的数必须大于或等于2.我们先考察2、3、4、5这四个数,仍不符合要求,因为5+2=7,不能被5-2=3整除.再往下就是2、3、4、6,经试算,这四个数符合要求.所以,本题的答案是(3+4)=7.2. 因为225=25 9,要使修改后的数能被25整除,就要既能被25整除,又能被9整除,被25整除不成问题,末两位数75不必修改,只要看前三个数字即可,根据某数的各位数字之和是9的倍数,则这个数能被9整除的特征,因为2+1+4+7+5=19,19=18+1,19=27-8,所以不难排出以下四种改法:把1改为0;把4改为3;把1改为9;把2改为1.3. 若将这500名士兵从右到左依次编号,则第一次报数时,编号能被5整除的士兵报1;第二次报数时,编号能被6整除的士兵报6,所以既报1又报6的士兵的编号既能被5整除又能被6整除,即能被30整除,在1至500这500个自然数中能被30整除的数共有16个,所以既报1又报6的士兵共有16名.4. 不能.假设能够按照题目要求在圆周上排列所述的100个数,我们来按所排列顺序将它们每5个分为一组,可得20组,其中每两组都没有共同的数,于是,在每一组的5个数中都至少有两个数是3 的倍数.从而一共有不少于40个数是3 的倍数.但事实上,在1至100的自然数中有33个数是3的倍数,导致矛盾.。

五年级奥数—数的整除性(一)

五年级奥数—数的整除性(一)

数的整除性(一)数的整除性质主要有:(1)如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除。

(2)如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除。

(3)如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然数的乘积整除。

(4)如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

(5)几个数相乘,如果其中一个因数能被某数整除,那么乘积也能被这个数整除。

(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除。

(3)若一个整数的数字和能被3整除,则这个整数能被3整除。

(4)若一个整数的末位是0或5,则这个数能被5整除。

(5)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。

(7)若一个整数的数字和能被9整除,则这个整数能被9整除。

(8)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!(9)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

(10)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。

五年级奥数题及答案:整除问题1(高等难度)

五年级奥数题及答案:整除问题1(高等难度)

结合目前学生的学习进度,查字典数学网为大家准备了小学五年级奥数题,希望小编整理奥数题整除问题1(高等难度),可以帮助到你们!一分耕耘一分收获!奥数习题万变不离其宗,相信大家平时多动脑、多练习、多积累,掌握学习方法与技巧,通过自己的努力,一定能够取得优异的成绩!整除问题:(高等难度)在443后面添上一个三位数,使得到的六位数能被573整除。

整除答案:先用443000除以573,通过所得的余数,可以求出应添的三位数。

由443000573=77371推知, 443000+(573-71)=443502一定能被573整除,所以应添502。

【小结】本题还有一般性的方法。

高斯小学奥数五年级上册含答案_整除问题初步

高斯小学奥数五年级上册含答案_整除问题初步

第一讲整除问题初步从这一讲开始,我们将会进入一个神奇而美妙的世界:数论. 什么是数论呢?人类从学会数数开始,就一直和整数打交道.人们在对整数的应用和研究中, 探索出很 多奇妙的数学规律,正是这些富有魅力的规律, 吸引了古往今来的许多数学家, 于是就出现 了数论这门学科.确切的说,数论就是一门研究整数性质的学科.我们就从最基本的性质一一整除开始,一起在数论的海洋中遨游吧.X:: 数论在数学中的地位是独特的,伟大的数学家高斯曾经说过: “数学是科学的皇后,数;论是数学的皇冠” •整除的定义「丁 M 丄[EfiAI邑九牛城帀,琴百捨 吧円样的方式冉境 OOOKH3C01B.以G 、乩出卞城布 可胯号毀離00001 'oooowjja 序谏 次脫锂A- B- C, 懵快.軒iHflt 反应境 闻瞭面丈旳埠茶逾稲 伸只记聲车壇忙¥2. 鼻、4. $、隔一亍・ 貝侔的推列浚记件yrmir =Flf 面丈谥氓功了毡 豪酊r.舌方境 出了颯珂停!* w<«帀的T /整除的一些基本性质:1. 尾数判断法3.奇偶位求差法|能被ii 整除的数的特征:“奇位和”与“偶位和”的差能被ii 整除HI 我们把一个数从右往左数的第1、3、5位,……,统称为奇数位,把一个数从右往左数的第2、4、6位, ,统称为偶数位.我们把“奇数位上的数字之和”简称为“奇位和” 把“偶数位上的数字之和”简称为“偶位和”.F 面我们来看一下如何运用这些性质.例题1.判断下面11个数的整除性:23487, 3568, 8875, 6765, 5880, 7538, 198954, 6512, 93625, 864, 407 (1) 这些数中,有哪些数能被 4整除?哪些数能被 8整除? (2) 哪些数能被25整除?哪些数能被125整除? (3) 哪些数能被3整除?哪些数能被 9整除? (4) 哪些数能被11整除?【分析】关于4、8、25、125以及3、9、11的整除特征刚才都已经介绍过了,大家不 妨根据整除特性判断一下.练习 1.在数列 3124、312、3823、45235、5289、5588、661、7314 中哪些数能被 4 整除,哪些数能被3整除,哪些数能被11整除?如果将例题1中能被3整除的数相加或相减,会发现得到的结果还能被 3整除;同样的, 如果将其中能被11整除的数相加或相减, 会发现得到的结果同样能被 11整除.从中我们可以总结出如下规律:(1) (2) (3)2.例题2. 17石是一个四位数•文老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除问:文老师在方框中先后填入的3个数字之和是多少?【分析】本题包括三个小问题,我们逐个分析.需要分别用到9、11和8的整除特性.练习2.在2S 的方框内先后填上3个数字,分别组成3个三位数,使它们依次被3、4、5整除.上面我们已经学习了如何利用“整除特征”,解决单个数的整除问题•下面我们再来看一看,涉及多个数的整除问题应该如何解决.例题3.牛叔叔给45名工人发完工资后,将总钱数记在一张纸上•但是记账的那张纸破了两个洞,上面只剩下“ 6dd ”,其中方框表示破了的洞. 牛叔叔记得每名工人的工资都一样,并且都是整数元.请问:这45名工人的总工资有可能是多少元呢?【分析】这45名员工的工资都一样,所以总工资就能被45整除•我们没有学过被45整除的数的特征.但注意到45 5 9,于是6dd应该能同时被5和9整除,那么先考虑哪一个数的整除特征比较好呢?练习3.四位数CC 能被36整除,那么这个四位数可能是多少?在例3中,我们并不知道45的整除特征,但是45 5 9,能被45整除的数,也能被5和9整除,那么只需考虑5和9的整除特征即可.请同学们注意,虽然45 3 15,但是在考虑能否被45整除时,不能只考虑被3和15 整除•你能想明白为什么吗?例题4. 一天,王经理去电信营业厅为公司安装一部电话. 服务人员告诉他,目前只有形如“ 1234 口6口8 ”的号码可以申请•也就是说,在申请号码时,方框内的两个数字可以随意选择,而其余数字不得改动. 王经理打算申请一个能同时被8和11整除的号码.请问:他申请的号码可能是多少?【分析】要被8整除,说明号码的后三位Q8是8的倍数•想一下,这样的三位数是唯一的吗?练习4.七位数22 333 能被44整除,那么这个七位数是多少?有时候满足题目条件的答案会非常多. 如果只要求找出最大的或最小的,我们只需要从极端情况考虑即可.例题5.在所有各位数字互不相同的五位数中,能被45整除的数最小是多少?最大是多少?【分析】要想让五位数最大且数字不重复,每个数位上的数字应该依次是9、&….如果想让五位数尽量小,是不是应该依次是1、2、…呢?例题6.由1、3、4、5、7、8这六个数字所组成的六位数中,能被11整除的最大的数是多少?【分析】要想能被11整除,奇位和与偶位和的差应该是11的倍数.那么奇位和与偶位和的和又是什么呢?天才未必事事都聪明牛顿小时候的一个故事告诉我们,天才有时也傻乎乎的.一次,粮仓里闹鼠灾了,大人让牛顿在粮仓的门底开一个洞让猫进出.结果他开了两个洞一一大的给老猫,小的给小猫.其实在整除性的问题当中也有类似情况. 比如要在200 □匚的方框中填入两个数字使得这个五位数同时能被4、5、8整除,实际根本不用考虑4,只要考虑5和8即可,因为能被8整除的也必然能被4整除.如果你还要再考虑4的整除性,那就多此一举了.作业1. 下面有9 个自然数:48, 75, 90, 122, 650, 594, 4305, 7836, 4100 .其中能被4 整除的有哪些?能被25整除的有哪些?2. 有如下5个自然数:12345, 189, 72457821, 333666, 54289•其中能被9整除的有哪些?3. 有如下5个自然数:3124, 3823, 45235, 5289, 5588 •其中能被11整除的有哪些?4. 是一个四位数•王老师说:“我在其中的方框内先后填入3个数字,得到3个四位数,依次能被9, 11, 8整除• ”问:王老师在方框中先后填入的3个数字之和是多少?5. 阿呆买了72支同样的钢笔,可是发票不慎落水浸湿,单价已无法辨认,总价数字也不全,只能认出:匚111.C 元(表示不明数字).请问总价应该是多少?第一讲整除问题初步例题1. 答案:(1)能被4整除的有3568、5880、6512、864;能被8整除的有3568、5880、6512、864 .(2)能被25 整除的有8875、93625 ;能被125 整除的有8875、93625 . ( 3) 能被 3 整除的有23487、6765、5880、198954、864;能被9 整除的有198954、864. (4) 能被11整除的有407、6765、6512.例题2.答案:21详解:要想让四位数能被9整除,数字和得是9的倍数,空格中要填7 •要想让四位数能被11整除,奇位和与偶位和的差得是11的倍数,空格中要填8•要想让四位数能被8整除,需要后三位即7C 是8的倍数,空格中要填6 .三个数字之和是21 .例题3. 答案:67680或67185详解:根据题意,这个数能被45整除,即能同时被5和9整除,个位只能是0或5,对应的百位是6或1 .例题 4. 答案:12345608、12341648、12348688详解:末三位被8整除,十位数字只能是0、4、8 .要满足号码能被11整除对应的千位数字只能是5、1、&例题 5. 答案:10395; 98730详解:要被45整除,五位数既得是5的倍数,也得是9的倍数.那么五位数的末尾只能是0或5 •先来看最小的数•要让前面数位上的数字尽量小,可以是1CD5 •要满足它是9的倍数且最小,应该是10395 •再来看最大,要让前面数位上的数字尽量大,可以是98口口5或9CD0 •要满足它是9的倍数且最大,应该是98730.例题6. 答案:875413详解:要想是11的倍数,奇位和与偶位和的差得是11的倍数.这六个数字的和是28 , 而最大的三个数的和是20,也就是说无论是奇位还是偶位之和都不会超过20,所以只能把28分成两个14,偶位为& 5、1,奇位为7、4、3.练习1. 答案:能被4整除的数有3124、312、5588;能被3整除的数有312、5289、7314 ; 能被11整除的数有3124、5588.练习2. 答案:本题的答案不止一种,要想被3整除,空格中可以填1、4、7.要想被 4 整除,空格中可填 2 或6.要想被 5 整除,空格中可填0或5.练习 3. 答案:3132 或3636简答:要想被36整除,这个四位数要既是4的倍数, 也是9的倍数. 要想是 4 的倍数, 个位上的空格中可填 2 或6.要想满足四位数是9的倍数,百位上的空格对应要填1或6.练习 4. 答案:2213332 或2283336简答:这个七位数既是4的倍数,也是11的倍数.要想是 4 的倍数,个位上的空格中可填2或6,剩下的空格中对应可填1或8.作业 1. 答案:48, 7836, 4100;75, 650, 4100简答: 4 和25 看末两位.作业 2. 答案:189, 72457821, 333666简答:被9 整除看数字和.作业 3. 答案:3124, 5588简答:被11 整除看奇位和与偶位和的差.作业4. 答案:11简答:填入的三个数字分别为1, 4, 6,数字和为11.作业 5. 答案:811.44 元简答:72 8 9 ,分别考虑8和9的整除特性.。

小学五年级奥数-整除问题

小学五年级奥数-整除问题

五年级思维第二讲基础知识:1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |. 性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除.2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.3. 被3,9整除特征:数字和被3,9整除.4. 被4(25)整除的特征:后2位能被4(25)整除;被8(125)整除的特征:后3位能被8(125)整除.5. 被11整除特征:奇数位数字和与偶数位数字和之差能被11整除. (“奇偶位差法”).6. 被7、11、13整除特征:末三位与末三位之前的数之差能被7、11、13整除.7. 整除性质、特征的综合应用,末尾0的个数问题的处理,运用设未知量求解整除问题. 例题:例1、如果六位数2012□□能够被105整除,那么后两位数是多少?解:设六位数为2012ab ,105=3×5×7,依次考虑被3,5,7整除得到3∣a+b -1,b=0或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.例2、求所有的x ,y 满足32x5y 使得72∣32x5y .解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价.解:设两个□处的数字分别是a 、b ,则有143∣a679b ,根据11∣a679b ,有a+b =8,再根据13∣a679b ,所以13∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价5.37元.例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少?解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.例6、 要使六位数10abc6能够被63整除,那么商最小是多少?解:63=7⨯9. 考虑10abc6能被7整除,于是有7∣(100b+10c+6-100-a ),整理得 7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.例7、 所有五位数中,能够同时被7,8,9,10整除的有多少?解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个?解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.例9、已知4ab4ab …4ab (重复99次)能够被91整除,求ab .解:根据7和13的整除判断方法7(13)∣4ab4ab …4ab (重复99次)有7(13)∣4ab4ab …4ab000(重复98次),因为(91,1000)=1,所以7(13)∣4ab4ab …4ab (重复98次),以此类推,就有7(13)∣4ab ,得到4ab =455,所以ab =55.例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少?解:因为连续11个数是343的倍数,而33437=,但是11个数中之多有两个是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.数学万花筒——趣题欣赏: 1. 鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。

五年级奥数之数的整除

五年级奥数之数的整除

第二讲数的整除例1:在下面的数中,哪些能被4整除?哪些能被8整除?哪些能被25整除?哪些能被125整除?100,234,728,7756,6648,2781,1750,8125。

例2:学校为竖笛小组购买了75根竖笛,发票上的总价有两个数字模糊不清,只看到3□7.□元,你知道每根竖笛至少是多少元吗?例3:一个六位数165□□□能同时被4和9整除,这个六位数最大是多少?最小是多少?例4:abcabc这个六位数能否被7整除?能否被11整除?能否被13整除?如果能,请说明理由。

例5: 173□是四位数,数学老师说:“我在这个□中先后填入3个数字,所得到的3个四位数,依次可被9、11、6整除”问:数学老师先后填入的3个数字的和是多少?例6: 将自然数1,2,3,…依次写下去组成一个数:12345678910111213….如果写到某个自然数时,所组成的数恰好第一次能被72整除,那么这个自然数是多少?例7: 自然数中1~100内共有多少个不能被3或11整除的数?例8:用1,2,3,4,5,6,7,8,9(每个数字用一次)组成三个能被9整除的、和尽可能大的三位数,这三个三位数分别是多少?例9:小明的两个衣服口袋中各有13张卡片,每张卡片上分别写着1,2,3,…,13。

如果从这两个口袋各拿出一张卡片来计算它们所写两数的乘积,可以得到许多不相等的乘积。

那么,其中能够被6整除的乘积共有多少个?应用与拓展1. 在下面的□里填上适当的数字。

能被4整除:93□,□可以填( ) 能被8整除:48□2,□可以填( )能被9整除:20□308,□可以填( ) 能被25整除:71□□,□□可以填( )能被125整除:8□50,□可以填( )2. 在下面的数中,哪些能被4整除,哪些能被25整除?哪些能被8整除?哪些能被除125整除?①234②500③789④8865⑤3728⑥8064⑦5125⑧12000能被4整除的数是:能被8整除的数是能被25整除的数是能被125整除的数是:3. 用2,3,7,8四个数字组成没有重复数字的四位数,且它是11的倍数,并将这些数按从大到小排列出来。

小学五年级奥数第1课数的整除问题试题附答案-精品

小学五年级奥数第1课数的整除问题试题附答案-精品

小学五年级上册数学奥数知识点讲解第1课《数的整除问题》试题附答案例1己知45|函函方.求所有满足条件的六位数酒药。

例2李老师为学校一共买了28支价格相同的钢笔,共付人民币9口.2口元.已知口处数字相同,请问每支钢笔多少元?己知整数应为有就被11整除.求所有满足这〈/PGN0004.TXT/PGN>个条件的整数。

例4把三位数遍接连重复地写下去,共写1993个冰,所得的数%b3ab・・・3a?恰是91的倍数,试求正二?‘7 '1993个3ab例5在865后面补上三个数字,组成一个六位数,使它能分别被3、4、5整除, 且使这个数值尽可能的小。

答案例1己知45|好呵求所有满足条件的六位数酒季解::45=5X9,・•・根据整除“性质2”可知5|xl993y,9区1993%二.y可取。

或5。

当y=0时,根据9|近痢及数的整除特征③可知x=5,当y=5时,根据9|酒药及数的整除特征③可知x=9.・.・满足条件的六位数是519930或919935。

例2李老师为学校一共买了28支价格相同的钢笔,共付人民币9口.2□元.已知口处数字相同,请问每支钢笔多少元?解,・・・9口.2□元二9口2口分28=4X7,・•・根据整除“性质2”可知4和7均能整除9口2口。

4I2口可知口处能填。

或4或8。

因为7卜9020,7*9424,所以口处不能填0和4;因为7I9828,所叫口处应该填8。

又・・・9828分=98.28元98.28-28=3.51(元)答:每支钢笔3.51元。

例3已知整数1a2a3a4a5翕E被11整除.求所有满足这</PGN0004.TXT/PGN> 个条件的整数。

解:・.T1la2a3a4a5a,・・・根据能被11整除的数的特征可知:1+2+3+4+5的和与5眈差应是11的倍数,即11I(15—5a),或11I(5a-15)。

但是15—5a=5(3—a),5a—15=5(a—3),又(5,11)=1,因此111 (3—a)或11I(a—3)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

五年级思维第二讲
基础知识:
1. 整除的定义、性质.定义:如果a 、b 、c 是整数并且b 0≠ ,b=c a ÷则称a 能被b 整除
或者b 能整除a ,记做b a |,否则称为a 不能被b 整除或者b 不能整除a ,记做a b |. 性质1:如果a 、b 都能被c 整除,那么他们的和与差也能被c 整除.
性质2:如果b 与c 的乘积能够整除a ,那么b 、c 都能整除a .
性质3:如果b 、c 都能整除a ,并且b 、c 互质,那么b 、c 的乘积也能够整除a. 性质4:如果c 能整除b ,b 能整除a ,那么c 能整除a .
性质5:如果b 和c 的乘积能够被a 整除,并且a ,b 互质,那么c 能够被a 整除.
2. 被2(5)整除特征:以2,4,6,8,0(5,0)结尾.
3. 被3,9整除特征:数字和被3,9整除.
4. 被4(25)整除的特征:后2位能被4(25)整除;
被8(125)整除的特征:后3位能被8(125)整除.
例题:
例1、如果六位数2012□□能够被105整除,那么后两位数是多少?
解:设六位数为,105=3,依次考虑被3,5,7整除得到3∣a+b -1,b=0
或5, 7∣(10a+b-1),得到唯一解a=8,b =5.故后两位为85.
例2、求所有的x ,y 满足使得72∣.
解:72=8×9,根据整除9性质易得x +y =8或17,根据整除4 的性质y =2或6,分别可以得到5位数32652、32256,检验可知只有32256满足题意.
例3、一本陈年旧账上写的:购入143只羽毛球共花费□67.9□元,其中□处字迹已经模糊不清,请你补上□中的数字并且算出每只羽毛球的单价.
解:设两个□处的数字分别是a 、b ,则有143
∣,根据11∣,有a+b =8,再根据13∣,所以13
∣(100a +67-90-b ),再根据a+b =8得到13∣(10a -5)解得a =7 b =1所以方框处的数字是7和1,单价5.37元.
例4、把若干个自然数1,2,3….乘到一起,如果已知这个乘积的最后14位都是0,那么最后的自然数至少是多少?
解:最后14位都是0说明这个乘积整除1014,由于1×2×3×…中因数2比因数5多得多,只需考虑其整除514,5的倍数但是不是25的倍数可以提供一个因数5,25的倍数但是不是125的倍数可以提供2个因数5…可得出至少需要60个数,即这个自然数至少是60.
例5、请用数字6、7、8各两次组成一个六位数使得这个六位数能够被168整除.
解:168=3⨯7⨯8,用6,7,8各两次,数字和42,是3的倍数.而用6、7、8组成的3
位数是8的倍数的只有768,776.当后三位是768,776时,前三位只有12种取法,经实验只有数768768符合题目要求. 因此唯一符合题目要求的数是768768.
例6、 要使六位数
能够被63整除,那么商最小是多少? 解:63=7⨯9. 考虑能被7整除,于是有7∣(100b+10c+6-100-a ),整理得 7∣(2b+3c-a +4),再考虑该数能被9整除,有a+b+c =2或11或20. 由于要求最小的商也就是最小的被除数,先希望a =0. 此时,易验证b =0, b =1无解,而在b =2时,有解c =9,所以最小的被除数是100296,最小的商是1592.
例7、 所有五位数中,能够同时被7,8,9,10整除的有多少?
解:7,8,9,10的最小公倍数是2520,五位数最小是10000,最大99999,共有90000个数,180035252090000 =÷,24403252010000 =÷,所以共有36个.
例8、用1、2、3组成的四位数(可重复)中能够被11整除的数有多少个?
解:这样的四位数被11整除,一定有奇数位数字之和等于偶数位数字之和. 在1,2,3,4中1+1=1+1,1+2=1+2,1+3=1+3, 1+3=2+2 ,2+2=2+2,2+3=2+3,3+3=3+3七种情况,其中1+1=1+1、2+2=2+2、3+3=3+3分别只能得到1个4位数,1+2=1+2,1+3=1+3,2+3=2+3情况相同可以得到4个4位数,1+3=2+2也能得到4个4位数,所以一共有19个.
例9、已知(重复99次)能够被91整除,求.
解:根据7和13的整除判断方法7(13)∣(重复99次)有7(13)∣(重复98次),因为(91,1000)=1,所以7(13)∣(重复98次),以此类推,就有7(13)∣,得到 =455,所以=55.
例10、已知11个连续两位数的乘积的末四位都是0,而且是343的倍数,那么这11个数中最小的是多少?
解:因为连续11个数是343的倍数,而33437=,但是11个数中之多有两个是7的倍数,所以这11个数中有49或者98,而11个数之多有3个是5的倍数,但却是10000的倍数,所以这11个数中又有25或者50或者75,并且以5的倍数开头和结尾,又要保证有2个7的倍数,所以只能是40到50这11个数.所以最小的数是40.
数学万花筒——趣题欣赏:
1. 鬼谷子问题:传说在春秋战国时期,鬼谷子随意从2-99中选取了两个数。

他把这两个数
的和告诉了庞涓,把这两个数的乘积告诉了孙膑。

但孙膑和庞涓彼此不知到对方得到的数。

第二天,庞涓很有自信的对孙膑说:虽然我不知到这两个数是什麽,但我知道你
一定也不知道。

随后,孙膑说:那我知道了。

庞涓说:那我也知道了。

问这两个数是什么?这个原问题可能很复杂,现在告诉你这两个数都在2-15中(但是庞涓和孙膑不知道),你能指出孙膑和庞涓每句话的逻辑含义和这两个数么?
解:2个人都不知道说明两个人得到的数都存在不止一种的分解方法,庞涓的话说明讲他得到的数分解成两个数的和,这两个数的乘积都存在另一种分解方式,而之后孙膑的话说明庞涓的话告诉他,庞涓得到的数只能是5-197之中的某几个,而他所得到的乘积的各种分解方式中只有一种所得到的和在庞涓可能得到的数种。

而庞涓最后一句话则说明,孙膑对于自己的数的猜测让庞涓否定了和的其他分解方式。

具体解法是考虑庞涓得到的数,一定是5-29,先否定质数+2,可以分解成两个质数的和的偶数,还剩下6、8、11、17、23、27、29. 容易否定6、8,然后对于每种和的分解利用庞涓最后也能知道逐一否定,得到唯一解4和13.
2、一枚,三枚,还是四枚
有一种硬币游戏,其规则是:(1)一堆硬币共九枚.(2)双方轮流从中取走一枚,三枚或四枚.(3)谁取最后一枚谁赢.两人中是否必定会有一人赢?如果是,如何取?
答:后手必胜.如果因为在剩余5枚的时候先手取3枚必胜.在有9枚时,如果先手去4枚则后手取3枚,如果先手去3枚则后手取4枚.如果先手取一枚则后手取一枚.此时还剩7枚,此时先手只能取1枚,后手再取4枚即可获胜.
作业题:
1. 已知六位数能够被720整除,请问这个六位数是多少?(答案=213840或者
293040)
□是7的倍数,求空格中的数字.(答案:3)2.55555559999999
3. 一个三位数,它的百位数字是4,加9能被7整除,请问这个数是多少?(答案=439)
4. 请证明六位数一定能被7、11、13整除.(证明略)
5.已知自然数A的各个数位上的数码之和与3A的各个数位上的数码之和相等,证明A必能被9整除. (3A数字和是3的倍数,A的也是,所以A能被3整除,所以3A能被9整除,所以数字和是9的倍数,所以A的也是,所以A能被9整除.)
课堂练习题:
班级________ 姓名___________ 得分______
1、如果一个数能被72整除,求a+b.
答案:a+b=6.整除8的性质可以推出b=2,整除9的性质可以推出a=4.
2、请根据7、11整除判断方法的推导和证明,类比推出对于17的整除判定(提示17×59=1003)
答案:末三位与末三位之前的数的三倍之差能被7、11、13整除
3、用1、2、3、4(每个数恰好用一次)可组成24个四位数,其中共有多少个能被11整除?解:1+4=2+3,所以1,4在偶数位,2和3在奇数位或者1和4在奇数位,2和3在偶数位,共有2×2×2=8个.
4、已知四个整数,他们两两的和都能被两两的差整除,请问其中最大的两个数的和最小是多少?
解:10. 思想:差越小越容易整除. 任意连续的3个数,只要其中有两个偶数都满足要求,所以可以找到2,3,4,6. 容易验证没有更小的符合题目要求的解.
5、15位同学分别编号1-15,1号同学写下了一个不少于6位的数,后面每个人都说这个数能被自己的编号整除,经验证,只有连续两个编号相连的人说错了,请问这个数至少是多少?答案:2,3,4,5,6,7都必须能整除五位数,否则不能满足题意,所以10,12,14,15也能整除这个五位数,因此这个数不能被8、9整除.所以这个数至少整除4×5×7×11×13=60060. 因为这个数至少是六位而又不能被8、9整除,所以这个数至少是60060×5=300300.
6、请问是否存在一个数以7结尾的数,把7挪放到第一位之后得到的数恰巧等于原来的数的7倍. 若存在,请答出这个数的位数,若不存在,请证明.
答案:22位,竖式乘法即可得出答案.。

相关文档
最新文档