2019年北京市各区一模数学试题分类汇编——几何压轴题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年北京市各区一模数学试题分类汇编——几何综合题
(房山)27. 已知:Rt △ABC 中,∠ACB =90°,AC =BC .
(1)如图1,点D 是BC 边上一点(不与点B ,C 重合),连接AD ,过点B 作BE ⊥AD ,交AD 的延长线于点E ,连接CE . 若∠BAD =α,求∠DBE 的大小 (用含α的式子表示) ;
(2)如图2,点D 在线段BC 的延长线上时,连接AD ,过点B 作BE ⊥AD ,垂足E 在线段AD 上,连接CE .
①依题意补全图2;
②用等式表示线段EA ,EB 和EC 之间的数量关系,并证明.
图1 图2
B A
A
(门头沟)27.如图,∠AOB = 90°,OC 为∠AOB 的平分线,点P 为OC 上一个动点,过点P 作射线PE 交OA 于点E .以点P 为旋转中心,将射线PE 沿逆时针方向旋转90°,交OB 于点F . (1)根据题意补全图1,并证明PE = PF ;
(2)如图1,如果点E 在OA 边上,用等式表示线段OE ,OP 和OF 之间的数量关系,并证明; (3)如图2,如果点E 在OA 边的反向延长线上,直接写出线段OE ,OP 和OF 之间的数量关系.
图1 图2
(密云)27. 已知△ABC 为等边三角形,点D 是线段AB 上一点(不与A 、B 重合).将线段CD 绕点C 逆时针旋转60°得到线段CE .连结DE 、BE .
(1)依题意补全图1并判断AD 与BE 的数量关系.
(2)过点A 作AF EB 交EB 延长线于点F .用等式表示线段EB 、DB 与AF 之间的数量关系并证明.
P
P
E
E
C
C
B
B
O
O
A
A
图2
D C
B
A
图1
A B C
D
(平谷)27.在△ABC 中,∠ABC =120°,线段AC 绕点A 逆时针旋转60°得到线段AD ,连接CD ,BD 交AC 于P .
(1)若∠BAC =α,直接写出∠BCD 的度数 (用含α的代数式表示); (2)求AB ,BC ,BD 之间的数量关系; (3)当α=30°时,直接写出AC ,BD 的关系.
(石景山)27.如图,在等边△ABC 中,D 为边AC 的延长线上一点()CD AC ,平移线段BC , 使点C 移动到点D ,得到线段ED ,M 为ED 的中点,过点M 作ED 的垂线,交BC 于点F ,交AC 于点G . (1)依题意补全图形; (2)求证:AG = CD ;
(3)连接DF 并延长交AB 于点H ,用等式表示线段AH 与CG 的数量关系,并证明.
D
B A
(通州)27.如图,在等边△ABC 中,点D 是线段BC 上一点.作射线AD ,点B 关于射线AD 的对称点为E .连接CE 并延长,交射线AD 于点F . (1)设∠BAF =α,用α表示∠BCF 的度数;
(2)用等式表示线段AF 、CF 、EF 之间的数量关系,并证明.
(延庆)27.已知:四边形ABCD 中,120ABC ∠=︒,60ADC ∠=︒,AD =CD ,对角线AC ,BD 相交于点O ,且BD 平分∠ABC ,过点A 作AH BD ⊥,垂足为H . (1)求证:ADB ACB ∠=∠;
(2)判断线段BH ,DH ,BC 之间的数量关系;并证明.
H O D
B
A
(燕山)27.如图,在△ABC 中,AB =BC ,∠B =90°,点D 为线段BC 上一个动点(不与点B ,C 重合),连接AD ,将线段AD 绕点D 顺时针旋转90°得到线段DE ,连接EC .
(1) ① 依题意补全图1; ② 求证:∠EDC =∠BAD ;
(2) ① 小方通过观察、实验,提出猜想:在点D 运动的过程中,线段CE 与BD 的数量关系始终不变,用等式表示为: ;
② 小方把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法: 想法1:过点E 作EF ⊥BC ,交BC 延长线于点F ,只需证△ADB ≌△DEF .
想法2:在线段AB 上取一点F ,使得BF =BD ,连接DF ,只需证△ADF ≌△DEC .
想法3:延长AB 到F ,使得BF =BD ,连接DF ,CF ,只需证四边形DFCE 为平行四边形. ……
请你参考上面的想法,帮助小方证明①中的猜想.(一种方法即可)
图1 D C B A
备用图 A
B C
D
(西城)27.如图,在△ABC中,∠ABC=90°,BA=BC.将线段AB绕点A逆时针旋转90°得到线段AD,E是边BC上的一动点,连接DE交AC于点F,连接BF.
(1)求证:FB=FD;
(2)点H在边BC上,且BH=CE,连接AH交BF于点N.
①判断AH与BF的位置关系,并证明你的结论;
②连接CN.若AB=2,请直接写出线段CN长度的最小值.
(顺义)27.已知:如图,在△ABC 中,AB >AC ,∠B =45°, 点D 是BC 边上一点,且AD=AC ,过点C 作CF ⊥AD 于点E ,与AB 交于点F .
(1)若∠CAD =α,求∠BCF 的大小(用含α的式子表示); (2)求证:AC =FC ;
(3)用等式直接表示线段BF 与DC 的数量关系.
A
B
C
D
F
E
(丰台)27.在△ABC中,∠ACB=90°,AC=BC, D为AB的中点,点E为AC延长线上一点,连接DE,过点D作DF⊥DE交CB的延长线于点F.
(1)求证:BF= CE;
(2)若CE=AC,用等式表示线段DF与AB的数量关系,并证明.