中考数学四边形专题复习
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形与四边形
如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点
E 是AB 的中点,连结EF. (1)求证:E
F ∥BC. (2)若四边形BDFE 的面积为6,求△ABD 的面积.
(1)证明:
CF ACB ∠平分,
∴ 12∠=∠.……………………1分 又∵ DC AC =,
∴ CF 是△ACD 的中线,
∴ 点F 是AD 的中点.…………2分 ∵ 点E 是AB 的中点, ∴ EF ∥BD,
即 EF ∥BC. …………………………3分 (2)解:由(1)知,EF ∥BD , ∴ △AEF ∽△ABD , ∴
2
()AEF ABD S AE S AB
∆∆=.……………………………………4分 又∵ 1
2
AE AB =
, 6AEF ABD ABD BDFE S S S S ∆∆∆=-=-四边形,………………5分 ∴
2
61()2
ABD ABD S S ∆∆-= ,………………………………………6分
∴ 8ABD S ∆=,
∴ ABD ∆的面积为8. ………………………………………7分
2
1
F
E D
C
B
A
如图,四边形ABCD 是菱形,DE ⊥AB 交BA 的延长线于E ,DF ⊥BC ,交BC 的延长线于F 。
请你猜想DE 与DF 的大小有什么关系?并证明你的猜想。
解:DE =DF
证明如下: 连结BD
∵四边形ABCD 是菱形
∴∠CBD =∠ABD(菱形的对角线平分一组对角) ∵DF ⊥BC ,DE ⊥AB
∴DF =DE(角平分线上的点到角两边的距离相等)
如图,在等腰梯形ABCD 中,已知AD ∥BC ,AB =DC ,AD =2,BC =4,延长BC 到E ,使CE =AD .
(1)写出图中所有与△DCE 全等的三角形,并选择其中一对说明全等的理由;(5分) (2)探究当等腰梯形ABCD 的高DF 是多少时,对角线AC 与BD 互相垂直?请回答并说明
理由.(5分)
解:
解:(1)△CDA ≌△DCE ,△BAD ≌△DCE ; ··················································· 2分 ① △CDA ≌△DCE 的理由是: ∵AD ∥BC ,
∴∠CDA =∠DCE . ·······················3分 又∵DA =CE ,CD =DC , ·························4分 ∴△CDA ≌△DCE . ·······························5分 或 ② △BAD ≌△DCE 的理由是: ∵AD ∥BC ,
∴∠CDA =∠DCE . ··················································································· 3分
F E
D
C
B A (第23题图)
F E
D
C
B
A G
又∵四边形ABCD是等腰梯形,
∴∠BAD=∠CDA,
∴∠BAD =∠DCE. ··················································································4分又∵AB=CD,AD=CE,
∴△BAD≌△DCE.···············································································5分(2)当等腰梯形ABCD的高DF=3时,对角线AC与BD互相垂直.···············6分理由是:设AC与BD的交点为点G,∵四边形ABCD是等腰梯形,
∴AC=DB.
又∵AD=CE,AD∥BC,
∴四边形ACED是平行四边形, ····························································7分
∴AC=DE,AC∥DE.
∴DB=DE. ·····················································································8分则BF=FE,
又∵BE=BC+CE=BC+AD=4+2=6,
∴BF=FE=3.···················································································9分
∵DF=3,
∴∠BDF=∠DBF=45°,∠EDF=∠DEF=45°,
∴∠BDE=∠BDF+∠EDF=90°,
又∵AC∥DE
∴∠BGC=∠BDE=90°,即AC⊥BD. ··················································· 10分(说明:由DF=BF=FE得∠BDE=90°,同样给满分.)
如图8,在ABCD中,E,F分别为边AB,CD的
中点,连接E、BF、BD.
(1)求证:ADE CBF
△≌△.(5分)
(2)若A D⊥BD,则四边形BFDE是什么特殊
四边形?请证明你的结论.(5分)
(1)在平行四边形ABCD中,∠A=∠C,AD=CD,
∵E、F分别为AB、CD的中点
∴
AE=CF ……………………………………………………2分
(图8)
A B
C D
E
F