1直线与方程练习题及答案详解
(完整版)直线与方程练习题及答案详解

直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A .012=-+y xB .052=-+y xC .052=-+y xD .072=+-y x 3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( )A .045,1 B .0135,1- C .090,不存在 D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( ) A .0≠m B .23-≠m C .1≠m D .1≠m ,23-≠m ,0≠m 二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________;若3l 与1l 关于x 轴对称,则3l 的方程为_________;若4l 与1l 关于x y =对称,则4l 的方程为___________; 3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
直线与方程(含答案)

第三章直线与方程一、选择题1.下列直线中与直线x-2y+1=0平行的一条是().A.2x-y+1=0 B.2x-4y+2=0C.2x+4y+1=0 D.2x-4y+1=02.已知两点A(2,m)与点B(m,1)之间的距离等于错误!未找到引用源。
,则实数m=().A.-1 B.4 C.-1或4 D.-4或13.过点M(-2,a)和N(a,4)的直线的斜率为1,则实数a的值为().A.1 B.2 C.1或4 D.1或24.如果AB>0,BC>0,那么直线Ax―By―C=0不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限5.已知等边△ABC的两个顶点A(0,0),B(4,0),且第三个顶点在第四象限,则BC 边所在的直线方程是().A.y=-错误!未找到引用源。
x B.y=-错误!未找到引用源。
(x-4)C.y=错误!未找到引用源。
(x-4)D.y=错误!未找到引用源。
(x+4)6.直线l:mx-m2y-1=0经过点P(2,1),则倾斜角与直线l的倾斜角互为补角的一条直线方程是().A.x―y―1=0 B.2x―y―3=0C.x+y-3=0 D.x+2y-4=07.点P(1,2)关于x轴和y轴的对称的点依次是().A.(2,1),(-1,-2)B.(-1,2),(1,-2)C.(1,-2),(-1,2)D.(-1,-2),(2,1)8.已知两条平行直线l1 : 3x+4y+5=0,l2 : 6x+by+c=0间的距离为3,则b+c=().A.-12 B.48 C.36 D.-12或48 9.过点P(1,2),且与原点距离最大的直线方程是().A.x+2y-5=0 B.2x+y-4=0C.x+3y-7=0 D.3x+y-5=010.a,b满足a+2b=1,则直线ax+3y+b=0必过定点().A.错误!未找到引用源。
B.错误!未找到引用源。
C.错误!未找到引用源。
D.错误!未找到引用源。
完整版)直线与方程测试题及答案解析

完整版)直线与方程测试题及答案解析1.若过点(1,2)和(4,5)的直线的倾斜角是多少?A。
30° B。
45° C。
60° D。
90°2.如果三个点A(3,1)。
B(-2,b)。
C(8,11)在同一直线上,那么实数b等于多少?A。
2 B。
3 C。
9 D。
-93.过点(1,2),且倾斜角为30°的直线方程是什么?A。
y + 2 = (3/√3)(x + 1) B。
y - 2 = 3/2(x - 1) C。
3x - 3y + 6 - 3 = 0 D。
3x - y + 2 - 3 = 04.直线3x - 2y + 5 = 0和直线x + 3y + 10 = 0的位置关系是?A。
相交 B。
平行 C。
重合 D。
异面5.直线mx - y + 2m + 1 = 0经过一定点,则该点的坐标是多少?A。
(-2,1) B。
(2,1) C。
(1,-2) D。
(1,2)6.已知ab < 0,bc < 0,则直线ax + by + c = 0通过哪些象限?A。
第一、二、三象限 B。
第一、二、四象限 C。
第一、三、四象限 D。
第二、三、四象限7.点P(2,5)到直线y = -3x的距离d等于多少?A。
√(23/2) B。
√(2/23) C。
√(23+5) D。
√(22)8.与直线y = -2x + 3平行,且与直线y = 3x + 4交于x轴上的同一点的直线方程是什么?A。
y = -2x + 4 B。
y = (1/2)x + 4 C。
y = -2x - 3 D。
y = (2/3)x - 39.如果直线y = ax - 2和直线y = (a+2)x + 1互相垂直,则a 等于多少?A。
2 B。
1 C。
-1 D。
-210.已知等腰直角三角形ABC的斜边所在的直线是3x - y + 2 = 0,直角顶点是C(3,-2),则两条直角边AC,BC的方程是什么?A。
3x - y + 5 = 0.x + 2y - 7 = 0 B。
1直线与方程练习题及答案详解(可编辑修改word版)

直线与方程练习题及答案详解一、选择题1.设直线ax +by +c = 0 的倾斜角为,且sin+ cos= 0 ,则a, b 满足()A. a +b = 1 C. a +b =0B. a -b =1 D.a -b = 02.过点 P(-1, 3) 且垂直于直线 x - 2 y + 3 = 0 的直线方程为()A.2x +y -1= 0 C.x + 2 y - 5 = 0B.2x +y - 5 = 0 D.x - 2 y + 7 = 03.已知过点A(-2, m) 和B(m, 4) 的直线与直线2x +y -1= 0 平行,则m 的值为()A.0B.- 8C. 2 D.104.已知ab < 0, bc < 0 ,则直线ax +by =c 通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x =1 的倾斜角和斜率分别是()A.450,1 B.1350, -1C.900,不存在D.1800,不存在6.若方程(2m2+m -3)x + (m2-m) y -4m +1= 0 表示一条直线,则实数m 满足()A.m ≠ 0 C.m ≠ 1B.m ≠-32D.m ≠ 1,m ≠-3,m ≠ 02二、填空题1.点 P(1, -1) 到直线x -y +1 = 0 的距离是.2.已知直线l1 : y = 2x + 3, 若l2 与l1 关于y 轴对称,则l2 的方程为; 若l3 与l1 关于x 轴对称,则l3 的方程为;若l4 与l1 关于y =x 对称,则l4 的方程为;1 3.若原点在直线l 上的射影为(2,-1) ,则l 的方程为。
4. 点 P (x , y ) 在直线 x + y - 4 = 0 上,则 x 2 + y 2 的最小值是.5. 直线l 过原点且平分 ABCD 的面积,若平行四边形的两个顶点为B (1, 4), D (5, 0) ,则直线l 的方程为。
直线与方程例题与练习(含答案)

级 名倾斜角α的取值范围: . 角α与斜率 pp 平行的直线方程可设为 , ⇔PP的距离为 “直线定界,特殊点定域=-a b x +z b ,距z b距zb取距z b取距zb 取距z b取22()()x a y b -+-表示表示22x y +示 示示 示 的倾斜角的取值范围是的倾斜角的取值范围是 [[3π,)a -2a +1=a +,-2≤0,-a +=-2≤0,≤-≤-1. 1.103)线所在的直线方程为0104=+-y x ,求BC 边所在的直线方程。
边所在的直线方程。
答案:得B (10,5),A 的对称点(1,7),故BC 方程为06592=-+y x例6 6 .设.设x 、y 满足24,1,22,x y x y x y +³ìï-³-íï-£î则则z x y =+( )A .有最小值2,2,最大值最大值3 3B B .有最小值2,无最大值C .有最大值3,3,无最大值无最大值无最大值D D D.既无最小值.既无最小值.既无最小值,,也无最大值也无最大值 此题中,y x 的最大值是的最大值是2 最小值是最小值是 0 22x y +的最小值是的最小值是 165例7. 若x ,y 满足约束条件1122x y x y x y +³ìï-³-íï-£î,目标函数2z ax y =+仅在点(仅在点(11,0)处取得最小值,则a 的取值范围是( )(A) (A) ((1-,2 2 )) (B) (B) (4-,2 ) (C) (4,0]- (D) (2,4)-作业:作业:1.已知点A (1(1,-,-,-2)2)2),,B (m,2)2),且线段,且线段AB 的垂直平分线的方程是x +2y -2=0,则实数m 的值是的值是( ( )A .-.-2B 2 B 2 B.-.-.-7 7 7C C .3D D..12.直线kx -y +1-3k =0当k 变化时,所有的直线恒过定点变化时,所有的直线恒过定点 ( ( )A .(1,3)B (1,3) B..(-1,-,-3) 3) 3)C C .(3,1)D D..(-3,-,-1) 1) 3、直线2x -y -2=0绕它与y 轴的交点逆时针旋转π2所得的直线方程是所得的直线方程是( ( ) A .x -2y +4=0 B B..x +2y -4=0 C 0 C..x -2y -4=0 0 D D .x +2y +4=04、在圆x 2+y 2+2x -4y =0内,过点内,过点(0,1)(0,1)(0,1)的最短弦所在直线的倾斜角是的最短弦所在直线的倾斜角是的最短弦所在直线的倾斜角是( ( )A.π6B.B.π4C.π3 D.3π45、已知变量,x y 满足约束条件2823y xx y x y £ìï-£íï+³î,则目标函数62z x y =-的最小值为的最小值为( )A .32B .4C .8D .26、若实数x ,y 满足不等式组330,230,10,x y x y x my +-³ìï--£íï-+³î且x y +的最大值为9,则实数m =( )(A )2- ((B )1- ((C )1 ((D )27.直线l 过点P (-2,3)2,3),且与,且与x 轴、y 轴分别交于A 、B 两点,若点P 恰为AB 的中点,则直线l 的方程为________________..3x -2y +1212==08.在直角坐标系中,若不等式组ïîïíì++££-³1)1(00x k y y x x 表示一个三角形区域,则实数k 的取值范围是___(-1,1)__ 9、 给出平面区域如图所示给出平面区域如图所示..若当且仅当x =23,y =45时,目标函数z =ax -y 取最小值,则实数a 的取值范围是围是 (-(-(- 125,-,- 310). .1010.已知直线.已知直线l 1:(k -3)x +(4(4--k )y +1=0与直线l 2:2(k -3)x -2y +3=0平行,平行,则k= 3或5 l 1与l 2的距离为的距离为________________________..55210或1111.已知两条直线.已知两条直线l 1:(3(3++m )x +4y =5-3m ,l 2:2x +(5(5++m )y =8.8.当当m 分别为何值时,l 1与l 2:(1)(1)相交?相交?相交? (2) (2) (2)平行?平行?平行? (3) (3) (3)垂直?垂直?垂直?[解析] (1)(1)当当m =-=-55时,显然l 1与l 2相交;当m ≠-≠-55时,两直线l 1和l 2的斜率分别为k 1=-3+m4,k 2=-25+m, 它们在y 轴上的截距分别为轴上的截距分别为 b 1=5-3m 4,b 2=85+m . 由k 1≠k 2,得-3+m 4≠-25+m,即m ≠-≠-77,且m ≠-≠-1. 1.∴当m ≠-≠-77,且m ≠-≠-11时,l 1与l 2相交.相交.(2)(2)由由îïíïìk 1=k 2,b 1≠b 2,得îïíïì-3+m 4=-25+m,5-3m 4≠85+m ,得m =-=-7. 7.∴当m =-=-77时,l 1与l 2平行.平行.(3)(3)由由k 1k 2=-=-11,得-3+m 4·(-25+m)=-=-11,m =-133.=-时,11,使得y O A xBP(3, 1)【答案】【答案】AB=AB=22(16)(42)29-+-=,直线AB 的方程为264216y x --=--,即25220x y +-=,假设在直线x-3y+3=0上是否存在点C ,使得三角形ABC 的面积等于1414,,设C 的坐标为(,)m n ,则一方面有m-3n+3=0①,另一方面点C 到直线AB 的距离为|2522|29m n d +-=,由于三角形ABC 的面积等于1414,则,则11|2522|29142229m n AB d +-××=××=,|2522|28m n +-=,即2550m n +=②或256m n +=-③.联立①②解得13511m =,5611n=;联立①③解得3m =-,0n =.综上,在直线x-3y+3=0上存在点C 13556(,)1111或(3,0)-,使得三角形ABC 的面积等于14.。
高一数学直线与方程相关习题及答案

直线与方程一、选择题1.若A -2,3,B 3,-2,C ),21(m 三点共线,则m 的值为A.B .-C .-2D .22.如图,在同一直角坐标系中,表示直线y =ax 与y =x +a 正确的是3.两平行直线5x +12y +3=0与10x +24y +5=0之间的距离是A.B.C. D. 4.直线l 1:3-ax +2a -1y +7=0与直线l 2:2a +1x +a +5y -6=0互相垂直,则a 的值是A .-B.C. D.5.直线kx -y +1-3k =0,当k 变动时,所有直线都通过定点A .0,0B .0,1C .3,1D .2,16.已知A 2,4与B 3,3直线l 对称,则直线l 的方程为A .x +y =0B .x -y =0C .x +y -6=0D .x -y +1=07.已知直线l 过点1,2,且在x 轴上的截距是在y 轴上的截距的2倍,则直线l 的方程为A .x +2y -5=0B .x +2y +5=0C .2x -y =0或x +2y -5=0D .2x -y =0或x -2y +3=08.直线y =x +3k -2与直线y =-x +1的交点在第一象限,则k 的取值范围是 A.)1,32(- B.)0,32(-C .)1,0( D.⎥⎦⎤⎢⎣⎡-1,32 9.经过点2,1的直线l 到A 1,1、B 3,5两点的距离相等,则直线l 的方程A .2x -y -3=0B .x =2C .2x -y -3=0或x =2D .以上都不对10.直线l 过点P 1,3,且与x ,y 轴正半轴围成的三角形的面积等于6的直线方程是A .3x +y -6=0B .x +3y -10=0C .3x -y =0D .x -3y +8=0二、填空题11.直线l 方程为y -a =a -1x +2,且l 在y 轴上的截距为6,则a =________.12.已知点m,3到直线x +y -4=0的距离等于,则m 的值为________.13.经过两条直线2x +y +2=0和3x +4y -2=0的交点,且垂直于直线3x -2y +4=0的直线方程为________.14.已知A ,B 两点分别在两条互相垂直的直线2x -y =0和x +ay =0上,且线段AB 的中点为)10,0(aP ,则线段AB 的长为________. 三、解答题15.已知两条直线l 1:x +m 2y +6=0,l 2:m -2x +3my +2m =0,当m 为何值时,l 1与l 2 1相交;2平行;3重合.16.若一束光线沿着直线x -2y +5=0射到x 轴上一点,经x 轴反射后其反射线所在直线为l ,求l 的方程.17.在平面直角坐标系xOy 中,已知直线l 的方程为2x +k -3y -2k +6=0,k ∈R . 1若直线l 在x 轴、y 轴上的截距之和为1,求坐标原点O 到直线l 的距离; 2若直线l 与直线l 1:2x -y -2=0和l 2:x +y +3=0分别相交于A ,B 两点,点P 0,2到A 、B 两点的距离相等,求k 的值.18.已知△ABC 的顶点B -1,-3,AB 边上高线CE 所在直线的方程为x -3y -1=0,BC 边上中线AD 所在的直线方程为8x +9y -3=0.1求点A 的坐标;2求直线AC 的方程.直线与方程答案1—5:ACCBC6-10:DCACA11:12:-1或313:2x+3y-2=014:1015:解当m=0时,l1:x+6=0,l2:x=0,∴l1∥l2.当m=2时,l1:x+4y+6=0,l2:3y+2=0,∴l1与l2相交.当m≠0且m≠2时,由=,得m=-1或m=3,由=,得m=3.故1当m≠-1且m≠3且m≠0时,l1与l2相交.2当m=-1或m=0时,l1∥l2.3当m=3时,l1与l2重合.16:解直线x-2y+5=0与x轴交点为P-5,0,反射光线经过点P.又入射角等于反射角,可知两直线倾斜角互补.∵k1=,∴所求直线斜率k2=-,故所求方程为y-0=-x+5,即x+2y+5=0.17:解1令x=0时,纵截距y0=2;令y=0时,横截距x0=k-3;则有k-3+2=1k=2,所以直线方程为2x-y+2=0,所以原点O到直线l的距离d==.2由于点P0,2在直线l上,点P到A、B的距离相等,所以点P为线段AB的中点.设直线l与2x-y-2=0的交点为Ax,y,则直线l与x+y+3=0的交点B-x,4-y,由方程组解得即A3,4,又点A在直线l上,所以有2×3+k-3×4-2×k+6=0,即k=0.18:解1设点Ax,y,则解得故点A的坐标为-3,3.2设点Cm,n,则解得m=4,n=1,故C4,1,又因为A-3,3,所以直线AC的方程为=,即2x+7y-15=0.。
高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1.在平面直角坐标系中,定义为两点,之间的“折线距离”.则坐标原点与直线上一点的“折线距离”的最小值是;圆上一点与直线上一点的“折线距离”的最小值是 .【答案】,【解析】直线上的点可以表示成,那么原点到它的折线距离为,所以只需求的最小值,而,画出图象可以看当时取到最小值同理,设圆上的点为,所以所求即为的最小值,而所以最小值为.【考点】本小题主要考查新定义下分段函数求最值问题,考查学生对新定义的理解和利用能力以及运算求解能力和对问题的转化能力.点评:第二问求解时也可以按照分段函数讨论,但比较麻烦,用绝对值的性质可以简化运算.2. p点在直线3x+y-5=0上,且p到直线x-y-1=0的距离等于,则点p坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,-1)D.(2,1)或(-1,2)【答案】C【解析】依题意可得P点是直线和与直线平行且距离为的平行直线的交点。
设与直线平行且距离为的平行直线方程为,由平行直线距离公式可得,解得或。
当时平行直线方程为,与直线联立可得P点坐标为。
当时平行直线方程为,与直线联立可得P点坐标为。
故选C3.点p(m-n,-m)到直线的距离等于()A.B.C.D.【答案】A【解析】直线方程化为由点到直线的距离公式得:故选A4.已知正方形的中心为直线x-y+1=0和2x+y+2=0的交点,正方形一边所在直线方程为x+3y -2=0,求其它三边方程。
【答案】其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=0【解析】解:由将正方形的中心化为p(-1,0),由已知可设正方形相邻两边方程为x+3y+m=0和3x-y+n=0 ,∵p点到各边的距离相等,∴和,∴ m=4或m=-2和n=6或n=0∴其它三边所在直线方程为x+3y+4=0,3x-y=0,3x-y+6=05.若点(4,a)到直线4x-3y=0的距离不大于3,则a的取值范围是()A.(0,10)B.[3,4]C.[,]D.(-,0)【答案】C【解析】依题意可得,解得,故选C6.坐标平面内一点到两个坐标轴和直线x+y=2的距离都相等,则该点的横坐标是( )A.B.1C.D.不确定【答案】D【解析】设该点坐标为。
高一数学直线的方程试题答案及解析

高一数学直线的方程试题答案及解析1.与直线关于轴对称的直线的方程为()A.B.C.D.【答案】A【解析】解:直线与轴的交点为,关于轴对称的直线的斜率为:,所以直线关于轴对称的直线的方程为:,即.【考点】直线关于直线的对称直线2.求经过两直线和的交点且与直线垂直的直线方程.【答案】【解析】首先求两条直线的交点,利用两条直线垂直, ,求出直线的斜率,利用点斜式方程写出直线,然后再化简.解:由得交点 3分又直线斜率为-3, 5分所求的直线与直线垂直,所以所求直线的斜率为, 7分所求直线的方程为,化简得: 12分【考点】求直线方程3.若点(4,a)到直线4x-3y=1的距离不大于3,则a的取值范围是A.B.(0,10)C.D.(-∞,0][10,+∞)【答案】A【解析】略4.直线(2m2-5m-3)x-(m2-9)y+4=0的倾斜角为,则m的值是A.3B.2C.-2D.2与3【答案】B【解析】依题意可得直线的斜率为,所以且,解得,故选B5.△ABC的一个顶点是A(3,-1),∠B、∠C的平分线分别是x=0,y=x,则直线BC的方程是()A、y=2x+5B、y=2x+3C、y=3x+5D、y=-【答案】A【解析】因为的平分线分别是,则点关于直线的对称点都在直线上,则直线的方程为,即,故选A6.若方程表示两条直线,求m的值【答案】m=1【解析】解:当m=0时,显然不成立当m0时,配方得方程表示两条直线,当且仅当有1-=0,即m=17.原点在直线上的射影为点P(-2,1),则直线的方程是A.x+2y=0B.2x+y+3=0C.x-2y+4=0D.2x-y+5=0【答案】D【解析】OP的斜率为则L的斜率为2,所以L的方程为,即故选D 8.点(a,b)关于直线x+y=0对称的点是 ( )A.(-a,-b)B.(a,-b)C.(b,a)D.(-b,-a)【答案】D【解析】设点(a,b)关于直线x+y=0对称的点是,则解得故选D 9.已知l 平行于直线3x+4y-5="0," 且l和两坐标轴在第一象限内所围成三角形面积是24,则直线l的方程是 ( )A.3x+4y-12="0"B.3x+4y+12=0C.3x+4y-24=0D.3x+4y+24=0【答案】C【解析】设L方程为令得;令得于是直线L两坐标轴在第一象限内所围成三角形面积为,解得所以L方程为3x+4y-24=0故选C10.下列命题中不正确的是()A、二直线的斜率存在时,它们垂直的充要条件是其斜率之积为-1B、如果方程Ax+By+C=0表示的直线是y 轴,那么系数A、B、C满足A≠ 0,B=C=0C、ax+by+c=0和2ax+2by+c+1=0表示两条平行直线的充要条件是a2+b2≠0且c≠1D、(x-y+5)+k(4x-5y-1)=0表示经过直线x-y+5=0与4x-5y-1=0的交点的所有直线。
直线与方程习题(带答案)

直线与方程习题(带答案)直线与方程题(带答案)一、选择题1.若直线x=1的倾斜角为α,则α().A。
等于0B。
等于π/2C。
等于πD。
不存在斜率2.图中的直线l1,l2,l3的斜率分别为k1,k2,k3,则().A。
k1<k2<k3B。
k3<k1<k2C。
k3<k2<k1D。
k1<k3<k23.已知直线l1经过两点(-1,-2)、(-1,4),直线l2经过两点(2,1)、(x,6),且l1∥l2,则x=().A。
2B。
-2C。
4D。
14.已知直线l与过点M(-3,2),N(2,-3)的直线垂直,则直线l的倾斜角是().A。
π/3B。
2π/3C。
π/4D。
3π/45.如果AC<0,且BC<0,那么直线Ax+By+C=0不通过().A。
第一象限B。
第二象限C。
第三象限D。
第四象限6.设A,B是x轴上的两点,点P的横坐标为2,且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是().A。
x+y-5=0B。
2x-y-1=0C。
2y-x-4=0D。
2x+y-7=07.过两直线l1:x-3y+4=0和l2:2x+y+5=0的交点和原点的直线方程为().A。
19x-9y=0,19y=0B。
9x+19y=0C。
19x-3y=0D。
3x+7y=08.直线l1:x+a2y+6=0和直线l2:(a-2)x+3ay+2a=0没有公共点,则a的值是().A。
3B。
-3C。
1D。
-19.将直线l沿y轴的负方向平移a(a>0)个单位,再沿x轴正方向平移a+1个单位得直线l',此时直线l'与l重合,则直线l'的斜率为().A。
a/(a+1)B。
-a/(a+1)C。
(a+1)/aD。
-(a+1)/a10.点(4,5)关于直线5x+4y+21=0的对称点是().A。
(-6,8)B。
(6,-8)C。
(-6,-8)D。
(6,8)二、填空题11.已知直线l1的倾斜角α1=15°,直线l1与l2的交点为A,把直线l2绕着点A按逆时针方向旋转到和直线l1重合时所转的最小正角为60°,则直线l2的斜率k2的值为tan(75°)或2+√3.12.若三点A(-2,3),B(3,-2),C(1,m)共线,则m的值为-1.13.已知长方形ABCD的三个顶点的坐标分别为A(0,1),B(1,0),C(3,2),求第四个顶点D的坐标为D(2,3)。
1直线与方程练习题及答案详解

1直线与方程练习题及答案详解直线与方程练题及答案详解一、选择题1.设直线ax+by+c=0的倾斜角为α,且sinα+cosα=√2/2,则a,b满足()A.a+b=1B.a-b=1C.a+b=0D.a-b=02.过点P(-1,3)且垂直于直线x-2y+3=0的直线方程为()A.2x+y-1=0B.2x+y-5=0C.x+2y-5=0D.x-2y+7=03.已知过点A(-2,m)和B(m,4)的直线与直线2x+y-1=0平行,则m的值为()A.-8B.-2/3C.2D.104.已知ab<0,bc<0,则直线ax+by=c通过()A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限5.直线x=1的倾斜角和斜率分别是()A.45°,1B.135°,-1C.90°,不存在D.180°,不存在6.若方程(2m+m-3)x+(m-m)y-4m+1=0表示一条直线,则实数m满足()A.m≠0B.m≠-1C.m≠1D.m≠-2/3二、填空题1.点P(1,-1)到直线x-y+1=0的距离是√2/2.2.已知直线;若l4与l1关于y=x对称,则l4的方程为y=-x+3.3.若原点在直线l上的射影为(2,-1),则l的方程为2x-y-2=0.4.点P(x,y)在直线x+y-4=0上,则x+y的最小值是4.5.直线l过原点且平分ABCD的面积,若平行四边形的两个顶点为B(1,4),D(5,0),则直线l的方程为y=-3x+0.三、解答题1.已知直线Ax+By+C=0。
1)系数为什么值时,方程表示通过原点的直线;当C=0时,方程表示通过原点的直线。
2)系数满足什么关系时与坐标轴都相交;当A≠0且B≠0时,直线与x轴和y轴都有交点。
3)系数满足什么条件时只与x轴相交;当B=0且A≠0时,直线只与x轴相交。
4)系数满足什么条件时是x轴;当A=0且B≠0时,直线是x轴。
直线与方程试题及答案

直线与方程试题及答案1. 已知直线方程为 \(y = 2x + 3\),求该直线与 \(x\) 轴的交点坐标。
答案:将 \(y\) 设为 0,解方程 \(0 = 2x + 3\) 得到 \(x = -\frac{3}{2}\)。
因此,直线与 \(x\) 轴的交点坐标为 \((-\frac{3}{2}, 0)\)。
2. 已知直线 \(y = mx + b\) 经过点 \(A(1, 2)\) 和点 \(B(3,4)\),求直线的方程。
答案:将点 \(A(1, 2)\) 和点 \(B(3, 4)\) 代入方程 \(y = mx + b\),得到两个方程:\[2 = m \cdot 1 + b\]\[4 = m \cdot 3 + b\]解这个方程组,得到 \(m = 1\),\(b = 1\)。
因此,直线的方程为\(y = x + 1\)。
3. 已知直线方程为 \(3x - 4y + 5 = 0\),求该直线的斜率。
答案:将方程 \(3x - 4y + 5 = 0\) 转换为斜截式 \(y = mx + b\),得到\(y = \frac{3}{4}x - \frac{5}{4}\)。
因此,直线的斜率为\(\frac{3}{4}\)。
4. 求过点 \(C(2, 3)\) 且与直线 \(y = 2x - 1\) 平行的直线方程。
答案:与直线 \(y = 2x - 1\) 平行的直线具有相同的斜率,即斜率为 2。
因此,所求直线方程为 \(y = 2x + b\)。
将点 \(C(2, 3)\) 代入方程,得到 \(3 = 2 \cdot 2 + b\),解得 \(b = -1\)。
因此,所求直线方程为 \(y = 2x - 1\)。
5. 已知直线 \(y = 3x + 7\) 与 \(x\) 轴相交于点 \(D\),与 \(y\) 轴相交于点 \(E\),求点 \(D\) 和点 \(E\) 的坐标。
答案:点 \(D\) 位于 \(x\) 轴上,因此 \(y = 0\)。
高一数学直线与方程试题答案及解析

高一数学直线与方程试题答案及解析1.两平行直线y=kx+b1与y=kx+b2之间的距离是()A.b1-b2B.C.D.【答案】B【解析】略2.已知直线L:Ax+By+C=0,(A,B不同时为0)。
若点(1,1)到L的距离为1,则A,B,C应满足的关系式是----------------------。
【答案】(A+B+C)2=A2+B2【解析】根据点到直线距离公式可得,整理可得3.的三个顶点坐标分别为A(2,6),B(-4,3),C(2,-3),则BC边上的高线的长为--------------。
【答案】【解析】所在直线的斜率为,则所在直线方程为,即。
而高经过点,所以边上的高线的长等于点到直线的距离4.已知M(sinα, cosα), N(cosα, sinα),直线l: xcosα+ysinα+p="0" (p<–1),若M, N到l的距离分别为m, n,则A.m≥n B.m≤n C.m≠n D.以上都不对【答案】A【解析】点到直线的距离,点到直线的距离。
因为,所以,则,故选A5.已知A, B, C为三角形的三个内角,它们的对边长分别为a, b, c,已知直线xsinA+ysinB+sinC=0到原点的距离大于1,则此三角形为A.锐角三角形B.直角三角形C.钝角三角形D.不能确定【答案】C【解析】因为直线到原点的距离大于1,所以,则。
由正弦定理可得,则。
再由余弦定理有,即为钝角,所以此三角形为钝角三角形,故选C6.与直线2x+3y–6=0关于点(1, –1)对称的直线是A.3x–2y+2=0B.2x+3y+7=0C.3x–2y–12=0D.2x+3y+8=0【答案】D【解析】设是所求直线上任一点,P关于点(1,-1)的对称点为则又点Q在直线2x+3y–6=0上,。
即故选D7.方程2x2+9xy+10y2–7x–15y+k=0表示两条直线,则过这两直线的交点且与x–y+2=0垂直的直线方程是A.x+y–1=0B.x+y–2=0C.x+y+1=0D.x+y+2=0【答案】D【解析】设方程表示直线和直线,其中都是整数,则有,即,所以,可得。
(完整)高中数学直线与方程习题及解析.docx

1.一条光线从点 A(-1,3)射向 x 轴,经过 x 轴上的点 P 反射后通过点 B(3,1),求 P 点的坐标.3-0=-31- 01解 设 P( x,0) ,则 k PA =, k PB ==,依题意,- 1- x x + 1 3- x 3- x由光的反射定律得k PA =- k PB ,即 3= 1,解得 x =2,即 P(2,0).x +1 3- x2.△ ABC 为正三角形,顶点A 在 x 轴上, A 在边 BC 的右侧,∠ BAC 的平分线在 x 轴上,求边 AB 与 AC 所在直线的斜率.解如右图,由题意知 ∠BAO = ∠ OAC = 30°,∴ 直线 AB 的倾斜角为 180°- 30°= 150°,直线 AC 的倾斜角为 30°,∴ k AB = tan 1503=°- 3 ,AC3k = tan 30 =° 3 .2f a , f b , f c的大小. 3.已知函数 f(x)= log ( x + 1), a>b>c>0,试比较a b c解画出函数的草图如图,f xx 可视为过原点直线的斜率.f c f b f a由图象可知:c>b>a.4. (1) 已知四点 A(5,3), B(10,6),C(3,- 4), D(- 6,11),求证: AB ⊥ CD .(2)已知直线 l 1 的斜率 k 1= 3,直线 l 2 经过点 A(3a ,- 2), B(0, a 2+ 1)且 l 1⊥ l 2,求实数4 a 的值.(1)证明 由斜率公式得:k AB = 6- 3 310-5 = 5,11- - 45 k CD = - 6- 3 =- 3,则 k AB ·k CD =- 1, ∴ AB ⊥CD .(2)解∵ l 1⊥ l 2,∴ k 1·k 2=- 1,3× a 2+ 1- - 2即 =- 1,解得 a =1 或 a =3.40- 3a5. 如图所示, 在平面直角坐标系中, 四边形 OPQR 的顶点坐标按逆时针顺序依次为O(0,0)、P(1, t)、 Q(1- 2t,2+ t)、R(- 2t,2),其中 t>0. 试判断四边形 OPQR 的形状.解由斜率公式得k OP=t - 0= t,1- 0QR 2- 2+ t=-t= t,k OR2- 0=-1,k =- 2t- 1- 2t- 1=t - 2t- 0k PQ=2+ t -t2=-1.=1- 2t- 1- 2t t∴k OP=k QR, k OR= k PQ,从而 OP∥ QR, OR∥PQ .∴四边形 OPQR 为平行四边形.又k OP·k OR=- 1,∴ OP⊥ OR,故四边形 OPQR 为矩形.6.已知四边形ABCD 的顶点 A(m, n), B(5,- 1), C(4, 2), D(2,2) ,求 m 和 n 的值,使四边形 ABCD 为直角梯形.解∵四边形 ABCD 是直角梯形,∴有 2 种情形:(1)AB∥CD , AB⊥ AD,由图可知: A(2,- 1).(2)AD∥ BC, AD ⊥ AB,k AD= k BCk AD·k AB=- 1n-2= 3m- 2-1?n- 2 n+1·=- 1m- 2 m- 516m=5.∴8n=-516m= 2m=5.综上或n=- 18n=-57.已知直线 l1与 l 2的方程分别为7x+ 8y+ 9= 0,7x+ 8y-3= 0.直线 l 平行于 l 1,直线 l 与 l1的距离为 d1,与 l2的距离为 d2,且 d1∶d2= 1∶ 2,求直线 l 的方程.解因为直线 l 平行 l1,设直线 l 的方程为 7x+ 8y+ C= 0,则 d1=|C- 9||C-- 3 |,d2=. 72+ 8272+82又2d1= d2,∴2|C-9|= |C+ 3|.解得 C= 21 或 C= 5.故所求直线l 的方程为7x+ 8y+ 21= 0 或 7x+8y+ 5= 08.△ ABC 中, D 是 BC 边上任意一点(D 与 B,C 不重合 ) ,且 |AB|2= |AD |2+ |BD | ·|DC|.求证:△ ABC 为等腰三角形.证明作 AO⊥ BC,垂足为 O,以 BC 所在直线为 x 轴,以 OA 所在直线为 y 轴,建立直角坐标系 (如右图所示 ).设A(0,a), B(b,0), C(c,0), D (d,0).因为 |AB|2= |AD |2+ |BD | |DC· |,所以,由距离公式可得b2+ a2= d2+ a2+ (d- b)(c- d),即- (d- b)(b+d)=( d-b)( c-d).又 d-b≠ 0,故- b- d= c- d,即- b= c.所以 |AB|= |AC|,即△ ABC 为等腰三角形.9.一束平行光线从原点 O(0,0) 出发,经过直线l:8x+ 6y= 25 反射后通过点 P(- 4,3),求反射光线与直线l 的交点坐标.解设原点关于 l 的对称点 A 的坐标为 (a,b),由直线 OA 与 l 垂直和线段 AO 的中点在 l 上得b4a·-3=- 1a=4,解得,8×a b b=3 2+ 6×2= 25∴A 的坐标为 (4,3) .∵ 反射光线的反向延长线过A(4,3) ,又由反射光线过P(- 4,3),两点纵坐标相等,故反射光线所在直线方程为y=3.y= 3x=78,由方程组,解得8x+ 6y=25y= 37∴反射光线与直线l 的交点坐标为8,3 .。
高考数学专题《直线与方程》训练试题含答案

高考数学专题《直线与方程》一、单选题1.已知点(3,4)A ,(1,1)B -,则线段AB 的长度是( )A .5B .25CD .292.已知直线l 经过点()1,0P ,且与直线21y x =-平行,那么直线l 的方程是( ) A .1y x =- B .22y x =- C .1y x =-+ D .21y x =-+ 3.已知直线l 倾斜角是arctan 2π-,在y 轴上截距是2,则直线l 的参数方程可以是( )A .22x t y t =+⎧⎨=-⎩B .2x t y t =+⎧⎨=-⎩C .22x t y t =⎧⎨=-⎩D .22x t y t=⎧⎨=-⎩ 4.倾斜角为45,在y 轴上的截距为1-的直线的方程是( )A .1y x =+B .1y x =-C .1y x =-+D .1y x =--5.直线3210x y +-=的一个方向向量是( )A .()2,3-B .()2,3C .()3,2-D .()3,26.下列命题错误的是( )①y =2y x =表示的是同一条抛物线②所有过原点的直线都可设为y kx =;③若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->④椭圆2248x y +=A .①② B .②④ C .③④ D .①②④ 7.已知两直线20x y -=和30x y +-=的交点为M ,则以点M 为圆心,半径长为1的圆的方程是( )A .22(1)(2)1x y +++=B .22(1)(2)1x y -+-=C .22(2)(1)1x y +++=D .22(2)(1)1x y -+-=8.已知直线1:3420l x y ++=,2:6810l x y +-=,则1l 与2l 之间的距离是A .12 B .35 C .1 D .3109.若直线220mx y +-=与直线(1)20x m y +-+=平行,则m 的值为( )A .1-B .1C .2或1-D .210.如图所示,直线123,,l l l 的斜率分别为123,,k k k ,则A .123k k k <<B .231k k k <<C .321k k k <<D .132k k k << 11.“2a =”是“直线20ax y +=平行于直线1x y +=”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件12.直线1y ax a =+-()a R ∈所过定点的坐标为( )A .()1,1--B .()1,1-C .()1,1-D .()1,113.已知(1,4)A ,(3,2)B -,直线:20l ax y ++=,若直线l 过线段AB 的中点,则=a A .-5 B .5 C .-4 D .414.平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y ++=或20x y +=C .250x y -+=或250x y --=D .20x y -=或20x y -= 15.已知直线1l 经过()3,4A -,()8,1B --两点,直线2l 的倾斜角为135,那么1l 与2l A .垂直 B .平行 C .重合 D .相交但不垂直 16.已知ABC ∆的顶点坐标为()7,8A ,()10,4B ,()2,4C -,则BC 边上的中线AM 的长为A .8B .13C .D 17.已知直线l 经过点()0,1,且与直线210x y -+=的倾斜角互补,则直线l 的方程为( ) A .220x y +-= B .210x y +-= C .210x y +-= D .210x y ++=18.若双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线l 与直线g :20++=ax by b 平行,则直线l ,g 间的距离为( )A B C D19.已知直线l 过点2)-和(0,1),则直线l 的倾斜角大小为A .150︒B .120︒C .60︒D .3020.直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,则其斜率的取值范围为( )A .B .C .⎝D . 21.已知两条直线1:60l x my ++=,()2:2320l m x y m -++=,若1l 与2l 平行,则m 为( )A .1-B .3C .1-或3D .022.已知椭圆:22143x y +=,直线l :y x =+P ,则点P 到直线l 的距离的最大值( )A .B .C .D .23.若点(,0)P m 到点(3,2)A -及(2,8)B 的距离之和最小,则m 的值为A .2B .2-C .1D .1-24.已知a R ∈,设函数()ln 1f x ax x =-+的图象在点(1,(1))f 处的切线为l ,则l 过定点( ) A .(0,2) B .(1,0) C .(1,1)a + D .(,1)e25.已知直线1:32l y x =-,直线221:60l x y -+=,则1 l 与2 l 之间的距离为( )A B C D 26.已知直线2120l x a y a -+=:与直线()2110l a x ay --+=:互相平行,则实数a 的值为( )A .-1B .0C .1D .227.经过点()0,1且与直线210x y +-=垂直的直线的方程为( )A .220x y +-=B .220x yC .210x y -+=D .210x y +-=28.已知直线()():20l y k x k =+>与抛物线28C y x =:相交于A 、B 两点,且2AF BF =,则k 为( )A B C D 29.已知椭圆2222:19x y C a a +=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A .⎛ ⎝⎭B .⎫⎪⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭ 30.已知抛物线2x y =上的点P 到直线240x y --=的距离最小,则点P 的坐标是( ) A .()1,1- B .()1,1 C .()2,2 D .()0,031.在Rt ABO 中,90BOA ∠=︒,8OA =,6OB =,点P 为Rt ABO 内切圆C 上任一点,则点Р到顶点A ,B ,O 的距离的平方和的最小值为( )A .68B .70C .72D .7432.“2a =-”是“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”的( )条件A .充要B .充分非必要C .必要非充分D .既非充分也非必要 33.已知圆C :x 2+(y ﹣2)2=r 2与直线x ﹣y =0交于A ,B 两点,若以弦AB 为直径的圆刚好经过已知圆的圆心C ,则圆C 的半径r 的值为( )A .1BC .2D .434.已知直线1:310l mx y m --+=与2:310l x my m +--=相交于点P ,线段AB 是圆22:(1)(1)4C x y +++=的一条动弦,且||2AB =,则||PA PB +的最小值是( )A .B .C .1D .235.以下四个命题表述正确的是( ) ①若点(1,2)A ,圆的一般方程为222410x y x y ++-+=,则点A 在圆上②圆22:28130C x y x y +--+=的圆心到直线4330x y -+=的距离为2③圆22120C :x y x ++=与圆222:4840C x y x y +--+=外切④两圆22440x y x y ++-=与222120x y x ++-=的公共弦所在的直线方程为260x y ++=A .①②B .①③C .②③D .②④36.已知两条直线l 1:x +m 2y +6=0,l 2:(m ﹣2)x +3my +2m =0,若l 1与l 2平行,则m =( ) A .﹣1或0B .﹣1C .0D .﹣1或0 或3二、填空题37.经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是 . 38.直线20x y +-=和10ax y -+=的夹角为3π,则a 的值为______.39.设点p 为y 轴上一点,并且点P 到直线3460x y -+=的距离为6,则点P 的坐标为_________.40.直线3y x =-+与坐标轴围成的三角形的面积是_________.41.若在平面直角坐标系内过点P ,且与原点的距离为d 的直线有两条,则d 的取值范围为________.42.已知直线()()1:3410l a x a y -+-+=与()2:23220l a x y --+=平行,则a =___________.43.若点(),a b 在直线10x -=上,则22a b +的最小值为_____________________. 44.设△ABC 的三个顶点的坐标为A (2,0),B (﹣1,3),C (3,﹣2),则AB 边上的高线CD 所在直线的方程为_____.45.已知函数()243f x x x =-+的图象与x 轴相交于A ,B 两点,与y 轴相交于点C ,则ABC 的外接圆E 的方程是________.46.设直线212:260,(1)10l ax y l x a y a ++==+-+-=,若12l l ⊥,则a =__________.47.已知两直线l 1:ax -by +4=0和l 2:(a -1)x +y +b =0,若l 1∥l 2,且坐标原点到这两条直线的距离相等,则a +b =________.48.已知定点()1,1A ,动点P 在圆221x y +=上,点P 关于直线y x =的对称点为P ',向量AQ OP O '=,是坐标原点,则PQ 的取值范围是___________.49.已知两直线与平行,则___ 50.已知函数2()1f x og x =,a b >且1223b ≤≤,()()f a f b k ==,设k 值改变时点(,)a b 的轨迹为C ,若点M ,N 为曲线C 上的两点,O 为坐标原点,则MON ∆面积的最大值为__.51.点(3,2)P 关于直线1y x =+的对称点P '的坐标为__________.52.若直线1:20l ax y +=和()2:3110l x a y +++=平行,则实数的值为__________. 53.已知直线80(,)ax by a b R +-=∈经过点(1,2)-,则124a b+的最小值是__. 54.若对于任意一组实数(),x y 都有唯一一个实数z 与之对应,我们把z 称为变量,x y 的函数,即(),z f x y =,其中,x y 均为自变量,为了与所学过的函数加以区别,称该类函数为二元函数,现给出二元函数(),f m n ()229m n n ⎫=-+⎪⎭,则此函数的最小值为__________.三、解答题55.设直线4310x y +=与210x y -=相交于一点A .(1)求点A 的坐标;(2)求经过点A ,且垂直于直线3240x y -+=的直线的方程.56.已知:ABC 的三个顶点的坐标分别为(1,2),(4,1),(6,5)A B C -.求AB 边上的高所在直线的点法向式方程.57.(本小题满分12分)已知直线l 经过两条直线280x y +-=和210x y -+=的交点.(1)若直线l 平行于直线3240x y -+=,求直线l 的方程;(2)若直线l 垂直于直线4370x y --=,求直线l 的方程.58.已知点P 在圆22:4240C x y x y +--+=上运动,A 点坐标为()2,0-.(1)求线段AP 中点的轨迹方程;(2)若直线:250l x y --=与坐标轴交于MN 两点,求PMN 面积的取值范围.59.在平面直角坐标系中,已知点(2,0),(1,3)A B -.(1)求AB 所在直线的一般式方程;(2)求线段AB 的中垂线l 的方程.60.求满足下列条件的直线方程:(1)直线l 过点A (2,-3),并且与直线13y x =的倾斜角相等; (2)直线l 经过点P (2,4),并且在x 轴上的截距是y 轴上截距的12.61.已知两直线1l :240x y -+=,2l :4350x y ++=.()1求直线1l 与2l 的交点P 的坐标;()2设()1,2A --,若直线l 过点P ,且点A 到直线l 的距离等于1,求直线l 的方程. 62.矩形ABCD 的两条对角线相交于点(2,0),M AB 边所在直线的方程为360x y --=,点(1,1)T -在AD 边所在的直线上.(1)求AD 边所在直线的方程;(2)若直线:10l ax y b +++=平分矩形ABCD 的面积,求出原点与(,)a b 距离的最小值.63.已知直线l 1:3x+4y ﹣2=0和l 2:2x ﹣5y+14=0的相交于点P .求:(1)过点P 且平行于直线2x ﹣y+7=0的直线方程;(2)过点P 且垂直于直线2x ﹣y+7=0的直线方程.64.已知椭圆22:143x y C +=的左、右顶点分别为A 、B ,直线l 与椭圆C 交于M 、N 两点. (1)点P 的坐标为1(1,)3P ,若MP PN =,求直线l 的方程; (2)若直线l 过椭圆C 的右焦点F ,且点M 在第一象限,求23(MA NB MA k k k -、NB k 分别为直线MA 、NB 的斜率)的取值范围.65.已知直线()()222:11310l a a x a a y a a -+-++-+-=,a R ∈(1)求证,直线l 恒过定点,并求出定点坐标;(2)求当1a =和1a =-时对应的两条直线的夹角.66.在平面直角坐标系xOy 中,已知点(20)A ,、3(5)B ,,经过原点O 的直线l 将OAB ∆ 分成面积之比为1:2的两部分,求直线l 的方程.67.已知直线:120l kx y k -++=(1)求证:直线l 经过定点.(2)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,AOB 的面积为S ,求S 的最小值并求此时直线l 的方程.(3)若直线l 不经过第四象限,求实数k 的取值范围.68.已知圆C:x 2+(y −3)2=4,直线m:x +3y +6=0,过A(−1,0)的一条动直线l 与直线m 相交于N ,与圆C 相交于P ,Q 两点.(1)当l 与m 垂直时,求出N 点的坐标;(2)当|PQ|=2√3时,求直线l 的方程.69.已知圆P 过点1,0A ,()4,0B .(1)若圆P 还过点()6,2C -,求圆P 的标准方程;(2)若圆心P 的纵坐标为2,求圆P 的标准方程.70.已知(),4A m ,()2,B m -,()1,1C ,()2,3D m +四点.(1)当直线AB 与直线CD 平行,求m 的值;(2)求证:无论m 取何值,总有90ACB ∠=.71.已知圆心为M 的圆经过点(0,4),(2,0),(3,1)A B C 三个点.(1)求ABC 的面积;(2)求圆M 的方程.72.已知过原点O 的直线:40l x y -=和点(6,4)P ,动点(Q m ,)(0)n m >在直线l 上,且直线QP 与x 轴的正半轴交于点R .(1)若QOR 为直角三角形,求点Q 的坐标;(2)当QOR 面积的取最小值时,求点Q 的坐标.73.平面直角坐标系xOy 中,已知点(0,1)F ,直线:3l y =-,动点M 到点F 的距离比它到直线l 的距离小2.(1)求点M 的轨迹C 的方程;(2)设斜率为2的直线与曲线C 交于A 、B 两点(点A 在第一象限),过点B 作x 轴的平行线m ,问在坐标平面xOy 中是否存在定点P ,使直线PA 交直线m 于点N ,且PB PN =恒成立?若存在,求出点P 的坐标,若不存在,说明理由.74.在平面直角坐标系xOy 中,已知直线:20l x y ++=和圆22:1O x y +=,P 是直线l 上一点,过点P 作圆C 的两条切线,切点分别为A ,B .(1)若PA PB ⊥,求点P 的坐标;(2)设线段AB 的中点为Q ,是否存在点T ,使得线段TQ 长为定值?若有在,求出点T ;若不存在,请说明理由.75.如图所示,将一块直角三角形板ABO 置于平面直角坐标系中,已知1,AB OB AB OB ==⊥,点11,24P ⎛⎫ ⎪⎝⎭是三角板内一点,现因三角板中,阴影部分受到损坏,要把损坏部分锯掉,可用经过点P 的任一直线MN 将三角板锯成AMN ∆,设直线MN 的斜率为k .(1)用k 表示出直线MN 的方程,并求出点,M N 的坐标;(2)求出k 的取值范围及其所对应的倾斜角α的范围;(3)求AMN ∆面积的取值范围.76.求满足下列条件的直线的方程:(1)求与直线20x y -=平行,且过点(2)3,的直线方程; (2)已知正方形的中心为直线220x y -+=和10x y ++=的交点,其一边所在直线的方程为350x y +-=,求其他三边的方程.77.过圆222:C x y r +=上一点()2,2A -作圆的切线,切线与x 轴交于点B ,过点B 的直线与圆C 交于不同的两点M 、N ,MA 、NA 分别交直线4x =-交于点P 、Q .(1)求点B 的坐标;(2)求PBQB 的值.78.已知点()2,0M -,()2,0N ,动点P 满足条件2PM PN -=,记动点P 的轨迹为W . (1)求W 的方程;(2)若P 是W 上任意一点,求2PMPN 的最小值.79.在平面直角坐标系xOy 中,已知圆22:4O x y +=与x 轴的正负半轴的交点分别是M ,N .(1)已知点(2,4)Q ,直线l 过点Q 与圆O 相切,求直线l 的方程;(2)已知点P 在直线:4x =上,直线PM ,PN 与圆的另一个交点分别为E ,F . ①若(4,6)P ,求直线EF 的方程;②求证:直线EF 过定点.参考答案1.A【分析】根据两点之间的距离公式,即可代值求解.【详解】因为(3,4)A ,(1,1)B -,故可得5AB ==.故选:A.【点睛】本题考查平面中两点之间的距离公式,属基础题.2.B【分析】由平行关系可得直线l 斜率,由直线点斜式方程可求得结果.【详解】l 与21y x =-平行,∴直线l 的斜率2k =,l ∴方程为:()2122y x x =-=-.故选:B.3.D【分析】由倾斜角求得斜率,由斜截式得直线方程,再将四个选项中的参数方程化为普通方程,比较可得答案. 【详解】因为直线l 倾斜角是arctan 2π-,所以直线l 的斜率tan(tan 2)tan arctan 22k arc π=-=-=-, 所以直线l 的斜截式方程为:22y x =-+,由22x t y t =+⎧⎨=-⎩消去t 得24y x =-+,故A 不正确;由2x t y t =+⎧⎨=-⎩消去t 得2y x =-+,故B 不正确; 由22x t y t =⎧⎨=-⎩消去t 得122y x =-+,故C 不正确;由22x ty t=⎧⎨=-⎩消去t 得22y x =-+,故D 正确; 故选:D. 【点睛】本题考查了直线方程的斜截式,参数方程化普通方程,属于基础题. 4.B 【分析】求出直线的斜率,利用斜截式可得出直线的方程. 【详解】由倾斜角为45可知所求直线的斜率为1,由直线的斜截式方程可得1y x =-. 故选:B. 5.A 【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果. 【详解】因为直线3210x y +-=的斜率为32-,所以直线的一个方向向量为31,2⎛⎫- ⎪⎝⎭,又因为()2,3-与31,2⎛⎫- ⎪⎝⎭共线,所以3210x y +-=的一个方向向量可以是()2,3-,故选:A. 6.D 【分析】①利用曲线中变量的范围来判断;②利用点斜式的适用条件来判断;③利用圆的一般式方程的系数关系来判断;④利用椭圆几何性质来判断. 【详解】解:①y =0y >,其仅表示抛物线的一部分,与2y x =表示的不是同一条抛物线,故错误;②所有过原点的直线中,0x =不可设为y kx =,故错误;③若方程220x y Dx Ey F ++++=表示圆,则必有2240D E F +->,故正确;④椭圆2248x y +=标准方程为22182x y +=,2b =.故选:D. 【点睛】本题考查学生对圆锥曲线的基础知识的掌握情况,是基础题. 7.D 【分析】联立两直线方程,得到交点坐标,即为圆心,再结合半径就可写出圆的方程. 【详解】解:联立2030x y x y -=⎧⎨+-=⎩,得()2,1M ,则以点M 为圆心,半径长为1的圆的方程是22(2)(1)1x y -+-=. 故答案为:D 【点睛】本题考查圆的标准方程,是基础题. 8.A 【分析】直接利用平行线之间的距离公式化简求解即可. 【详解】两条直线1:3420l x y +-=与2:6810l x y ++=,化为直线1:6840l x y +-=与2:6810l x y ++=,则1l 与2l 12=,故选A. 【点睛】本题主要考查两平行线之间的距离,属于简单题.解析几何中的距离常见有:(1)点到点距离,AB =(2)点到线距离,d =,(3)线到线距离d 9.D 【分析】由平行可得()120m m --=,解之,排除重合的情形即可. 【详解】解:∵直线220mx y +-=与直线(1)20x m y +-+=平行, ∴()120m m --=,即220m m --=,解得1m =-或2m =,经验证当1m =-时,直线重合应舍去, 故选:D. 【点睛】本题考查直线的一般式方程和平行关系,属基础题. 10.B 【分析】设直线123,,l l l 所对应的倾斜角为123,,ααα, 由图可知,12302παααπ<<<<<,由直线的倾斜角与斜率的关系可得231k k k <<,得解. 【详解】解:由图可知,直线1l 的倾斜角为锐角,所以10k >,而直线2l 与3l 的倾斜角均为钝角,且2l 的倾斜角小于3l 的倾斜角,故230k k <<.所以231k k k <<. 故选B.本题考查了直线的倾斜角与斜率的关系,重点考查了识图能力,属基础题. 11.C 【详解】试题分析:直线20ax y +=平行于直线1x y +=122aa -⇒=-⇒=,因此正确答案应是充分必要条件,故选C. 考点:充要条件. 12.A 【分析】提取公因数a ,得()11y a x =+-,即得1x =-时,1y =-,即得定点. 【详解】直线1y ax a =+-,整理得()11y a x =+-,故对于a R ∈,恒有1x =-时,1y =-.故直线恒过点()1,1--. 故选:A. 13.B 【分析】根据题意先求出线段AB 的中点,然后代入直线方程求出a 的值. 【详解】因为(1,4)A ,(3,2)B -,所以线段AB 的中点为(1,3)-,因为直线l 过线段AB 的中点,所以320a -++=,解得5a =.故选B 【点睛】本题考查了直线过某一点求解参量的问题,较为简单. 14.A 【详解】设所求直线为20x y c =++, 由直线与圆相切得,=解得5c =±.所以直线方程为250x y ++=或250x y +-=.选A.【分析】根据两点求出直线1l 的斜率,根据倾斜角求出直线2l 的斜率;可知斜率乘积为1-,从而得到垂直关系. 【详解】直线1l 经过()3,4A -,()8,1B --两点 ∴直线1l 的斜率:141138k +==-+ 直线2l 的倾斜角为135 ∴直线2l 的斜率:2tan1351k ==- 121k k ∴⋅=- 12l l ∴⊥本题正确选项:A 【点睛】本题考查直线位置关系的判定,关键是利用两点连线斜率公式和倾斜角求出两条直线的斜率,根据斜率关系求得位置关系. 16.D 【分析】利用中点坐标公式求得()6,0M ,再利用两点间距离公式求得结果. 【详解】由()10,4B ,()2,4C -可得中点()6,0M又()7,8A AM ∴=本题正确选项:D 【点睛】本题考查两点间距离公式的应用,关键是能够利用中点坐标公式求得中点坐标. 17.A 【分析】根据题意求出直线l 的斜率,然后利用斜截式即可写出直线的方程,进而转化为一般式方程即可. 【详解】因为与直线210x y -+=的倾斜角互补,而直线210x y -+=的斜率为12,所以直线l 的斜率为12-,则直线l 的方程为112y x =-+,即220x y +-=.故选:A 18.D 【分析】由题可得渐近线方程,利用直线平行可得a =,再利用平行线间距离公式即得. 【详解】根据题意,双曲线C 的渐近线l 的方程为0bx ay +=,该直线与直线g 平行,所以2-=-b aa b,所以a ,此时直线l 的方程为0x +=,直线g 的方程为02+=x ,所以直线l ,g=故选:D . 19.B 【分析】求出斜率后可得直线的倾斜角 【详解】=,故直线的倾斜角为120︒. 故选:B. 【点睛】本题考查直线的斜率与倾斜角的计算,注意倾斜角的范围为0,.本题属于基础题.20.B 【分析】根据倾斜角和斜率的关系,确定正确选项. 【详解】直线的倾斜角为2παα⎛⎫≠ ⎪⎝⎭,则斜率为tan α,tan y x =在0,2π⎛⎫ ⎪⎝⎭上为增函数.由于直线l 的倾斜角,43ππα⎛⎫∈ ⎪⎝⎭,所以其斜率的取值范围为tan ,tan 43ππ⎛⎫ ⎪⎝⎭,即.故选:B【点睛】本小题主要考查倾斜角和斜率的关系,属于基础题. 21.A 【分析】由题意利用两条直线平行的性质,求得m 的值. 【详解】解:两条直线1:60l x my ++=,2:(2)320l m x y m -++=,若1l 与2l 平行,则()213m m -=⨯且()2162m m ⨯≠⨯-,由()213m m -=⨯解得1m =-或3m =, 当3m =时()2162m m ⨯=⨯-故舍去,所以1m =-; 故选:A . 22.C 【解析】设椭圆上点的坐标为()()2cos P R θθθ∈ ,由点到直线距离公式可得:d ==,则当()sin 1θϕ+=- 时,点P 到直线l 的距离有最大值max d =.本题选择C 选项.点睛:求点到直线的距离时,若给出的直线不是一般式,则应化为一般式.23.B 【详解】试题分析:点(3,2)A -关于x 轴的对称点为()3,2A '--.因为点(,0)P m 在x 轴上,由对称性可知PA PA =',所以PA PB PA PB +='+,所以当,,A P B '三点共线时此距离和最短. 因为8+2223A B k '==+,所以直线A B '方程为()822y x -=-,即24y x =+,令0y =得2x =-,即,,A P B '三点共线时()2,0P -.所以所求m 的值为2-.故B 正确. 考点:点关于直线的对称点,考查数形结合思想、转化思想. 24.A 【分析】根据导数几何意义求出切线方程,化成斜截式,即可求解 【详解】由()1()ln 1'f x ax x f x a x=-+⇒=-,()'11f a =-,()11f a =+,故过(1,(1))f 处的切线方程为:()()()11+112y a x a a x =--+=-+,故l 过定点(0,2) 故选:A 【点睛】本题考查由导数的几何意义求解切线方程,直线过定点问题,属于简单题 25.D 【分析】利用两平行线间的距离公式即可求解. 【详解】直线1l 的方程可化为6240x y --=,则1l 与2l 之间的距离d = 故选:D 26.B 【分析】由题意利用两条直线平行的性质,分类讨论,求得结果. 【详解】解:当0a =时,直线1l :即0x =,直线2l :即1x =,满足12l l //. 当0a ≠时,直线21:20l x a y a -+=与直线2:(1)10l a x ay --+=互相平行,∴2211a a a a -=≠--,解得实数a ∈∅. 综上,0a =, 故选:B . 【点睛】本题主要考查两条直线平行的性质,考查分类讨论思想,属于基础题. 27.C 【分析】与直线210x y +-=垂直的直线的斜率为2,结合点斜式即可求解直线方程. 【详解】直线210x y +-=的斜率为12-所以与直线210x y +-=垂直的直线的斜率为2,又过点()0,1, ∴所求直线方程为:21y x =+ 即210x y -+= 故选:C 28.D 【分析】根据直线方程可知直线l 恒过定点()2,0P -,过A B ,分别作准线的垂线,垂足分别为M N ,,由2AF BF =,得到点B 为AP 的中点,连接OB ,进而可知||||OB BF =,由此求得点B 的坐标,最后利用直线上的两点求得直线l 的斜率. 【详解】抛物线2:8C y x =的准线2x =-,直线l :(2)y k x =+恒过定点()2,0P -, 如图过,A B 分别作准线的垂线,垂足分别为M N ,,由2AF BF =,则||2||AM BN =, 所以点B 为AP 的中点,连接OB ,则1||||2OB AF =,∴||||OB BF =,OBF ∴∆为等腰三角形,点B 的横坐标为1,故点B 的坐标为(,又(2,0)P -,所以k =故选:D【点睛】本题主要考查了抛物线的简单性质,抛物线的定义,直线斜率的计算,考查了数形结合,转化与化归的思想,考查了学生的运算求解能力. 29.A 【分析】先求得椭圆焦点坐标,判断出直线12,l l 过椭圆的焦点.然后判断出12l l ⊥,判断出P 点的轨迹方程,根据P 恒在椭圆内列不等式,化简后求得离心率e 的取值范围. 【详解】设()()12,0,,0F c F c -是椭圆的焦点,所以22299,3c a a c =+-==.直线1l 过点()13,0F -,直线2l 过点()23,0F ,由于()110m m ⨯+⨯-=,所以12l l ⊥,所以P 点的轨迹是以12,F F 为直径的圆229x y +=.由于P 点在椭圆内恒成立,所以椭圆的短轴大于3,即2239a >=,所以2918a +>,所以双曲线的离心率22910,92e a ⎛⎫=∈ ⎪+⎝⎭,所以e ⎛ ⎝⎭∈. 故选:A 【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题. 30.B 【分析】 设抛物线2yx 上一点为200),(A x x ,求出点200),(A x x 到直线240x y --=的距离,利用配方法,由此能求出抛物线2x y =上一点到直线240x y --=的距离最短的点的坐标. 【详解】 解:设抛物线2yx 上一点为200),(A x x ,点200),(A x x 到直线240x y --=的距离2201)3d x -+,∴当01x =时,即当()1,1A 时,抛物线2yx 上一点到直线240x y --=的距离最短.故选:B . 【点睛】本题考查抛物线上的点到直线的距离最短的点的坐标的求法,考查学生的计算能力,属于中档题. 31.C 【分析】利用直角三角形的性质求得其内切圆的半径,如图建立直角坐标系,则内切圆的方程可得,设出p 的坐标,表示出,222||||||S PA PB PO =++,利用x 的范围确定S 的范围,则最小值可得 【详解】解:如图,ABO 是直角三角形,设ABO 的内切圆圆心为O ',切点分别为D ,E ,F ,则1(1086)122AD DB EO ++=++=.但上式中10AD DB +=,所以内切圆半径2r EO ==,如图建立坐标系,则内切圆方程为:22(2)(2)4x y -+-= 设圆上动点P 的坐标为(,)x y , 则222||||||S PA PB PO =++222222(8)(6)x y x y x y =-+++-++ 22331612100x y x y =+--+223[(2)(2)]476x y x =-+--+ 34476884x x =⨯-+=-.因为P 点在内切圆上,所以04x ,所以881672S =-=最小值故选:C 32.B 【解析】2a =-时,两条直线分别化为:610,430y y -+=--=,此时两条直线相互垂直,满足条件;由“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”,可得,()()[]22320a a a a +-+⨯+=,解得12a =或2a =-,∴“2a =-”是“直线()2310a x ay +++=与直线()()2230a x a y -++-=相互垂直”的充分非必要条件,故选B. 33.C 【分析】转化以弦AB 为直径的圆刚好经过已知圆的圆心C 为AC ⊥BC ,可得弦心距2d =,再用圆心到直线距离表示d ,即得解 【详解】由题意,AC ⊥BC ,则C (0,2)到直线x ﹣y =0的距离2d =,2=,即r =2. 故选:C34.B 【分析】由已知得到12l l ⊥,1l 过定点()3,1,2l 过定点()1,3,从而得到点P 轨迹为圆()()22222x y -+-=,作线段CD AB ⊥,先求得CD ,求得PD 的最小值,再由||2||PA PB PD +=可得答案.【详解】设圆C 的半径为1r ,直线1:310l mx y m --+=与2310l x my m +--=∶ 垂直, 又1l 过定点()3,1,2l 过定点()1,3,从而得到点P 轨迹为圆()()22222x y -+-=,设圆心为M ,半径为2r ,作垂直线段CD AB ⊥,则CDmin 12||||PD CM r r ∴=--=2PA PB PD +=∴||PA PB + 的最小值为故选:B35.B 【分析】代入点验证知①正确,计算点到直线的距离得到②错误,计算圆心距为125r r =+,得到③正确,圆方程相减得到公共弦方程,④错误,得到答案. 【详解】将点代入圆方程,222242110++-⨯+=满足,故①正确;圆22:28130C x y x y +--+=的圆心为()1,4,到直线4330x y -+=1=,②错误;圆()221:11C x y ++=,圆心为()1,0-,半径11r =,圆()()222:2416C x y -+-=,圆心为()2,4,半径为24r =125r r =+,故③正确;两圆22440x y x y ++-=与222120x y x ++-=方程相减得到24120x y -+=,即公共弦方程为:260x y -+=,④错误. 故选:B. 36.A 【分析】解方程213(2)0m m m ⨯-⨯-=,再检验即得解. 【详解】解:因为l 1与l 2平行,所以2213(2)0,(23=0m m m m m m ⨯-⨯-=∴--), 所以(3)(1)=0,0m m m m -+∴=或1m =-或3m =.当3m =时,两直线重合为x +9y +6=0,与已知不符,所以舍去. 当0m =或1-时,符合题意. 故选:A 37.10x y -+= 【详解】圆:x 2+2x +y 2=0的圆心C(-1,0),因为直线0x y +=的斜率为1-,所以与直线0x y +=垂直的直线的斜率为1,因此所求直线方程为+1y x =,即x -y +1=038.2 【分析】先求出两条直线的斜率,再利用两条直线的夹角公式求得a 的值. 【详解】解:直线20x y +-=的斜率为1-,和10ax y -+=的斜率为a ,直线20x y +-=和10ax y -+=的夹角为3π,∴()()1tan311a a π--==+⋅-,求得2a ==,或2a ==,故答案为:2【点睛】本题考查两直线的夹角公式,是基础题. 39.()0,6-或()0,9 【分析】设P 点坐标,由点到直线距离公式求解. 【详解】设(0,)P a 6=,解得a =6-或9.所以P 点坐标为(0,6)-或(0,9). 故答案为:(0,6)-或(0,9). 【点睛】本题考查点到直线的距离公式,掌握点到直线距离公式是解题关键.40.92【分析】根据直线方程求其与坐标轴的交点坐标,再应用三角形面积公式求直线与坐标轴围成的三角形的面积即可. 【详解】令0y =,则3x =;令0x =,则3y =, ∴直线与坐标轴围成的三角形的面积193322S =⨯⨯=. 故答案为:9241.(0,2) 【分析】先计算原点与点P 的距离,此时过点P 与原点的距离最大且仅有一条,过原点和点P 时,距离最小,最小为0,可得与原点的距离为d 的直线有两条时d 的取值范围. 【详解】过点P 的直线中,与原点的距离最大为||2OP ,最小为0, 当02d <<时,与原点的距离为d 的直线有两条. 故答案为:(0,2). 【点睛】本题考查了过定点的直线与定点的距离的范围问题,属于基础题. 42.3 【分析】根据平行可得斜率相等列出关于参数的方程,解方程进行检验即可求解. 【详解】因为直线()()1:3410l a x a y -+-+=与()2:23220l a x y --+=平行, 所以()()2324(3)0a a a -----=,解得3a =或5a =, 又因为5a =时,1:210l x y -+=,2:4220l x y -+=, 所以直线1l ,2l 重合故舍去,而3a =,1:10l y +=,2:220l y -+=,所以两直线平行. 所以3a =, 故答案为:3. 【点睛】(1)当直线的方程中存在字母参数时,不仅要考虑到斜率存在的一般情况,也要考虑到斜率不存在的特殊情况.同时还要注意x ,y 的系数不能同时为零这一隐含条件. (2)在判断两直线的平行、垂直时,也可直接利用直线方程的系数间的关系得出结论.43.14【分析】由题意,可得22a b +表示直线上的点(),a b 到原点的距离的平方,根据点到直线距离公式,即可求出最小值.【详解】因为22220(()0)+-+=-a b a b 表示点(),a b 到原点距离的平方,又点(),a b 在直线10x -=上,所以当点(),a b 与原点连线垂直于直线10x -=时,距离最小,即22a b +最小;因为原点到直线10x +-=的距离为12==d , 所以22214≥=+d a b . 即22a b +有最小值14.故答案为:14【点睛】本题主要考查直线上的点与原点距离最值的问题,熟记点到直线距离公式即可,属于常考题型. 44.x-y -5=0 【分析】利用两条直线垂直的条件,求得AB 边上的高线CD 所在直线的斜率,再用点斜式求得AB 边上的高线CD 所在直线的方程. 【详解】AB 直线的斜率为3012AB k -=--=﹣1,故AB 边上的高线CD 所在直线的斜率为1, 故AB 边上的高线CD 所在直线的方程为y +2=1(x ﹣3),即 x ﹣y ﹣5=0, 故答案为:x ﹣y ﹣5=0. 45.22(2)(2)5x y -+-= 【分析】由题可求三角形三顶点的坐标,三角形的外接圆的方程即求. 【详解】令2()430f x x x =-+=,得1x =或3x =, 则(1,0)A ,(3,0)B∴外接圆的圆心E 的横坐标为2,设()2,E m ,半径为r ,由(0)3f =,得(0,3)C ,则||||EA EC =r , 得2m =,r =∴ABC 的外接圆E 的方程为22(2)(2)5x y -+-=. 故答案为:22(2)(2)5x y -+-=.46.【详解】试题分析:由12l l ⊥,那么,解得:.考点:两条直线在一般式下垂直的充要条件的应用. 47.0或83【分析】利用已知条件得(1)0a b a +-=⎧⎪=,求解检验即可得解. 【详解】由题意得(1)0a b a +-=⎧⎪, 解得22a b =⎧⎨=-⎩或232a b ⎧=⎪⎨⎪=⎩, 经检验,两种情况均符合题意, ∴a +b 的值为0或83.故答案为:0或83.【点睛】方法点睛:形如直线1111:0l A x B y C ++=和直线2222:0l A x B y C ++=, 当l 1∥l 2时,A 1B 2-A 2B 1=0,B 1C 2-B 2C 1≠0;当l 1⊥l 2时,A 1A 2+B 1B 2=0.48. 【详解】令(),P x y ,而点P 关于直线y x =的对称点为P ',所以(),P y x ',(),OP y x '=;而AQ OP '=,所以(),AQ y x =;而()1,1A ,所以()1,1Q y x ++;所以()1,1PQ y x x y =-+-+,2PQ =()222y x -+;而动点P 在圆221x y +=上,所以()202y x ≤-≤,所以()22226y x ≤-+≤,6PQ ≤,所以PQ 的取值范围是.故答案为. 49.7- 【详解】试题分析:由题意可知系数满足()()()()3542{38532a a a a ++=⨯+⨯≠-⨯,解方程得7a =-考点:两直线平行的判定 50.724【分析】由2()1f x og x =,()()f a f b k ==,得到1ab =,然后根据a ,b 范围画出其图像,找到MON∆面积最大的情况,求出此时MN 长度,及O 点到MN 的距离,从而计算出MON ∆面积的最大值. 【详解】 由题意,可知:1223b ≤≤,()f b ∴2211og b og b ==-. 又()()f a f b k ==,1a ∴>,()2211f a og a og a ∴==.()()f a f b =,2211og a og b ∴=-,即:2221110og a og b og ab +==,1ab ∴=.∴曲线C 的轨迹方程即为:1ab =.1223b≤≤,1ab=.∴322a≤≤,则曲线C的图象如图:MON∆面积要取最大值,∴当M、N为曲线C的两个端点时,MON∆面积最大,M∴点坐标为32,23⎛⎫⎪⎝⎭,N点坐标为12,2⎛⎫⎪⎝⎭.则直线MN的直线方程为:23323122223yx--=--,化简,得:2670x y+-=.MN⎛==⎝原点O到直线MN的距离d==MON∴∆面积的最大值为:1172224MN d⋅⋅==.故答案为724.【点睛】本题考查对数函数的图像与性质,两点间距离,点到直线的距离,题目涉及到的知识点较多,比较综合,属于中档题.51.()1,4【详解】设(,)P x y ' ,则21113(1,4)423122y x x P y y x -⎧⋅=-⎪=⎧⎪-⇒∴⎨⎨=++⎩⎪+⎩'=⎪ 52.3-或2 【详解】试题分析:依题意可得20311a a =≠+,解得3a =-或2a =. 考点:两直线平行. 53.32 【分析】根据题意,由直线经过点(1,2)-,分析可得28a b -=,即82a b =+;进而可得824111224444a b bb b b+++=+=+,结合基本不等式分析可得答案. 【详解】根据题意,直线80(,)ax by a b R +-=∈经过点(1,2)-,则有28a b -=, 即82a b =+;则82441112242432444a b bb b b b ++++=+=+⨯=,当且仅当2b =-时等号成立; 即124ab +的最小值是32;故答案为:32. 【点睛】本题考查基本不等式的性质以及应用,涉及直线的一般式方程,属于中档题. 54.22-【详解】因为点(m 在圆224x y += 上,点9(,)n n 在曲线9y x= 上,所以本题转化为求圆224x y +=与曲线9y x=上的两点之间的最小值,如下图,作直线y x = 与它们的图象在第一象限交于A,B 两点,显然圆224x y +=与曲线9y x=的图象都关于直线y x =对称,所以AB 就是圆224x y +=与曲线9y x=上的两点之间距离的最小值,求出(3,3)A B ,所以222(3(322AB =+=-所以。
高一数学直线方程试题答案及解析

高一数学直线方程试题答案及解析1.直线与两坐标轴围成的三角形的周长为()A.B.C.D.【答案】C.【解析】直线与两坐标轴的交点分别为,,因此与两坐标轴围成的三角形周长为.【考点】直线的方程.2.已知圆C:x2+y2+2x-4y+3=0.(1)若圆C的切线在x轴和y轴上截距相等,求切线的方程;(2)若为圆C上任意一点,求的最大值与最小值;(3)从圆C外一点P(x,y)向圆引切线PM,M为切点,O为坐标原点,且有|PM|=|PO|,求当|PM|最小时的点P的坐标。
【答案】(1)或;或,或;(2)最大值为-1,最小值为-7.;(3)当y=即P()时,|PM|最小.【解析】(1)当截距为0时,设出切线方程为y=kx,同理列出关于k的方程,求出方程的解即可得到k的值,得到切线的方程;当截距不为零时,根据圆C的切线在x轴和y轴的截距相等,设出切线方程x+y=b,然后利用点到直线的距离公式求出圆心到切线的距离d,让d等于圆的半径r,列出关于b的方程,求出方程的解即可得到b的值,得到切线的方程;(2)设,则表示直线MA的斜率;其中A(1,-2)是定点;因为在圆C上,所以圆C与直线MA有公共点,而直线MA方程为:y+2=(x-1),则有:C点到直线MA的距离不大于圆C的半径,即:,解得:,即可求出的最大值为和最小值;(3)根据圆切线垂直于过切点的半径,得到三角形CPM为直角三角形,根据勾股定理表示出点P的轨迹方程,由轨迹方程得到动点P的轨迹为一条直线,所以|PM|的最小值就是|PO|的最小值,求出原点到P轨迹方程的距离即为|PO|的最小值,然后利用两点间的距离公式表示出P到O的距离,把P 代入动点的轨迹方程,两者联立即可此时P的坐标.解:圆C的方程为:(x+1)2+(y-2)2=2(1)圆C的切线在x轴和y轴上截距相等时,切线过原点或切线的斜率为;当切线过原点时,设切线方程为:y=kx,相切则:,得;当切线的斜率为时,设切线方程为:y=-x+b,由相切得:,得b=1或b=5;故所求切线方程为:或;或,或(2)设,则表示直线MA的斜率;其中A(1,-2)是定点;因为在圆C上,所以圆C与直线MA有公共点,而直线MA方程为:y+2=(x-1),则有:C点到直线MA的距离不大于圆C的半径即:,解得:,即的最大值为-1,最小值为-7.(3)由圆的切线长公式得|PM|2=|PC|2-R2=(x+1)2+(y-2)2-2;由|PM|=|PO|得:(x+1)2+(y-2)2-2=x2+y2;即2x-4y+3=0,即x=2y-此时|PM|=|PO|=所以当y=即P()时,|PM|最小.【考点】1.直线的方程;2.直线与圆的位置关系.3.直线L经过点,且被两直线L1:和 L2:截得的线段AB中点恰好是点P,求直线L的方程.【答案】.【解析】设,则因P是AB中点,可得B,又A、B分别在、上,故满足、的直线方程,代入即可求a,b,再利用A,P求得直线L的斜率,根据点斜式可写出直线L的方程. 设,则因P是AB中点,可得B,又A、B分别在、上,所以有方程组:,由此解得:,,得,直线方程为即.【考点】中的坐标公式,点斜式的直线方程.4.设直线l的方程为(a∈R).(1)若l在两坐标轴上截距相等,求l的方程;(2)若l不经过第二象限,求实数a的取值范围.【答案】(1),(2)【解析】(1) l在两坐标轴上截距相等,分为截距为零和不为零两种情况.截距为零时,直线过原点;截距不为零时,直线的一般式为,可得.(2)将直线变形为,知直线必有斜率,所以当直线不过第二象限时有两种情况,一是,二是,即.(1) l在两坐标轴上截距相等, 分为截距为零和不为零两种情况.当直线在轴和轴上的截距为零时,该直线过原点,代入原点可得,得的方程为.当直线在轴和轴上的截距不为零时,当直线不经过原点时,直线的一般式为,可得,得的方程为.(2)将的方程化为,则.综上可知的取值范围是.【考点】直线的方程;直线的位置.5.求经过直线的交点且平行于直线的直线方程。
高考数学专题《直线与直线方程》习题含答案解析

专题9.1 直线与直线方程1.(福建高考真题(文))“a=1”是“直线x+y =0和直线x-ay =0互相垂直”的( )A .充分而不必要条件 B .必要而不充分条件C .充要条件 D .既不充分也不必要条件【答案】C 【解析】直线x +y =0和直线x−ay =0互相垂直的充要条件是1×(−a)+1×1=0,即a =1,故选C 2.(2020·肥东县综合高中月考(文))点(),P x y 在直线40x y +-=上,O 是坐标原点,则OP 的最小值是( )ABC.D【答案】C 【解析】原点到直线40x y +-==故选C.3.【多选题】(2021·全国高二课时练习)(多选)已知直线:1l y =-,则直线l ().A.过点)2-BC .倾斜角为60°D .在y 轴上的截距为1【答案】BC 【分析】根据直线斜截式方程的定义,依次判断,即得解【详解】点)2-的坐标不满足方程1y =-,故A 错误;根据斜截式的定义,直线l的斜率tan k θ==60°,故B ,C 正确;由1y =-,知直线l 在y 轴上的截距为1-,故D 错误.故选:BC4.【多选题】(2021·全国高二课时练习)(多选)已知直线:10l x my m -+-=,则下列说法正确的是().A .直线l 的斜率可以等于0练基础B .若直线l 与y 轴的夹角为30°,则m m =C .直线l 恒过点()2,1D .若直线l 在两坐标轴上的截距相等,则1m =或1m =-【答案】BD 【分析】讨论0m =和0m ≠时直线的斜率和截距情况,判断AD 的正误;利用倾斜角和斜率的关系判断B 的正误;将方程化为()()110x m y ---=判断直线过定点,判断C 的正误.【详解】当0m =时,直线:1l x =,斜率不存在,当0m ≠时,直线l 的斜率为1m,不可能等于0,故A 选项错误;∵直线l 与y 轴的夹角角为30°,∴直线l 的倾斜角为60°或120°,而直线l 的斜率为1m,∴1tan 60m =︒=1tan120m =︒=m =m =B 选项正确;直线l 的方程可化为()()110x m y ---=,所以直线l 过定点()1,1,故C 选项错误;当0m =时,直线:1l x =,在y 轴上的截距不存在,当0m ≠时,令0x =,得1m y m-=,令0y =,得1x m =-,令11m m m-=-,得1m =±,故D 选项正确.故选:BD .5.【多选题】(2021·全国高二课时练习)(多选)已知直线l 的方程为20ax by +-=,则下列判断正确的是().A .若0ab >,则直线l 的斜率小于0B .若0b =,0a ≠,则直线l 的倾斜角为90°C .直线l 可能经过坐标原点D .若0a =,0b ≠,则直线l 的倾斜角为0°【答案】ABD 【分析】根据直线方程与斜率,倾斜角的关系,依次讨论各选项即可得答案.【详解】对于A 选项,若0ab >,则直线l 的斜率0ab-<,A 正确;对于B 选项,若0b =,0a ≠,则直线l 的方程为2x a=,其倾斜角为90°,B 正确;对于C 选项,将()0,0代入20ax by +-=中,显然不成立,C 错误;对于D 选项,若0a =,0b ≠,则直线l 的方程为2y b=,其倾斜角为0°,D 正确.故选:ABD .6.(2021·全国高二课时练习)直线3240x y +-=的斜率为______,在x 轴上的截距为______.【答案】32-43【分析】将直线转化为斜截式即可得出斜率,令0y =可求出在x 轴上的截距.【详解】由3240x y +-=,可得322y x =-+,故该直线的斜率32k =-.令0y =,得43x =,所以该直线在x 轴上的截距为43.故答案为:32-;43.7.(2021·全国)已知直线1:1l y x =+,将直线1l 绕点()1,2按逆时针方向旋转45︒后,所得直线2l 的方程为_______,将直线1l 绕点()1,2按顺时针方向旋转45°后,所得直线3l 的方程为_______.【答案】1x = 2y =【分析】根据斜率和倾斜角的关系得出直线2l 和直线3l 的斜率再求解其直线方程即可.【详解】易知直线1l 的斜率为1,倾斜角为45︒,所以直线2l 的倾斜角为90︒,直线3l 的倾斜角为0︒,又因为直线2l 和直线3l 都经过点()1,2,所以直线2l 和直线3l 的方程分别为1x =,2y =.故答案为:1x =;2y =8.(2021·浙江衢州·高二期末)已知直线1l :3480x y +-=和2l :320x ay -+=,且12l l //,则实数a =__________,两直线1l 与2l 之间的距离为__________.【答案】-4;2【分析】根据两直线平行斜率相等求解参数即可;运用两平行线间的距离公式计算两直线之间的距离可得出答案.【详解】解:直线1:3480l x y +-=和2:320l x ay -+=,12l l //,334a -∴=,解得4a =-;∴2:3420l x y ++= 两直线1l 与2l间的距离是:2d == .故答案为:4-;2.9.(2020·浙江开学考试)已知直线1l 的方程为3420x y --=,直线2l 的方程为6810x y --=,则直线1l 的斜率为___________,直线1l 与2l 的距离为___________.【答案】34310【解析】直线1l 的方程为3420x y --=即为3142y x =-,斜率为34.因为直线2l 的方程为6810x y --=即为13402x y --=,所以直线1l 与2l 平行,则直线1l 与2l310.故答案为:34;31010.(2021·抚松县第一中学高二月考)已知A (1,0),B (﹣1,2),直线l :2x ﹣ay ﹣a =0上存在点P ,满足|PA |+|PB |=a 的取值范围是 ___________.【答案】2[,2]3-【分析】计算线段AB 的距离,得到点P 的轨迹,将点A ,B 分别代入2x ﹣ay ﹣a =0,得到a ,根据题意得到直线l 所过定点C,求出直线AC ,BC 的斜率,根结合直线l 与线段AB 始终有交点计算出a 的取值范围.【详解】因为||AB ==||||PA PB +=,由图可知,点P 的轨迹为线段AB ,将点A ,B 的坐标分别代入直线l 的方程,可得a =2,a =23-,由直线l 的方程可化为:2x ﹣a (y +1)=0,所以直线l 过定点C (0,﹣1),画出图形,如图所示:因为直线AC 的斜率为k AC =1,直线BC 的斜率为k BC =2(1)10----=﹣3,所以直线l 的斜率为k =2a ,令2123aa ⎧≥⎪⎪⎨⎪≤-⎪⎩,解得23-≤a ≤2,所以a 的取值范围是[23-,2].故答案为:[23-,2].1.(2021·绥德中学高一月考)已知0a >,0b >,直线220ax by -+=恒过点(2-,1),则14a b+的最小值为( )A .8B .9C .16D .18【答案】B 【分析】利用给定条件可得1a b +=,再借助“1”的妙用即可计算得解.【详解】因直线220ax by -+=恒过点(2-,1),则有2220a b --+=,即1a b +=,又0a >,0b >,则14144()()559b a a b a b a b a b +=++=++≥+=,当且仅当4b a a b =,练提升即2b a =时取“=”,由21b a a b =⎧⎨+=⎩得12,33a b ==,所以当12,33a b ==时,14a b+取得最小值9.故选:B2.(2019·四川高考模拟(文))已知点(3,0)P -在动直线(1)(3)0m x n y -+-=上的投影为点M ,若点3(2,2N ,那么||MN 的最小值为( )A .2B .32C .1D .12【答案】D 【解析】因为动直线()()130m x n y -+-=方程为,所以该直线过定点Q (1,3),所以动点M 在以PQ5,2=圆心的坐标为3(1,)2-,所以点N3=,所以MN 的最小值为51322-=.故答案为:D 3.(2019·湖南衡阳市八中高三月考(文))已知直线的倾斜角为且过点,其中,则直线的方程为( )C.【答案】B 【解析】,,则直线方程为:故选l θ1sin(22p q-=l 20y --=40y +-=0x -=360y +-=122sin πθ⎛⎫-= ⎪⎝⎭1cos 2θ∴=-23πθ=tan θ=1y x -=-40y +-=B4.(四川高考真题(文))设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则PA PB +的取值范围是( )A.B.C.D.【答案】B 【解析】易得(0,0),(1,3)A B .设(,)P x y ,则消去m 得:2230x y x y +--=,所以点P 在以AB 为直径的圆上,PA PB ⊥,所以222||||10PA PB AB +==,令,PA PB θθ==,则)4PA PB πθθθ+==+.因为0,0PA PB ≥≥,所以02πθ≤≤.sin()14πθ≤+≤PA PB ≤+≤.选B.法二、因为两直线的斜率互为负倒数,所以PA PB ⊥,点P 的轨迹是以AB 为直径的圆.以下同法一.5.(2020·浙江)已知点(2,1)M -,直线l 过点M 且与直线210x y -+=平行,则直线l 的方程为____________;点M 关于直线10x y -+=的对称点的坐标为_______________.【答案】240x y -+= (0,1)-【分析】根据所求直线与直线210x y -+=平行,设方程为()201x y n n -+=≠求解;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',由112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩求解.【详解】因为所求直线与直线210x y -+=平行,所以设方程为()201x y n n -+=≠,因为直线过点(2,1)M -,代入直线方程解得4n =,所以所求直线方程为:240x y -+=;设点M 关于直线10x y -+=的对称点的坐标为(),M x y ',则112211022y x x y -⎧=-⎪⎪+⎨-+⎪-+=⎪⎩,解得01x y =⎧⎨=-⎩,所以点M 关于直线10x y -+=的对称点的坐标为()0.1-故答案为:240x y -+=,(0,1)-6.(2019·黑龙江鹤岗·月考(文))已知直线l 经过点()4,3P ,且与x 轴正半轴交于点A ,与y 轴正半轴交于点B ,O 为坐标原点.(1)若点O 到直线l 的距离为4,求直线l 的方程;(2)求OAB ∆面积的最小值.【答案】(1)7241000x y +-=(2)24【解析】(1)由题意可设直线l 的方程为()34y k x -=-,即430kx y k --+=,则4d ,解得724k =-. 故直线l 的方程为774302424x y ⎛⎫---⨯-+= ⎪⎝⎭,即7241000x y +-=. (2)因为直线l 的方程为430kx y k --+=,所以34,0A k ⎛⎫-+ ⎪⎝⎭,()0,43B k -+, 则OAB ∆的面积为()113194431624222S OA OB k k k k ⎛⎫⎛⎫=⋅=-+⨯-+=--+ ⎪ ⎪⎝⎭⎝⎭. 由题意可知k 0<,则91624k k --≥=(当且仅当34k =-时,等号成立).故OAB ∆面积的最小值为()12424242⨯+=.7.(2021·抚松县第一中学高二月考)已知直线l 1:2x +y +3=0,l 2:x ﹣2y =0.(1)求直线l 1关于x 轴对称的直线l 3的方程,并求l 2与l 3的交点P ;(2)求过点P 且与原点O (0,0)距离等于2的直线m 的方程.【答案】(1)2x ﹣y +3=0,P (﹣2,﹣1);(2) 3x +4y +10=0或x =﹣2.【分析】(1)由对称关系求直线l 3的方程,联立l 2与l 3的方程,求点P 的坐标,(2)当直线m 的斜率存在时,设直线m 的点斜式方程,由点到直线距离公式列方程求斜率,由此可得直线m 的方程,再检验过点P 的斜率不存在的直线是否满足要求.【详解】(1)由题意,直线l 3与直线l 1的倾斜角互补,从而它们的斜率互为相反数,且l 1与l 3必过x 轴上相同点3(,0)2-,∴直线l 3的方程为2x ﹣y +3=0,由230,20,x y x y -+=⎧⎨-=⎩解得2,1.x y =-⎧⎨=-⎩∴P (﹣2,﹣1).(2)当直线m 的斜率存在时,设直线m 的方程为y +1=k (x +2),即kx ﹣y +2k ﹣1=0,∴原点O (0,0)到直线m 2=,解得34k =-,∴直线m 方程为3x +4y +10=0,当直线m 的斜率不存在时,直线x =﹣2满足题意,综上直线m 的方程为3x +4y +10=0或x =﹣2.8.(2021·宝山区·上海交大附中高一开学考试)如图,点(),4A m ,()4,B n -在反比例函数()0ky k x=>的图象上,经过点A 、B 的直线与x 轴相交于点C ,与y 轴相交于点D .(1)若2m =,求n 的值;(2)求m n +的值;(3)连接OA 、OB ,若tan tan 1AOD BOC ∠+∠=,求直线AB 的函数关系式.【答案】(1)2(2)0(3)2y x =+【分析】(1)先把A 点坐标代入()0k y k x =>求出k 的值得到反比例函数解析式为8y x=,然后把(4,)B n -代8y x=可求出n 的值;(2)利用反比例函数图象上点的坐标特征得到4m =k ,﹣4n =k ,然后把两式相减消去k 即可得到m +n 的值;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,利用正切的定义得到tan ∠AOE 4AE mOE ==,tan 4BF n BOF OF -∠==,则144m n-+=,加上0m n +=,于是可解得2,2m n ==-,从而得到(2,4)A ,(4,2)B --,然后利用待定系数法求直线AB 的解析式.【详解】(1)当m =2,则A (2,4),把A (2,4)代入ky x=得k =2×4=8,所以反比例函数解析式为8y x=,把(4,)B n -代入8y x=得﹣4n =8,解得n =﹣2;(2)因为点A (m ,4),B (﹣4,n )在反比例函数()0ky k x=>的图象上,所以4m =k ,﹣4n =k ,所以4m +4n =0,即m +n =0;(3)作AE ⊥y 轴于E ,BF ⊥x 轴于F ,如图,在Rt △AOE 中,tan ∠AOE 4AE mOE ==,在Rt △BOF 中,tan 4BF nBOF OF -∠==,而tan ∠AOD +tan ∠BOC =1,所以144m n-+=,而m +n =0,解得m =2,n =﹣2,则A (2,4),B (﹣4,﹣2),设直线AB 的解析式为y =px +q ,把(2,4),(4,2)A B --代入得2442p q p q +=⎧⎨-+=-⎩,解得12p q =⎧⎨=⎩,所以直线AB 的解析式为y =x +2.9.(2021·全国高二课时练习)已知点()2,1P -.(1)求过点P 且与原点的距离为2的直线的方程.(2)是否存在过点P 且与原点的距离为6的直线?若存在,求出该直线的方程;若不存在,请说明理由.【答案】(1) 20x -=或34100x y --=;(2) 不存在这样的直线;理由见解析.【分析】(1)分k 存在与不存在两种情况讨论,点斜式表示直线方程,利用点到直线距离公式即得解;(2)过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,分析即得解【详解】(1)①当直线的斜率不存在时,直线方程为2x =,符合题意.②当直线的斜率存在时,设斜率为k ,则直线方程为()12y k x +=-,即210kx y k ---=.2,解得34k =,所以直线方程为34100x y --=.故所求直线方程为20x -=或34100x y --=.(2)不存在.理由如下:过点P 且与原点的距离最大的直线为过点P 且与OP 垂直的直线,=,而6>10.(2021·全国高三专题练习)AOB V 是等腰直角三角形,||AB =l 过点(1,1)P 与AOB V 的斜边、直角边分别交于不同的点M 、N (如图所示).(1)设直线l 的斜率为k ,求k 的取值范围,并用k 表示M 的坐标;(2)试写出表示AMN V 的面积S 的函数解析式()S k ,并求()S k 的最大值.【答案】(1)0k >,1,11kM k k ⎛⎫ ⎪++⎝⎭;(2)112(1)()012(1)k k k S k kk k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,max 1()4S k =.【分析】(1)根据题意,结合图象即可得到k 的取值范围,再联立直线方程即可得到M 的坐标;(2) 由于l 绕P 点转动,则N 点可落在OA 上,也可落在OB 上,AMN S V 的计算不一样,所以必须对l 的斜率不同的取值范围进行分类讨论,表示出()S k ,结合函数单调性即可求解.【详解】(1)由已知条件得(1,0)A 、(0,1)B ,0k >,设直线l 的方程为1y kx k =+-.由11x y y kx k +=⎧⎨=+-⎩,得1,11kM k k ⎛⎫ ⎪++⎝⎭.(2)当1k …时,点N 在直角边OA 上,1,0k N k -⎛⎫⎪⎝⎭,1111()1212(1)k S k k k k k -⎛⎫=-⋅= ⎪++⎝⎭.当01k <<时,点k 在直角边OB 上,(0,1)N k -,111()11(1)122212(1)k k S k k k k k =⨯⨯--⨯-⨯=++.∴112(1)()012(1)k k k S k k k k ⎧⎪+⎪=⎨-⎪<<⎪+⎩…,当1k …时,()S k 递减,∴max 1()(1)4S k S ==,当01k <<时,11111()22(1)244S k k =-<-=+.综上所述,当1k =时,max 1()4S k =.1.(上海高考真题(文))已知直线1l :(3)(4)10k x k y -+-+=与2l :2(3)230k x y --+=平行,则k 的值是( ).A .1或3B .1或5C .3或5D .1或2【答案】C 【解析】练真题由两直线平行得,当k-3=0时,两直线的方程分别为1y =- 和32y =,显然两直线平行.当k-3≠0时,由()k 34k1/32k 32--=≠--,可得 k=5.综上,k 的值是 3或5,故选 C .2.(2020·山东高考真题)已知直线sin cos :y x l θθ=+的图像如图所示,则角θ是()A .第一象限角B .第二象限角C .第三象限角D .第四象限角【答案】D 【分析】本题可根据直线的斜率和截距得出sin 0θ<、cos 0θ>,即可得出结果.【详解】结合图像易知,sin 0θ<,cos 0θ>,则角θ是第四象限角,故选:D.3.(2021·山东高考真题)如下图,直线l 的方程是()A 0y -=B 20y -=C 310y --=D .10x -=【答案】D 【分析】由图得到直线的倾斜角为30,进而得到斜率,然后由直线l 与x 轴交点为()1,0求解.【详解】由图可得直线的倾斜角为30°,所以斜率tan 30k =︒=,所以直线l 与x 轴的交点为()1,0,所以直线的点斜式方程可得l :)01y x -=-,即10x -=.故选:D4.(2021·湖南高考真题)点(0,1)-到直线3410x y -+=的距离为( )A .25B .35C .45D .1【答案】D 【分析】利用点到直线的距离公式即可求解.【详解】点(0,1)-到直线3410x y -+=的距离为515d =,故选:D.5.(全国高考真题(理))已知点A (﹣1,0),B (1,0),C (0,1),直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,则b 的取值范围是( ) A.(0,1) B.112⎛⎫ ⎪ ⎪⎝⎭, C.113⎛⎤⎥ ⎝⎦, D.1132⎡⎫⎪⎢⎣⎭,【答案】B 【解析】由题意可得,三角形ABC 的面积为12AB OC ⋅⋅=1,由于直线y =ax +b (a >0)与x 轴的交点为M (ba-,0),由直线y =ax +b (a >0)将△ABC 分割为面积相等的两部分,可得b >0,故ba-≤0,故点M 在射线OA 上.设直线y =ax +b 和BC 的交点为N ,则由1y ax b x y =+⎧⎨+=⎩可得点N 的坐标为(11b a -+,1a ba ++).①若点M 和点A 重合,如图:则点N 为线段BC 的中点,故N (12,12),把A 、N 两点的坐标代入直线y =ax +b ,求得a =b 13=.②若点M 在点O 和点A 之间,如图:此时b 13>,点N 在点B 和点C 之间,由题意可得三角形NMB 的面积等于12,即1122N MB y ⋅⋅=,即 111212b a b a a +⎛⎫⨯+⋅= ⎪+⎝⎭,可得a 212b b=-0,求得 b 12<,故有13<b 12<.③若点M 在点A 的左侧,则b 13<,由点M 的横坐标b a--<1,求得b >a .设直线y =ax +b 和AC 的交点为P ,则由 1y ax b y x =+⎧⎨=+⎩求得点P 的坐标为(11b a --,1a ba --),此时,由题意可得,三角形CPN 的面积等于12,即 12•(1﹣b )•|x N ﹣x P |12=,即12(1﹣b )•|1111b b a a ---+-|12=,化简可得2(1﹣b )2=|a 2﹣1|.由于此时 b >a >0,0<a <1,∴2(1﹣b )2=|a 2﹣1|=1﹣a 2 .两边开方可得(1﹣b)=1,∴1﹣b ,化简可得 b >1,故有1b 13<.综上可得b 的取值范围应是 112⎛⎫-⎪ ⎪⎝⎭,,故选:B .6.(2011·安徽高考真题(理))在平面直角坐标系中,如果与都是整数,就称点为整点,下列命题中正确的是_____________(写出所有正确命题的编号)①存在这样的直线,既不与坐标轴平行又不经过任何整点②如果与都是无理数,则直线不经过任何整点③直线经过无穷多个整点,当且仅当经过两个不同的整点④直线经过无穷多个整点的充分必要条件是:与都是有理数⑤存在恰经过一个整点的直线【答案】①③⑤【解析】①令直线为:,则其不与坐标轴平行且不经过任何整点,①正确;②令直线为:,则直线经过整点,②错误;③令直线为:,过两个不同的整点,则,两式作差得:即直线经过整点x y (,)x y k b y kx b =+l l y kx b =+k b l 12y x =+l y =-()2,0l y kx =()11,x y ()22,x y 112y kx y kx =⎧⎨=⎩()1212y y k x x -=-l ()1212,x x y y --直线经过无穷多个整点,③正确;④令直线为:,则不过整点,④错误;⑤令直线为:,则其只经过一个整点,⑤正确.本题正确结果:①③⑤∴l l 1132y x =+ll y =()0,0。
直线与方程1带答案A4一页

1•直线 JV-3 = -|(x + 4) A.* = -|,Z> = 3C. * = -訂=-32. 直线y = kx - 3上+ 2伙w R )必过泄点()3•经过点(一3・2),倾斜角为60°的直线方程是(・ A.^ + 2 = 73(X -3)C ・y — 2 = JJ(x + 3)4.已知直线wx + 4y - 2 = 0 与2x -5y^n = 0 互相垂直,垂足为P (L P ),则m-n + p 的值是(•)A. 24B.20C.OD.-45•已知直线/过点(l.-D ,且在y 轴上的截距为I ,则直线/的方程为 _____________ •6.若ah > 0 , ac<0 ,则直线ax + hyc = 0 不经过第 _______________ 象限.7•若直线(a + l )x + ay = 0 与直线ax + 2y = 1垂直,则实数a= _____________ .8•点A (4. 5)关于直线/的对称点为3(—2.7)则直线/的方程为 ________ .9.若直线l :y = kx-V3与直线2x + 3y - 6 = 0的交点位于第一象限,则直线/倾斜角的范 围是 . 10•两平行直线x + 3y_4 = 0与2x + 6y - 9 = 0的距离是 _____________ .11. 已知在厶ABC 中4, 〃的坐标分别为(一1,2), (4,3) , 4C 的中点M 在y 轴上,的中 点N 在x 轴上.< 1)求点C 的坐标.(2)求MN 所在直线的方程.12•已知直线/过定点尸(一3・4)・(1) 若直线/在两坐标轴上的截距之和为12,求直线的方程;(2) 若直线/与x 轴负半轴,>■轴正半轴分別交于久B 两点,试求'AOB 而积的最小值及 此时直线/的方程.笫]页(共4页)直线与方程1A ・(3,2) B. (-3,2) C. (-3.-2)D. (3,-2)的斜率为上,在y 轴上的截距为山则有(•.)答案第一部分1.C 【解析】原方程可化为y = - jx — 3 ,故上=—扌,b = 7 .2.A 【解析】将直线方程写成y = (x-3)£+2 ,逆用点斜式方程求解.3.C 【解析】因为。
高一数学直线的方程试题答案及解析

高一数学直线的方程试题答案及解析1.与直线关于轴对称的直线的方程为()A.B.C.D.【答案】A【解析】解:直线与轴的交点为,关于轴对称的直线的斜率为:,所以直线关于轴对称的直线的方程为:,即.【考点】直线关于直线的对称直线2.对于任给的实数,直线都通过一定点,则该定点坐标为 .【答案】【解析】将原式整理为,不过为何值,必过直线的交点,解得:所以定点坐标为【考点】过定点直线3.若点(4,a)到直线4x-3y=1的距离不大于3,则a的取值范围是A.B.(0,10)C.D.(-∞,0][10,+∞)【答案】A【解析】略4.过定点P(2,1)作直线l,交x轴和y轴的正方向于A、B,使△ABC的面积最小,那么l的方程为()A、x-2y-4=0B、x-2y+4=0C、2x-y+4=0D、x+2y-4=0【答案】D【解析】根据题意可设直线方程为;令得直线与x轴交点为;令得直线与y轴交点为;则△ABC的面积等于即;该函数在时,是减函数;在时是增函数;所以时,取最小值。
此时L方程为故选D5.若直线Ax+By+C=0与两坐标轴都相交,则有A.B.或C.D.A2+B2=0【答案】A【解析】若直线Ax+By+C=0与两坐标轴都相交,则直线既不平行 x轴,又不平行y轴,所以故选A6.直线kx-y=k-1与ky-x=2k的交点位于第二象限,那么k的取值范围是( )A.k>1B.0<k<C.k<D.<k<1【答案】B【解析】联立可得,所以两直线交点坐标为。
因为位于第二象限,所以,解得,故选B7.若方程表示两条直线,求m的值【答案】m=1【解析】解:当m=0时,显然不成立当m0时,配方得方程表示两条直线,当且仅当有1-=0,即m=18.直线过点A(2,2),且与直线x-y-4=0和x轴围成等腰三角形,则这样的直线的条数共有A.1条B.2条C.3条D.4条【答案】D【解析】当直线斜率不存在即位于位置时,与直线和轴构成等腰直角三角形;直线位于位置时,也可构成一个小的等腰直角三角形;直线位于位置时,可构成一个顶角为钝角的等腰三角形;直线位于位置时,可构成顶角为45°的等腰三角形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与方程练习题及答案详解一、选择题1.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=, 则,a b 满足( ) A .1=+b a B .1=-b aC .0=+b aD .0=-b a2.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x3.已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行, 则m 的值为( )A .0B .8-C .2D .104.已知0,0ab bc <<,则直线ax by c +=通过( ) A .第一、二、三象限 B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限5.直线1x =的倾斜角和斜率分别是( ) A .045,1 B .0135,1- C .090,不存在D .0180,不存在6.若方程014)()32(22=+--+-+m y m m x m m 表示一条直线,则实数m 满足( )A .0≠mB .23-≠mC .1≠mD .1≠m ,23-≠m ,0≠m二、填空题1.点(1,1)P - 到直线10x y -+=的距离是________________.2.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;3.若原点在直线l 上的射影为)1,2(-,则l 的方程为____________________。
4.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________. 5.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
三、解答题1.已知直线Ax By C ++=0,(1)系数为什么值时,方程表示通过原点的直线; (2)系数满足什么关系时与坐标轴都相交; (3)系数满足什么条件时只与x 轴相交; (4)系数满足什么条件时是x 轴;(5)设()P x y 00,为直线Ax By C ++=0上一点, 证明:这条直线的方程可以写成()()A x x B y y -+-=000.2.求经过直线0323:,0532:21=--=-+y x l y x l 的交点且平行于直线032=-+y x的直线方程。
3.经过点(1,2)A 并且在两个坐标轴上的截距的绝对值相等的直线有几条? 请求出这些直线的方程。
4.过点(5,4)A --作一直线l ,使它与两坐标轴相交且与两轴所围成的三角形面积为5.(数学2必修)第三章 直线与方程 [综合训练B 组] 一、选择题1.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x2.若1(2,3),(3,2),(,)2A B C m --三点共线 则m 的值为( )A.21 B.21- C.2- D.2 3.直线x a yb221-=在y 轴上的截距是( )A .bB .2b -C .b 2D .±b4.直线13kx y k -+=,当k 变动时,所有直线都通过定点( )A .(0,0)B .(0,1)C .(3,1)D .(2,1)5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 7.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的 斜率k 的取值范围是( ) A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤二、填空题1.方程1=+y x 所表示的图形的面积为_________。
2.与直线5247=+y x 平行,并且距离等于3的直线方程是____________。
3.已知点(,)M a b 在直线1543=+y x 上,则22b a +的最小值为 4.将一张坐标纸折叠一次,使点(0,2)与点(4,0)重合,且点(7,3)与点(,)m n 重合,则n m +的值是___________________。
5.设),0(为常数k k k b a ≠=+,则直线1=+by ax 恒过定点 . 三、解答题1.求经过点(2,2)A -并且和两个坐标轴围成的三角形的面积是1的直线方程。
2.一直线被两直线0653:,064:21=--=++y x l y x l 截得线段的中点是P 点,当P 点分别为(0,0),(0,1)时,求此直线方程。
2.把函数()y f x =在x a =及x b =之间的一段图象近似地看作直线,设a c b ≤≤,证明:()f c 的近似值是:()()()[]f a c ab af b f a +---.4.直线313y x =-+和x 轴,y 轴分别交于点,A B ,在线段AB 为边在第一象限内作等边△ABC ,如果在第一象限内有一点1(,)2P m 使得△ABP 和△ABC 的面积相等,求m 的值。
(数学2必修)第三章 直线与方程 [提高训练C 组] 一、选择题1.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后, 又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .3 2.若()()P a b Q c d ,、,都在直线y mx k =+上,则PQ 用a c m 、、表示为( )A .()a c m ++12B .()m a c -C .a c m -+12D . a c m -+123.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为 (1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23- 4.△ABC 中,点(4,1)A -,AB 的中点为(3,2)M ,重心为(4,2)P ,则边BC 的长为( )A .5B .4C .10D .85.下列说法的正确的是( )A .经过定点()P x y 000,的直线都可以用方程()y y k x x -=-00表示B .经过定点()b A ,0的直线都可以用方程y kx b =+表示C .不经过原点的直线都可以用方程x a yb+=1表示 D .经过任意两个不同的点()()222111y x P y x P ,、,的直线都可以用方程()()()()y y x x x x y y --=--121121表示6.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( )A .360x y +-=B .320x y -+=C .320x y +-=D .320x y -+= 二、填空题1.已知直线,32:1+=x y l 2l 与1l 关于直线x y -=对称,直线3l ⊥2l ,则3l 的斜率是______.2.直线10x y -+=上一点P 的横坐标是3,若该直线绕点P 逆时针旋转090得直线l ,则直线l 的方程是 .3.一直线过点(3,4)M -,并且在两坐标轴上截距之和为12,这条直线方程是__________.4.若方程02222=++-y x my x 表示两条直线,则m 的取值是 .5.当210<<k 时,两条直线1-=-k y kx 、k x ky 2=-的交点在 象限. 三、解答题1.经过点(3,5)M 的所有直线中距离原点最远的直线方程是什么?2.求经过点(1,2)P 的直线,且使(2,3)A ,(0,5)B -到它的距离相等的直线方程3.已知点(1,1)A ,(2,2)B ,点P 在直线x y 21=上,求22PB PA +取得 最小值时P 点的坐标。
4.求函数()f x =第三章 直线和方程 [基础训练A 组] 一、选择题1.D tan 1,1,1,,0ak a b a b bα=-=--=-=-= 2.A 设20,x y c ++=又过点(1,3)P -,则230,1c c -++==-,即210x y +-= 3.B 42,82m k m m -==-=-+ 4.C ,0,0a c a cy x k b b b b=-+=->< 5.C 1x =垂直于x 轴,倾斜角为090,而斜率不存在 6.C 2223,m m m m +--不能同时为0 二、填空题2d == 2. 234:23,:23,:23,l y x l y x l x y =-+=--=+ 3.250x y --= '101,2,(1)2(2)202k k y x --==-=--=--4.8 22x y +可看成原点到直线上的点的距离的平方,垂直时最短:d ==5. 23y x =平分平行四边形ABCD 的面积,则直线过BD 的中点(3,2) 三、解答题1. 解:(1)把原点(0,0)代入Ax By C ++=0,得0C =;(2)此时斜率存在且不为零即0A ≠且0B ≠;(3)此时斜率不存在,且不与y 轴重合,即0B =且0C ≠; (4)0,A C ==且0B ≠ (5)证明:()00P x y ,在直线Ax By C ++=0上00000,Ax By C C Ax By ∴++==-- ()()000A x x B y y ∴-+-=。
2.解:由23503230x y x y +-=⎧⎨--=⎩,得1913913x y ⎧=⎪⎪⎨⎪=⎪⎩,再设20x y c ++=,则4713c =-472013x y +-=为所求。
3.解:当截距为0时,设y kx =,过点(1,2)A ,则得2k =,即2y x =;当截距不为0时,设1,x y a a +=或1,x y a a+=-过点(1,2)A , 则得3a =,或1a =-,即30x y +-=,或10x y -+= 这样的直线有3条:2y x =,30x y +-=,或10x y -+=。
4. 解:设直线为4(5),y k x +=+交x 轴于点4(5,0)k-,交y 轴于点(0,54)k -, 14165545,4025102S k k k k=⨯-⨯-=--= 得22530160k k -+=,或22550160k k -+= 解得2,5k =或 85k = 25100x y ∴--=,或85200x y -+=为所求。