小学奥数 三角形等高模型与鸟头模型(二) 精选例题练习习题(含知识点拨)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板块一 三角形等高模型

我们已经知道三角形面积的计算公式:三角形面积=底⨯高2÷

从这个公式我们可以发现:三角形面积的大小,取决于三角形底和高的乘积. 如果三角形的底不变,高越大(小),三角形面积也就越大(小); 如果三角形的高不变,底越大(小),三角形面积也就越大(小);

这说明当三角形的面积变化时,它的底和高之中至少有一个要发生变化.但是,当三角形的底和高同时发生

变化时,三角形的面积不一定变化.比如当高变为原来的3倍,底变为原来的1

3

,则三角形面积与原来的一

样.这就是说:一个三角形的面积变化与否取决于它的高和底的乘积,而不仅仅取决于高或底的变化.同时也告诉我们:一个三角形在面积不改变的情况下,可以有无数多个不同的形状. 在实际问题的研究中,我们还会常常用到以下结论: ①等底等高的两个三角形面积相等;

②两个三角形高相等,面积比等于它们的底之比; 两个三角形底相等,面积比等于它们的高之比; 如左图12::S S a b =

s 2s 1b

a

D

C

B

A

③夹在一组平行线之间的等积变形,如右上图ACD BCD S S =△△;

反之,如果ACD BCD S S =△△,则可知直线AB 平行于CD .

④等底等高的两个平行四边形面积相等(长方形和正方形可以看作特殊的平行四边形); ⑤三角形面积等于与它等底等高的平行四边形面积的一半;

⑥两个平行四边形高相等,面积比等于它们的底之比;两个平行四边形底相等,面积比等于它们的高之比.

板块二 鸟头模型

两个三角形中有一个角相等或互补,这两个三角形叫做共角三角形. 共角三角形的面积比等于对应角(相等角或互补角)两夹边的乘积之比.

如图在ABC △中,,D E 分别是,AB AC 上的点如图 ⑴(或D 在BA 的延长线上,E 在AC 上), 则:():()ABC ADE S S AB AC AD AE =⨯⨯△△

E

D

C

B

A

D

E C

B

A

图⑴ 图⑵

【例 1】 如图在ABC △中,,D E 分别是,AB AC 上的点,且:2:5AD AB =,:4:7AE AC =,16ADE S =△平

方厘米,求ABC △的面积.

例题精讲

4-3-2.三角形等高模型与鸟头模型

E

D

C

B

A

E

D

C

B

A

【巩固】如图,三角形ABC 中,AB 是AD 的5倍,AC 是AE 的3倍,如果三角形ADE 的面积等于1,那

么三角形ABC 的面积是多少?

E

D

C

B

A A

B C

D

E

【巩固】如图,三角形ABC 被分成了甲(阴影部分)、乙两部分,4BD DC ==,3BE =,6AE =,乙部分面

积是甲部分面积的几倍?

E D

C

B

A

A B

C

D

E

【例 2】 如图在ABC △中,D 在BA 的延长线上,E 在AC 上,且:5:2AB AD =,

:3:2AE EC =,12ADE S =△平方厘米,求ABC △的面积.

E

D

C

B

A

E

D

C

B

A

【例 3】 如图所示,在平行四边形ABCD 中,E 为AB 的中点,2AF CF =,三角形AFE (图中阴影部分)的

面积为8平方厘米.平行四边形的面积是多少平方厘米?

E

F

D C

B

A

【例 4】 已知DEF △的面积为7平方厘米,,2,3BE CE AD BD CF AF ===,求ABC △的面积.

F

E

D C

B

A

【例 5】 如图16-4,已知.AE=

15AC ,CD=14BC ,BF=1

6

AB ,那么DEF ABC 三角形的面积三角形的面积等于多少?

【例 6】 如图,三角形ABC 的面积为3平方厘米,其中:2:5AB BE =,:3:2BC CD =,三角形BDE 的面

积是多少?

A

B E

C

D

D

C E

B A

【例 7】 如图所示,正方形ABCD 边长为6厘米,13AE AC =

,1

3

CF BC =.三角形DEF 的面积为_______平方厘米.

F

E

D

C

B

A

【例 8】 如图,已知三角形ABC 面积为1,延长AB 至D ,使BD AB =;延长BC 至E ,使2CE BC =;延

长CA 至F ,使3AF AC =,求三角形DEF 的面积.

F E

D

C

B A

A

B

C

D

E

F

【例 9】 如图,把四边形ABCD 的各边都延长2倍,得到一个新四边形EFGH 如果ABCD 的面积是5平方

厘米,则EFGH 的面积是多少平方厘米?

【例 10】 如图,平行四边形ABCD ,BE AB =,2CF CB =,3GD DC =,4HA AD =,平行四边形ABCD 的

面积是2, 求平行四边形ABCD 与四边形EFGH 的面积比.

H

G

A

B C

D E

F

H

G

A B C

D E

F

相关文档
最新文档