PCR技术基本原理及相关知识

合集下载

PCR技术基本原理及相关知识资料讲解

PCR技术基本原理及相关知识资料讲解

P C R技术基本原理及相关知识PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。

PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA 经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。

每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。

PCR的反应动力学 PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。

反应最终的DNA 扩增量可用Y=(1+X)n计算。

Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。

平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。

反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。

大多数情况下,平台期的到来是不可避免的。

PCR反应体系的基本成分:模板DNA、特异性引物、DNA聚合酶、dNTP、 Mg2+的缓冲液。

PCR反应体系与反应条件--------------------------------------------------------------------------------标准的PCR反应体系:10×扩增缓冲液 10ul4种dNTP混合物各200umol/L引物各10~100pmol模板DNA 0.1~2ugTaq DNA聚合酶 2.5uMg2+ 1.5mmol/L加双或三蒸水至100ulPCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。

PCR技术原理及分类

PCR技术原理及分类
移原理,当报告荧光基团(供体荧光分子)和猝灭荧光基团(受体荧光分子)激发光谱重叠且距离很近时 (7-10nm),供体分子的激发可以诱发受体分子发荧光,而自身荧光减弱。 PCR反应开始,探针游离于体系中完整存在时,报告荧光基团并不会发出荧光,当退火时,引物和探针结合于 模板,在延伸阶段,聚合酶不断的合成新链,由于DNA聚合酶具有5’-3’核酸外切酶活性,到达探针时, DNA聚合酶就会将探针从模板上水解下来,报告荧光基团和猝灭荧光基团分开,释放荧光信号。 由于探针和模板存在一对一的关系,所以在试验的精度和灵敏度上,探针法都要优于染料法。 每扩增一条DNA,就形成一个荧光分子,PCR产物的形成与荧光分子的形成完全同步,PCR产物越多,荧光信 号累积的越多,荧光强度越大。
RT-qPCR的一步法和两步法
总结
PCR,通常指的是普通PCR(一代),以双链DNA为模板,以dNTP为底物进行扩增,进行定性扩增双链DNA。
qPCR(Real-time PCR),指的是实时荧光定量PCR,以DNA为模板,以dNTP为底物,对扩增出的DNA进行定量分 析。
dPCR(数字PCR),以DNA为模板,进行PCR扩增,不依赖于ct值和标准曲线,实现PCR的绝对定量。
qPCR在聚合酶链反应“变性一退火一延伸”扩增过程的“延伸”段,对荧光探针标记的靶基因荧光信 号进行实时采集,通过荧光信号-Ct值-靶基因的起始浓度间的关系,最终确定靶基因的拷贝数或基因的 表达水平。
实时荧光定量PCR(Quantitative Real-time PCR, qPCR)
实时荧光定量PCR 极大地扩展了PCR 技术在整个生命科学的研究与应用,例如,感染性疾病、肿瘤遗传性疾 病、移植配型、个性化用药等众多医学领域。尤其是在临床医学检验领域迅速发展,成为许多病原微生物诊 断的金标准。

PCR技术基本原理及相关知识

PCR技术基本原理及相关知识

PCR技术基本原理及相关知识PCR(聚合酶链式反应)是一种分子生物学技术,用于扩增DNA分子。

PCR技术革命性地改变了分子生物学的研究和应用领域,并且在医学、农业、环境科学等领域具有广泛的应用。

以下是PCR技术的基本原理及相关知识。

1. 变性(Denaturation):将目标DNA融合成两条单链,使其成为单股DNA。

在PCR反应开始时,样本中的DNA经过高温处理(通常为95°C),使其双股DNA分离,形成单股DNA。

2. 退火(Annealing):通过引入两个特异性引物,使其与目标DNA的靶序列互补结合。

延伸引物是由短的DNA或寡核苷酸片段(18-24个核苷酸)组成的特定DNA序列,它与目标序列的两端相互补。

在PCR反应温度较低时(通常为50-65°C),引物结合到目标DNA的两端。

3. 延伸(Extension):通过DNA聚合酶的催化,将引物与目标DNA形成的复合物延长,生成新的DNA分子。

在PCR反应中,引物延长所需要的二倍体DNA将通过DNA聚合酶的催化作用来实现。

DNA聚合酶能够识别引物与模板DNA之间的同源性,并在引物的3'末端开始合成新的DNA链。

以上三个步骤组成一个PCR循环,每个循环将扩增目标DNA的数量。

通常,在30-40个PCR循环后,目标DNA的量将扩增到百万级。

1.DNA模板:DNA模板是PCR反应的起点,它可以是基因组DNA、cDNA或已知序列的DNA片段。

2.引物设计:引物的选择非常重要,引物应该与目标DNA序列的两端相互补,以确保引物的有效结合和延长。

3. DNA聚合酶:DNA聚合酶是PCR反应的催化剂,通常使用热稳定聚合酶(如Taq聚合酶)。

热稳定聚合酶能够在高温下保持稳定,并且具有较高的DNA聚合活性。

4.PCR缓冲液:PCR反应需要在特定的pH和离子浓度条件下进行,PCR缓冲液可以提供适宜的反应环境。

5.循环条件:PCR反应需要在特定的温度条件下进行循环反应。

简述PCR的基本原理和步骤及步骤要点

简述PCR的基本原理和步骤及步骤要点

简述PCR的基本原理和步骤及步骤要点PCR(聚合酶链式反应)是一种在分子生物学中广泛应用的技术,它能够快速而准确地扩增DNA片段。

本文将对PCR的基本原理、步骤以及步骤要点进行简述。

基本原理PCR基于DNA的复制原理,通过不断重复三个基本步骤(变性、退火和延伸)来扩增特定DNA片段。

具体而言,PCR需要以下三种主要成分:DNA模板、引物和聚合酶。

1.DNA模板:PCR需要从中复制目标DNA片段的DNA模板。

该DNA可以是从细胞中提取的总DNA、cDNA或已知序列的DNA片段。

2.引物:引物是两个短的DNA片段,其中一个与目标DNA片段的起始位置互补,另一个与目标DNA片段的末端互补。

引物的作用是提供了PCR反应的起始点。

3.聚合酶:聚合酶是PCR反应中的关键组分,它能够在退火温度下从引物的起始点开始,沿着DNA模板链合成新的DNA链。

PCR的基本原理是通过不断重复以下三个步骤来扩增目标DNA片段。

步骤及步骤要点1.变性:在PCR反应的第一步,反应混合液中的DNA模板被加热到高温(通常为94-98℃),使DNA双链解开成两条单链(变性)。

•高温变性有助于断开DNA双链的氢键,使之成为两条单链。

2.退火:在PCR反应的第二步,反应混合液被冷却到较低的温度(通常为50-65℃),使引物与目标DNA片段互补结合。

•引物与目标DNA片段的互补配对使得引物能够定位在目标DNA片段的特定位置。

3.延伸:在PCR反应的第三步,反应混合液被加热到适合聚合酶活性的温度(通常为72℃),使聚合酶从引物的起始点开始合成新的DNA链。

聚合酶能够识别引物,在引物的3’端添加互补的核苷酸,从而合成新的DNA 链。

这三个步骤组成了一次循环,形成一个PCR循环。

每个PCR循环都会使目标DNA 片段的数量成倍增加。

通常,进行20-35个PCR循环,即可扩增到足够的DNA量以进行后续分析。

需要注意的是,PCR反应需要针对具体的目标DNA片段选择合适的引物,在设定的PCR温度条件下进行。

pcr技术的知识点

pcr技术的知识点

pcr技术的知识点PCR,全称为聚合酶链式反应(Polymerase Chain Reaction),是一种在体外扩增DNA分子的技术。

自从其产生以来,PCR技术在生物学、医学等领域都扮演着重要角色。

本文将介绍PCR技术的基本原理、主要步骤及其应用。

一、PCR技术的基本原理PCR技术是利用DNA聚合酶能够在适宜条件下从单链DNA模板向其补体的方向合成新的互补双链DNA的特性,通过体外操作使目标DNA区段被扩增的一种技术。

PCR技术相当于“放大器”,它把少量的DNA分子扩增成数百万分子,这种扩增是平凡的、快速的和特异的。

PCR从样本中扩增一段特定目的序列的DNA,应该是由以下三个部分所组成:一段待扩增的DNA序列,一对荧光探针(引物)和一种特殊的聚合酶。

PCR反应主要可分为以下三个阶段:1. 解旋(Denaturation):将待扩增的DNA序列在高温条件下变性,形成两条单链DNA模板。

2. 引物与合成(Annealing and Extension):在低温条件下,引物与模板DNA的互补匹配,并由聚合酶在其5'-3'方向上合成新的DNA链。

3. 延伸(Extension):利用DNA聚合酶在适宜温度下合成新的互补双链DNA,形成两个完全相同的分子。

通过不断的循环这三个阶段,从而使得PCR反应体系中的待扩增物质呈指数级别的增长。

二、PCR技术的主要步骤PCR主要分为以下几个步骤:1. 样品获取PCR技术对样品数量和质量要求较高。

通常采用的是细胞、肝脏、皮肤、血液等组织或器官中提取DNA分子作为扩增目标。

同时,需要注意样品的保存和处理以避免DNA降解。

2. DNA提取DNA提取技术是PCR技术的基础。

不同的样品需要采用不同的DNA提取方法,常见的DNA提取方法有基于酸性、碱性或复合的物理或化学方法等。

3. 引物设计PCR扩增需要引物特异性和长度适宜,且引物与待扩增的DNA序列互补匹配度高,通常由专业的引物设计软件完成。

pcr实验知识点总结

pcr实验知识点总结

pcr实验知识点总结PCR实验(聚合酶链反应)是一种在生物化学中广泛使用的分子生物学技术,用于扩增特定的DNA片段。

该技术由Kary Mullis于1983年发明,并于1993年获得了诺贝尔化学奖。

以下是关于PCR实验的知识点总结。

一、PCR原理PCR的基本原理是利用DNA聚合酶对单链DNA进行复制的能力。

这个过程分为三个步骤:变性、退火和延伸。

1. 变性:在高温(通常为95℃)下,双链DNA被解旋成两条单链模板。

2. 退火:温度降低(一般为50-65℃),引物与模板DNA的互补序列结合。

3. 延伸:在适宜的温度(72℃左右)和DNA聚合酶的作用下,引物沿着模板DNA向两侧延伸,形成新的双链DNA。

这三个步骤循环进行,每次循环都会使目标DNA的数量翻倍,经过几十到几百次循环后,就能得到大量的目标DNA。

二、PCR所需材料1. DNA模板:待扩增的目标DNA。

2. 引物:两段短的寡核苷酸,与目标DNA的两端互补。

3. dNTPs:脱氧核苷三磷酸,作为合成新链的原料。

4. Taq DNA聚合酶:能在高温下保持活性的酶,用于催化DNA的合成。

5. 缓冲液:提供合适的pH和离子环境。

三、PCR操作步骤1. 设计引物:根据目标DNA的序列设计出两条引物,分别与DNA的正反两条链互补。

2. 配制反应体系:将模板DNA、引物、dNTPs、Taq酶和缓冲液按照一定比例混合。

3. PCR循环:将反应体系放入PCR仪中,设定好变性、退火和延伸的温度和时间,开始循环反应。

4. 产物检测:可以通过凝胶电泳等方法检测PCR产物的大小和数量。

四、PCR的应用1. 分子诊断:如病原体检测、基因突变检测等。

2. 基因克隆:将目的基因扩增后,可以方便地进行后续的克隆和表达。

3. 序列分析:通过扩增特定的基因区域,可以进行基因测序和SNP分析等。

4. 生物考古学:可以从古代样本中提取DNA并进行扩增,研究古生物的遗传信息。

五、PCR实验注意事项1. 引物设计:引物应具有良好的特异性和稳定性,避免产生非特异性扩增和二级结构。

请简述PCR的原理及应用

请简述PCR的原理及应用

PCR的原理及应用1. PCR的原理PCR(Polymerase Chain Reaction,聚合酶链反应)是一种用于扩增特定DNA 片段的基因技术。

其基本原理是通过逐渐增加DNA片段的数量,使之达到可以检测的水平。

PCR的核心步骤包括三个温度循环:变性(denaturation)、退火(annealing)和延伸(extension)。

•变性:将DNA双链分离成单链,通常在95℃下进行,这个步骤会导致DNA链断裂。

•退火:在较低的温度下(通常在50-65℃之间),引入特定的引物(primers),使其与DNA片段的末端互补连接。

引物是短的DNA序列,能够识别特定的DNA片段。

•延伸:借助DNA聚合酶(DNA polymerase)的作用,在适合其工作的温度下(通常在72℃),DNA聚合酶沿着DNA模板链在引物的引导下合成新的DNA链。

这样,每个循环都会生成两倍于初始DNA片段数的DNA片段。

PCR通常需要进行多个循环,每个循环的结果都是上一个循环的DNA片段数量的两倍。

由于指数级的扩增,几个循环之后,初始数量非常少的DNA片段就可以被扩增到足够多的数量,以便进行后续分析。

PCR中的关键因素包括引物的设计和选择、DNA聚合酶的选择以及PCR反应体系的条件设置等。

正确的引物设计和选择可以确保PCR扩增特定的DNA片段,而DNA聚合酶的选择和PCR反应体系的条件设置会影响PCR的效率和特异性。

2. PCR的应用PCR技术已经广泛应用于许多领域,其应用范围不断扩大。

以下是PCR技术的一些常见应用:2.1. 遗传病的诊断和筛查PCR技术可以用于遗传病的诊断和筛查。

通过设计引物,可以扩增特定基因的DNA片段,并进行后续的序列分析和突变检测,以确定是否存在遗传病相关的突变。

2.2. 基因工程和转基因研究PCR在基因工程和转基因研究中起到了关键作用。

它可以用于克隆目的基因,构建基因表达载体,并将目的基因导入到目标细胞中。

几种pcr的原理及应用

几种pcr的原理及应用

几种PCR的原理及应用1. PCR简介PCR(Polymerase Chain Reaction,聚合酶链反应)是一种基于DNA聚合酶的体外扩增技术。

该技术可以在短时间内大量复制特定DNA序列,从而方便进行基因分析、疾病诊断、基因工程等研究和应用。

2. PCR基本原理PCR的基本原理是通过反复进行DNA的三步循环复制,每一步循环被称为一轮PCR循环。

每一轮PCR循环包括三个步骤:变性、退火和延伸。

2.1 变性变性步骤使得DNA双链解开,得到两条单链DNA。

这一步骤通常在高温下进行,通过断裂氢键使DNA双链解开。

2.2 退火退火步骤是将两个引物结合到目标DNA序列的两侧,使引物可以作为DNA复制的起始点。

引物的设计需要与目标DNA序列的两端互补,以确保特异性扩增。

2.3 延伸延伸步骤是通过DNA聚合酶酶活性,引物向目标DNA序列方向延伸合成新的DNA链。

这个过程是通过向反应体系中加入四种碱基(dNTPs)来完成的。

3. PCR的应用PCR技术被广泛运用于许多领域,特别是在分子生物学和医学研究中。

以下是几种PCR的应用:3.1 基因分型PCR可以用于基因的分型,例如确定某个基因是否存在突变。

通过引物的设计,PCR可以扩增出目标基因片段,进而通过测序等方法进行基因分型和分析。

3.2 疾病诊断PCR可以用于疾病的诊断,特别是对于遗传病的检测。

通过扩增疾病相关基因的片段,可以判断患者是否携带该疾病基因。

3.3 基因工程PCR在基因工程中也有广泛应用。

例如,通过PCR扩增目标基因,将其插入到表达载体中,构建重组蛋白表达系统。

3.4 环境微生物学PCR可以用于环境中微生物的检测和鉴定。

通过扩增微生物的特定DNA片段,可以确认环境样本中是否存在特定的微生物群体。

3.5 法医学和犯罪学PCR可以应用于法医学和犯罪学领域,例如通过对DNA样本进行PCR扩增,可以确定嫌疑人的DNA指纹,用于刑事案件的鉴定。

以上仅是PCR技术在多个领域中的一些典型应用,随着DNA技术的不断发展,PCR在更多领域中的应用也将不断扩大。

PCR技术基本原理及相关知识

PCR技术基本原理及相关知识

PCR技术基本原理及相关知识PCR(聚合酶链式反应)是一种在分子生物学和遗传学研究中常用的基因扩增技术,其基本原理是利用体外体内的DNA聚合酶(通常是热稳定聚合酶)在DNA模板上进行逐渐增加的连续DNA合成过程。

1. 变性(Denaturation):将DNA双链融解成两条单链。

通常使用高温(约94-98℃)使DNA的双链结构分离,使得DNA模板变为两个单链,以便后续的反应。

2. 退火(Annealing):在较低的温度下,引物(primers)与DNA模板结合。

引物是一段长度为15-30个核苷酸的短DNA或RNA分子,能与目标DNA序列的两端互补碱基对结合。

这些引物在PCR反应中起到限制DNA合成的作用。

3. 扩增(Extension):在适温下,DNA聚合酶利用引物开始在目标DNA序列作为模板上进行DNA合成,不断扩增目标序列。

常用的DNA聚合酶是热稳定的聚合酶,常见的是来自热液单纯病毒Taq聚合酶。

PCR反应通常进行30-40个循环,每个循环包括上述三个步骤。

每个循环的时间和温度取决于目标DNA序列和反应条件。

除了基本的PCR技术原理,以下是一些相关知识:1. 反向转录PCR(Reverse Transcription PCR,RT-PCR):可以在RNA模板上合成相应的DNA序列,通过引物合成cDNA,然后进行PCR。

RT-PCR常用于分析转录水平、检测RNA病毒和研究基因表达调控。

3. 嵌段PCR(Nested PCR):在传统的PCR反应后,再次进行PCR,使用内部引物扩增上一次PCR反应获得的产物。

嵌段PCR提高了灵敏度和特异性。

4. 随机引物PCR(Random Primed PCR):使用随机引物作为引物,能扩增DNA模板上的所有可能的序列,常用于建立基因文库和DNA指纹。

PCR技术在许多领域应用广泛,如医学诊断、遗传学研究、基因工程等。

其快速、高效、灵敏和特异性的特点使其成为现代生物学研究中不可或缺的工具。

pcr技术高考知识点

pcr技术高考知识点

pcr技术高考知识点PCR(聚合酶链反应)技术是一种在生物学领域广泛应用的技术,其重要性不言而喻。

下面将从基本原理、步骤、应用领域和发展前景等方面总结PCR技术的高考知识点。

一、基本原理PCR技术利用DNA聚合酶酶和少量的DNA模板,在适宜的温度条件下进行连续的DNA链反应,从而在短时间内扩增目标DNA序列。

其基本原理包括三个步骤:变性、退火和延伸。

1. 变性:将待扩增的DNA样本加热至高温,使其双链DNA解链成两条单链,得到模板DNA。

2. 退火:降温使引物与模板DNA序列互补结合,形成引物-模板复合物。

3. 延伸:在适宜的温度下加入DNA聚合酶和四种核苷酸,使DNA聚合酶沿引物分别向3'端延伸,合成新的DNA链。

二、PCR步骤标准PCR反应通常包括三个步骤:预变性、循环反应和最终延伸。

1. 预变性:在PCR反应开始之前,将反应体系加热到95°C,使所有DNA双链变性。

2. 循环反应:PCR反应周期通常为30~40个循环,每个循环包括三个步骤:变性、退火和延伸。

这些循环依次进行,逐渐扩增目标DNA 序列。

3. 最终延伸:在最后一个循环的最后,将反应体系保持在延伸温度下一段时间,以确保所有未完成的DNA链都得到完全延伸。

三、PCR应用领域PCR技术在生物学和医学研究中有着广泛的应用。

以下是几个常见的应用领域:1. 基因检测:PCR技术可用于检测特定基因的突变、拷贝数变异和染色体重排等。

例如,PCR可以用于检测遗传病、癌症和传染病等。

2. DNA克隆:PCR技术可用于快速扩增DNA片段,为DNA克隆提供模板。

通过PCR技术,科学家可以扩增特定的基因片段,从而进行进一步的研究。

3. DNA测序:PCR技术可用于扩增需要测序的DNA片段,从而提供足够的DNA模板。

这样,科学家可以对该DNA片段进行测序,以研究其碱基序列。

4. DNA指纹:PCR技术可用于DNA指纹分析,用于刑事侦查、亲子鉴定和个体识别等。

pcr技术的基本原理和过程详解

pcr技术的基本原理和过程详解

pcr技术的基本原理和过程详解下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor.I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!一、PCR技术的基本原理1. PCR技术概述1.1.1 PCR全称为聚合酶链式反应,是一种在体外复制特定DNA片段的分子生物学技术。

pcr的种类原理应用

pcr的种类原理应用

PCR的种类、原理与应用1. 引言PCR(Polymerase Chain Reaction)是一种重要的分子生物学技术,它通过不断的循环反应,在体外快速而特异性地扩增DNA序列。

PCR技术在许多领域都有广泛的应用,包括基因工程、医学诊断、犯罪侦查等。

本文将介绍PCR的不同种类、原理和应用。

2. PCR的基本原理PCR的基本原理是将DNA模板与引物、dNTPs和聚合酶等核酸合成相关物质混合,通过不断的循环反应,在适当的温度下进行DNA的扩增。

PCR通常包括三个步骤:变性、退火和延伸。

•变性:将DNA的双链解链,使DNA的两个链分开,产生单链DNA。

•退火:将退火温度降低,使引物与DNA模板能够结合。

•延伸:在延伸温度下,通过聚合酶酶活性,在引物的作用下合成新的DNA链。

通过不断地重复这三个步骤,可以扩增出大量的目标DNA序列。

3. PCR的不同种类PCR有许多衍生技术和方法,下面介绍几种常见的PCR种类:3.1. 实时定量PCR(qPCR)实时定量PCR是一种可以实时监测PCR反应产物的技术。

它通过引入荧光探针,可以在PCR过程中不断监测扩增产品的累积量,可以 quantification定量PCR的结果。

实时定量PCR在基因表达分析、病原体检测和基因突变分析等领域有广泛应用。

3.2. 简并度PCR简并度PCR是一种可以扩增目标序列中存在扩增特异性的多个变体的技术。

它可以通过引入含有多个碱基的引物,扩增出不同的突变体。

简并度PCR在突变分析和基因多态性研究中有重要应用。

3.3. 反转录PCR(RT-PCR)反转录PCR是一种将RNA转录成互补为DNA的技术。

通过引入反转录酶,可以将RNA转录成cDNA,然后再进行PCR扩增。

RT-PCR在基因表达分析和病毒感染研究中有广泛应用。

3.4. 数字PCR(dPCR)数字PCR是一种可以精确计数PCR产物数量的技术。

它通过将反应混合物均匀分成大量微小反应体积,并在多个反应中独立扩增,再通过检测阳性和阴性结果的比例来计算出初始DNA模板的拷贝数目。

pcr技术原理方法及应用

pcr技术原理方法及应用

pcr技术原理方法及应用PCR技术原理方法及应用PCR(Polymerase Chain Reaction)是一种重要的分子生物学技术,可以在体外扩增DNA片段,被广泛应用于基因工程、医学诊断、疾病研究等领域。

本文将从PCR技术的原理、方法和应用三个方面进行介绍。

一、PCR技术原理PCR技术的核心原理是DNA的体外扩增,它包括三个基本步骤:变性、引物结合和延伸。

PCR反应体系中的DNA双链经过高温变性,使其解开成两条单链DNA。

这一步骤通常在94-96摄氏度进行,使DNA链变性并断开氢键。

接下来,引物(PCR反应中的两个短链DNA片段)与目标DNA 序列的两端互补结合。

引物是通过设计与目标DNA序列互补的两条单链DNA,它们分别位于目标DNA序列的两端。

引物的结合位置是PCR反应的关键,它决定了扩增的DNA片段的起始和终止位置。

然后,反应中的DNA聚合酶(Taq聚合酶)在适当的温度下,将引物作为模板,合成新的DNA链。

这一步骤通常在72摄氏度进行。

Taq聚合酶是从热波菌属中分离得到的一种DNA聚合酶,它具有耐高温的特点,能够在高温下进行DNA合成。

这三个步骤在一个PCR循环中重复进行,每个循环的结果是目标DNA序列的指数级增加。

几十个循环后,可以从初始数量很少的DNA样本中扩增出大量目标DNA片段。

二、PCR技术方法PCR技术具体的操作方法如下:1. 准备PCR反应液:PCR反应液通常包括DNA模板、引物、dNTPs(四个脱氧核苷酸)、T aq聚合酶和缓冲液等。

2. 设计引物:根据目标DNA序列的特点,选择合适的引物。

引物应具有足够的互补性,以确保在PCR反应中能够特异性结合目标DNA序列。

3. 设置PCR反应条件:根据目标DNA序列的长度和GC含量,设置合适的PCR反应温度和时间。

4. 进行PCR反应:将PCR反应液加入PCR管或96孔板中,放入PCR仪中进行反应。

通常,PCR反应的循环次数为25-40次。

pcr高中知识点总结

pcr高中知识点总结

pcr高中知识点总结一、PCR的基本原理PCR技术是利用DNA聚合酶在适宜条件下,通过一系列特定的温度循环,将DNA特异性扩增为大量可检测的DNA片段。

PCR基本原理如下:1. 双链DNA的变性PCR反应涉及三个温度环节:变性(Denaturation)、退火(Annealing)和延伸(Extension)。

首先,对DNA双链进行变性使其解链成两条单链,变性温度通常在90-95℃之间。

2. 引物结合在合适的温度下,引物(primers)结合到DNA的末端以作为DNA聚合酶的起始点。

引物的选择至关重要,因为它们决定了PCR扩增的特异性和效率。

3. DNA延伸在适当的温度下,DNA聚合酶利用单链DNA作为模板,在引物的辅助下合成新的双链DNA。

延伸过程是在50-72℃之间进行的。

二、PCR的重要步骤PCR反应主要包括以下几个重要的步骤:1. 反应体系准备:包括DNA模板、引物、dNTPs、DNA聚合酶和缓冲液等。

2. 变性:将DNA变性为两条单链。

3. 退火:引物结合到DNA模板上。

4. 延伸:DNA聚合酶合成新的DNA链。

5. 循环:重复以上步骤,增加目标DNA的数量。

三、PCR反应组分1. DNA模板:PCR反应需要一段目标DNA的模板,可以是来自细胞核、质粒、线粒体等。

2. 引物:引物是PCR反应中的关键组分,通常为20-30个碱基对的寡核苷酸,起到引导DNA聚合酶合成新链的作用。

3. dNTPs:包括脱氧腺苷酸、脱氧胸苷酸、脱氧鸟苷酸和脱氧胞苷酸,是DNA合成的单体,是DNA聚合酶合成新链的构建单元。

4. DNA聚合酶:通常选用热稳定的聚合酶,如Taq聚合酶。

5. 缓冲液:提供PCR反应的适宜pH值和离子浓度。

四、PCR反应影响因素PCR反应的效果受多种因素影响,主要包括以下几点:1. 引物设计:引物的选择和设计对PCR的效果至关重要,需要考虑引物的特异性、长度和GC含量等。

2. 温度梯度:变性、退火和延伸的温度对PCR反应的特异性和效率有较大影响。

高中生物pcr技术知识点

高中生物pcr技术知识点

高中生物pcr技术知识点PCR技术作为分子生物学中的重要工具,在高中生物教学中也占有一席之地。

本文将从PCR技术的原理、步骤、应用以及注意事项等方面进行介绍。

一、PCR技术的原理PCR技术的核心是聚合酶链式反应,简称PCR。

PCR技术利用DNA聚合酶在高温下对DNA模板进行反复扩增,从而从极少量的DNA样本中扩增出足够多的目标序列,以便于后续检测和分析。

PCR反应主要由三步组成:变性、退火和延伸。

变性可以使DNA 双链解开成两条单链,退火可以使引物与模板DNA结合,延伸可以使引物在模板上逐渐合成新链。

二、PCR技术的步骤PCR技术主要包括反应体系的准备、PCR反应、PCR产物检测和分析四个步骤。

1. 反应体系的准备PCR反应需要准备PCR反应体系,反应体系包括PCR模板DNA、引物、dNTPs、聚合酶、缓冲液、水等多个组分。

其中,PCR模板DNA是PCR反应的起点,引物是PCR反应的关键,dNTPs是PCR反应的原料,聚合酶是PCR反应的催化剂,缓冲液是PCR反应的稳定剂,水是PCR反应的溶剂。

2. PCR反应PCR反应是PCR技术的核心步骤,PCR反应需要按照一定的温度和时间进行。

PCR反应一般包括变性、退火和延伸三个阶段。

变性阶段一般在94-98℃进行,可以使DNA双链解开成两条单链;退火阶段一般在50-60℃进行,可以使引物与模板DNA结合;延伸阶段一般在72℃进行,可以使引物在模板上逐渐合成新链。

3. PCR产物检测和分析PCR产物检测和分析是PCR技术的重要步骤,PCR产物的检测和分析一般包括凝胶电泳、荧光定量、序列分析等多个方面。

凝胶电泳是PCR产物检测和分析的基础,可以将PCR产物按照大小进行分离;荧光定量可以对PCR产物进行定量分析;序列分析可以对PCR产物进行序列测定和分析。

三、PCR技术的应用PCR技术在分子生物学、医学、环境科学、食品检测等多个领域都有广泛的应用。

在分子生物学领域,PCR技术可以用于基因克隆、基因检测、基因表达等多个方面;在医学领域,PCR技术可以用于病原菌检测、基因诊断、药物筛选等多个方面;在环境科学领域,PCR技术可以用于微生物检测、水质检测、土壤检测等多个方面;在食品检测领域,PCR技术可以用于食品安全检测、品种鉴定等多个方面。

PCR的原理和方法有哪些

PCR的原理和方法有哪些

PCR的原理和方法有哪些1. PCR(聚合酶链式反应)的原理PCR是一种在分子生物学中广泛应用的技术,它可以在体外重复扩增一小段特定DNA序列,使得其数量呈指数倍增加。

PCR主要包括三个步骤:变性、退火和延伸。

1.1 变性(Denaturation):PCR反应开始时,将待扩增的DNA样品与一对特异性的引物(primers)和DNA聚合酶(DNA polymerase)一起放入反应管中。

然后,将反应温度升至94-98°C,在高温下使DNA的双链结构解开,分离成两条单链DNA模板。

1.2 退火(Annealing):反应温度被降低至50-65°C,使得引物能够与DNA模板上的互补序列准确结合。

引物被设计成与待扩增片段的两端序列互补,确保特异性的结合。

1.3 延伸(Extension):反应温度被升至72°C,最适合DNA聚合酶的工作温度。

聚合酶能够以引物为模板依次加上相应的脱氧核苷酸(dNTPs),从而完成新的DNA链的合成。

延伸的速率是约为1kb/min。

2. PCR的方法2.1 传统PCR传统PCR是最常见和常用的PCR方法,需要精确的温度控制和反应条件。

主要用于体外扩增DNA,并用于许多应用中,如基因测序和基因突变分析。

传统PCR在实验室中广泛使用,已成为分子生物学领域的基本技术。

2.2 实时荧光PCR实时荧光PCR是在传统PCR的基础上发展起来的一种新技术。

它结合了PCR反应和实时荧光检测系统,可以实时监测PCR反应的进程。

实时荧光PCR通过检测荧光信号的积累来确定样品中所含的DNA数量,因此可以定量分析DNA的含量。

2.3 数字PCR数字PCR是一种高精度的PCR方法,能够进行稀有突变的检测和定量。

数字PCR 通过将DNA模板分散到许多反应井中,使得每个井中只有一个DNA分子,然后通过统计阳性和阴性井的数量来确定初始DNA的数量。

2.4 聚合酶扩增酶链式反应(LA-PCR)聚合酶扩增酶链式反应是一种用于扩增难以扩增的DNA片段的方法。

PCR的原理和应用有哪些

PCR的原理和应用有哪些

PCR的原理和应用有哪些1. PCR的原理介绍聚合酶链反应(PCR)是一种用于快速从DNA样本中扩增特定DNA片段的技术。

它是由美国生物学家基里和米利斯于1983年首次提出的,并且因其简单、快速、准确的特点而被广泛应用于分子生物学研究、基因检测和诊断等领域。

PCR的基本原理是利用DNA聚合酶来从DNA模板的两条单链DNA的3’末端为起始点,通过加热(变性)、退火(退火温度为引物特异性的一部分)和延伸(DNA聚合酶的活性)三个步骤的循环反复扩增目标DNA片段。

每个循环被称为一个PCR循环,理论上,每个PCR循环都可以使目标DNA片段的数量加倍,从而在几个小时内可以快速扩增到数百万个拷贝。

2. PCR的应用2.1 DNA序列分析PCR技术可用于DNA序列分析,包括基因测序、基因突变检测等。

通过PCR扩增产生的DNA片段可以被进一步研究和分析,例如通过与测序技术结合,可以确定目标DNA片段的序列,从而帮助揭示基因功能和病因。

2.2 遗传性疾病的分子诊断PCR技术在遗传性疾病的分子诊断中发挥着重要的作用。

通过PCR扩增特定基因中的突变位点,可以快速检测出与遗传性疾病相关的基因突变。

这种方法不仅能够帮助进行疾病的早期诊断和预测,还可以用于亲子鉴定和遗传咨询等领域。

2.3 DNA指纹分析PCR技术广泛应用于DNA指纹分析中。

通过PCR扩增DNA中的短串联重复序列(short tandem repeats,STRs),可以获得目标区域的遗传多态性信息,用于个体识别、刑事侦查、亲子关系鉴定等领域。

PCR扩增的STR片段可以通过聚丙烯酰胺凝胶电泳等方法进行分离和分析。

2.4 基因工程与基因克隆PCR技术是基因工程和基因克隆的基础技术之一。

通过PCR扩增目标基因的DNA 片段,可以在无需使用传统的限制性内切酶切割和连接的情况下,快速制备目标基因的DNA片段,用于植入到质粒载体中,实现基因的插入和克隆等操作。

3. 总结PCR作为一种基础技术,具有快速、高效、可靠的特点,在生物学研究、医学诊断和法医学等领域广泛应用。

pcr的原理和步骤

pcr的原理和步骤

pcr的原理和步骤PCR的全称是聚合酶链式反应(Polymerase Chain Reaction),是一种重要的分子生物学技术,它可以在体外迅速、特异地扩增DNA片段。

PCR技术的发明为分子生物学研究和临床诊断提供了重要工具,被广泛应用于基因克隆、基因突变分析、DNA指纹鉴定、病原体检测等领域。

本文将详细介绍PCR的原理和步骤。

一、PCR的原理。

PCR技术的原理主要包括DNA的变性、引物的结合、DNA的合成三个步骤。

首先是DNA的变性。

PCR反应液中的DNA双链在高温下(一般为94-98℃)会解旋成两条单链,使得引物能够结合到目标序列上。

其次是引物的结合。

在PCR反应中,需要加入两种引物,它们分别结合到目标序列的两端,并指导DNA聚合酶进行DNA合成。

最后是DNA的合成。

在引物的引导下,DNA聚合酶开始合成新的DNA链,生成两条新的双链DNA。

二、PCR的步骤。

PCR反应一般包括变性、引物结合和DNA合成三个步骤,具体步骤如下:1. 变性,将PCR反应管放入热循环仪中,进行变性步骤。

一般的变性温度为94-98℃,时间为1-3分钟。

2. 引物结合,降温至引物的结合温度,一般为50-65℃,使引物与目标序列结合。

这一步是为了让引物与目标序列进行特异性结合,避免非特异性扩增。

3. DNA合成,将温度升至DNA聚合酶的最适工作温度,一般为72℃,进行DNA合成。

DNA聚合酶会在引物的引导下合成新的DNA 链。

以上就是PCR的基本步骤,通过不断重复这三个步骤,可以在短时间内扩增出大量的目标DNA片段。

三、总结。

PCR技术的原理和步骤相对简单,但是需要严格控制反应条件和引物设计,以确保扩增的特异性和准确性。

在实际操作中,还需要注意反应管的材料选择、反应体系的配制、反应条件的优化等方面的问题。

希望本文对PCR技术的原理和步骤有所帮助,能够更好地理解和应用PCR技术。

pcr的基本原理和应用

pcr的基本原理和应用

PCR的基本原理和应用1. PCR是什么?PCR(Polymerase Chain Reaction),即聚合酶链反应,是一种在体外通过模拟自然界DNA复制过程而快速制备特定DNA片段的方法。

它是分子生物学领域中最重要的技术之一,也是遗传学、医学诊断和生物技术研究中必不可少的工具。

2. PCR的基本原理PCR的基本原理是通过DNA聚合酶(DNA polymerase)在适当的反应条件下,在一种模板DNA、一种重复性DNA序列的引物(primer)和四种脱氧核苷酸(dNTPs)的存在下,将DNA序列进行多次模板复制,从而产生大量目标DNA片段。

PCR反应主要包括三个步骤:变性(denaturation)、引物结合(annealing)和延伸(extension)。

具体步骤如下:2.1 变性首先,将PCR反应体系中的DNA模板加热至高温(通常为94-98°C),使其双链结构解开,并分离为两条单链。

2.2 引物结合然后,将体系降温至适当的温度(通常为50-65°C),使引物与模板DNA中的相应序列碱基互补配对,形成引物-模板复合物。

2.3 延伸最后,将体系温度升高至适当的温度(通常为70-72°C),由热稳定的DNA聚合酶引导,通过逐个加入dNTPs,延伸引物上定向配对的碱基,合成新的DNA链。

经过多次循环上述三个步骤,每一轮循环,产生的DNA数量会呈指数级增加,从而快速扩增目标DNA片段。

3. PCR的应用PCR技术已广泛应用于许多领域,下面列举了几个常见的应用:3.1 基因测序和基因克隆PCR技术可以用于扩增目标基因片段,从而方便后续的基因测序和基因克隆工作。

通过PCR扩增目标基因片段后,可以进行测序分析,了解DNA序列的组成和功能。

此外,PCR还可以产生足够数量的目标DNA片段,以供进一步的基因克隆和表达研究。

3.2 疾病诊断PCR技术在疾病诊断领域中起到了重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCR技术的基本原理类似于DNA的天然复制过程,其特异性依赖于与靶序列两端互补的寡核苷酸引物。

PCR由变性--退火--延伸三个基本反应步骤构成:①模板DNA的变性:模板DNA经加热至93℃左右一定时间后,使模板DNA双链或经PCR扩增形成的双链DNA解离,使之成为单链,以便它与引物结合,为下轮反应作准备;②模板DNA与引物的退火(复性):模板DNA经加热变性成单链后,温度降至55℃左右,引物与模板DNA单链的互补序列配对结合;③引物的延伸:DNA模板--引物结合物在TaqDNA聚合酶的作用下,以dNTP为反应原料,靶序列为模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA 链互补的半保留复制链重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板。

每完成一个循环需2~4分钟,2~3小时就能将待扩目的基因扩增放大几百万倍。

到达平台期(Plateau)所需循环次数取决于样品中模板的拷贝。

PCR的反应动力学PCR的三个反应步骤反复进行,使DNA扩增量呈指数上升。

反应最终的DNA 扩增量可用Y=(1+X)n计算。

Y代表DNA片段扩增后的拷贝数,X表示平(Y)均每次的扩增效率,n代表循环次数。

平均扩增效率的理论值为100%,但在实际反应中平均效率达不到理论值。

反应初期,靶序列DNA片段的增加呈指数形式,随着PCR产物的逐渐积累,被扩增的DNA片段不再呈指数增加,而进入线性增长期或静止期,即出现“停滞效应”,这种效应称平台期数、PCR扩增效率及DNA聚合酶PCR的种类和活性及非特异性产物的竟争等因素。

大多数情况下,平台期的到来是不可避免的。

PCR反应体系的基本成分:模板DNA、特异性引物、DNA聚合酶、dNTP、Mg2+的缓冲液。

PCR反应体系与反应条件--------------------------------------------------------------------------------标准的PCR反应体系:10×扩增缓冲液10ul4种dNTP混合物各200umol/L引物各10~100pmol模板DNA 0.1~2ugTaq DNA聚合酶 2.5uMg2+ 1.5mmol/L加双或三蒸水至100ulPCR反应五要素:参加PCR反应的物质主要有五种即引物、酶、dNTP、模板和Mg2+ 引物:引物是PCR特异性反应的关键,PCR 产物的特异性取决于引物与模板DNA互补的程度。

理论上,只要知道任何一段模板DNA序列,就能按其设计互补的寡核苷酸链做引物,利用PCR就可将模板DNA在体外大量扩增。

设计引物应遵循以下原则:①引物长度:15-30bp,常用为20bp左右。

②引物扩增跨度:以200-500bp为宜,特定条件下可扩增长至10kb的片段。

③引物碱基:G+C含量以40-60%为宜,G+C太少扩增效果不佳,G+C过多易出现非特异条带。

ATGC最好随机分布,避免5个以上的嘌呤或嘧啶核苷酸的成串排列。

④避免引物内部出现二级结构,避免两条引物间互补,特别是3'端的互补,否则会形成引物二聚体,产生非特异的扩增条带。

⑤引物3'端的碱基,特别是最末及倒数第二个碱基,应严格要求配对,以避免因末端碱基不配对而导致PCR失败。

⑥引物中有或能加上合适的酶切位点,被扩增的靶序列最好有适宜的酶切位点,这对酶切分析或分子克隆很有好处。

⑦引物的特异性:引物应与核酸序列数据库的其它序列无明显同源性。

引物量:每条引物的浓度0.1~1umol或10~100pmol,以最低引物量产生所需要的结果为好,引物浓度偏高会引起错配和非特异性扩增,且可增加引物之间形成二聚体的机会。

酶及其浓度目前有两种Taq DNA聚合酶供应,一种是从栖热水生杆菌中提纯的天然酶,另一种为大肠菌合成的基因工程酶。

催化一典型的PCR反应约需酶量2。

5U(指总反应体积为100ul时),浓度过高可引起非特异性扩增,浓度过低则合成产物量减少。

dNTP的质量与浓度dNTP的质量与浓度和PCR扩增效率有密切关系,dNTP粉呈颗粒状,如保存不当易变性失去生物学活性。

dNTP溶液呈酸性,使用时应配成高浓度后,以1M NaOH 或1M Tris。

HCL的缓冲液将其PH调节到7.0~7.5,小量分装,-20℃冰冻保存。

多次冻融会使dNTP降解。

在PCR反应中,dNTP应为50~200umol/L,尤其是注意4种dNTP的浓度要相等( 等摩尔配制),如其中任何一种浓度不同于其它几种时(偏高或偏低),就会引起错配。

浓度过低又会降低PCR产物的产量。

dNTP能与Mg2+结合,使游离的Mg2+浓度降低。

模板(靶基因)核酸模板核酸的量与纯化程度,是PCR成败与否的关键环节之一,传统的DNA纯化方法通常采用SDS和蛋白酶K来消化处理标本。

SDS的主要功能是:溶解细胞膜上的脂类与蛋白质,因而溶解膜蛋白而破坏细胞膜,并解离细胞中的核蛋白,SDS 还能与蛋白质结合而沉淀;蛋白酶K能水解消化蛋白质,特别是与DNA结合的组蛋白,再用有机溶剂酚与氯仿抽提掉蛋白质和其它细胞组份,用乙醇或异丙醇沉淀核酸。

提取的核酸即可作为模板用于PCR反应。

一般临床检测标本,可采用快速简便的方法溶解细胞,裂解病原体,消化除去染色体的蛋白质使靶基因游离,直接用于PCR扩增。

RNA模板提取一般采用异硫氰酸胍或蛋白酶K 法,要防止RNase降解RNA。

Mg2+浓度Mg2+对PCR扩增的特异性和产量有显著的影响,在一般的PCR反应中,各种dNTP浓度为200umol/L时,Mg2+浓度为1.5~2.0mmol/L为宜。

Mg2+浓度过高,反应特异性降低,出现非特异扩增,浓度过低会降低Taq DNA聚合酶的活性,使反应产物减少。

PCR反应条件的选择PCR反应条件为温度、时间和循环次数。

温度与时间的设置:基于PCR原理三步骤而设置变性-退火-延伸三个温度点。

在标准反应中采用三温度点法,双链DNA在90~95℃变性,再迅速冷却至40 ~60℃,引物退火并结合到靶序列上,然后快速升温至70~75℃,在Taq DNA 聚合酶的作用下,使引物链沿模板延伸。

对于较短靶基因(长度为100~300bp时)可采用二温度点法,除变性温度外、退火与延伸温度可合二为一,一般采用94℃变性,65℃左右退火与延伸(此温度Taq DNA酶仍有较高的催化活性)。

①变性温度与时间:变性温度低,解链不完全是导致PCR失败的最主要原因。

一般情况下,93℃~94℃lmin足以使模板DNA变性,若低于93℃则需延长时间,但温度不能过高,因为高温环境对酶的活性有影响。

此步若不能使靶基因模板或PCR产物完全变性,就会导致PCR失败。

②退火(复性)温度与时间:退火温度是影响PCR特异性的较重要因素。

变性后温度快速冷却至40℃~60℃,可使引物和模板发生结合。

由于模板DNA 比引物复杂得多,引物和模板之间的碰撞结合机会远远高于模板互补链之间的碰撞。

退火温度与时间,取决于引物的长度、碱基组成及其浓度,还有靶基序列的长度。

对于20个核苷酸,G+C含量约50%的引物,55℃为选择最适退火温度的起点较为理想。

引物的复性温度可通过以下公式帮助选择合适的温度:Tm值(解链温度)=4(G+C)+2(A+T)复性温度=Tm值-(5~10℃)在Tm值允许范围内,选择较高的复性温度可大大减少引物和模板间的非特异性结合,提高PCR反应的特异性。

复性时间一般为30~60sec,足以使引物与模板之间完全结合。

③延伸温度与时间:Taq DNA聚合酶的生物学活性:70~80℃150核苷酸/S/酶分子70℃60核苷酸/S/酶分子55℃24核苷酸/S/酶分子高于90℃时,DNA合成几乎不能进行。

PCR反应的延伸温度一般选择在70~75℃之间,常用温度为72℃,过高的延伸温度不利于引物和模板的结合。

PCR延伸反应的时间,可根据待扩增片段的长度而定,一般1Kb以内的DNA 片段,延伸时间1min是足够的。

3~4kb的靶序列需3~4min;扩增10Kb需延伸至15min。

延伸进间过长会导致非特异性扩增带的出现。

对低浓度模板的扩增,延伸时间要稍长些。

循环次数循环次数决定PCR扩增程度。

PCR循环次数主要取决于模板DNA的浓度。

一般的循环次数选在30~40次之间,循环次数越多,非特异性产物的量亦随之增多。

PCR产物的电泳检测时间一般为48h以内,有些最好于当日电泳检测,大于48h后带型不规则甚致消失。

假阴性,不出现扩增条带PCR反应的关键环节有①模板核酸的制备,②引物的质量与特异性,③酶的质量及,④PCR循环条件。

寻找原因亦应针对上述环节进行分析研究。

模板:①模板中含有杂蛋白质,②模板中含有Taq酶抑制剂,③模板中蛋白质没有消化除净,特别是染色体中的组蛋白,④在提取制备模板时丢失过多,或吸入酚。

⑤模板核酸变性不彻底。

在酶和引物质量好时,不出现扩增带,极有可能是标本的消化处理,模板核酸提取过程出了毛病,因而要配制有效而稳定的消化处理液,其程序亦应固定不宜随意更改。

酶失活:需更换新酶,或新旧两种酶同时使用,以分析是否因酶的活性丧失或不够而导致假阴性。

需注意的是有时忘加Taq酶或溴乙锭。

引物:引物质量、引物的浓度、两条引物的浓度是否对称,是PCR失败或扩增条带不理想、容易弥散的常见原因。

有些批号的引物合成质量有问题,两条引物一条浓度高,一条浓度低,造成低效率的不对称扩增,对策为:①选定一个好的引物合成单位。

②引物的浓度不仅要看OD值,更要注重引物原液做琼脂糖凝胶电泳,一定要有引物条带出现,而且两引物带的亮度应大体一致,如一条引物有条带,一条引物无条带,此时做PCR有可能失败,应和引物合成单位协商解决。

如一条引物亮度高,一条亮度低,在稀释引物时要平衡其浓度。

③引物应高浓度小量分装保存,防止多次冻融或长期放冰箱冷藏部分,导致引物变质降解失效。

④引物设计不合理,如引物长度不够,引物之间形成二聚体等。

Mg2+浓度:Mg2+离子浓度对PCR扩增效率影响很大,浓度过高可降低PCR扩增的特异性,浓度过低则影响PCR扩增产量甚至使PCR扩增失败而不出扩增条带。

反应体积的改变:通常进行PCR扩增采用的体积为20ul、30ul、50ul。

或100ul,应用多大体积进行PCR扩增,是根据科研和临床检测不同目的而设定,在做小体积如20ul 后,再做大体积时,一定要模索条件,否则容易失败。

物理原因:变性对PCR扩增来说相当重要,如变性温度低,变性时间短,极有可能出现假阴性;退火温度过低,可致非特异性扩增而降低特异性扩增效率退火温度过高影响引物与模板的结合而降低PCR扩增效率。

有时还有必要用标准的温度计,检测一下扩增仪或水溶锅内的变性、退火和延伸温度,这也是PCR 失败的原因之一。

相关文档
最新文档