综合法与分析法教案

合集下载

综合法与分析法教案

综合法与分析法教案

综合法与分析法教案教案标题:综合法与分析法的教学方法比较与应用教学目标:1. 了解综合法与分析法的定义、特点和适用范围;2. 掌握综合法与分析法的基本原理和操作步骤;3. 培养学生综合思考和分析问题的能力;4. 提高学生的学科知识应用能力。

教学重点:1. 理解综合法与分析法的概念及其在教学中的作用;2. 掌握综合法与分析法的基本原理和操作步骤;3. 运用综合法与分析法解决实际问题。

教学难点:1. 学生对综合法与分析法的理解和应用能力;2. 教师如何引导学生灵活运用综合法与分析法。

教学准备:1. 教师准备PPT、教学案例和相关教学资源;2. 学生准备笔记本和写作工具。

教学过程:Step 1:导入(5分钟)教师通过提问和引入相关教学案例,激发学生对综合法与分析法的兴趣,并引发学生对这两种教学方法的初步了解。

Step 2:讲解综合法与分析法的概念及特点(10分钟)教师通过PPT讲解综合法与分析法的定义、特点和适用范围,并与学生一起讨论这两种方法在实际教学中的应用。

Step 3:介绍综合法与分析法的基本原理和操作步骤(15分钟)教师详细介绍综合法与分析法的基本原理和操作步骤,包括综合法的整合思维和综合判断能力培养,以及分析法的问题分解和逻辑推理能力培养。

Step 4:分组讨论和实践(20分钟)教师将学生分成小组,每组选择一个教学案例,运用综合法或分析法进行讨论和实践。

教师在此过程中进行指导和辅导,引导学生理解和应用这两种方法。

Step 5:汇报和总结(10分钟)每个小组向全班汇报他们的讨论和实践成果,并进行总结。

教师对学生的表现进行评价和点评,强调综合法与分析法在解决问题中的重要性和实用性。

Step 6:拓展延伸(5分钟)教师提供一些拓展资源和阅读材料,鼓励学生进一步了解和应用综合法与分析法。

Step 7:作业布置(5分钟)教师布置相关作业,要求学生运用综合法或分析法解决一个实际问题,并在下节课进行展示和讨论。

【参考教案】《综合法和分析法》(人教A版)

【参考教案】《综合法和分析法》(人教A版)

《综合法和分析法》(人教A版)第一章:综合法的概念与运用1.1 教学目标1. 理解综合法的定义及特点;2. 学会运用综合法进行问题的解决。

1.2 教学内容1. 综合法的定义及特点;2. 综合法在实际问题中的应用。

1.3 教学步骤1. 引入综合法的概念,让学生了解综合法的定义及特点;2. 通过实例讲解,让学生学会运用综合法进行问题的解决;3. 练习题:让学生巩固所学内容。

第二章:分析法的概念与运用2.1 教学目标1. 理解分析法的定义及特点;2. 学会运用分析法进行问题的解决。

2.2 教学内容1. 分析法的定义及特点;2. 分析法在实际问题中的应用。

2.3 教学步骤1. 引入分析法的概念,让学生了解分析法的定义及特点;2. 通过实例讲解,让学生学会运用分析法进行问题的解决;第三章:综合法与分析法的比较3.1 教学目标1. 理解综合法与分析法的区别与联系;2. 学会根据实际情况选择合适的方法进行问题的解决。

3.2 教学内容1. 综合法与分析法的区别与联系;2. 实际问题中综合法与分析法的选择。

3.3 教学步骤1. 通过对比实例,让学生了解综合法与分析法的区别与联系;2. 讲解如何在实际问题中选择合适的方法进行问题的解决;3. 练习题:让学生巩固所学内容。

第四章:综合法与分析法在几何中的应用4.1 教学目标1. 理解综合法与分析法在几何中的应用;2. 学会运用综合法与分析法解决几何问题。

4.2 教学内容1. 综合法与分析法在几何中的应用;2. 几何问题中综合法与分析法的选择。

4.3 教学步骤1. 通过几何实例,让学生了解综合法与分析法在几何中的应用;2. 讲解如何在几何问题中选择合适的方法进行问题的解决;第五章:综合法与分析法在代数中的应用5.1 教学目标1. 理解综合法与分析法在代数中的应用;2. 学会运用综合法与分析法解决代数问题。

5.2 教学内容1. 综合法与分析法在代数中的应用;2. 代数问题中综合法与分析法的选择。

高中数学 第9课时 不等式的证明方式 综合法与分析法教案

高中数学 第9课时 不等式的证明方式 综合法与分析法教案

第09课时 不等式的证明方式之二:综合法与分析法目的要求:重点难点:教学进程:一、引入:综合法和分析法是数学中经常使用的两种直接证明方式,也是不等式证明中的大体方式。

由于二者在证明思路上存在着明显的互逆性,那个地址将其放在一路加以熟悉、学习,以便于对照研究两种思路方式的特点。

所谓综合法,即从已知条件动身,依照不等式的性质或已知的不等式,慢慢推导出要证的不等式。

而分析法,那么是由结果开始,倒过来寻觅缘故,直至缘故成为明显的或在已知中。

前一种是“由因及果”,后一种是“执果索因”。

打一个例如:张三在山里迷了路,救援人员从驻地动身,慢慢寻觅,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”。

以前取得的结论,能够作为证明的依照。

专门的,AB B A 222≥+是常常要用到的一个重要不等式。

二、典型例题:例一、b a ,都是正数。

求证:.2≥+a b b a 证明:由重要不等式AB B A 222≥+可得本例的证明是综合法。

例二、设0,0>>b a ,求证.2233ab b a b a +≥+ 证法一 分析法要证2233ab b a b a +≥+成立.只需证)())((22b a ab b ab a b a +≥+-+成立, 又因0>+b a ,只需证ab b ab a ≥+-22成立, 又需证0222≥+-b ab a 成立, 即需证0)(2≥-b a 成立.而0)(2>-b a 显然成立. 由此命题得证。

证法二 综合法两边同时加上ab 得)()(m b a m a b +>+两边同时除以正数)(m b b +得(1)。

读一读:若是用Q P ⇒或P Q ⇐表示命题P 能够推出命题Q (命题Q 能够由命题P 推出),那么采纳分析法的证法一确实是 (1)).4()3()2(⇐⇐⇐而采纳综合法的证法二确实是 ).1()2()3()4(⇒⇒⇒若是命题P 能够推出命题Q ,命题Q 也能够推出命题P ,即同时有P Q Q P ⇒⇒,,那么咱们就说命题P 与命题Q 等价,并记为.Q P ⇔在例2中,由于m b m b +,,都是正数,事实上例4、证明:通过水管放水,当流速相同时,若是水管横截面的周长相等,那么横截面是圆的水管比横截面是正方形的水管流量大。

《9综合法与分析法》优秀教案

《9综合法与分析法》优秀教案

主备人:郭佳佳 审核:使用时间:综合法与分析法【学习目标】1 理解综合法和分析法的概念及它们的区别,能熟练地运用综合法、分析法证题. 2.通过学习分析法与综合法,体会两种方法的相辅相成、辩证统一关系.3.通过综合法与分析法的学习,体会数学思维的严密性、抽象性、科学性,养成审慎思维的习惯. 【问题导学】明确概念: 1 直接证明2 综合法3 分析法4 分析法与综合法的区别与联系【合作探究】(集思广益、用心收获)1 求证:5321232log 19log 19log 19++<练:已知a ,b ,c 为不全相等的正数,求证:错误!+错误!+错误!>3练:已知a 、b 、c ∈R +且a +b +c =1,求证:错误!·错误!·错误!≥82+<练:已知a ,b ,c ∈R +,且ab +bc +ca =1,求证:a +b +c ≥错误!;练:已知a >0,b >0,求证:错误!+错误!≥错误!+错误!3 △ABC 的三个内角A 、B 、C 成等差数列.求证:a +b -1+b +c -1=3a +b +c -1 分析法:综合法:【归纳小结】(构建知识、为我所用)知识方面:。

数学思想与方法:。

【我要提问】【作业】一、选择题1.·错误!m、n、a、b、c、d均为正数,则、q的大小为A.≥q B.≤q C.>q D.不确定2.已知函数f=错误!,a、b∈R+,A=f错误!,B =f错误!,C=f错误!,则A、B、C的大小关系为A.A≤B≤C B.A≤C≤B C.B≤C≤A D.C≤B≤A3.若、∈R,且22+2=6,则2+2+2的最大值为A.14 B.15 C.16D.174.设a与b为正数,并且满足a+b=1,a2+b2≥,则的最大值为D.1 5.已知a>0,b>0,错误!+错误!=1,则a+2b的最小值为A.7+2错误!B.2错误!C.7+2错误!D.146.已知>>0,且+=1,那么A.2 C b2+c2D.a2≤b2+c29.已知实数a≥0,b≥0,且a+b=1,则a+12+b +12的范围为D.[0,5]10.已知∈-∞,1]时,不等式1+2+a-a2·4>0恒成立,则a的取值范围是D.-∞,6二、填空题11.设=24+1,q=23+2,∈R,则与q的大小关系是________.12.如果不等式|-a|0,b>0,a≠b,则错误!>错误!14.已知函数f=tan,∈错误!,若1、2∈错误!,且1≠2,求证:错误![f1+f2]>f错误!15.已知:a,b,c∈0,+∞,且a+b+c=1 求证:1a2+b2+c2≥错误!;2错误!+错误!+错误!≤错误!。

2.2.综合法与分析法-人教A版选修2-2教案

2.2.综合法与分析法-人教A版选修2-2教案

2.2.综合法与分析法-人教A版选修2-2教案
一、教学目标
1.理解综合法和分析法的概念。

2.掌握综合法和分析法的基本原理。

3.能够应用综合法和分析法解决实际问题。

4.培养学生系统思维的能力。

二、教学内容
1.综合法的概念和基本原理。

2.分析法的概念和基本原理。

3.综合法和分析法的应用。

三、教学过程
1. 导入(5分钟)
教师通过提问和讲解,引导学生了解问题解决的两种方法:综合法和分析法,并介绍本节课的教学目标和重点。

2. 讲解(25分钟)
2.1 综合法的概念和基本原理
1.综合法是从整体综合出发,从多个方面考虑,综合分析问题的方法。

2.综合法的基本原理是整体观念、多元观念和系统观念。

2.2 分析法的概念和基本原理
1.分析法是从局部出发,从单个方面考虑,分析问题的方法。

2.分析法的基本原理是简化化、抽象化和精确化。

3. 练习(25分钟)
1.给学生提供综合法和分析法的例子,让学生分别应用综合法和分析法解决问题。

2.针对不同的问题,让学生思考采用哪种方法更适合。

4. 总结(5分钟)
让学生回顾本节课的重点内容,并讲解综合法和分析法的区别和联系。

四、教学反思
本节课通过提供练习例子的方式,让学生更深入地理解了综合法和分析法的概念和应用方法。

同时,通过问题讨论的方式,培养了学生系统思维的能力。

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)第一章:综合法的介绍1.1 教学目标:了解综合法的定义和应用范围。

掌握综合法的步骤和技巧。

1.2 教学内容:综合法的定义和意义。

综合法的应用领域,如科学研究、工程设计等。

综合法的步骤,包括问题定义、信息收集、方案设计等。

综合法的技巧,如图表制作、数据分析等。

1.3 教学方法:讲授法:介绍综合法的定义、应用领域和步骤。

案例分析法:分析实际案例中的应用实例。

小组讨论法:分组讨论综合法的技巧和难点。

1.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第二章:分析法的介绍2.1 教学目标:了解分析法的定义和应用范围。

掌握分析法的步骤和技巧。

2.2 教学内容:分析法的定义和意义。

分析法的应用领域,如企业管理、市场研究等。

分析法的步骤,包括问题定义、数据收集、因素分析等。

分析法的技巧,如数据可视化、假设验证等。

2.3 教学方法:讲授法:介绍分析法的定义、应用领域和步骤。

案例分析法:分析实际案例中的应用实例。

小组讨论法:分组讨论分析法的技巧和难点。

2.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第三章:综合法和分析法在科学研究中的应用3.1 教学目标:了解综合法和分析法在科学研究中的具体应用。

掌握相应的应用技巧和注意事项。

3.2 教学内容:综合法和分析法在科学研究中的常见应用场景。

具体的应用技巧,如数据整合、信息提炼等。

应用过程中的注意事项,如数据准确性、逻辑严密性等。

3.3 教学方法:讲授法:讲解综合法和分析法在科学研究中的应用。

案例分析法:分析具体案例中的应用实例。

小组讨论法:分组讨论应用过程中的技巧和难点。

3.4 教学评估:课堂参与度:学生参与小组讨论和回答问题的积极性。

案例分析报告:学生分析实际案例的深度和准确性。

第四章:综合法和分析法在工程设计中的应用4.1 教学目标:了解综合法和分析法在工程设计中的具体应用。

综合法与分析法.-教案

综合法与分析法.-教案

综合法与分析法一、教材分析:《综合法与分析法》是在学习了推理方法的基础上学习的,研究的是如何正确利用演绎推理来证明问题.本节课是《直接证明与间接证明》的第一节,主要介绍了两种证明方法的定义和逻辑特点,并引导学生比较两种证明方法的优点,进而灵活选择证明方法,规范证明步骤.本节课的学习需要学生具有一定的认知基础,应尽量选择学生熟悉的例子.二、教学目标:1、知识与技能:(1)了解直接证明的两种基本方法:综合法和分析法.(2)了解综合法和分析法的思维过程和特点.2、过程与方法:(1)通过对实例的分析、归纳与总结,增强学生的理性思维能力.(2)通过实际演练,使学生体会证明的必要性,并增强他们分析问题、解决问题的能力.3、情感、态度与价值观: 通过本节课的学习,了解直接证明的两种基本方法,感受逻辑证明在数学及日常生 活中的作用,养成言之有理、论之有据的好习惯,提高学生的思维能力.三、教学重点: 综合法、分析法解决数学问题的思路及步骤。

四、教学难点: 综合运用综合法、分析法解决较复杂的数学问题。

五、教学准备1、课时安排:1课时2、学情分析:本节知识点数学是证明中的一种特别方法,它需要学生具备一定的方向思维,执果索因,具备一定的逻辑推理能力,由于逻辑的转换存在困难,大部分学生对于本节课要学习的证明方法还存在一定逻辑推理上的欠缺,还需要老师逐步讲解和引导。

3、教具选择:多媒体六、教学方法:启发引导、合作探究、讲练结合法七、教学过程一, 1、自主导学: 复习引入回顾不等式:⑴(),02a a b b ≥>+的证明过程;证明:因为222a b a b ab +=+≥=所以2a b +≥=a b =等号成立⑵222a b ab +≥,(,)a b R ∈的证明过程;因为2222()0a b ab a b +-=-≥所以 222a b ab +≥当且仅当a b =时,等号成立。

2、合作探究(1)分组探究: 例1.已知 ,,0,a b c >且不全相等,求证:222222()()()6a b c b c a c a b abc +++++>证明:222,0b c bc a +≥>,所以22()2a b c abc +≥ ①因为222,0c a ac b +≥>,所以 22()2b c a abc +≥ ②因为222,0a b ab c +≥>,所以 22()2c a b abc +≥ ③由于,,,a b c 不全相等,所以上述①②③式中至少有一个不取等号,把它们相加得 222222()()()6a b c b c a c a b abc +++++>(2)教师点拨:观察上述证明方法我们可以得到综合法的概念:所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证明的不等式。

综合法与分析法参考教案

综合法与分析法参考教案

综合法与分析法教学目的: 1掌握综合法、分析法证明不等式; 2熟练掌握已学的重要不等式; 3增强学生的逻辑推理能力教学重点:综合法、分析法教学难点:不等式性质的综合运用一、复习引入:1.重要不等式:如果)""(2R,,22号时取当且仅当那么==≥+∈b a ab b a b a2.定理:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab b a 3公式的等价变形:ab ≤222b a +,ab ≤(2b a +) 4. ba ab +≥2(ab >0),当且仅当a =b 时取“=”号; 5.比较法之一(作差法)步骤:作差——变形——判断与0的关系——结论比较法之二(作商法)步骤:作商——变形——判断与1的关系——结论二、讲解新课:(一)1.综合法:利用某些已经证明过的不等式(例如算术平均数与几何平均数定理)和不等式的性质推导出所要证明的不等式成立,这种证明方法通常叫做综合法2.用综合法证明不等式的逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒3.综合法的思维特点是:由因导果,即由已知条件出发,利用已知的数学定理、性质和公式,推出结论的一种证明方法(二)1分析法:证明不等式时,有时可以从求证的不等式出发,分析使这个不等式成立的条件,把证明不等式转化为判定这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以断定原不等式成立,这种方法通常叫做分析法2.用分析法证明不等式的逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐3.分析法的思维特点是:执果索因4.分析法的书写格式:要证明命题B 为真,只需要证明命题1B 为真,从而有……这只需要证明命题2B 为真,从而又有…………这只需要证明命题A 为真而已知A 为真,故命题B例1:已知a b ,是正数,且a b ≠,求证:a b a b ab 3322+>+转化尝试,就是不断寻找并简化欲证不等式成立的充分条件,到一个明显或易证其成立的充分条件为止. 其逻辑关系是:12n B B B B A ⇐⇐⇐⇐⇐证明:∵0,0,a b a b >>≠且∴要证3322a b a b ab +>+,只要证22()()()a b a ab b ab a b +-+>+,只要证22a ab b ab -+>,只要证2220a ab b -+>.∵0a b -≠,∴2()0a b ->即2220a ab b -+>得证.注:分析法的思维特点是:执果索因.对于思路不明显,感到无从下手的问题宜用分析法探究证明途径.另外,不等式的基本性质告诉我们可以对不等式做这样或那样的变形,分析时贵在变形,不通思变,变则通联想尝试,就是由已知的不等式及题设条件出发产生联想,大胆尝试,巧用已知不等式及不等式性质做适当变形,推导出要求证明的不等式.其逻辑关系是:12n A B B B B ⇒⇒⇒⇒⇒ 法二:证明:∵0,0,a b a b >>≠且∴3222a ab a b +>,3222b ba ab +>,∴32322222a ab b ba a b ab +++>+,∴3322a b a b ab +>+法三 aab b a a ≥++3333注:综合法的思维特点是:执因索果. 基本不等式以及一些已经得证的不等式往往与待证的不等式有着这样或那样的联系,作由此及彼的联想往往能启发我们证明的方向.尝试时贵在联想,浮想联翩,思潮如涌。

1综合法和分析法教案新人教A选修

1综合法和分析法教案新人教A选修

数学:2.2.1《综合法和分析法》教案第一课时 2.2.1 综合法和分析法(一)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用综合法证明问题;了解综合法的思考过程.教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法. 教学过程:一、复习准备:1. 已知 “若12,a a R +∈,且121a a +=,则12114a a +≥”,试请此结论推广猜想. (答案:若12,.......n a a a R +∈,且12....1n a a a +++=,则12111....n a a a +++≥ 2n ) 2. 已知,,a b c R +∈,1a b c ++=,求证:1119a b c ++≥. 先完成证明 → 讨论:证明过程有什么特点? 二、讲授新课:1. 教学例题:① 出示例1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc . 分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理) → 讨论:证明形式的特点② 提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果. ③ 练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c +-+-+-++>. ④ 出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系? → 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)2. 练习:① ,A B 为锐角,且tan tan 3tan 3A B A B +=,求证:60A B +=. (提示:算tan()A B +) ② 已知,a b c >> 求证:114.a b b c a c +≥--- 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P 100 练习 1题) (两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++. 3. 作业:教材P 102 A 组 2、3题.第二课时 2.2.1 综合法和分析法(二)教学要求:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:会用分析法证明问题;了解分析法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 提问:基本不等式的形式?2. 讨论:如何证明基本不等式(0,0)2a b ab a b +≥>>. (讨论 → 板演 → 分析思维特点:从结论出发,一步步探求结论成立的充分条件) 二、讲授新课:1. 教学例题:① 出示例1:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件? → 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法② 提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:要点:逆推证法;执果索因. ③ 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.④ 出示例2:见教材P 97. 讨论:如何寻找证明思路?(从结论出发,逐步反推) ⑤ 出示例3:见教材P 99. 讨论:如何寻找证明思路?(从结论与已知出发,逐步探求)2. 练习:证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大. 提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥. 略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos 23sin C C -≥3sin cos 2C C +≤,即证:sin()16C π+≤(成立).2. 作业:教材P 100 练习 2、3题.第三课时 2.2.2 反证法教学要求:结合已经学过的数学实例,了解间接证明的一种基本方法——反证法;了解反证法的思考过程、特点.教学重点:会用反证法证明问题;了解反证法的思考过程.教学难点:根据问题的特点,选择适当的证明方法.教学过程:一、复习准备:1. 讨论:三枚正面朝上的硬币,每次翻转2枚,你能使三枚反面都朝上吗?(原因:偶次)2. 提出问题: 平面几何中,我们知道这样一个命题:“过在同一直线上的三点A 、B 、C 不能作圆”. 讨论如何证明这个命题?3. 给出证法:先假设可以作一个⊙O 过A 、B 、C 三点,则O 在AB 的中垂线l 上,O 又在B C 的中垂线m 上,即O 是l 与m 的交点。

〖2021年整理〗《小学数学思想方法的梳理十分析法和综合法》优秀教案

〖2021年整理〗《小学数学思想方法的梳理十分析法和综合法》优秀教案

小学数学思想方法的梳理(十)----分析法和综合法王永春(课程教材研究所)分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。

分析与综合是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。

1.分析和综合法的概念。

分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。

综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。

分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。

在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,在进行整合从整体上认识研究对象,形成理性认识。

实际上教师和学生都经常有意识和无意识地运用了分析和综合的思维方法。

如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。

数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。

综合法一般被理解为:在证明和解决问题是,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。

如小学数学中的问题解决,可以由问题出发逐步逆推理到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。

再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。

因此,分析法和综合法是数学学习中应用较为普遍的互相依赖、互相渗透的思想方法。

2.分析法和综合法的重要意义。

大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的,哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。

综合法和分析法教案

综合法和分析法教案

综合法和分析法教案教学要求:结合已经学过的数学实例,了解证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点.教学重点:分别掌握分析法和综合法思考过程,会利用两种方法解决具体问题。

教学难点:根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.教学过程:一、复习准备:1. 解决上节课遗留下来的问题2. 提问:上节课的知识要点二、讲授新课:1. 教学例题:(1).如图,在等腰∆ABC 的两腰AB 即AC 上,分别取两点D 及E ,使AD=AE ,F 为BE 与CD 的交点,证明FB=FC 。

注:由上例题目可以看出,在分析个过程中思路是非常重要的,只要有了正确的清晰的分析思路,就可以按照分析的推理模式,逐步将分析的过程写出来。

同时也正确完成证明。

(不访写看看!)(2).计算曲边梯形的面积:微积分中的“元素法”如图所示,在曲 边 梯形AabB 中,任取一个小曲边梯形CEFD (即“元”),它的=,(3). 练习1:已知a , b , c 是不全相等的正数,求证:a (b 2 + c 2) + b (c 2 + a 2) + c (a 2 + b 2) > 6abc .分析:运用什么知识来解决?(基本不等式) → 板演证明过程(注意等号的处理)→ 讨论:证明形式的特点(4).提出综合法:利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立.框图表示: 要点:顺推证法;由因导果.(5) .练习:已知a ,b ,c 是全不相等的正实数,求证3b c a a c b a b c a b c +-+-+-++>. (6) .出示例2:在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.分析:从哪些已知,可以得到什么结论? 如何转化三角形中边角关系?→ 板演证明过程 → 讨论:证明过程的特点.→ 小结:文字语言转化为符号语言;边角关系的转化;挖掘题中的隐含条件(内角和)(7). 出示例3:求证3526+>+.讨论:能用综合法证明吗? → 如何从结论出发,寻找结论成立的充分条件?→ 板演证明过程 (注意格式)→ 再讨论:能用综合法证明吗? → 比较:两种证法(8).提出分析法:从要证明的结论出发,逐步寻找使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止.框图表示:要点:逆推证法;执果索因. (9). 练习:设x > 0,y > 0,证明不等式:11223332()()x y x y +>+.先讨论方法 → 分别运用分析法、综合法证明.2. 练习:1.,A B 为锐角,且tan tan 3tan tan 3A B A B ++=,求证:60A B +=. (提示:算tan()A B +)2. 已知,a b c >> 求证:114.a b b c a c+≥--- 3. 证明:通过水管放水,当流速相等时,如果水管截面(指横截面)的周长相等,那么截面的圆的水管比截面是正方形的水管流量大.提示:设截面周长为l ,则周长为l 的圆的半径为2l π,截面积为2()2l ππ,周长为l 的正方形边长为4l ,截面积为2()4l ,问题只需证:2()2l ππ> 2()4l . 3. 小结:综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题. 分析法由要证明的结论Q 思考,一步步探求得到Q 所需要的已知12,,P P ⋅⋅⋅,直到所有的已知P 都成立;比较好的证法是:用分析法去思考,寻找证题途径,用综合法进行书写;或者联合使用分析法与综合法,即从“欲知”想“需知”(分析),从“已知”推“可知”(综合),双管齐下,两面夹击,逐步缩小条件与结论之间的距离,找到沟通已知条件和结论的途径. (框图示意)三、巩固练习:1. 求证:对于任意角θ,44cos sin cos2θθθ-=. (教材P xx 练习 x 题)(两人板演 → 订正 → 小结:运用三角公式进行三角变换、思维过程)2. ABC ∆的三个内角,,A B C 成等差数列,求证:113a b b c a b c+=++++. 3. 设a , b , c 是的△ABC 三边,S 是三角形的面积,求证:222443c a b ab S --+≥. 略证:正弦、余弦定理代入得:2cos 423sin ab C ab ab C -+≥,即证:2cos 23sin C C -≥3sin cos 2C C +≤,即证:sin()16C π+≤(成立).作业:教材P x 页1题.。

人教课标版高中数学选修4-5:《综合法与分析法》教案-新版

人教课标版高中数学选修4-5:《综合法与分析法》教案-新版

2.2 课时6 综合法与分析法一、教学目标(一)核心素养通过对综合法与分析法的学习,体会数学证明的基本思想及逻辑思路.(二)学习目标1.结合已经学过的数学实例,了解直接证明的综合法.2.了解直接证明分析法,注意格式规范.2.了解分析法和综合法的思考过程.(三)学习重点会用综合法证明问题;了解综合法的思考过程.(四)学习难点根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.二、教学设计(一)课前设计1.预习任务(1)读一读:阅读教材第23页至第25页,思考:什么是综合法?什么是分析法?(2)想一想:两种方法有什么区别与联系?2.预习自测(1)综合法又叫顺推证法,它的特点是.【知识点】综合法【数学思想】【解题过程】由因到果【思路点拨】了解综合法的原理【答案】由因到果(2)分析法的特点是.【知识点】分析法【数学思想】【解题过程】执果索因.【思路点拨】了解分析法的原理【答案】执果索因(32+<,最好用什么方法? 【知识点】分析法 【数学思想】2+<,只需证22(2<+,只需证<<,只需证1820<,显然成立,原命题成立. 【思路点拨】分析法由果寻因,证明问题很方便 【答案】分析法 (二)课堂设计 1.知识回顾(1)如果,a b ∈R ,那么222a b ab +≥,当且仅当a b =时,等号成立.(2)如果,0a b >,那么2a b+≥,当且仅当a b =时,等号成立. (3)如果,a b c d >>,那么a c b d +>+;如果0,0a b c d >>>>,那么ac bd >. 2.问题探究探究一 综合法与分析法 ●活动① 综合法与分析法的定义综合法和分析法是数学中常用的两种直接证明方法,也是不等式证明中的基本方法.由于两者在证明思路上存在着明显的互逆性,这里将其放在一起加以认识、学习,以便于对比研究两种思路方法的特点.所谓综合法,即从已知条件出发,根据不等式的性质或已知的不等式,逐步推导出要证的不等式.而分析法,则是由结果开始,倒过来寻找原因,直至原因成为明显的或者在已知中.前一种是“由因及果”,后一种是“执果索因”.打一个比方:张三在山里迷了路,救援人员从驻地出发,逐步寻找,直至找到他,这是“综合法”;而张三自己找路,直至回到驻地,这是“分析法”.以前得到的结论,可以作为证明的根据.特别的,AB B A 222≥+是常常要用到的一个重要不等式.例1 b a ,都是正数,求证:.2≥+abb a【知识点】综合法;基本不等式 【数学思想】【解题过程】证明:由重要不等式AB B A 222≥+可得.22=≥+ab b a a b b a 【思路点拨】基本不等式:一正二定三取等 【答案】见解析同类训练 证明:当1x >时, 1+31x x ≥-. 【知识点】综合法;基本不等式 【数学思想】【解题过程】证明:因为1x >,所以11+(1)++11)+1=3111x x x x x =-≥---. 【思路点拨】配凑定值,用基本不等式可证 【答案】见解析例2 设0,0>>b a ,求证.2233ab b a b a +≥+ 【知识点】综合法;分析法 【数学思想】【解题过程】证法一 综合法ab b ab a b ab a b a ≥+-⇒≥+-⇒≥-22222020)(,注意到0,0>>b a ,即0>+b a ,由上式即得)())((22b a ab b ab a b a +≥+-+,从而2233ab b a b a +≥+成立.证法二 分析法要证2233ab b a b a +≥+成立.只需证)())((22b a ab b ab a b a +≥+-+成立, 又因0>+b a ,只需证ab b ab a ≥+-22成立,又需证0222≥+-b ab a 成立, 即需证0)(2≥-b a 成立.而0)(2>-b a 显然成立. 由此命题得证. 【思路点拨】因式分解化简不等式. 【答案】见解析同类训练 求证2252(2)a b a b ++≥- 【知识点】综合法;分析法【数学思想】【解题过程】证法一 综合法因为22(2)(1)0a b -++≥,所以224250a b a b +-++≥,所以2252(2)a b a b ++≥-. 证法二 分析法要证2252(2)a b a b ++≥-,只需证22542a b a b ++≥-,只需证224250a b a b +-++≥,只需证22(2)(1)0a b -++≥,显然成立,所以原不等式成立.【思路点拨】一元二次,配方. 【答案】见解析议一议:根据上面的例证,你能指出综合法和分析法的主要特点吗? 【设计意图】理解和掌握综合法与分析法. 探究二 综合法与分析法的特点 ●活动① 综合法与分析法的特点如果用Q P ⇒或P Q ⇐表示命题P 可以推出命题Q (命题Q 可以由命题P 推出),那么采用综合法的证法一就是).1()2()3()4(⇒⇒⇒采用分析法的证法二就是).4()3()2()1(⇐⇐⇐如果命题P 可以推出命题Q ,命题Q 也可以推出命题P ,即同时有P Q Q P ⇒⇒,,那么我们就说命题P 与命题Q 等价,并记为.Q P ⇔例3 证明:ca bc ab c b a ++≥++222. 【知识点】综合法;分析法 【数学思想】化归与转化思想【解题过程】证法一 因为ab b a 222≥+,bc c b 222≥+,ca a c 222≥+ 所以三式相加得)(2)(2222ca bc ab c b a ++≥++, 两边同时除以2即得ca bc ab c b a ++≥++222. 证法二 因为,0)(21)(21)(21)(222222≥-+-+-=++-++a c c b b a ca bc ab c b a 所以ca bc ab c b a ++≥++222成立.【思路点拨】基本不等式,不等式的可加性. 【答案】见解析同类训练 求证:222222222a b b c c a a bc ab c abc ++≥++. 【知识点】综合法;分析法 【数学思想】化归与转化思想【解题过程】证明:因为222222a b b c ab c +≥,222222b c c a abc +≥,222222c a a b a bc +≥ 所以三式相加得2222222222()2()a b b c c a a bc ab c abc ++≥++, 两边同时除以2即得222222222a b b c c a a bc ab c abc ++≥++. 【思路点拨】基本不等式,不等式的可加性. 【答案】见解析例4 证明:.)())((22222bd ac d c b a +≥++ 【知识点】分析法【数学思想】化归与转化思想 【解题过程】证明 要证.)())((22222bd ac d c b a +≥++只需证0)())((22222≥+-++bd ac d c b a只需证0)2(222222222222≥++-+++d b abcd c a d b d a c b c a 只需证022222≥-+abcd d a c b 只需证 0)(2≥-ad bc ,显然成立,原不等式成立. 此时显然成立.因此.)())((22222bd ac d c b a +≥++成立. 【思路点拨】化简,配方. 【答案】见解析同类训练 已知1m n >>,求证:2m n mn m +>+. 【知识点】分析法【数学思想】化归与转化思想【解题过程】证明 要证2m n mn m +>+,只需证2()()0m m n mn -+->,只需证(1)(1)0m m n m -+->,只需证(1)()0m m n -->,因为1m n >>,所以(1)()0m m n -->.【思路点拨】化简,因式分解. 【答案】见解析【设计意图】体会综合法与分析法在证明不等式时的异同. 探究三 巩固提升 ●活动① 巩固提升例5 已知c b a ,,都是正数,求证.3333abc c b a ≥++并指出等号在什么时候成立? 【知识点】综合法【数学思想】化归与转化思想【解题过程】证明 abc c b a 3333-++=))((222ca bc ab c b a c b a ---++++ =].)()())[((21222a c c b b a c b a -+-+-++由于c b a ,,都是正数,所以.0>++c b a 而0)()()(222≥-+-+-a c c b b a ,可知03333≥-++abc c b a ,即abc c b a 3333≥++(等号在c b a ==时成立)【思路点拨】本题可以考虑利用因式分解公式))((3222333ca bc ab c b a c b a abc c b a ---++++=-++着手. 【答案】见解析同类训练 已知0,0,0a b c >>>,且1abc =,111+a b c≤+. 【知识点】综合法【数学思想】化归与转化思想【解题过程】证明 由1abc =,得111+=ab bc ac a b c +++,又由基本不等式及0,0,0a b c >>>得ab bc +≥=bc ac +≥=,ab ac +≥=,111+a b c+≤+ 【思路点拨】基本不等式. 【答案】见解析同类训练 如果将不等式abc c b a 3333≥++中的333,,c b a 分别用c b a ,,来代替,并在两边同除以3,会得到怎样的不等式?并利用得到的结果证明不等式:27)1)(1)(1(>++++++a c c b b a ,其中c b a ,,是互不相等的正数,且1=abc .【知识点】基本不等式;综合法 【数学思想】【解题过程】,,0)3a b c a b c ++≥>,当且仅当a b c ==时取等号. ,31,31,31333ac a c bc c b ab b a ≥++≥++≥++三式相乘的,得 127)1)(1)(1(32=>++++++)(abc a c c b b a ,所以27)1)(1)(1(≥++++++a c c b b a ,当且仅当⎪⎩⎪⎨⎧======c a c b b a 111,即1===c b a 时取等号,因为c b a ,,是互不相等的正数,所以27)1)(1)(1(>++++++a c c b b a .【思路点拨】注意取等三个正数的均值不等式的条件 【答案】见解析【设计意图】掌握用综合法与分析法证明不等式. 3. 课堂总结 知识梳理(1)解不等式时,在不等式的两边分别作恒等变形,在不等式的两边同时加上(或减去)一个数或代数式,移项,在不等式的两边同时乘以(或除以)一个正数或一个正的代数式,得到的不等式都和原来的不等式等价。

公开课教案教学设计课件综合法与分析法

公开课教案教学设计课件综合法与分析法

第二章第2节直接证明与间接证明一、综合法与分析法课前预习学案一、预习目标:了解综合法与分析法的概念,并能简单应用。

二、预习内容:证明方法可以分为直接证明和间接证明1.直接证明分为和2.直接证明是从命题的或出发,根据以知的定义,公里,定理,推证结论的真实性。

3.综合法是从推导到的方法。

而分析法是一种从追溯到的思维方法,具体的说,综合法是从已知的条件出发,经过逐步的推理,最后达到待证结论,分析法则是从待证的结论出发,一步一步寻求结论成立的条件,最后达到题设的以知条件或以被证明的事实。

综合法是由导,分析法是执索。

三、提出疑惑同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容课内探究学案一、学习目标让学生理解分析法与综合法的概念并能够应用二、学习过程:例1.已知a,b∈R+,求证:例2.已知a,b∈R+,求证:例3.已知a,b,c∈R,求证(I)课后练习与提高1.(A 级)函数⎩⎨⎧≥<<-=-0,;01,sin )(12x e x x x f x π,若,2)()1(=+a f f 则a 的所有可能值为 ( )A .1B .22-C .21,2-或D .21,2或 2.(A 级)函数x x x y sin cos -=在下列哪个区间内是增函数 ( )A .)23,2(ππ B .)2,(ππ C .)25,23(ππ D .)3,2(ππ 3.(A 级)设b a b a b a +=+∈则,62,,22R 的最小值是 ( )A .22-B .335-C .-3D .27- 4.(A 级)下列函数中,在),0(+∞上为增函数的是 ( )A .x y 2sin =B .x xe y =C .x x y -=3D .x x y -+=)1ln(5.(A 级)设c b a ,,三数成等比数列,而y x ,分别为b a ,和c b ,的等差中项,则=+yc x a ( )A .1B .2C .3D .不确定6.(A 级)已知实数0≠a ,且函数)12()1()(2ax x a x f +-+=有最小值1-,则a =__________。

综合法和分析法(公开课教案)

综合法和分析法(公开课教案)

综合法和分析法课时安排:每章25分钟,共125分钟教学目标:1. 让学生理解综合法和分析法的概念及应用。

2. 培养学生运用综合法和分析法解决问题的能力。

3. 提高学生逻辑思维和判断能力。

教学方法:1. 讲授法:讲解综合法和分析法的原理及运用。

2. 案例分析法:分析实际案例,让学生深入理解综合法和分析法。

3. 小组讨论法:分组讨论,培养学生的合作意识和团队精神。

教学内容:第一章:综合法概述1.1 综合法的定义1.2 综合法的应用领域1.3 综合法的优势和局限性第二章:分析法概述2.1 分析法的定义2.2 分析法的应用领域2.3 分析法的优势和局限性第三章:综合法与分析法的区别与联系3.1 综合法与分析法的区别3.2 综合法与分析法的联系3.3 综合法与分析法在实际应用中的选择第四章:综合法在解决问题中的应用4.1 综合法解决问题的步骤4.2 综合法在案例中的应用4.3 综合法解决问题的注意事项第五章:分析法在解决问题中的应用5.1 分析法解决问题的步骤5.2 分析法在案例中的应用5.3 分析法解决问题的注意事项教学评估:1. 课后作业:布置相关案例分析作业,巩固所学内容。

2. 小组讨论:评估学生在小组讨论中的表现,检验学生对综合法和分析法的理解程度。

3. 课堂问答:通过提问,了解学生对教学内容的掌握情况。

教学资源:1. PPT课件:展示综合法和分析法的原理、案例及应用。

2. 案例材料:提供实际案例,供学生分析和讨论。

3. 参考书籍:为学生提供更多的学习资料,加深对综合法和分析法的理解。

教学建议:1. 在讲解综合法和分析法时,举例生动、贴近实际,激发学生的兴趣。

2. 组织小组讨论,鼓励学生发表自己的观点,培养学生的合作意识。

3. 注重课后作业的布置和批改,及时了解学生对教学内容的掌握情况。

4. 针对学生的反馈,调整教学方法和节奏,提高教学效果。

第六章:综合法在自然科学中的应用6.1 自然科学中综合法的典型应用案例6.2 综合法在自然科学研究中的作用与意义6.3 综合法在自然科学中的局限性与挑战第七章:分析法在社会科学中的应用7.1 社会科学中分析法的典型应用案例7.2 分析法在社会科学研究中的作用与意义7.3 分析法在社会科学中的局限性与挑战第八章:综合法与分析法在工程领域的应用8.1 工程领域中综合法的应用案例8.2 工程领域中分析法的应用案例8.3 综合法与分析法在工程领域的结合应用第九章:综合法与分析法在医学领域的应用9.1 医学领域中综合法的应用案例9.2 医学领域中分析法的应用案例9.3 综合法与分析法在医学领域的结合应用第十章:综合法与分析法在商业领域的应用10.1 商业领域中综合法的应用案例10.2 商业领域中分析法的应用案例10.3 综合法与分析法在商业领域的结合应用教学评估:1. 课后作业:布置相关案例分析作业,巩固所学内容。

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法

数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法

§2 综合法与分析法2.1 综合法学习目标核心素养1.了解综合法的思考过程、特点.(重点) 2.会用综合法证明数学命题.(难点) 1.通过对综合法概念和思维过程的理解的学习,培养逻辑推理的核心素养.2.通过对综合法应用的学习,提升逻辑推理和数学建模的核心素养.1.综合法的定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明,这种思维方法称为综合法.2.综合法证明的思维过程用P表示已知条件、已知的定义、公理、定理等,Q表示所要证明的结论,则综合法的思维过程可用框图表示为:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q思考:综合法的证明过程属于什么思维方式?[提示]综合法是由因导果的顺推思维.1.综合法是从已知条件、定义、定理、公理出发,寻求命题成立的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件[答案] B2.在△ABC中,若sin Asin B<cos Acos B,则△ABC一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形C[由条件可知cos Acos B-sin Asin B=cos(A+B)=-cos C>0,即cos C<0,∴C为钝角,故△ABC 一定是钝角三角形.]3.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.综合法[证明过程符合综合法的证题特点,故为综合法.]用综合法证明三角问题【例1】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b -c)sin B +(2c -b)sin C.(1)求证:A 的大小为60°;(2)若sin B +sin C = 3.证明:△ABC 为等边三角形.思路探究:(1)利用正弦定理将角与边互化,然后利用余弦定理求A. (2)结合(1)中A 的大小利用三角恒等变形证明A =B =C =60°. [证明] (1)由2asin A =(2b -c)sin B +(2c -b)sin C , 得2a 2=(2b -c)b +(2c -b)c , 即bc =b 2+c 2-a 2, 所以cos A =b 2+c 2-a 22bc =12,所以A =60°.(2)由A +B +C =180°,得B +C =120°,由sin B +sin C =3,得sin B +sin(120°-B)=3, sin B +(sin 120°cos B-cos 120°sin B)=3, 32sin B +32cos B =3, 即sin(B +30°)=1. 因为0°<B<120°, 所以30°<B+30°<150°, 所以B +30°=90°,即B =60°, 所以A =B =C =60°, 即△ABC 为等边三角形.证明三角等式的主要依据1.三角函数的定义、诱导公式及同角基本关系式. 2.和、差、倍角的三角函数公式.3.三角形中的三角函数及三角形内角和定理. 4.正弦定理、余弦定理和三角形的面积公式.1.若sin θ,sin α,cos θ成等差数列,sin θ,sin β,cos θ成等比数列,求证:2cos 2α=cos 2β.[证明] ∵sin θ,sin α,cos θ成等差数列, ∴sin θ+cos θ=2sin α①又∵sin θ,sin β,cos θ成等比数列, ∴sin 2β=sin θcos θ②将②代入①2,得1+2sin 2β=4sin 2α, 又sin 2 β=1-cos 2β2,sin 2α=1-cos 2α2,∴1+1-cos 2β=2-2cos 2α, 即2cos 2α=cos 2β.用综合法证明几何问题【例2】 如图,在四面体B­ACD 中,CB =CD ,AD⊥BD,E ,F 分别是AB ,BD 的中点.求证: (1)直线EF∥平面ACD ; (2)平面EFC⊥平面BCD.思路探究:(1)依据线面平行的判定定理,欲证明直线EF∥平面ACD ,只需在平面ACD 内找出一条直线和直线EF 平行即可;(2)根据面面垂直的判定定理,欲证明平面EFC⊥平面BCD ,只需在其中一个平面内找出一条另一个面的垂线即可.[证明] (1)因为E ,F 分别是AB ,BD 的中点,所以EF 是△ABD 的中位线,所以EF∥AD,又EF 平面ACD ,AD平面ACD ,所以直线EF∥平面ACD.(2)因为AD⊥BD,EF∥AD,所以EF⊥BD.因为CB =CD ,F 是BD 的中点,所以CF⊥BD.又EF∩CF=F ,所以BD⊥平面EFC. 因为BD平面BCD ,所以平面EFC⊥平面BCD.证明空间位置关系的一般模式本题是综合运用已知条件和相关的空间位置关系的判定定理来证明的,故证明空间位置关系问题,也是综合法的一个典型应用.在证明过程中,语言转化是主旋律,转化途径为把符号语言转化为图形语言或文字语言转化为符号语言.这也是证明空间位置关系问题的一般模式.2.如图,在长方体ABCD­A 1B 1C 1D 1中,AA 1=AD =a ,AB =2a ,E ,F 分别为C 1D 1,A 1D 1的中点.(1)求证:DE⊥平面BCE ; (2)求证:AF∥平面BDE. [证明](1)∵BC⊥侧面CDD 1C 1,DE侧面CDD 1C 1,∴DE⊥BC.在△CDE 中,CD =2a ,CE =DE =2a ,则有CD 2=DE 2+CE 2,∴∠D EC =90°,∴DE⊥EC. 又∵BC∩EC=C ,∴DE⊥平面BCE.(2)连接EF ,A 1C 1,设AC 交BD 于点O ,连接EO , ∵EF 12A 1C 1,AO 12A 1C 1, ∴EFAO ,∴四边形AOEF 是平行四边形, ∴AF∥OE. 又∵OE平面BDE ,AF平面BDE ,∴AF∥平面BDE.用综合法证明不等式[探究问题]1.综合法证明不等式的主要依据有哪些? [提示] (1)a 2≥0(a∈R).(2)a 2+b 2≥2ab,⎝ ⎛⎭⎪⎫a +b 22≥ab,a 2+b 2≥(a +b )22.(3)a ,b∈(0,+∞),则a +b 2≥ab ,特别地,b a +ab ≥2.(4)a -b≥0⇔a≥b;a -b≤0⇔a≤b. (5)a 2+b 2+c 2≥ab+bc +ca. (6)b a +ab≥2(a,b 同号,即ab>0).(7)||a|-|b||≤|a+b|≤|a|+|b|(a ,b∈R).左边等号成立的条件是ab≤0,右边等号成立的条件是ab≥0. 2.使用基本不等式证明不等式时,应该注意什么?请举例说明.[提示] 使用基本不等式时,要注意①“一正、二定、三相等”;②不等式的方向性;③不等式的适度,如下例.[题] 已知,a ,b∈(0,+∞),求证:a b +b a≥a + b.若直接使用基本不等式,a b +b a≥2ab ·b a=24ab ,而a +b ≥24ab.从而达不到证明的目的,没掌握好“度”,正确的证法应该是这样的:[证明] ∵a>0,b>0, ∴ab +b ≥2a ,ba +a ≥2b , ∴a b +b +ba +a ≥2a +2b , 即ab +ba≥a + b. 【例3】 已知x>0,y>0,x +y =1,求证:⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥9.思路探究:解答本题可由已知条件出发,结合基本不等式利用综合法证明. [证明] 法一:因为x>0,y>0,1=x +y≥2xy , 所以xy≤14.所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =1+1x +1y +1xy =1+x +y xy +1xy =1+2xy ≥1+8=9.法二:因为1=x +y ,所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫x y +y x . 又因为x>0,y>0,所以x y +yx ≥2,当且仅当x =y 时,取“=”. 所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥5+2×2=9.1.本例条件不变,求证:1x +1y≥4.[证明] 法一:因为x ,y∈(0,+∞),且x +y =1, 所以x +y≥2xy ,当且仅当x =y 时,取“=”, 所以xy ≤12,即xy≤14,所以1x +1y =x +y xy =1xy ≥4.法二:因为x ,y∈(0,+∞),所以x +y≥2xy>0,当且仅当x =y 时,取“=”, 1x +1y≥21xy>0, 当且仅当1x =1y时,取“=”,所以(x +y)⎝ ⎛⎭⎪⎫1x +1y ≥4. 又x +y =1,所以1x +1y≥4.法三:因为x ,y∈(0,+∞),所以1x +1y =x +y x +x +yy=1+y x +xy+1≥2+2x y ·yx=4, 当且仅当x =y 时,取“=”.2.把本例条件改为“a>0,b>0,c>0”且a +b +c =1,求证:ab +bc +ac≤13.[证明] ∵a>0,b>0,c>0, ∴a 2+b 2≥2ab, b 2+c 2≥2bc, a 2+c 2≥2ac.∴a 2+b 2+c 2≥ab+bc +ca.∴(a+b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab+bc +ac). 又∵a+b +c =1, ∴ab+bc +ac≤13.综合法的证明步骤1.分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等.2.转化条件,组织过程:将条件合理转化,书写出严密的证明过程.特别地,根据题目特点选取合适的证法可以简化解题过程.1.综合法的基本思路综合法的基本思路是“由因导果”,由已知走向求证,即从数学命题的已知条件出发,经过逐步的逻辑推理,最后得到待证结论.其逻辑依据是三段论式的演绎推理方法.2.综合法的特点(1)从“已知”看“可知”,逐步推向“未知”,由因导果,逐步推理,寻找它的必要条件.(2)证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,易于表达推理的思维轨迹.(3)由综合法证明命题“若A,则D”的思考过程如图所示:1.判断(正确的打“√”,错误的打“×”)(1)综合法是由因导果的顺推证法.( )(2)综合法证明的依据是三段论.( )(3)综合法的推理过程实际上是寻找它的必要条件.( )(1)√(2)√(3)√[(1)正确.由综合法的定义可知该说法正确.(2)正确.综合法的逻辑依据是三段论.(3)正确.综合法从“已知”看“可知”,逐步推出“未知”,其逐步推理实际上是寻找它的必要条件.]2.已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β.其中正确的命题的个数是( )A.1 B.2C.3 D.4B[若l⊥α,α∥β,则l⊥β,又mβ,所以l⊥m,①正确;若l⊥α,m β,l⊥m,α与β可能相交,②不正确; 若l⊥α,mβ,α⊥β,l 与m 可能平行,③不正确;若l⊥α,l∥m,则m⊥α,又m β,所以α⊥β,④正确.]3.已知p =a +1a -2(a>2),q =2-a 2+4a -2(a>2),则p 与q 的大小关系是________. p>q [p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q<22=4≤p.]4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3,…).求证:(1)数列⎩⎨⎧⎭⎬⎫S n n 为等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=n +2n S n ,而a n +1=S n +1-S n ,∴n +2nS n =S n +1-S n , ∴S n +1=2(n +1)n S n ,∴S n +1n +1S n n =2,又∵a 1=1, ∴S 1=1,∴S 11=1,∴数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公比为2的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫S n n 的公比为2,而a n =n +1n -1S n -1(n≥2),∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1, ∴S n +1=4a n .2.2 分析法学 习 目 标核 心 素 养1.了解分析法的思考过程、特点.(重点) 2.会用分析法证明数学命题.(难点)1.通过对分析法概念和思维过程的理解的学习,培养逻辑推理的核心素养. 2.通过对分析法应用的学习,提升逻辑推理和数学建模的核心素养.1.分析法的定义从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等,这种思维方法称为分析法.2.分析法证明的思维过程用Q 表示要证明的结论,则分析法的思维过程可用框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件1.用分析法证明:要使①A>B,只需使②C<D.这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [根据分析法的特点,寻找的是充分条件,∴②是①的充分条件,①是②的必要条件.] 2.欲证2-3<6-7,只需证( ) A .(2+7)2<(3+6)2B .(2-6)2<(3-7)2C .(2-3)2<(6-7)2D .(2-3-6)2<(-7)2A [欲证2-3<6-7,只需证2+7<3+6,只需证(2+7)2<(3+6)2.]3.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab,只需证a 2+b 2≥2ab,也就是证________,即证________,由于________显然成立,因此原不等式成立.[答案] a 2+b 2-2ab≥0 (a -b)2≥0 (a -b)2≥0应用分析法证明不等式【例1】 已知a>b>0,求证:(a -b )28a <a +b 2-ab<(a -b )28b.思路探究:本题用综合法不易解决,由于变形后均为平方式,因此要先将式子两边同时开方,再找出使式子成立的充分条件.[证明] 要证(a -b )28a <a +b 2-ab<(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b .∵a>b >0,∴同时除以(a -b )22,得(a +b )24a <1<(a +b )24b ,同时开方,得a +b 2a<1<a +b 2b,只需证a +b<2a ,且a +b>2b , 即证b<a ,即证b<a. ∵a>b>0,∴原不等式成立, 即(a -b )28a <a +b 2-ab<(a -b )28b.分析法证题思维过程1.分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件为已知(或已证)的不等式.2.分析法证明数学命题的过程是逆向思维,即结论⇐…⇐…⇐…已知,因此,在叙述过程中,“要证”“只需证”“即证”等词语必不可少,否则会出现错误.1.已知a>0,求证:a 2+1a 2-2≥a+1a-2.[证明] 要证a 2+1a 2-2≥a+1a-2,只需证a 2+1a 2+2≥a+1a +2,即证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a+22,即a 2+1a 2+4a 2+1a 2+4≥a 2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +4,只需证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2.上述不等式显然成立,故原不等式成立.用分析法证明其他问题【例2】 设函数f(x)=ax 2+bx +c(a≠0),若函数y =f(x +1)的图象与f(x)的图象关于y 轴对称,求证:f ⎝ ⎛⎭⎪⎫x +12为偶函数. 思路探究:由于已知条件较为复杂,且不易与要证明的结论联系,故可从要证明的结论出发,利用分析法,从函数图象的对称轴找到证明的突破口.[证明] 要证函数f ⎝ ⎛⎭⎪⎫x +12为偶函数,只需证明其对称轴为直线x =0, 而f ⎝ ⎛⎭⎪⎫x +12=ax 2+(a +b)x +14a +12b +c ,其对称轴为x =-a +b 2a ,因此只需证-a +b2a =0,即只需证a =-b ,又f(x +1)=ax 2+(2a +b)x +a +b +c ,其对称轴为x =-2a +b 2a ,f(x)的对称轴为x =-b 2a ,由已知得x =-2a +b 2a 与x =-b2a 关于y 轴对称,所以-2a +b 2a =-⎝ ⎛⎭⎪⎫-b 2a ,得a =-b 成立,故f ⎝ ⎛⎭⎪⎫x +12为偶函数.分析法证题思路1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明过程中所需要用的知识不太明确、具体时,往往采用分析法.2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定义、定理、公理、公式、法则等.2.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).[证明] 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12.∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.综合法与分析法的综合应用1.综合法与分析法的推理过程是合情推理还是演绎推理?[提示] 综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?[提示] 综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.【例3】 在某两个正数x ,y 之间,若插入一个数a ,则能使x ,a ,y 成等差数列;若插入两个数b ,c ,则能使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).思路探究:可用分析法找途径,用综合法由条件顺次推理,易于使条件与结论联系起来. [证明] 由已知条件得⎩⎪⎨⎪⎧2a =x +y ,b 2=cx ,c 2=by ,消去x ,y 得2a =b 2c +c2b ,且a>0,b>0,c>0.要证(a +1)2≥(b+1)(c +1), 只需证a +1≥(b +1)(c +1), 因(b +1)(c +1)≤(b +1)+(c +1)2,只需证a +1≥b +1+c +12,即证2a≥b+c.由于2a =b 2c +c2b ,故只需证b 2c +c2b≥b+c ,只需证b 3+c 3=(b +c)(b 2+c 2-bc)≥(b+c)bc , 即证b 2+c 2-bc≥bc,即证(b -c)2≥0.因为上式显然成立,所以(a +1)2≥(b+1)(c +1).分析综合法特点综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.3.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且三个内角A ,B ,C 构成等差数列.求证:1a +b +1b +c =3a +b +c.[证明] 要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,即证c a +b +a b +c=1,只需证c(b +c)+a(a +b)=(a +b)(b +c), 只需证c 2+a 2=ac +b 2. ∵A,B ,C 成等差数列, ∴2B=A +C ,又A +B +C =180°,∴B=60°. ∵c 2+a 2-b 2=2accos B , ∴c 2+a 2-b 2=ac , ∴c 2+a 2=ac +b 2, ∴1a +b +1b +c =3a +b +c成立.1.综合法与分析法的区别与联系区别:综合法 分析法 推理方向 顺推,由因导果 逆推,执果索因 解题思路 探路较难,易生枝节 容易探路, 利于思考(优点) 表述形式 形式简洁,条理清晰(优点)叙述烦琐,易出错 思考的 侧重点侧重于已知条 件提供的信息侧重于结论 提供的信息联系:分析法便于我们去寻找证明思路,而综合法便于证明过程的叙述,两种方法各有所长,因而在解决问题时,常先用分析法寻找解题思路,再用综合法有条理地表达证明过程,将两种方法结合起来运用2.分析综合法常采用同时从已知和结论出发,用综合法拓展条件,用分析法转化结论,找出已知与结论的连结点,从而构建出证明的有效路径.上面的思维模式可概括为下图:1.判断(正确的打“√”,错误的打“×”) (1)分析法就是从结论推向已知.( )(2)分析法的推理过程要比综合法优越. ( ) (3)并不是所有证明的题目都可使用分析法证明.( )(1)× (2)× (3)√ [(1)错误.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程.(2)错误.分析法和综合法各有优缺点.(3)正确.一般用综合法证明的题目均可用分析法证明,但并不是所有的证明题都可使用分析法证明.] 2.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系是( ) A .P>Q B .P =QC .P<QD .由a 的取值决定C [当a =1时,P =1+22,Q =2+5,P<Q ,故猜想当a≥0时,P<Q.证明如下:要证P<Q ,只需证P 2<Q 2,只需证2a +7+2a (a +7)<2a +7+2(a +3)(a +4),即证a 2+7a<a 2+7a +12,只需证0<12.∵0<12成立,∴P<Q 成立.]3.设a>0,b>0,c>0,若a +b +c =1,则1a +1b +1c 的最小值为________.9 [因为a +b +c =1,且a>0,b>0,c>0,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +a b +c b +b c +a c +ca ≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+6=9.当且仅当a =b =c 时等号成立.]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan A cos B +tan Bcos A .证明:a +b =2c. [证明] 由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos Acos B +sin B cos Acos B,化简得2(sin Acos B +sin Bcos A)=sin A +sin B ,即2sin(A +B)=sin A +sin B , 因为A +B +C =π,所以sin(A +B)=sin(π-C)=sin C. 从而sin A +sin B =2sin C. 由正弦定理得a +b =2c. 命题得证.。

【参考教案】《综合法和分析法》(人教A版)

【参考教案】《综合法和分析法》(人教A版)

【参考教案】《综合法和分析法》(人教A版)章节一:综合法的概念与运用1. 教学目标:让学生理解综合法的定义,掌握综合法的运用方法,能够运用综合法解决问题。

2. 教学内容:介绍综合法的定义、特点和运用方法。

通过例题讲解综合法在实际问题中的应用。

3. 教学过程:a) 引入综合法的概念,解释综合法的定义和特点。

b) 通过示例题目,讲解综合法的运用步骤和方法。

c) 让学生练习综合法解题,并提供解答和解析。

章节二:分析法的概念与运用1. 教学目标:让学生理解分析法的定义,掌握分析法的运用方法,能够运用分析法解决问题。

2. 教学内容:介绍分析法的定义、特点和运用方法。

通过例题讲解分析法在实际问题中的应用。

3. 教学过程:a) 引入分析法的概念,解释分析法的定义和特点。

b) 通过示例题目,讲解分析法的运用步骤和方法。

c) 让学生练习分析法解题,并提供解答和解析。

章节三:综合法与分析法的比较1. 教学目标:让学生理解综合法和分析法的区别与联系,能够根据实际情况选择合适的解题方法。

2. 教学内容:介绍综合法和分析法的区别与联系。

通过对比例题,展示综合法和分析法在不同情况下的应用。

3. 教学过程:a) 讲解综合法和分析法的区别与联系。

b) 通过对比示例题目,展示综合法和分析法在不同情况下的应用。

c) 让学生进行实践练习,选择合适的解题方法,并提供解答和解析。

章节四:综合法和分析法在几何中的应用1. 教学目标:让学生掌握综合法和分析法在几何问题中的应用,能够灵活运用综合法和分析法解决几何问题。

2. 教学内容:介绍综合法和分析法在几何问题中的应用。

通过几何例题,讲解综合法和分析法在解决几何问题时的运用方法。

3. 教学过程:a) 讲解综合法和分析法在几何问题中的应用。

b) 通过几何例题,讲解综合法和分析法在解决几何问题时的运用方法。

c) 让学生练习解决几何问题,运用综合法和分析法,并提供解答和解析。

章节五:综合法和分析法在代数中的应用1. 教学目标:让学生掌握综合法和分析法在代数问题中的应用,能够灵活运用综合法和分析法解决代数问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2、2、1综合法与分析法教案
年级:高二 学科:数学
一、授课时间:2006年2月
二、授课地点:胶州一中
三、执教教师:纪淑燕
四、研究课题:综合法
五、教学目标
结合已学过的数学实例,了解直接证明的基本方法----综合法 了解综合法的思考过程、特点;培养学生逻辑推理能力
六、教学内容分析:本节课是选修1—2中第二章第一课时,本章是重点,可以和其他知识联系在一起。

学习重点:综合法证明数学问题
七、教学对象分析:学生是普通文科班的学生,基础较差,应以讲练结合的方法为主
八、教学用品:多媒体电脑与投影仪
九、教学过程:
一. 引入
合情推理分归纳推理和类比推理,所得的结论的正确性是要证明的,数学中的两大基本证明方法-------直接证明与间接证明。

若要证明下列问题:
已知a,b>0,求证
2222()()4a b c b c a abc +++≥ 教师活动:给出以上问题,让学生思考应该如何证明,引导学生应用不等式证明。

教师最后归结证明方法。

学生活动:充分讨论,思考,找出以上问题的证明方法
设计意图:引导学生应用不等式证明以上问题,引出综合法的定义
二.新知探索
1、综合法的定义
2、框图表示
()()()11223().....n P Q Q Q Q Q Q Q ⇒→⇒→⇒→→⇒
P 表示已知条件、已有的定义、定理、公理等,Q 表示要证明的结论
三、典型例题
1、证明不等式
教师活动:由引入的例子的证明方法,让学生思考应该如何证明本题 学生活动:充分讨论,思考,找出以上问题的证明方法
设计意图:应用不等式证明不等式问题
)(2:,,,,,12
22zx yz xy z c b a y b a c x a c b R
c b a R z y x ++≥+++++∈∈+求证、已知:例222222
c c a a b x x y y z z a b b c c
+++++若不等式左边分解成
b a
变式训练
学生活动:自主练习,个别学生到黑板做。

设计意图:规范解题步骤,充分体会综合法证明不等式的方法,体会综合法证明数学问题的思想
证明有关三角问题
教师活动:给出以上问题,让学生思考应该如何证明,
学生活动:充分讨论,思考,找出以上问题的证明方法
设计意图:应用综合法证明三角问题
教师活动:老师分析题目,引导学生找到解题思路
4)11)(( ,, ≥++++∈+
c b a c b a R c b a 求证:已知为等边三角形
求证:成等比数列,
成等差数列且为对应的边分别
中,三个内角、在例ABC c b a C B A c b a C B A ABC ∆∆,,,,,,,,,,2变式训练:

等腰三角形或直角三角为求证:中,已知
)
sin()()sin()(2222ABC B A b a B A b a ABC ∆+-=-+∆
学生活动:自主练习,个别学生到黑板做。

设计意图:规范解题步骤,充分体会综合法证明的方法,体会综合法证明数学问题的思想
法一:
法二:
小结:
1、综合法证明是证明题中常用的方法。

从条件入手,根据公理、定义、定理等推出要证的结论
2、综合法证明题时要注意,要先作语言的转换,如把文字语言转化
为符号语言,或把符号语言转化为图形语言等。

还要通过细致的分析,
把其中的隐含条件明确表示出来。

3、综合法可用于证明与函数、三角、数列、不等式、向量、立体几何、解析几何等有关的问题
教学反思:通过本节的学习,学生积极参加课堂教学,顺利地完成了教学任务,达到了预期的教学目的。

但由于学生的基础较差,知识遗忘严重,在一定程度上影响了教学进度,使课堂上进度比较紧张。

所以在以后的教学过程中,要特别注意学生的实际水平,让学生提前预习,以保证课堂教学进度。

通过本节的学习,使学生了解直接证明的基本方法----综合法,了解综合法的思考过程、特点;培养学生的数学计算能力,分析能力,逻辑推理能力。

本节的教学应该是比较成功的,是一节比较成功的公开课。

2
:,,3cos cos sin 3232)
(2,,,1222222π<++++∆*∆==∆++≥+++++∈+c b a cC bB aA ABC c b a ABC C
B B a b AB
C c b a c a c b b a R c b a 试证明的三内角的对应边
为、为等边三角形
求证:,且
中,已知、求证
、课后练习:。

相关文档
最新文档