综合法和分析法
综合法与分析法知识点总结
综合法与分析法知识点总结综合法与分析法是在研究认知过程和解决问题过程中的两种基本方法。
它们在科学研究、管理决策、问题解决等领域中都有着广泛的应用。
在本文中,我们将从综合法和分析法的基本概念、特点、适用范围、主要方法与应用技巧等方面进行综合分析,并结合具体例子进行具体说明。
一、综合法综合法是指在进行研究分析时,采用多个角度、多种方法进行综合比较,综合研究问题的方法。
综合法的主要特点有:1. 多因素综合:综合法强调多方面、多因素的综合研究。
它可以从不同的角度、不同的层面分析问题,得出综合、全面的结论。
2. 积极开放:综合法强调对各种可能性的积极开放,不固步自封,能够克服单一因素分析的片面性。
3. 统筹兼顾:综合法要求在研究中综合各种看法,避免偏听片信,充分尊重每个因素,统筹兼顾。
综合法的主要方法包括层层分析法、交叉综合法、数字与模型综合等。
在实际应用中,可以通过案例分析、数学模型分析等方法进行具体操作。
例如,在管理决策中,如果要分析一个市场是否具有潜在的发展前景,可以采用综合法。
首先,可以从市场规模、人口结构、经济发展情况等多个角度综合考虑;其次,可以采用数字模型进行综合分析,将不同因素的影响定量化,最终形成综合判断。
二、分析法分析法是通过对现象的分解、逐一研究,从而对复杂问题的本质和规律进行探讨的方法。
分析法的主要特点有:1. 逐一分解:分析法要求对问题进行逐层逐一的分解,从整体到局部,从细微到粗大地深入研究每个问题。
2. 重点着眼:分析法要求对问题的各个方面着重研究,找到问题的关键和症结所在,从而能够深刻理解问题。
3. 系统性:分析法在进行研究时需要具有系统性,从不同的角度对问题进行分析,形成全面、系统的认识。
分析法主要包括逐步分析法、归纳分析法、因果分析法等。
在实际应用中可以通过对数据的分解、对问题的逐步归纳等方法进行具体操作。
举例而言,在生产管理中,如果要分析一个生产环节中出现的问题,可以采用分析法。
综合法与分析法
变题:
已知 a,b, c R,且 a b c 1
求证:(1)a2 b2 c2 1 ; 3
(2) a b c 3.
例2.如图,四棱锥 P ABCD中,
PC 平面ABCD, PC 2,
在四边形ABCD 中,点M 在PB上,
PB与平面ABC成 30 角.
(1)求证:CM // 面PAD; (2)求证:面PAB 面PAD.
其推证过程为:
结论 已知条件
特点:
从“未知”看“需知”,逐步靠拢 “已知”
3.直接证明 直接从原命题的条件逐步推得命题成立.
(综合法和分析法是直接证明的两种基本方法)
注:直接证明的一般形式为:
本题条件
已知定义 已知公理
⇒
A⇒
B⇒
C
已知定理
⇒ 本题结论
例1:如图,已知AB,CD相交于点O, △ACO≌△BDO,AE=BF, 求证:CE=DF
求证:
1 - tan2α= 1 - tan2β . 1 + tan2α 2(1 + tan2β)
练习1:平行四边形ABCD中,AE⊥BD,垂足为E,
CF⊥BD,垂足为F, 求证:AE=CF
D
E
C
F
A
B
练习2:求证: 3 - 2 > 6 - 5
练习3:设a,b为互不相等的正数,且a+b=1, 证明:1 + 1 > 4
复习
1.推 理
合情推理
(或然性推理)
演绎推理 (必然性推理)
归纳
(特殊到一般)
类比 (特殊到特殊)
三段论 (一般到特殊)
两种推理的作用?
合情推理为演绎推理确定了目标和方向
2.2.1综合法和分析法
1
1.综合法:(顺推证法)(由因导果法)
例:已知a, b 0, 求证:a(b2 c 2 ) b(c 2 a 2 ) 4abc
知识点提示: 基本不等式:a b 2 ab (a 0, b 0) a 2 b 2 2ab
1.综合法:(顺推证法)(由因导果法)
因为log19360<log19361=2, 所以
1 2 3 2 log 5 19 log 3 19 log 2 19
思考题:
已知a, b是正数, 且a b 1, 1 1 求证: 4. a b
当堂训练: 课本P42,练习T1.
课后作业: 课本P44,A组,T1。
例:已知a, b 0, 求证:a(b2 c 2 ) b(c 2 a 2 ) 4abc
2 证明 : : bb 2 c 222bcaa 0 c2 bc, , 0 证明 2 2 证明 : b c 2bc, a 0 aabb 2 c ) ) 22abc. ( ( 2 c 2 2 abc. 2 a (b 2 c 2 ) 2abc. 同理, bbcc 2 a ) ) 22abc. ( ( 2 a 2 2 abc. 同理, 同理, b(c a 2 ) 2abc. aabb 2 c ) ) bcc 2 a ) ) 44abc. ( ( 2 c 2 2 b( ( 2 a 2 2 abc. 2 a (b c 2 ) b(c 2 a 2 ) 4abc.
P Q1
Q1 Q2
Q 2 Q3
Qn Q
综合法是由一个个推理组成的
例1:如图,△ABC在平面α外, AB P, BC Q, AC R. 求证:P,Q,R三点共线.
综合法和分析法
综合法和分析法综合法和分析法在研究学科领域中是两种常见的研究方法。
综合法是指通过对各种不同的材料、数据和观点进行整合和综合,以便从中得出全面的结论和理解。
分析法则是通过对研究对象的各个方面进行分解,研究其组成部分以及它们之间的关系,以便深入分析和理解问题。
综合法在研究领域中被广泛运用,具有很高的可靠性和适用性。
通过综合不同的材料和观点,我们可以从多个角度对问题进行分析和解释,以提供更全面的研究结果。
综合法注重整体性思维,能够考虑到问题的各个方面,并找到它们之间的联系和共同点。
这种方法还可以帮助我们发现问题的不足之处,并提出改进和优化的建议。
然而,综合法也存在一些限制和挑战。
首先,由于需要处理大量的材料和观点,综合法可能会非常耗时和繁琐。
其次,由于材料和观点的多样性,可能存在信息的冲突和矛盾,这需要我们在整合的过程中面对和解决。
最后,综合法需要研究人员具备较高的分析和综合能力,以便处理和整合各种不同的信息和观点。
相比之下,分析法注重研究对象的细节和内部结构。
通过对研究对象进行分解和分析,我们可以更深入地了解其组成和特征,并揭示其内在的规律和原理。
分析法强调的是逐步推导和推理,通过分析对象的各个方面来得出结论和解释。
这种方法通常用于对复杂问题的解析和深入研究,能够帮助我们更好地理解问题的本质和内在机制。
然而,分析法也有一些局限性。
首先,由于分析法强调细节和局部,可能会忽视整体的视角和综合的信息。
其次,分析法可能会产生过于复杂和抽象的结论,这可能会使得解释和应用变得困难。
最后,分析法需要研究人员具备扎实的专业知识和技术背景,以便进行准确和有效的分析。
在实际研究中,综合法和分析法通常会结合使用,以取长补短。
综合法可以帮助我们从多个角度全面地了解问题,而分析法则可以帮助我们深入研究问题的细节和内部结构。
这种综合运用可以提高研究的可靠性和有效性,以得出更准确和全面的结论。
综合法和分析法作为两种研究方法,具有各自的优势和限制。
综合法和分析法
综合法和分析法
一、综合法
1、一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
2、综合法的思维方向是”,即由已知条件出发,逐步推出其必要条件(由因导果),最后推导出所要证明的结论成立,故综合法又叫顺推证法或由因导果法.综合法的依据:已知条件以及逻辑推理的基本理论,在推理时要注意:作为依据和出发点的命题一定要正确.
二、分析法
1、 1、一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。
2、分析法的思维特点是:执果索因;分析法的书写格式:要证明命题B为真,只需要证明命题为真,从而有……,这只需要证明命题为真,从而又有……这只需要证明命题A为真,而已知A为真,故命题B必为真。
3、用分析法证明的模式:
用分析法证:为了证明命题B为真,这只需证明命题B,为真,从而有……这只需证明命题B:为真,从而有……这只需证明命题A为真.而已知A为真,故B必真.可见分析法是”,步步寻求上一步成立的充分条件,它与综合法是对立统一的两种方法。
特别提醒:当命题不知从何人手时,有时可以运用分析法来解决,特别是对
于条件简单而结论复杂的题目,往往更是行之有效.用分析法证明时,往往在最后加上一句步可逆,这无形中就出现了两个问题:①分析法证明过程的每一步不一定”,也没有必要要求”,因为这时仅需寻找充分条件,而不是充要条件;②如果非要”,则限制了分析法解决问题的范围,使得分析法只适用于证明等价命题了,但是,只要我们搞清了用分析法证明问题的逻辑结构,明确四种命题之间的关系,那么用分析法证明不等式还是比较方便的。
小学数学:分析法和综合法
分析法和综合法分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。
分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。
1. 分析法和综合法的概念。
分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。
综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。
分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。
在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。
实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。
如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。
数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。
综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。
如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。
再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。
因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。
2. 分析法和综合法的重要意义。
大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。
综合法和分析法
x 3 x 2
x 4,
2
展开得 2x 5 2 x 1 x 4 2x 5 2 x 3 x 2, 即
x 1 x 4 x 3 x 2 ,
2 2
只需证 x 1 x 4 x 3 x 2 , 即证x2-5x+4<x2-5x+6,即4<6,这显然成立. ∴当x≥4时, x 1
(4)a2+b2+c2≥ab+bc+ca(a,b,c∈R), (5)a+b+c,a2+b2+c2,ab+bc+ca这三个式子之间的关系,由 (a+b+c)2=a2+b2+c2+2(ab+bc+ca)得出.三式中已知两式,
第三式即可由设等式用另两式表示出来.
例2:在△ABC中,三个内角A、B、C对应的边分别 为a、b、c,且A、B、C成等差数列,a、b、c成等比数 列,求证△ABC为等边三角形.
2 2
练习:当x≥4时,证明: x 1 x 2 证明:欲证 只需证 即证
x 3 x 4.
x 1 x 2 x 3 x 4 (x≥4),
x 1 x 4 x 3 x 2 x 4 ,
x 1 x 4
2 B A C 证明: B 3 A B C
b ac a c 2ac cos B ac
2 2 2
a 2ac c 0 a c
2 2
∴△ABC为等边三角形.
练习:在锐角三角形中,A、B、C为三角形内角,求证: sinA+sinB+sinC>cosA+cosB+cosC.
综合法与分析法
综合法与分析法1.综合法 分析法的特点是:从未知看需知,逐步靠拢已知.一般地,利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。
2. 分析法 综合法的特点是:从已知看可知,逐步推出未知.一般地,从要证明的结论出发,逐步寻求使它成立的充分条件,直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、公理、定理等)为止,这种证明方法叫做分析法例1:设a ,b ,c 为正实数,求证:32111333≥+++abc cb a .例2:已知{}n a 是正数组成的数列,11=a ,且点(1,n n a a +)(*N n ∈)在函数12+=x y 的图象上.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若数列{}n b 满足11=b ,n an n b b 21+=+,求证:212++<⋅n n n b b b .例3:已知函数)(x f 在)1,1(-上有定义,1)21(-=f 且满足)1,1(,-∈y x ,有)1()()(xy yx f y f x f ++=+.(1)证明:)(x f 在)1,1(-上为奇函数;(2)对数列211=x ,2112nn n x x x +=+,求)(n x f ; (3)求证252)(1)(1)(121++->+++n n x f x f x f n .1、,,0,,a b c >已知且不全相等222222()()()6a b c b c a c a b abc +++++>求证:234 证明:.)())((22222bd ac d c b a +≥++5、已知,,0,0y x y x ≠>>求证.411y x y x+>+6、已知,0>>b a 求证.b a b a ->-12n 12n 12,,,R ,1,(1)(1)(1)2n n a a a a a a a a a +∈=+++≥ 已知且求证:222222,,0,a b b c c a a b c abca b c ++>≥++已知求证:7、已知.0,0>>b a 求证:(1).4))((11≥++--b a b a(2).8))()((333322b a b a b a b a ≥+++9、已知c b a ,,都是互不相等的正数,求证.9))((abc ca bc ab c b a >++++10 c b a ,,是互不相等的正数,且1=abc . 求证:27)1)(1)(1(>++++++a c c b b a .11(1)已知,a b 是正常数,a b ≠,,(0,)x y ∈+∞,求证:222()ab a b x y x y++≥+,指出等号成立的条件;(2)利用(1)的结论求函数29()12f x x x=+-(1(0,)2x ∈)的最小值,指出取最小值时x 的值.反证法练习1. 证明:2,3,1不能为同一等差数列的三项。
综合法与分析法
综合法与分析法的概念 (1)综合法: 一般地,从_已__知__条__件__出发,利用定义、公理、定理、性质 等,经过一系列的推理、论证而得出命题成立,这种证明方法 叫做综合法.综合法又叫_顺__推__证__法__或_由__因__导__果__法__.
(2)分析法: 证明命题时,从_要__证__的__结__论__出发,逐步寻求使它成立的_充__分__ _条__件__,直至所需条件为_已__知__条__件__或_一__个__明__显__成__立__的__事__实__(定 义、公理或已证明的定理、性质等),从而得出要证的命题成 立,这种证明方法叫做分析法,这是一种_执__果__索__因__的思考和 证明方法.
用综合法证明不等式
综合法证明不等式的方法 (1)综合法证明不等式,揭示出条件和结论之间的因果联系, 为此要着力分析已知与求证之间,不等式的左右两端之间的差 异与联系.合理进行转换,恰当选择已知不等式,这是证明的 关键.
(2)综合法证明不等式所依赖的已知不等式主要有如下几个:
①a2≥0(a∈R);②(a-b)2≥0(a,b∈R),其变形有
只需证
a b2
a b2
a b 2 ab
,
4a
4b
即证: (a b)2 a b 2 (a b)2,
2a
2b
只需证
ab a b ab,
2a
2b
即证:
a b 1 a b,
2a
2b
即 b 1 a,
a
b
只需证 b 1 a .
ab
∵a>b>0, b 1 a 成立.
ab
a2 b2 2ab,(a b)2 ab,a2 b2 1 a b2;
2
2.2.1综合法和分析法
分析法 又叫逆推证法或执果索 . , 因法
用Q表示要证明的结论 则分析法可用框图表示 : , 为
Q P1
P1 P2
P2 P3
得到一个明显 成立的条件
例 2 如图 2.2 1 所示 , SA 平面ABC, AB BC, 过A作SB 的垂线, 垂足为E , 过E作SC的 垂线, 垂足为F.求证 AF SC.
a,b, c成等比数列转化为符号语言就是 ac. , b 此时,如果能把角和边统一起 ,那么就可以进一 来 步寻找角和边之间的关 , 进而判断三角形的形 系 状, 余弦定理正好满足要求 .于是,可以用余弦定理 为工具进行证明 .
2
证明 由A,B, C成等差数列有2B A C. , 因为A,B, C为ΔABC的内角 所以A B C π. , π 由 ① ②, 得B . 3 2 由a,b, c成等比数列有b ac. ,
1 即证 cos α sin α cos2 β sin2 β , 2 1 2 即证1 2 sin α 1 2 sin2 β , 2 即证4 sin2 α 2 sin2 β 1.
2 2
由于上式与③ 相同,于是问题得证.
用P表示已知条件定义、定 理、公理 等 , 用Q 表示要证明的结论 则上述过 , 程可用框图表示为:
π 例3 已知α, β kπ k Z , 且 2 sin θ cos θ 2 sin α , ① sin θ cos θ sin β ,
2 2 2
②
1 tan α 1 tan β 求证 : . 2 2 1 tan α 2 1 tan β
分析法与综合法
分析法与综合法一、分析法与综合法的定义1、定义所谓分析法,是指“执果索因”的思维方法,即从结论出发,不断地去寻找需知,直至达到已知事实为止的方法. 分析法的思维全貌可概括为下面形式: “结论需知1需知2…已知”.所谓综合法,是指“由因导果”的思维方法,即从已知条件出发,不断地展开思考,去探索结论的方法.综合法的思维过程的全貌可概括为下面形式: “已知可知1可知2…结论”.二 、例题赏析例1、已知:a b ∈R ,,且a b ≠,求证:3322a b a b ab +>+.证明一:(分析法)要证3322a b a b ab +>+, 即证22()()()a b a ab b ab a b +-+>+, 因为0a b +>,故只需证22a ab b ab -+>, 即证2220a ab b -+>, 即证2()0a b ->, 因为a b ≠,所以2()0a b ->成立, 所以3322a b a b ab +>+成立.证明二:(综合法)由a b ≠,知2()0a b ->,即2220a ab b -+>,则22a ab b ab -+>.又0a b +>,则22()()()a b a ab b ab a b +-+>+,即3322a b a b ab +>+.实际证题过程中,分析法与综合法往往是结合起来运用的,把分析法和综合法孤立起来运用是比较少的.问题仅在于,在构建命题的证明路径时,有时分析法居主导地位,综合法伴随着它;有时却刚好相反,综合法居主导地位,而分析法伴随着它.特别是,对于那些较为复杂的数学命题,不论是从“已知”推向“未知”,或者是由“未知”靠拢“已知”,都有一个比较长的过程,单靠分析法或综合法显得较为困难.为保证探索方向准确及过程快捷,人们又常常把分析法与综合法两者并列起来使用,即常采取同时从已知和结论出发,寻找问题的一个中间目标.从已知到中间目标运用综合法思索,而由结论到中间目标运用分析法思索,以中间目标为桥梁沟通已知与结论,构建出证明的有效路径.上面所言的思维模式可概括为如下图所示:综合法与分析法是逻辑推理的思维方法,它对于培养思维的严谨性极为有用.把分析法与综合法两者并列起来进行思考,寻求问题的解答途径方式,就是人们通常所说的分析、综合法.下面举一具体例子加以说明:例2、若a b c ,,是不全相等的正数,求证:lg lg lg lg lg lg 222a b b c c aa b c +++++>++. 证明:要证lglg lg lg lg lg 222a b b c c aa b c +++++>++ 只需证lglg()222a b b c c aa b c +++>, 只需证222a b b c c aabc +++>. 但是,02a b ab +>≥,02b c bc +>≥,02c aca +>≥. 且上述三式中的等号不全成立,所以222a b b c c aabc +++>.因此lg lg lg lg lg lg 222a b b c c aa b c +++++>++. 注:这个证明中的前半部分用的是分析法,后半部分用的是综合法.例3、例1 如图1,在四面体A VBC -中,60VA VB VC AVB AVC ==∠=∠=,,90BVC ∠=,求证:平面VBC ⊥平面ABC .分析:要证面面垂直需通过线面垂直来实现,可是哪一条直线是我们所需要的与平面垂直的直线呢? 我们假设两平面垂直已经知道,则根据两平面垂直的性质定理,在平面VBC 内作VD BC ⊥,则VD ⊥平面ABC ,所以VD 即为我们所要寻找的直线. 要证明VD ⊥平面ABC ,除了已知的VD BC ⊥之外,还需要在平面ABC 内找一条直线与VD 垂直,哪一条呢? 假设已知知道VD ⊥平面ABC ,则VD 与平面ABC 内的任意直线均垂直,即必有VD AB VD AC ,⊥⊥,但这两个垂直的证明较难入手,还有其他的直线吗?连结AD 呢?假设已经知道VD ⊥平面ABC ,则必有VD AD ⊥.通过计算可得到90VDA ∠=,原题得证.证明:设BC 的中点为D ,连结VD AD ,,因为VB VC =,所以VD BC ⊥;设1VA VB VC ===,因为6090AVB AVC BVC ∠=∠=∠=,,所以2122AB AC BC VD AD =====,,,所以90VDA ∠=,即VD AD ⊥,又已知AD BC D =,所以VD ⊥平面ABC ,又VD ⊂平面VBC ,所以平面VBC ⊥平面ABC .例4、如图2,在长方体1111ABCD A BC D -中, 证明:平面1A BD ∥平面11CB D .分析:要证明两平面平行,需在一平面内寻找两条相交直线与另一平面平行.假设两平面平行已知,则一个平面内的任意直线均与另一个平面平行,所以有11A B A D BD ,,均与平面11CB D 平行,选择任意两条均可,不妨选择11A B A D ,.要想证明11A BA D ,与平面11CB D 平行,需在平面11CB D 内寻找两条直线分别与11A B A D ,平行,假设11A B A D ,与平面11CB D 平行已知,则根据线面平行的性质定理,过1A B 的平面11A BCD 与平面11CB D 相交所得的交线1CD 与1A B 平行;过1A D 的平面11A DCB 与平面11CB D 相交所得的交线1B C 与1A D 平行.11CD B C ,即为所要寻找的直线.从而易知11CD B C ,分别与11A BA D ,平行,原题得证. 证明:因为1111ABCD A BC D -为长方体,所以有11A D BC ∥,即四边形11A BCD 为平行四边形,从而有11AB CD ∥,又已知1A B ⊄平面111CB D CD ⊂,平面11CB D ,进而有1A B ∥平面11CB D ;同理有11A D BC ∥,从而有1AD ∥平面11CB D ;又已知111A B A D A =,所以有平面1A BD ∥平面11CB D .从上面的两例可以看出,分析法的基本思路是:从“未知”看“需知”,逐步靠拢“已知”,其逐步推理,实际上是要寻找它的充分条件.同学们可以在学习过程中,沿着这样的解题思路,亲自体验一下分析法在立几证明中的妙用.例4、 设A 、B 、C 是双曲线xy=1上的三点,求证:△ABC 的垂心H 必在此双曲线上.分析:如图1-1,设H 的坐标为(x 0,y 0),要证H 在此双曲线上,即证x 0y 0=1.而H 是两条高AH 与BH 的交点,因此需求直线AH 、BH 的方程,进而从所得方程组中设法推出x 0y 0=1.α,证明:如图1-1,由已知可设A、B、C的坐标分别为()β设点H的坐标为(x0,y0),则由①式左乘②式右及①式右乘②式左,得化简可得x0y0(α-β)=α-β.∵ α≠β,∴x0y0=1.故H点必在双曲线xy=1上.解说:本证法的思考过程中,从分析法入手,得出证点H在双曲线xy=1上就是证x0y0=1.这为综合法证明此题指明了目标.在用综合法证明的过程中,牢牢抓住这个目标,去寻找x0、y0的关系式,用式子①与②相乘,巧妙地消去参数α、β、γ,得到x0y0=1.从而避免了解方程的麻烦,提高了解题速度.练习:1、设b a b a b a +=+∈则,62,,22R 的最小值是 ( ) A .22- B .335-C .-3D .27-2、.在ABC △中,sin sin cos cos A C A C >,则ABC △一定是( )A.锐角三角形 B.直角三角形C.钝角三角形D.不确定3.观察式子:213122+<,221151233++<,222111712344+++<,,则可归纳出式子为( ) A.22211111(2)2321n n n ++++<-≥ B.22211111(2)2321n n n ++++<+≥ C.222111211(2)23n n n n -++++<≥ D.22211121(2)2321n n n n ++++<+≥ 4、已知实数0≠a ,且函数)12()1()(2ax x a x f +-+=有最小值1-,则a =__________。
2.2.1综合法和分析法
1、 求 证 : cos sin cos 2 2、 已 知 tan sin a , tan sin b 求 证: (a b ) 16ab
2 2 2
4
4
3、 已 知a , b, c R , a b c 1 1 1 1 求 证( : 1)( 1)( 1) 8 a b c
3 7 2 5成立
反思
在本例中,如果我们从“21<25”出发, 逐步倒推回去,就可以用综合法证出结论.但 由于我们很难想到从“21<25”入手,所以 用综合法比较困难.
• [点评] • (1)分析法证明不等式的依据是不等式的基本性质、 已知的重要不等式和逻辑推理的基本理论; • 2)分析法证明思路为:从求证的结论出发,逐步 寻求使结论成立的充分条件,直至把证明的结论 归结为一个明显成立的条件即可。 • (3) 用分析法证明数学命题时,一定要恰当地用好 “要证”、“只需证”、“即证”等关联词语.
a+b 练习:证明不等式: 2
ab
(a>0,b>0).
综合法
证法1:
因为;( a b ) 0
2
a+b 证法2:要证; ab 2 只需证;a + b 2 ab
分析法
所以 a + b 2 ab 0 所以 a + b 2 ab
a+b ab 成立 所以 2
只需证;a + b 2 ab 0
课堂小结
1.在数学证明中,综合法最常用的数学方法,若从已 知入手能找到证明的途径,则用综合法.
2.综合法的每步推理都是寻找必要条件,在解题表述 中要注意语言的规范性和逻辑性.
综合法和分析法 课件
[规范解答] 要证明 f(x+1)为偶函数,只需证明其对 称轴为直线 x=0.(2 分)
因为 f(x+1)=ax2+(2a+b)x+a+b+c(a≠0)的对称 轴为 x=-2ba-1,所以只需证-2ba-1=0,
即证 b=-2a.(4 分)
由已知,抛物线 f(x+2)的对称轴 x=-2ba-2 与 f(x) 的对称轴 x=-2ba关于 y 轴对称,(8 分)
只需要证明 logxa+2 b·b+2 c·a+2 c<logx (abc).
a+b b+c a+c 由已知 0<x<1,只需证明 2 · 2 · 2 >abc.
a+b
b+c
a+c
由基本不等式得 2 ≥ ab>0, 2 ≥ bc>0, 2
≥ ac>0.又因为 a,b,c 是不全相等的正数,
a+b b+c a+c 所以 2 · 2 · 2 > a2b2c2=abc.
(3)适当调整,回顾反思:解题后回顾解题过程,可 对部分步骤进行调整,并对一些语言进行适当的修饰,反 思总结解题方法的选取.
类型 2 分析法的应用
[典例 2] 设 a,b 为实数,求证:
a2+b2≥
2 2 (a
+b).
证明:当 a+b≤0 时,因为 a2+b2≥0,
所以 a2+b2≥ 22(a+b)成立.
a+b b+c a+c 即 2 · 2 · 2 >abc 成立.
a+b b+c a+c 所以 logx 2 +logx 2 +logx 2 <logx a+logx b+logx c 成立.
温馨提示 运用综合法证明问题的关键是正确运用
相关的定义、定理、公理和已知条件.
2.分析法
(1)定义:从要证明的结论出发,逐步寻求使结论成 立的充分条件,直至最后,把要证明的结论归结为判定 一个明显成立的条件.
综合法与分析法
定义: 一般地,从要证明的结论出发,逐步寻求推证过程中,使每
一步结论成立的充分条件,直至最后,把要证明的结论归结为判 定一个明显成立的条件(已知条件、定理、定义、公理等)为止, 这种证明的方法叫做分析法(逆推证法)。特点:执果索因
分析法的框图表示:
Q⇐P1 ―→ P1⇐P2 ―→ P2⇐P3 ―→…―→ 得到一个明显成立的条件
2.函数 f(x)=xlo|xg|a|x|(0<a<1)的图象大致是
中物理
解析 取 a=12,当 x=2 时,f(2)=-1<0,排除 A,B; 当x=-2时,f(-2)=1>0,排除D,故选C.
3.设a,b∈(0,+∞),且a≠b,a+b=2,则必有
a2+b2 A.1≤ab≤ 2
√ a2+b2
P⇒Q1 ―→ Q1⇒Q2 ―→ Q2⇒Q3 ―→…―→ Qn⇒Q
用P表示已知条件、已有的定义、公理、定理等,Q表 示所要证明的结论.
1.从“已知”看“可知”,逐步推向“未知”,由因导果,其 逐步推理实质上是寻找它的 必要条件 . 2.用综合法证明不等式,其证明步骤严谨、逐层递进、条理清晰、 形式简洁.
综合法 分析法
综合法和分析法,是直接证明中最基本的两种证明方 法,也是解决数学问题时常用的思维方式.
不等式:a
+ 2
b
ab (a>0,b>0)的证明.
运用以前学过的数学知识,大家自己证明试试看!
证明:
∵ ( a b)2 0
∴ a + b 2 ab 0
∴ a + b 2 ab
∴
a+b 2
ab
又∵ c2+b2 ≥ 2bc,b>0 ∴ b(c2+a2) ≥ 2abc.
综合法分析法
授益教育综合法与分析法做任何事情都要讲究方法。
方法对头,事半功倍;方法不当,事倍功半。
解答数学问题,关键也在于掌握思考问题的方法,少走弯路,以尽快获得满意的答案(1)综合法运用综合法解决问题时,我们的思路是:分析题中给出的已知条件,考虑根据这些条件能求得出什么,再根据这些求出的条件考虑还能求得什么。
这样逐步推导,直到推出题目要求的物理量,完成题目的求解。
这样一个从已知推到未知的科学思维方法叫综合法。
综合法的思维过程的流程图:已知量经验`规律`定理中间待求量待求量用途:①读题。
使心态变从容。
②没有思路时,面对“卡壳”时,“走一步,算一步”。
用来寻找思路。
注意:题目中出现的数据99%都是有用的,如果题目中还有一个条件没有用,那这个条件就是本题的突破口。
(2)分析法分析题目要求的问题,考虑要解决这些问题,需要哪些量,又需要求得什么。
就这样逐步向前推导,直到最后求出我们需要的量。
然后将推导的步骤反过来写,就完成了题目的求解。
这样一个将未知推演还原为已知的科学思维方法就叫分析法。
分析法的思维过程的流程图:待求量中间待求量已知量用途:用来寻找思路。
总结:综合法是我们在已经储存了大量的知识,积累了丰富的经验的基础上所用的一种方法,其优点是叙述起来简洁、直观、条理、清楚,综合法可使我们从已知的知识中进一步获得新知识分析法是一种从未知到已知的逻辑推理方法.在探求问题的证明时,它可以帮助我们构思,因而在一般分析问题时,较多地采用分析法,只是找到思路后,往往用综合法加以叙述,正如恩格斯所说“没有分析就没有综合”。
两种方法同时运用,前后夹击,攻克题目。
分析法、综合法
分析法和综合法分析与综合都是思维的基本方法,无论是研究和解决一般问题,还是数学问题,分析和综合都是最基本的具有逻辑性的方法。
分析与综合本是两种思想方法,但因二者具有十分密切的联系,因此把二者结合起来阐述。
1. 分析法和综合法的概念。
分析是把研究对象的整体分解为若干部分、方面和因素,分别加以考察,找出各自的本质属性及彼此之间的联系。
综合是把研究对象的各个部分、方面和因素的认识结合起来,形成一个整体性认识的思维方法。
分析是综合的基础,综合是分析的整合,综合是与分析相反的思维过程。
在研究数学概念和性质时,往往先把研究对象分解成几个部分、方面和要素进行考察,再进行整合从整体上认识研究对象,形成理性认识。
实际上教师和学生都在经常有意识和无意识地运用了分析和综合的思维方法。
如认识等腰梯形时,可以从它的边和角等几个要素进行分析:它有几条边?几个角?四条边有什么关系?四个角有什么关系?再从整体上概括等腰梯形的性质。
数学中的分析法一般被理解为:在证明和解决问题时,从结论出发,一步一步地追溯到产生这一结论的条件是已知的为止,是一种“执果索因”的分析法。
综合法一般被理解为:在证明和解决问题时,从已知条件和某些定义、定理等出发,经过一系列的运算或推理,最终证明结论或解决问题,是一种“由因导果”的综合法。
如小学数学中的问题解决,可以由问题出发逐步逆推到已知条件,这是分析法;从已知条件出发,逐步求出所需答案,这是综合法。
再如分析法和综合法在中学数学作为直接证明的基本方法,应用比较普遍。
因此,分析法和综合法是数学学习中应用较为普遍的相互依赖、相互渗透的思想方法。
2. 分析法和综合法的重要意义。
大纲时代的小学数学教育,比较重视逻辑思维能力的培养,在教学过程中重视培养学生的分析、综合、抽象、概括、判断和推理能力,其中培养学生分析和综合的能力、推理能力是很重要的方面,如在解答应用题时重视分析法和综合法的运用,也就是说可以先从应用题的问题出发,找出解决问题需要的条件中哪些是已知的、哪些是未知的,未知的条件又需要什么条件解决,这样一步一步倒推,直到利用最原始的已知条件解决。
综合法和分析法
例1已知a,b>0,求证:a(b2+c2)+b(c2+a2)≥4abc. 证明:∵b2+c2≥2bc,a>0 ∴a(b2+c2)≥2abc
同理,
∵c2+a2≥2ac,b>0
∴b(a2+c2)≥2abc ∴ a(b2+c2)+b(c2+a2)≥4abc
练习1: 已知AD是∠BAC的平分线,DE∥CA,且交 AB于E(如图).求证:DE=AE
证明数学命题时,还经常从要证的 结论Q出发,反推回去,寻求保证Q成 立的条件,即使Q成立的充分条件P1, 为了证明P1成立,再去寻求P1成立的 充分条件P2;为了证明P2成立,再去寻
求P2成立的充分条件P3…….直至找到
一个明显成立的条件(已知条件、定
理、定义、公理等)为止。
分析法:一般地,从要证明的结论出发,逐步寻求使它 成立的充分条件,直至最后,把要证明的结论归结为判 定一个明显成立的条件,这种证明的方法叫做分析法.
∴2(cos2α-sin2α)=cos2β-sin2β
即: 2(cos2α-sin2α) cos2α+sin2α
2
=
2
cos2β-sin2β
cos2β+sin2β
1 tan 1 tan = 2 2 1 tan 2(1 tan )
2.分析法:
1 tan2 1 tan2 = 要证: 2 1 tan 2(1 tan2 )
分析: 已知 AD平分∠BAC 已知1
∠1=∠2 ∠1=∠3 DE=AE DE∥CA ∠2=∠3 A B F
E
3 1 2
高中数学—综合法与分析法
∵∴即a2>(aab->-1bcb),(+b-bc-1)c(c+-ca)-1<a0, 0 成立.
5. 已知 m, nR+,
求证
m
+ 2
n
m+n
mnnm
.
证明: ∵ m, nR+,
要证
m+ 2
n
m+n
mnnm
,
只需证
(
m+ 2
n
)m+n
mnnm
,
(
m+ 2
n
)m+n
(
mn )m+n ,
∴只需证 ( mn)m+n mnnm,
b3+c3=(b+c)(b2-bc+c2) ≥(b+c)bc, c3+a3=(c+a)(c2-ca+a2) ≥(c+a)ca, ∴2(a3+b3+c3)≥(a+b)ab+(b+c)bc+(c+a)ca
=a2b+ab2+b2c+bc2+c2a+ca2 =a2(b+c)+b2(a+c)+c2(a+b).
配方计算得 (a-b)2+(b-c)2+(c-a)2>0,
∵a, b, c互不相等, ∴(a-b)2+(b-c)2+(c-a)2>0 成立, ∴原不等式成立.
4. 已知 a>b>c,
求证
1 a-b
+
1 b-c
+
1 c-a
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.分析法的定义 从 要证明的结论 出发,逐步寻求使它成立的充分条件, 直至最后,把要证明的结论归结为判定一个明显成立的条件 ( 已知条、件 定、理 定、义 公等理)为止,这种证明方法 叫做分析法.
4.分析法的框图表示 得到一个明显
Q⇐P1 → P1⇐P2 ―→ P2⇐P3 ―→…―→ 成立的条件
证明:要证
tan
Atan
B>1,只需证csoins
Asin Acos
BB>1,
∵A、B 均为锐角,∴cos A>0,cos B>0.
即证 sin Asin B>cos Acos B,
即 cos Acos B-sin Asin B<0,只需证 cos(A+B)<0.
∵△ABC 为锐角三角形,∴90°<A+B<180°,
[对点训练] 设 a,b∈(0,+∞),且 a≠b,求证:a3+b3>a2b+ab2. 证明:法一:(分析法) 要证 a3+b3>a2b+ab2 成立, 即需证(a+b)(a2-ab+b2)>ab(a+b)成立. 又因 a+b>0,故只需证 a2-ab+b2>ab 成立, 即需证 a2-2ab+b2>0 成立,即需证(a-b)2>0 成立. 而依题设 a≠b,则(a-b)2>0 显然成立. 由此命题得证.
分析法的应用
[例 2] 设 a>b>0,求证: a2-b2+ ab-b2> a( a- b). [证明] 因为 a>b>0,所以 a2>ab>b2, 所以 ab-b2>0. 要证 a2-b2+ ab-b2> a( a- b), 只需证 a2-ab22- -abab-b2> aa22- +abab, 只需证 a2-b2- ab-b2< a2+ ab. 而 a2-b2< a2+ ab+ ab-b2显然成立. 所以 a2-b2+ ab-b2> a( a- b)成立.
【常考题型】
综合法的应用
[例 1] 已知 a,b,c 是不全相等的正数,求证:a(b2+c2) +b(c2+a2)+c(a2+b2)>6abc.
[证明] ∵a,b,c 是正数,∴b2+c2≥2bc, ∴a(b2+c2)≥2abc.① 同理,b(c2+a2)≥2abc,② c(a2+b2)≥2abc.③ ∵a,b,c 不全相等,
∴cos(A+B)<0,因此 tan Atan B>1.
综合法和分析法的综合应用 [例 3] 已知△ABC 的三个内角 A,B,C 为等差数列, 且 a,b,c 分别为角 A,B,C 的对边, 求证:(a+b)-1+(b+c)-1=3(a+b+c)-1. [证明] 法一:(分析法) 要证(a+b)-1+(b+c)-1=3(a+b+c)-1, 即证a+1 b+b+1 c=a+3b+c,
特别地,根据题目特点选取合适的证法可以简化解题过程.
[对点训练] 已知 a>0,b>0,且 a+b=1,求证:4a+1b≥9. 证明:∵a>0,b>0,a+b=1, ∴4a+1b=4aa+b+a+b b=4+4ab+ab+1=5+4ab+ab≥5+2 4ab×ab=5+4=9.当且仅当4ab=ab,即 a=2b 时“=”成立.
[类题通法] 综合法与分析法的适用范围
(1)综合法适用的范围: ①定义明确的题型,如证明函数的单调性、奇偶性,求证无条件 的等式或不等式问题等; ②已知条件明确,且容易通过找已知条件的必要条件逼近欲得结 论的题型. (2)分析法适用的范围: 分析法的适用范围是已知条件不明确,或已知条件简便而结论式 子较复杂的问题.
只需证a+a+b+b c+a+b+b+c c=3, 化简,得a+c b+b+a c=1, 即 c(b+c)+(a+b)a=(a+b)(b+c), 所以只需证 c2+a2=b2+ac. 因为△ABC 的三个内角 A,B,C 成等差数列, 所以 B=60°,所以 cos B=a2+2ca2c-b2=12, 即 a2+c2-b2=ac 成立. ∴(a+b)-1+(b+c)-1=3(a+b+c)-1 成立.
[类题通法] 分析法的证明过程及书写形式
(1)证明过程:确定结论与已知条件间的联系,合理选择相 关定义、定理对结论进行转化,直到获得一个显而易见的命题即 可.
(2)书写形式:要证…,只需证…,即证…,然后得到一个 明显成立的条件,所以结论成立.
[对点训练]
在锐角△ABC 中,求证:tan Atan B>1.
法二:(综合法) 因为△ABC 的三内角 A,B,C 成等差数列, 所以 B=60°. 由余弦定理,有 b2=c2+a2-2accos 60°. 所以 c2+a2=ac+b2, 两边加 ab+bc,得
c(b+c)+a(a+b)=(a+b)(b+c), 两边同时除以(a+b)(b+c), 得a+c b+b+a c=1, 所以a+c b+1+b+a c+1=3, 即a+1 b+b+1 c=a+3b+c, 所以(a+b)-1+(b+c)-1=3(a+b+c)-1.
综合法和分析法
【知识梳理】
1.综合法的定义 利用 已知条件 和某些数学 定义、 定理 、公理 等,经 过一系列的 推理论证 ,最后推导出所要证明的结论成立, 这种证明方法叫做综合法.
2.综合法的框图表示 P⇒Q1 ―→ Q1⇒Q2 ―→ Q2⇒Q3 ―→…―→ Qn⇒Q (P 表示已知条件 、已有的 定义 、 定理 、 公理 等,Q 表 示所要 证明的结论 )
法二:(综合法) a≠b⇔a-b≠0⇔(a-b)2>0⇔a2-2ab+b2>0 ⇔a2-ab+b2>ab. ∵a>0,b>0,∴a+b>0,(a+b)(a2-ab+b2)>ab(a+b). ∴a3+b3>a2b+ab2.
∴b2+c2≥2bc,c2+a2≥2ca,a2+b2≥2ab 三式中不能同时 取到“=”.
∴①②③式相加ห้องสมุดไป่ตู้ a(b2+c2)+b(c2+a2)+c(a2+b2)>6abc.
[类题通法] 综合法的证明步骤
(1)分析条件,选择方向:确定已知条件和结论间的联系,合 理选择相关定义、定理等;
(2)转化条件,组织过程:将条件合理转化,书写出严密的证 明过程.