全国初中数学竞赛试题及答案(2020年整理).pptx
全国初中数学竞赛试题及答案(完整资料).doc
【最新整理,下载后即可编辑】中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c在数轴上的位置如图所示,那么代数式22||()||a abc a b c++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-+11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)5 3(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A )1 (B )214a - (C )12(D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线,△ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD= 5,则CD 的长为( ). (A )23 (B )4 (C )52(D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )4 4(乙).如果关于x 的方程20x px q p q --=(,是正整数)的正根小于3,那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 8 5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).OAB CED(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99 二、填空题(共5小题,每小题6分,共30分) 6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作.如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 .7(乙).如图所示,点A 在半径为20的圆O上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
2020-2021学年全国初中数学竞赛试题(多份)及答案
保证原创精品 已受版权保护2020年全国初中数学竞赛试题(多份)及答案一、选择题1.设a <b <0,a 2+b 2=4ab ,则b a ba 的值为【 】A 、3B 、6C 、2D 、32.已知a =2020x +2020,b =2020x +2020,c =2020x +2020,则多项式a 2+b 2+c 2-ab -bc -ca 的值为【 】A 、0B 、1C 、2D 、33.如图,点E 、F 分别是矩形ABCD 的边AB 、BC 的中点,连AF 、CE 交于点G ,则ABCDAGCDS S 矩形四边形等于【 】A 、65B 、54C 、43D 、32ABC DEF G保证原创精品 已受版权保护4.设a 、b 、c 为实数,x =a 2-2b +3,y =b 2-2c +3,z =c 2-2a +3,则x 、y 、z 中至少有一个值【 】A 、大于0B 、等于0C 、不大于0D 、小于05.设关于x 的方程ax 2+(a +2)x +9a =0,有两个不等的实数根x 1、x 2,且x 1<1<x 2,那么a 的取值范围是【 】A 、72<a <52 B 、a >52 C 、a <72 D 、112<a <06.A 1A 2A 3…A 9是一个正九边形,A 1A 2=a ,A 1A 3=b ,则A 1A 5等于【 】A 、22b a B 、22b ab a C 、b a 21D 、a +b二、填空题7.设x 1、x 2是关于x 的一元二次方程x 2+ax +a =2的两个实数根,则(x 1-2x 2)(x 2-2x 1)的最大值为 。
8.已知a 、b 为抛物线y =(x -c)(x -c -d)-2与x 轴交点的横坐标,a <b ,则bc c a 的值为 。
9.如图,在△ABC 中,∠ABC =600,点P 是△ABC 内的一点,使得∠APB =∠BPC =∠CPA ,且PA =8,PC =6,则PB = 。
2020-2021学年全国初中数学竞赛试题(含答案)
2020年全国初中数学竞赛试题(含答案)考试时间 2020年4月2日上午 9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A ,B ,C ,D 的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是( )(A )36 (B )37 (C )55 (D )902.已知21 m ,21 n ,且)763)(147(22 n n a m m =8,则a 的值等于( )(A )-5 (B )5 (C )-9 (D )93.Rt △ABC 的三个顶点A ,B ,C 均在抛物线2x y 上,并且斜边AB 平行于x 轴.若斜边上的高为h ,则( )(A )h <1 (B )h =1 (C )1<h <2(D )h >24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是( )(A )2020 (B )2020 (C )2020 (D )20205.如图,正方形ABCD 内接于⊙O ,点P 在劣弧AB 上,连结DP ,交AC 于点Q .若QP=QO ,则QA QC的值为( )(A )132 (B )32(C )23 (D )23 二、填空题 (共5小题,每小题6分,满分30分)6.已知a ,b ,c 为整数,且a +b=2020,c -a =2020.若a <b ,则a +b +c 的最大值为 .7.如图,面积为c b a 的正方形DEFG 内接于面积为1的正三角形ABC ,其中a ,b ,c 为整数,且b 不能被任何质数的平方整除,则b ca 的值等于 .8.正五边形广场ABCDE 的周长为2020米.甲、乙两人分别从A 、C 两点同时出发,沿A !’B !’C !’D !’E !’A !’…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过 分钟,甲、乙两人第一次行走在同一条边上.9.已知0<a <1,且满足183029302301 a a a ,则 a 10的值等于 .( x 表示不超过x 的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是 .三、解答题(共4题,每小题15分,满分60分)11.已知a bx,a ,b 为互质的正整数(即a ,b 是正整数,且它们的最大公约数为1),且a ≤8,1312 x .试写出一个满足条件的x ;(1)(第7题图)ABCDGFE求所有满足条件的x .(2)12.设a ,b ,c 为互不相等的实数,且满足关系式14162222 a a c b ①542 a a bc ②求a 的取值范围.13.如图,点P 为⊙O 外一点,过点P 作⊙O 的两条切线,切点分别为A ,B .过点A 作PB 的平行线,交⊙O 于点C .连结PC ,交⊙O 于点E ;连结AE ,并延长AE 交PB 于点K .求证:PE·AC=CE·KB .A14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2020年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
2020版初三数学竞赛试卷含答案
2020版初三数学竞赛试卷含答案2020版初三数学竞赛试卷一、选择题(共5小题,每小题6分,共30分)1.已知a≠0,14(a2b2c2)=(a2b3c)2,那么a:b:c=()A、2:3:6B、1:2:3C、1:3:4D、1:2:42.抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是()A、B、且k≠0;C、D、且k≠03.如图,已知P是正方形ABCD内一点,△PBC是等边三角形,若△PAD的外接圆半径为a,则正方形ABCD边长为()A、B、C、D、4.一个等腰三角形被过一个顶点的一条直线分割成两个较小的等腰三角形,那么这个等腰三角形的顶的角度数的值可能有()A、2种B、3种C、4种D、5种5.如图所示,二次函数y=ax 2+bx+c 的图象经过点(-1,2),且与x 轴交点的横坐标分别为x 1,x 2,其中-2<x 1<-1,0<x 2<1,下列结论:①4a-2bc<0;②2a-b<0;③a<-1;④b 28a>4ac。
其中正确的有()(A)1个(B)2个(C)3个(D)4个二、填空题(共5小题,每小题6分,共30分)6.已知x 2xy y=14①,y 2xy x=28②,则x y 的值为.7.已知a,b 均为质数,且满足a 2b a =13,则a b b 2=.8.设整数a 使得关于x 的一元二次方程的两个根都是整数,则整数a的值=.9.如图是一个数的转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x,y,z时,对应输出的新数依次为,,.例如,输入1,2,3,则输出,,.那么当输出的新数为,,时,输入的3个数依次为.10.若实数a、b满足a2ab b2=1,且t=ab-a2-b2,则t的取值范围是。
三、解答题(共4题,满分60分)11、规定符号[x]表示不超过x的最大整数,例[3.1]=3,[-73]=-3,[6]=6。
求:满足方程2-x2=[x]且大于-3的x的解。
(2020年整理)全国初中数学竞赛试题及答案.doc
中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a,b,c22||()||a abc a b c-++-+可以化简为().(A)2c a-(B)22a b-(C)a-(D)a1(乙).如果22a=-11123a+++的值为().(A)2-(B2(C)2 (D)22(甲).如果正比例函数y = ax(a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为().(A)(2,3)(B)(3,-2)(C)(-2,3)(D)(3,2)2(乙).在平面直角坐标系xOy中,满足不等式x2+y2≤2x+2y的整数点坐标(x,y)的个数为().(A)10 (B)9 (C)7 (D)53(甲).如果a b,为给定的实数,且1a b<<,那么1121a ab a b++++,,,这四个数据的平均数与中位数之差的绝对值是().(A)1 (B)214a-(C)12(D)143(乙).如图,四边形ABCD中,AC,BD是对角线,△ABC是等边三角形.30ADC∠=︒,AD = 3,BD = 5,则CD的长为().(A)23(B)4(C)52(D)4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n倍”;小玲对小倩说:“你若给我n元,我的钱数将是你的2倍”,其中n为正整数,则n的可能值的个数是().OAB CED(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100L , , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )XXXX (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215, E ,F 分别是AB ,BC 的中点,AF 与DE ,DB 分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。
初中数学奥林匹克竞赛题4套带详解.pptx
于点.F.又知BC=5.
/A
(1) 设△ABC的面积为S.若四边形AEFD的面积为-£ .求
2
5 ED长.
⑵ 若AC = -J2AP,且DF经过△ ABC的重心G,求E, F两
点的距离,
=. (25分)已知定理:"若三个大于3的庙教貞,成二满足关系式2a-\-5b = c ,贝LI a +占+二
是整数点的倍数试问:上述定理中整数推的最大可能值是峯少T并证明你的结论.
fj£,(«+ ft + f):^yr 队&异曲乂 故("+ A + c):
s o.Mifti. n + t+ r=o. 二.如图7. W •:健:浦.网抓
,'-,2,稀#;s丄况4 s乙 ix:f.
记 S jtn = Si •
■ y .1.
①
,啓 HI) _ CD 一厅=商71 =此.
TH '/si g HD+IX: Bf: 于也
值与最小值. 二. (共狷分)如图5,在厶ABC中,ZA=60:J 0,
LH分别是它的外心,内心,垂心.试比较厶 ABC 的外接圆与厶IOH的外接圆的大小,证明 你的论 断.
x+y+z = 3 三. (共25分■)求方程组f 5 % 的所有
X3+/+Z3 = 3 整数解.
6
学海无涯
参考答案:2 没购铅宅、炼习本個球笔各I件分别元寸
4.已知二汶函数y=aX2(a>V)的圏象上两点A, B的橫坐标分别为-1,丄。是坐标原点,
如SAA0B是直角三角形,则AAOB的周长为____. 第二试
—.(20分)已知实数淳&二满足不等式园乏杓+二,冋乏Z+刘|, m |a+占|,求a+占+二
全国初中数学联合竞赛试题 及详细 解答(含一试二试)
全国初中数学联合竞赛试题第一试(A)一、选择题(本题满分42分,每小题7分)(本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.已知实数a,b,c 满足213390a b c ++=,3972a b c ++=,则32b c a b+=+ ( ) A. 2 B. 1 C. 0 D. -1 2.已知△ABC 的三边长分别是a,b,c ,有以下三个结论:(1a b c(2)以222,,a b c 为边长的三角形一定存在;(3)以为1,1,1a b b c c a -+-+-+为边长的三角形一定存在.其中正确结论的个数为 ( )A .0B .1C .2D .33.若正整数a,b,c 满足a b c ≤≤且=2()abc a b c ++,则称()a b c ,,为好数组.那么,好数组的个数为 ( )A. 1 B .2 C .3 D .44.设O 是四边形ABCD 的对角线AC 、BD 的交点,若0180BAD ACB ∠+∠=,且BC=3,AD=4,AC=5 ,AB=6 ,则DO OB= ( ) A. 10/9 B .8/7 C .6/5 D .4/3第4题图 第5题图5.设A 是以BC 为直径的圆上的一点,AD ⊥BC 于点D ,点E 在线段DC 上,点F 在CB 的延长线上, 满足BAF CAE ∠=∠.已知BC=15,BF=6,BD=3,则AE = ( ) A. 43 B. 213 C. 214 D. 2156.对于正整数n ,设a n 是最接近n 的整数,则1232001111...a a a a ++++=( ) A. 191/7 B .192/7 C .193/7 D .194/7二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.使得等式31+1+a a =成立的实数a 的值为______ _.2.如图,平行四边形ABCD 中,072ABC ∠=,AF BC ⊥于点F ,AF 交BD 于点E ,若DE=2AB ,则AED ∠=______.3.设m,n 是正整数,且m>n. 若9m 与9n 的末两位数字相同,则m-n 的最小值为 .4.若实数x,y满足3331+的最小值为.x y++=,则22x y xy第一试(B)一、选择题(本题满分42分,每小题7分)1.已知二次函数y ax2bx c(c 0)的图象与x轴有唯一交点,则二次函数y a3 x2b3x c3的图象与x 轴的交点个数为()A.0 B.1 C.2 D.不确定.2.题目与(A)卷第1 题相同.3. 题目与(A)卷第3 题相同.4.已知正整数a,b,c满足a26b 3c 9 0,6a b2 c 0,则a2 b2c2=()A. 424B. 430C. 441D. 460.5.设O是四边形ABCD的对角线AC、BD的交点,若BAD ACB 180,且BC 3,AD 4,AC 5,AB 6,则DO/OB=()A. 4/3B. 6/5C. 8/7D. 10/96.题目与(A)卷第5 题相同.二、填空题:(本题满分28 分,每小题7 分)1.题目与(A)卷第1 题相同.2.设O是锐角三角形ABC的外心,D,E分别为线段BC,OA的中点,∠=∠,则OED∠=_________.ABC OED∠=∠,57ACB OED3. 题目与(A )卷第3 题相同.4. 题目与(A )卷第4 题相同第二试 (A )一、(本题满分20 分)已知实数x,y 满足x+y=3,221112x y x y +=++ ,求55x y +的值.二、(本题满分25分)如图,△ABC 中,AB AC ,BAC 45,E 是BAC 的外角平分线与△ABC 的外接圆的交点,点F 在AB 上且EF AB .已知AF 1,BF 5,求△ABC 的面积.三、(本题满分25分)求所有的正整数数对(a, b),使得34938b a =⨯+第二试 (B )一、(本题满分20分)已知实数a,b,c 满足a b c ≤≤,++=16a b c ,2221+++=1284a b c abc , 求c 的值.二、(本题满分25 分)求所有的正整数m ,使得212-2+1m m -是完全平方数.三、(本题满分25分)如图,O 为四边形ABCD 内一点,OAD OCB ,OA OD ,OB OC .求证: AB 2 CD 2 AD 2 BC 2 .。
2020年全国初中数学联合竞赛试题及详解
2020年全国初中数学联合竞赛试题第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.) 1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知23t =-a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ) .A 12.B 3.C 1 .D 3 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ).A 6858 .B 6860 .C 9260 .D 9262 3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab = ( ).A 0 .B 14 .C 34- .D 2-4.已知O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O 于点E ,若8,AB =2CD =,则BCE ∆的面积为 ( ).A 12 .B 15 .C 16 .D 185.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 3.B 5.C 22 .D 126.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,AD =则AM = .2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 .3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 . 4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 .第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.二、(本题满分25分) (A ).如图,点C 在以AB 为直径的O 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O 交于点N .证明:FN DE =.(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++=求222222()()()a ab b b bc c c ca a ++++++的值.三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= .(1) 求111xy yz zx++的值. (2) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.2020年全国初中数学联合竞赛试题及详解 第一试 (3月20日上午8:30 - 9:30)一、选择题(本题满分42分,每小题7分) (本题共有6个小题,每题均给出了代号为A ,B ,C ,D 的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内. 每小题选对得7分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得0分.)1.用[]x 表示不超过x 的最大整数,把[]x x -称为x 的小数部分.已知t =,a 是t 的小数部分,b 是t -的小数部分,则112b a-= ( ).A 12.B .C 1 .D 【答案】A .【解析】22,2t ==<<-324,∴<< 即34,t <<3 1.a t ∴=-=又221,t -=---<-423,∴-<-<-(4)2b t ∴=---=11211,2222b a ∴-==-=故选A . 2.三种图书的单价分别为10元、15元和20元,某学校计划恰好用500元购买上述图书30本,那么不同的购书方案有 ( ).A 9种 .B 10种 .C 11种 .D 12种 【答案】C .【解析】设购买三种图书的数量分别为,,,x y z 则30101520500x y z x y z ++=⎧⎨++=⎩,即30341002y z x y z x +=-⎧⎨+=-⎩,解得20210y xz x=-⎧⎨=+⎩ 依题意得,,,x y z 为自然数(非负整数),故010,x ≤≤x 有11种可能的取值(分别为0,1,2,,9,10),对于每一个x 值,y 和z 都有唯一的值(自然数)相对应. 即不同的购书方案共有11种,故选C . 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数”.如:333321(1),2631,=--=- 2和26均为“和谐数”.那么,不超过2016的正整数中,所有的“和谐数”之和为 ( ) .A 6858 .B 6860 .C 9260 .D 9262【答案】B .【解析】[]3322(21)(21)(21)(21)(21)(21)(21)(21)k k k k k k k k ⎡⎤+--=+--+++-+-⎣⎦22(121)k =+ (其中k 为非负整数),由22(121)2016k +≤得,9k ≤0,1,2,,8,9k ∴=,即得所有不超过2016的“和谐数”,它们的和为 333333333331(1)(31)(53)(1715)(1917)1916860.⎡⎤--+-+-++-+-=+=⎣⎦故选B .3(B ).已知二次函数21(0)y ax bx a =++≠的图象的顶点在第二象限,且过点(1,0).当a b -为整数时,ab =( ) .A 0 .B 14 .C 34- .D 2- 【答案】B .【解析】依题意知0,0,10,2ba ab a<-<++= 故0,b < 且1b a =--, (1)21a b a a a -=---=+,于是10,a -<< 1211a ∴-<+<又a b -为整数,210,a ∴+= 故1,2a b =-=14ab =,故选B . 4.已知O 的半径OD 垂直于弦AB ,交AB 于点C ,连接AO 并延长交O 于点E ,若8,AB =2CD =,则BCE ∆的面积为( ).A 12 .B 15 .C 16 .D 18【解析】设,OC x =则2,OA OD x ==+OD AB ⊥于,C 14,2AC CB AB ∴=== 在Rt OAC ∆中,222,OC AC OA +=即2224(2),x x +=+解得3x =,即3OC = (第4题答案图)OC 为ABE ∆的中位线,2 6.BE OC ∴== AE 是O 的直径,90,B ∴∠=114612.22BCE S CB BE ∆∴=⋅=⨯⨯= 故选A .5.如图,在四边形ABCD 中,090BAC BDC ∠=∠=,5AB AC ==1CD =,对角线的交点为M ,则DM = ( ).A 32 .B 53.C 22 .D 12(第5题答案图)【答案】D . 【解析】过点A 作AH BD ⊥于点,H 则AMH ∆~,CMD ∆,AH AMCD CM∴=1,CD =,AMAH CM ∴=设,AM x = 则5,5CM x AH x=∴=-在Rt ABM ∆中,2225,BM AB AM x =+=+ 则255AB AMx AH BMx ⋅==+2555x xx =-+显然0x ≠,化简整理得2255100x x -+= 解得52x =(5x =,故 52CM =在Rt CDM ∆中,2212DM CM CD =-=,故选D . 6.设实数,,x y z 满足1,x y z ++= 则23M xy yz xz =++的最大值为 ( ).A 12 .B 23 .C 34.D 1【答案】C .【解析】22(23)(23)(1)34232M xy y x z xy y x x y x xy y x y =++=++--=---++222211122332222y x y x x x x ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+--++-⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦222211113322222244y x x x y x x ⎛⎫⎛⎫⎛⎫=-+--++=-+---+≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭当且仅当1,02x y ==时,M 取等号,故max 34M =,故选C . 二、填空题(本题满分28分,每小题7分)(本题共有4个小题,要求直接将答案写在横线上.)1.【1(A)、2(B )】 已知ABC ∆的顶点A 、C 在反比例函数3y x=(0x >)的图象上,090ACB ∠=,030ABC ∠=,AB x ⊥轴,点B 在点A 的上方,且6,AB =则点C 的坐标为 .【答案】322⎛⎫⎪ ⎪⎝⎭. 【解析】如图,过点C 作CD AB ⊥于点D . 在Rt ACB ∆中,cos 33BC AB ABC =⋅∠= 在Rt BCD ∆中,33sin 2CD BC B =⋅=(第1题答案图) 9cos ,2BD BC B =⋅=32AD AB BD ∴=-=,设33,C m A n ⎛⎛ ⎝⎭⎝⎭, 依题意知0,n m >>故33,CD n m AD =-=3323332n m mn ⎧-=⎪⎪-=⎩ 解得323m n ⎧=⎪⎨⎪=⎩,故点C 的坐标为322⎛⎫ ⎪ ⎪⎝⎭. 1(B).已知ABC ∆的最大边BC 上的高线AD 和中线AM 恰好把BAC ∠三等分,3AD =则AM = .【答案】2.【解析】(第1题答案图1 ) ( 第1题答案图2)依题意得BAD DAM MAC ∠=∠=∠,090,ADB ADC ∠=∠= 故ABC ACB ∠≠∠. (1)若ABC ACB ∠>∠时,如答案图1所示,ADM ∆≌,ADB ∆1,2BD DM CM ∴== 又AM 平分,DAC ∠ 1,2AD DM AC CM ∴==在Rt DAC ∆中,即1cos ,2DAC ∠= 060,DAC ∴∠= 从而0090,30BAC ACD ∠=∠=.在Rt ADC ∆中,tan 3tan 603,CD AD DAC =⋅∠== 1.DM =在Rt ADM ∆中,222AM AD DM =+=.(2)若ABC ACB ∠<∠时,如答案图2所示.同理可得2AM =.综上所述,2AM =. 2(A).在四边形ABCD 中,BC ∥AD ,CA 平分BCD ∠,O 为对角线的交点,,CD AO =,BC OD =则ABC ∠= .【答案】126.【解析】设,OCD ADO αβ∠=∠=,CA 平分BCD ∠,OCD OCB α∴∠=∠=,BC ∥AD ,,ADO OBC DAO OCB βα∴∠=∠=∠=∠=, (第2题答案图) OCD DAO α∴∠=∠=,AD CD ∴=,,CD AO =AD AO ∴=,ADO AOD BOC OBC β∴∠=∠=∠=∠=,OC BC ∴=, ,BC OD =,OC OD ∴=ODC OCD α∴∠=∠=,180BOC ODC OCD BOC OBC OCB ∠=∠+∠∠+∠+∠=2,2180,βααβ∴=+=解得36,72αβ==,72DBC BCD ∴∠=∠=,,BD CD AD ∴==18054,2ABD BAD β-∴∠=∠== 故126ABC ABD DBC ∠=∠+∠=.3.【3(A)、4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的3倍,这个六位数是 . 【答案】167334.【解析】设两个三位数分别为,x y ,则10003x y xy +=,①31000(31000),y xy x y x ∴=-=-故y 是x 的正整数倍,不妨设y tx =(t 为正整数),代入①得10003,t tx +=1000,3tx t+∴=x 是三位数,10001003tx t+∴=≥,解得 1000,299t ≤t 为正整数,t ∴的可能取值为1,2,3.验证可知,只有2t =符合,此时167,334.x y == 故所求的六位数为167334.3(B).若质数p 、q 满足:340,111,q p p q --=+<则pq 的最大值为 .【答案】1007.【解析】由340q p --=得,34,p q =-2224(34)343,33pq q q q q q ⎛⎫∴=-=-=-- ⎪⎝⎭因q 为质数,故pq 的值随着质数q 的增大而增大,当且仅当q 取得最大值时,pq 取得最大值.又111p q +<,34111,q q ∴-+<3284q ∴<,因q 为质数,故q 的可能取值为 23,19,17,13,11,7,5,3,2,但23q =时,3465513p q =-==⨯不是质数,舍去.当19q =时,3453p q =-=恰为质数.故max max 19,()53191007q pq ==⨯=.4(A).将5个1、5个2、5个3、5个4、5个5共25个数填入一个5行5列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过2.考虑每列中各数之和,设这5个和的最小值为M ,则M 的最大值为 . 【答案】10.【解析】(依据5个1分布的列数的不同情形进行讨论,确定M 的最大值.(1)若5个1分布在同一列,则5M =;(2)若5个1分布在两列中,则由题意知这两列中出现的最大数至多为3,故 2515320M ≤⨯+⨯=,故10M ≤;(3) 若5个1分布在三列中,则由题意知这三列中出现的最大数至多为3,故 351525330M ≤⨯+⨯+⨯=,故10M ≤;(4) 若5个1分布在至少四列中,则其中某一列至少有一个数大于3,这与已知矛盾. 综上所述,10.M ≤另一方面,如下表的例子说明M 可以取到10.故M 的最大值为10.第二试(3月20日上午9:50 — 11:20)一、(本题满分20分)已知,a b 为正整数,求22324M a ab b =---能取到的最小正整数值.【解析】解:因,a b 为正整数,要使得22324M a ab b =---的值为正整数,则有2a ≥.当2a =时,b 只能为1,此时 4.M =故M 能取到的最小正整数值不超过4.当3a =时,b 只能为1或2.若1,18b M ==;若2b =,则7M =.当4a =时,b 只能为1或2或3.若1,38b M ==;若2,24b M ==;若3,b =则2M =.(下面考虑:22324M a ab b =---的值能否为1?)(反证法)假设1M =,则223241a ab b ---=,即22325a ab b -=+, 2(3)25a a b b -=+ ①因b 为正整数,故25b +为奇数,从而a 为奇数,b 为偶数,不妨设21,2a m b n =+=,其中,m n 均为正整数,则22222(3)(21)3(21)(2)4(332)3a a b m m n m m mn n ⎡⎤-=++-=+--+⎣⎦即2(3)a a b -被4除所得余数为3,而252(2)141b n n +=+=+被4除所得余数为1,故①式不可能成立,故1M ≠.因此,M 能取到的最小正整数值为2.二、(本题满分25分)(A ).如图,点C 在以AB 为直径的O 上,CD AB ⊥于点D ,点E 在BD 上,,AE AC =四边形DEFM 是正方形,AM 的延长线与O 交于点N .证明:FN DE =.(第2(A)题答案图) 【证明】:连接BC 、.BN AB 为O 的直径,CD AB ⊥于点D90ACB ANB ADC ∴∠=∠=∠=,,CAB DAC ACB ADC ∠=∠∠=∠,ACB ADC ∴∆∆∽,AC AB AD AC∴=2AC AD AB ∴=⋅ 由四边形DEFM 是正方形及CD AB ⊥于点D 可知:点M 在CD 上,DE DM EF MF ===,,NAB DAM ANB ADM ∠=∠∠=∠,ANB ADM ∴∆∆∽,AN AB AD AM∴=,AD AB AM AN ∴⋅=⋅2,AC AM AN ∴=⋅ ,AE AC =2AE AM AN ∴=⋅以点F 为圆心、FE 为半径作,F 与直线AM 交于另一点P ,则F 与AB 切于点E ,即AE 是F 的切线,直线AMP 是F 的割线,故由切割线定理得2AE AM AP =⋅AN AP ∴=,即点N 与点P 重合,点N 在F 上,FN FE DE ∴==.(注:上述最后一段得证明用了“同一法”)(B ).已知:5,a b c ++= 22215,a b c ++= 33347.a b c ++= 求222222()()()a ab b b bc c c ca a ++++++的值. 【解析】由已知得22221()()52ab bc ca a b c a b c ⎡⎤++=++-++=⎣⎦ 由恒等式3332223()()a b c abc a b c a b c ab bc ca ++-=++++---得,4735(155),abc -=⨯-1abc ∴=-又22()()()5(5)55(1)a ab b a b c a b ab bc ca c c ++=+++-++=--=-同理可得22225(4),5(4)b bc c a c ca a b ++=-++=-∴原式=[]35(4)(4)(4)1256416()4()a b c a b c ab bc ca abc ---=-+++++- 125[6416545(1)]625.=⨯-⨯+⨯--=【注:恒等式32()()()()()t a t b t c t a b c t ab bc ca t abc ---=-+++++-】三、(本题满分25分)(A ).已知正实数,,x y z 满足:1xy yz zx ++≠ ,且 222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++= . (3) 求111xy yz zx++的值. (4) 证明:9()()()8()x y y z z x xyz xy yz zx +++≥++.【解析】(1)解:由等式222222(1)(1)(1)(1)(1)(1)4x y y z z x xy yz zx------++=, 去分母得222222(1)(1)(1((1)(1)(1)4z x y x y z y z x xyz --+--+--=,222222222222()()()3()0,x y z xy z x yz x y z y z x z x y xyz x y z xyz ⎡⎤++-+++++++++-=⎣⎦()()()()0xyz xy yz zx x y z xy yz zx x y z xyz ++-+++++++-=,∴[()](1)0xyz x y z xy yz zx -++++-=,1,10xy yz zx xy yz zx ++≠∴++-≠,()0,xyz x y z ∴-++=xyz x y z ∴=++,∴原式=1.x y z xyz ++= (2)证明:由(1)得计算过程知xyz x y z ∴=++,又,,x y z 为正实数,9()()()8()x y y z z x xyz xy yz zx ∴+++-++9()()()8()()x y y z z x x y z xy yz zx =+++-++++222222()()()6x y z y z x z x y xyz =+++++-222()()()0.x y z y z x z x y =-+-+-≥∴9()()()8()x y y z z x xyz xy yz zx +++≥++.【注:222222()()()2x y y z z x x y xy y z yz z x zx xyz +++=++++++ 222222()()()2x y z y z x z x y xyz =++++++222222()()3x y z xy yz zx x y xy y z yz z x zx xyz ++++=++++++222222()()()3x y z y z x z x y xyz =++++++】(B ).如图,在等腰ABC ∆中,5,AB AC ==D 为BC 边上异于中点的点,点C 关于直线AD 的对称点为点E ,EB 的延长线与AD 的延长线交于点,F 求AD AF ⋅的值.(第3(B )题答案图)【解析】如图,连接,,AE ED CF ,则,AB AC =ABD ACB ∴∠=∠点C 关于直线AD 的对称点为点E ,,BED BCF AED ACD ACB ∴∠=∠∠=∠=∠ ,ABD AED ∴∠=∠,,,A E B D ∴四点共圆,BED BAD ∴∠=∠(同弧所对得圆周角相等)BAD BCF ∴∠=∠,,,,A B F C ∴四点共圆,AFB ACB ABD ∴∠=∠=∠,AFB ABD ∴∆∆∽,AB AF AD AB ∴=22 5.AD AF AB ∴⋅===(注:若共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆,也可以说成:若线段同侧两点到线段两端点连线夹角相等,那么这两点和线段两端点四点共圆)。
2020年全国初中数学联合竞赛试题参考答案第1试
2020年全国初中数学联合竞赛试题参考答案第1试第一试一、选择题:〔此题总分值42分,每题7分〕1. 假设,,a b c 均为整数且满足1010()()1a b a c -+-=,那么||||||a b b c c a -+-+-= 〔 B 〕A .1.B .2.C .3.D .4.2.假设实数,,a b c 满足等式3||6b =,9||6b c =,那么c 可能取的最大值为 〔 C 〕A .0.B .1.C .2.D .3. 3.假设b a ,是两个正数,且,0111=+-+-ab b a 那么 〔 C 〕 A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 4.假设方程2310x x --=的两根也是方程420x ax bxc +++=的根,那么2a b c +-的值为 〔 A 〕A .-13.B .-9.C .6.D . 0.5.在△ABC 中,︒=∠60CAB ,D ,E 分不是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,那么=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.6.关于自然数n ,将其各位数字之和记为n a ,如2009200911a =+++=,201020103a =+++=,那么12320092010a a a a a +++++= 〔 D 〕A .28062.B .28065.C .28067.D .28068.二、填空题:〔此题总分值28分,每题7分〕1.实数,x y 满足方程组3319,1,x y x y ⎧+=⎨+=⎩那么22x y += 13 .2.二次函数c bx x y ++=2的图象与x 轴正方向交于A ,B 两点,与y 轴正方向交于点C .AC AB 3=,︒=∠30CAO ,那么c = 19.3.在等腰直角△ABC 中,AB =BC =5,P 是△ABC 内一点,且PA PC =5,那么PB =.4.将假设干个红、黑两种颜色的球摆成一行,要求两种颜色的球都要显现,且任意中间夹有5个或10个球的两个球必为同一种颜色的球.按这种要求摆放,最多能够摆放____15___个球.第二试 〔A 〕一.〔此题总分值20分〕设整数,,a b c 〔a b c ≥≥〕为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数.解 由等式可得 222()()()26a b b c a c -+-+-= ①令,a b m b c n -=-=,那么a c m n -=+,其中,m n 均为自然数.因此,等式①变为222()26m n m n +++=,即 2213m n mn ++= ②由于,m n 均为自然数,判定易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ 〔1〕当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,因此b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,因此c 能够取值4,5,6,7,8,对应可得到5个符合条件的三角形. 〔2〕当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,因此b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,因此c 能够取值2,3,4,5,6,7,对应可得到6个符合条件的三角形. 综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.〔此题总分值25分〕等腰三角形△ABC 中,AB =AC ,∠C 的平分线与AB 边交于点P ,M 为△ABC 的内切圆⊙I 与BC 边的切点,作MD//AC ,交⊙I 于点D.证明:PD 是⊙I 的切线. 证明 过点P 作⊙I 的切线PQ 〔切点为Q 〕并延长,交BC 于点N. 因为CP 为∠ACB 的平分线,因此∠ACP =∠BCP. 又因为PA 、PQ 均为⊙I 的切线,因此∠APC =∠NPC. 又CP 公共,因此△ACP ≌△NCP ,因此∠PAC =∠PNC.由NM =QN ,BA =BC ,因此△QNM ∽△BAC ,故∠NMQ =∠ACB ,因此MQ//AC.又因为MD//AC ,因此MD 和MQ 为同一条直线.又点Q 、D 均在⊙I 上,因此点Q 和点D 重合,故PD 是⊙I 的切线.三.〔此题总分值25分〕二次函数2y x bx c =+-的图象通过两点P (1,)a ,Q (2,10)a .〔1〕假如,,a b c 差不多上整数,且8c b a <<,求,,a b c 的值.〔2〕设二次函数2y x bx c =+-的图象与x 轴的交点为A 、B ,与y 轴的交点为 C.假如关于x 的方程20x bx c +-=的两个根差不多上整数,求△ABC 的面积.解 点P (1,)a 、Q (2,10)a 在二次函数2y x bx c =+-的图象上,故1b c a +-=,4210a c a +-=, 解得93b a =-,82c a =-.〔1〕由8c b a <<知8293,938,a a a a -<-⎧⎨-<⎩解得13a <<. 又a 为整数,因此2a =,9315b a =-=,8214c a =-=.(2) 设,m n 是方程的两个整数根,且m n ≤.NC A由根与系数的关系可得39m n b a +=-=-,28mn c a =-=-,消去a ,得98()6mn m n -+=-, 两边同时乘以9,得8172()54mn m n -+=-,分解因式,得(98)(98)10m n --=.因此981,9810,m n -=⎧⎨-=⎩或982,985,m n -=⎧⎨-=⎩或9810,981,m n -=-⎧⎨-=-⎩或985,982,m n -=-⎧⎨-=-⎩ 解得1,2,m n =⎧⎨=⎩或10,913,9m n ⎧=⎪⎪⎨⎪=⎪⎩或2,97,9m n ⎧=-⎪⎪⎨⎪=⎪⎩或1,932,3m n ⎧=⎪⎪⎨⎪=⎪⎩又,m n 是整数,因此后面三组解舍去,故1,2m n ==.因此,()3b m n =-+=-,2c mn =-=-,二次函数的解析式为232y x x =-+.易求得点A 、B 的坐标为〔1,0〕和〔2,0〕,点C 的坐标为〔0,2〕,因此△ABC 的面积为1(21)212⨯-⨯=. 第二试 〔B 〕一.〔此题总分值20分〕设整数,,a b c 为三角形的三边长,满足22213a b c ab ac bc ++---=,求符合条件且周长不超过30的三角形的个数〔全等的三角形只运算1次〕.解 不妨设a b c ≥≥,由等式可得 222()()()26a b b c a c -+-+-= ①令,a b m b c n -=-=,那么a c m n -=+,其中,m n 均为自然数.因此,等式①变为222()26m n m n +++=,即 2213m n mn ++= ②由于,m n 均为自然数,判定易知,使得等式②成立的,m n 只有两组:3,1m n =⎧⎨=⎩和1,3.m n =⎧⎨=⎩ 〔1〕当3,1m n ==时,1b c =+,34a b c =+=+.又,,a b c 为三角形的三边长,因此b c a +>,即(1)4c c c ++>+,解得3c >.又因为三角形的周长不超过30,即(4)(1)30a b c c c c ++=++++≤,解得253c ≤.因此2533c <≤,因此c 能够取值4,5,6,7,8,对应可得到5个符合条件的三角形. 〔2〕当1,3m n ==时,3b c =+,14a b c =+=+.又,,a b c 为三角形的三边长,因此b c a +>,即(3)4c c c ++>+,解得1c >.又因为三角形的周长不超过30,即(4)(3)30a b c c c c ++=++++≤,解得233c ≤.因此2313c <≤,因此c 能够取值2,3,4,5,6,7,对应可得到6个符合条件的三角形. 综合可知:符合条件且周长不超过30的三角形的个数为5+6=11.二.〔此题总分值25分〕题目和解答与〔A 〕卷第二题相同.三.〔此题总分值25分〕题目和解答与〔A 〕卷第三题相同.第二试 〔C 〕一.〔此题总分值20分〕题目和解答与〔B 〕卷第一题相同.二.〔此题总分值25分〕题目和解答与〔A 〕卷第二题相同.三.〔此题总分值25分〕设p 是大于2的质数,k 为正整数.假设函数4)1(2-+++=p k px x y 的图象与x 轴的两个交点的横坐标至少有一个为整数,求k 的值.解 由题意知,方程04)1(2=-+++p k px x 的两根21,x x 中至少有一个为整数.由根与系数的关系可得4)1(,2121-+=-=+p k x x p x x ,从而有p k x x x x x x )1(4)(2)2)(2(212121-=+++=++ ①〔1〕假设1k =,那么方程为0)2(22=-++p px x ,它有两个整数根2-和2p -.〔2〕假设1k >,那么01>-k .因为12x x p +=-为整数,假如21,x x 中至少有一个为整数,那么21,x x 差不多上整数.又因为p 为质数,由①式知2|1+x p 或2|2+x p .不妨设2|1+x p ,那么可设12x mp +=〔其中m 为非零整数〕,那么由①式可得212k x m -+=, 故121(2)(2)k x x mp m -+++=+,即1214k x x mp m-++=+. 又12x x p +=-,因此14k p mp m--+=+,即 41)1(=-++mk p m ② 假如m 为正整数,那么(1)(11)36m p +≥+⨯=,10k m ->,从而1(1)6k m p m-++>,与②式矛盾. 假如m 为负整数,那么(1)0m p +<,10k m -<,从而1(1)0k m p m-++<,与②式矛盾. 因此,1>k 时,方程04)1(2=-+++p k px x 不可能有整数根.综上所述,1=k .。
2020年全国初中数学联合竞赛试题参考答案
2020年全国初中数学联合竞赛试题参考答案讲明:评阅试卷时,请依据本评分标准.第一试,选择题和填空题只设7分和0分两档;第二试各题,请按照本评分标准规定的评分档次给分.假如考生的解答方法和本解答不同,只要思路合理,步骤正确,在评卷时请参照本评分标准划分的档次,给予相应的分数.第一试一、选择题〔此题总分值42分,每题7分〕此题共有6小题,每题均给出了代号为D C B A ,,,的四个答案,其中有且仅有一个是正确的.将你所选择的答案的代号填在题后的括号内.每题选对得7分;不选、选错或选出的代号字母超过一个〔不论是否写在括号内〕,一律得0分.1.设213a a +=,213b b +=,且a b ≠,那么代数式2211a b +的值为 〔 〕 )(A 5. )(B 7. )(C 9. )(D 11.【答】B .解 由题设条件可知2310a a -+=,2310b b -+=,且a b ≠,因此,a b 是一元二次方程2310x x -+=的两根,故3a b +=,1ab =,因此222222222211()23217()1a b a b ab a b a b ab ++--⨯+====. 应选B . 2.如图,设AD ,BE ,CF 为三角形ABC 的三条高,假设6AB =,5BC =,3EF =,那么线段BE 的长为 〔 〕 )(A 185. )(B 4. )(C 215. )(D 245. 【答】D . 解 因为AD ,BE ,CF 为三角形ABC 的三条高,易知,,,B C E F 四点共圆,因此△AEF ∽△ABC ,故35AF EF AC BC ==,即3cos 5BAC ∠=,因此4sin 5BAC ∠=. 在Rt △ABE 中,424sin 655BE AB BAC =∠=⨯=. 应选D . 3.从分不写有数字1,2,3,4,5的5张卡片中任意取出两张,把第一张卡片上的数字作为十位数字,第二张卡片上的数字作为个位数字,组成一个两位数,那么所组成的数是3的倍数的概率是 〔 〕)(A 15. )(B 310. )(C 25. )(D 12. 【答】C . 解 能够组成的两位数有12,13,14,15,21,23,24,25,31,32,34,35,41,42,43,45,51,52,53,54,共20个,其中是3的倍数的数为12,15,21,24,42,45,51,54,共8个. 因此所组成的数是3的倍数的概率是82205=. 应选C .4.在△ABC 中,12ABC ∠=︒,132ACB ∠=︒,BM 和CN 分不是这两个角的外角平分线,且点,M N 分不在直线AC 和直线AB 上,那么 〔 〕)(A BM CN >. )(B BM CN =.)(C BM CN <. )(D BM 和CN 的大小关系不确定.【答】B .解 ∵12ABC ∠=︒,BM 为ABC ∠的外角平分线,∴1(18012)842MBC ∠=︒-︒=︒. 又180********BCM ACB ∠=︒-∠=︒-︒=︒,∴180844848BMC ∠=︒-︒-︒=︒,∴BM BC =. 又11(180)(180132)2422ACN ACB ∠=︒-∠=︒-︒=︒, ∴18018012()BNC ABC BCN ACB ACN ∠=︒-∠-∠=︒-︒-∠+∠168(13224)=︒-︒+︒12ABC =︒=∠,∴CN CB =. 因此,BM BC CN ==.应选B .5.现有价格相同的5种不同商品,从今天开始每天分不降价10%或20%,假设干天后,这5种商品的价格互不相同,设最高价格和最低价格的比值为r ,那么r 的最小值为 〔 〕)(A 39()8. )(B 49()8. )(C 59()8. )(D 98. 【答】 B .解 容易明白,4天之后就能够显现5种商品的价格互不相同的情形.设5种商品降价前的价格为a ,过了n 天. n 天后每种商品的价格一定能够表示为98(110%)(120%)()()1010k n k k n k a a --⋅-⋅-=⋅⋅,其中k 为自然数,且0k n ≤≤. 要使r 的值最小,五种商品的价格应该分不为:98()()1010i n i a -⋅⋅,1198()()1010i n i a +--⋅⋅, 2298()()1010i n i a +--⋅⋅,3398()()1010i n i a +--⋅⋅,4498()()1010i n i a +--⋅⋅,其中i 为不超过n 的自然数. 因此r 的最小值为44498()()91010()988()()1010i n i i n ia a +---⋅⋅=⋅⋅. 应选B . 6. 实数,x y满足(2008x y =,那么223233x y x y -+-2007-的值为〔 〕 )(A 2008-. )(B 2018. )(C 1-. )(D 1.【答】D .解 ∵22(2008)(2008)2008x x y y ----=, ∴2222008200820082008x x y y y y --==+---, 2222008200820082008y y x x x x --==+---,由以上两式可得x y =. 因此22(2008)2008x x --=,解得22008x =,因此22222323320073233200720071x y x y x x x x x -+--=-+--=-=.应选D .二、填空题〔此题总分值28分,每题7分〕1.设512a -=,那么5432322a a a a a a a+---+=-2-. 解 ∵225135()122a a --===-,∴21a a +=, ∴543232323222()2()2a a a a a a a a a a a a a a a a+---++--++=-⋅- 33332221211(1)(11)2(1)1a a a a a a a a a a a--+--===-=-++=-+=-⋅----. 2.如图,正方形ABCD 的边长为1,,M N 为BD 所在直线上的两点,且5AM =,135MAN ∠=︒,那么四边形AMCN 的面积为52解 设正方形ABCD 的中心为O ,连AO ,那么AO BD ⊥,22AO OB ==, 2222232(5)()22MO AM AO =-=-=, ∴2MB MO OB =-=. 又135ABM NDA ∠=∠=︒, 13590NAD MAN DAB MAB MAB ∠=∠-∠-∠=︒-︒-∠45=︒-MAB AMB ∠=∠,因此△ADN ∽△MBA ,故AD DNMB BA =,从而12AD DN BA MB =⋅==. 依照对称性可知,四边形AMCN 的面积115222(22222MAN S S MN AO ==⨯⨯⨯=⨯⨯⨯=△. 3.二次函数2y x ax b =++的图象与x 轴的两个交点的横坐标分不为m ,n ,且1m n +≤.设满足上述要求的b 的最大值和最小值分不为p ,q ,那么p q +=12解 依照题意,,m n 是一元二次方程20x ax b ++=的两根,因此m n a +=-,mn b =. ∵1m n +≤,∴1m n m n +≤+≤,1m n m n -≤+≤. ∵方程20x ax b ++=的判不式240a b ∆=-≥,∴22()1444a m n b +≤=≤. 22244()()()11b mn m n m n m n ==+--≥+-≥-,故14b ≥-,等号当且仅当12m n =-=时取得; 22244()()1()1b mn m n m n m n ==+--≤--≤,故14b ≤,等号当且仅当12m n ==时取得. 因此14p =,14q =-,因此12p q +=. 4.依次将正整数1,2,3,…的平方数排成一串:149162536496481100121144…,排在第1个位置的数字是1,排在第5个位置的数字是6,排在第10个位置的数字是4,排在第2018个位置的数字是 1 .解 21到23,结果都只各占1个数位,共占133⨯=个数位; 24到29,结果都只各占2个数位,共占2612⨯=个数位;210到231,结果都只各占3个数位,共占32266⨯=个数位;232到299,结果都只各占4个数位,共占468272⨯=个数位;2100到2316,结果都只各占5个数位,共占52171085⨯=个数位;现在还差2008(312662721085)570-++++=个数位.2317到2411,结果都只各占6个数位,共占695570⨯=个数位.因此,排在第2018个位置的数字恰好应该是2的个位数字,即为1.第二试 〔A 〕一.〔此题总分值20分〕 221a b +=,关于满足条件01x ≤≤的一切实数x ,不等式 (1)(1)()0a x x ax bx b x bx ------≥ 〔1〕恒成立.当乘积ab 取最小值时,求,a b 的值.解 整理不等式〔1〕并将221a b +=代入,得 2(1)(21)0a b x a x a ++-++≥ 〔2〕在不等式〔2〕中,令0x =,得0a ≥;令1x =,得0b ≥.易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象〔抛物线〕的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式〔2〕关于满足条件01x ≤≤的一切实数x 恒成立,因此它的判不式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ 〔3〕 消去b ,得42161610a a -+=,因此2a =2a =又因为0a ≥,因此a =a =, 因此方程组〔3〕的解为a b ⎧=⎪⎪⎨⎪=⎪⎩或a b ⎧=⎪⎪⎨⎪=⎪⎩因此ab 的最小值为14,现在,a b 的值有两组,分不为a b ==a b ==二.〔此题总分值25分〕 如图,圆O 与圆D 相交于,A B 两点,BC 为圆D 的切线,点C 在圆O 上,且AB BC =.〔1〕证明:点O 在圆D 的圆周上.〔2〕设△ABC 的面积为S ,求圆D 的的半径r 的最小值.解 〔1〕连,,,OA OB OC AC ,因为O 为圆心,AB BC =,因此△OBA ∽△OBC ,从而OBA OBC ∠=∠.因为,OD AB DB BC ⊥⊥,因此9090DOB OBA OBC DBO ∠=︒-∠=︒-∠=∠,因此DB DO =,因此点O 在圆D 的圆周上.〔2〕设圆O 的半径为a ,BO 的延长线交AC 于点E ,易知BE AC ⊥.设2AC y =(0)y a <≤,OE x =,AB l =,那么222a x y =+,()S y a x =+,22222222()2222()aS l y a x y a ax x a ax a a x y=++=+++=+=+=. 因为22ABC OBA OAB BDO ∠=∠=∠=∠,AB BC =,DB DO =,因此△BDO ∽△ABC ,因此BD BO AB AC=,即2r a l y =,故2al r y =. 因此22223222()4422a l a aS S a S r y y y y ==⋅=⋅≥,即22S r ≥,其中等号当a y =时成立,这时AC 是圆O 的直径.因此圆D 的的半径r 的最小值为22S . 三.〔此题总分值25分〕设a 为质数,b 为正整数,且29(2)509(4511)a b a b +=+ 〔1〕求a ,b 的值.解 〔1〕式即2634511()509509a b a b ++=,设634511,509509a b a b m n ++==,那么 509650943511m a n a b --== 〔2〕 故351160n m a -+=,又2n m =,因此2351160m m a -+= 〔3〕由〔1〕式可知,2(2)a b +能被509整除,而509是质数,因此2a b +能被509整除,故m 为整数,即关于m 的一元二次方程〔3〕有整数根,因此它的判不式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=〔t 为自然数〕,那么2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,因此只可能有以下几种情形:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解. ②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解.③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解. ④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解.⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去. 综合可知251a =.现在方程〔3〕的解为3m =或5023m =〔舍去〕. 把251a =,3m =代入〔2〕式,得5093625173b ⨯-⨯==. 第二试 〔B 〕一.〔此题总分值20分〕221a b +=,关于满足条件1,0x y xy +=≥的一切实数对(,)x y ,不等式 220ay xy bx -+≥ 〔1〕恒成立.当乘积ab 取最小值时,求,a b 的值.解 由1,0x y xy +=≥可知01,01x y ≤≤≤≤.在〔1〕式中,令0,1x y ==,得0a ≥;令1,0x y ==,得0b ≥.将1y x =-代入〔1〕式,得22(1)(1)0a x x x bx ---+≥,即2(1)(21)0a b x a x a ++-++≥ 〔2〕易知10a b ++>,21012(1)a ab +<<++,故二次函数2(1)(21)y a b x a x a =++-++的图象〔抛物线〕的开口向上,且顶点的横坐标在0和1之间.由题设知,不等式〔2〕关于满足条件01x ≤≤的一切实数x 恒成立,因此它的判不式2(21)4(1)0a a b a ∆=+-++⋅≤,即14ab ≥. 由方程组 221,14a b ab ⎧+=⎪⎨=⎪⎩ 〔3〕 消去b ,得42161610a a -+=,因此224a -=或224a +=,又因为0a ≥,因此4a =或4a =. 因此方程组〔3〕的解为4,4a b ⎧=⎪⎪⎨⎪=⎪⎩或,44a b ⎧=⎪⎪⎨⎪=⎪⎩因此满足条件的,a b 的值有两组,分不为a b ==a b == 二.〔此题总分值25分〕题目和解答与〔A 〕卷第二题相同.三.〔此题总分值25分〕题目和解答与〔A 〕卷第三题相同.第二试 〔C 〕一.〔此题总分值20分〕题目和解答与〔B 〕卷第一题相同.二.〔此题总分值25分〕题目和解答与〔A 〕卷第二题相同.三.〔此题总分值25分〕设a 为质数,,b c 为正整数,且满足29(22)509(41022511)2a b c a b c b c ⎧+-=+-⎨-=⎩ (1)(2) 求()a b c +的值.解 〔1〕式即266341022511()509509a b c a b c +-+-=, 设66341022511,509509a b c a b c m n +-+-==,那么 5096509423511m a n a b c ---== 〔3〕 故351160n m a -+=,又2n m =,因此 2351160m m a -+= 〔4〕由〔1〕式可知,2(22)a b c +-能被509整除,而509是质数,因此22a b c +-能被509整除,故m 为整数,即关于m 的一元二次方程〔4〕有整数根,因此它的判不式251172a ∆=-为完全平方数.不妨设2251172a t ∆=-=〔t 为自然数〕,那么2272511(511)(511)a t t t =-=+-. 由于511t +和511t -的奇偶性相同,且511511t +≥,因此只可能有以下几种情形:①51136,5112,t a t +=⎧⎨-=⎩两式相加,得3621022a +=,没有整数解.②51118,5114,t a t +=⎧⎨-=⎩两式相加,得1841022a +=,没有整数解. ③51112,5116,t a t +=⎧⎨-=⎩两式相加,得1261022a +=,没有整数解.④5116,51112,t a t +=⎧⎨-=⎩两式相加,得6121022a +=,没有整数解. ⑤5114,51118,t a t +=⎧⎨-=⎩两式相加,得4181022a +=,解得251a =.⑥5112,51136,t a t +=⎧⎨-=⎩两式相加,得2361022a +=,解得493a =,而4931729=⨯不是质数,故舍去.综合可知251a =,现在方程〔4〕的解为3m =或5023m =〔舍去〕. 把251a =,3m =代入〔3〕式,得50936251273b c ⨯-⨯-==,即27c b =-. 代入〔2〕式得(27)2b b --=,因此5b =,3c =,因此()251(53)2008a b c +=⨯+=.。
2020年八年级全国初中数学竞赛试题及答案
2020年八年级全国初中数学竞赛试题及答案2020年全国初中数学竞赛试题一、选择题1.设 $a<b$,$a+b=4ab$,则 $\frac{22}{a-b}$ 的值为【】。
A。
3 B。
6 C。
2 D。
32.已知 $a=1999x+2000$,$b=1999x+2001$,$c=1999x+2002$,则多项式 $a+b+c-ab-bc-ca$ 的值为【】。
A。
0 B。
1 C。
2 D。
33.如图,点 $E$、$F$ 分别是矩形 $ABCD$ 的边 $AB$、$BC$ 的中点,连 $AF$、$CE$ 交于点 $G$,则四边形$AGCD$ 的面积等于【】。
A。
5432 B。
C。
D。
65434.设 $a$、$b$、$c$ 为实数,$x=a-2b+\frac{2}{3}\pi$,$y=b-2c+\frac{2}{3}\pi$,$z=c-2a+\frac{2}{3}\pi$,则 $x$、$y$、$z$ 中至少有一个值【】。
A。
大于 0 B。
等于 0 C。
不大于 0 D。
小于 05.设关于 $x$ 的方程 $ax+(a+2)x+9a=\frac{1}{2}$ 有两个不等的实数根 $x_1$、$x_2$,且 $x_1<1<x_2$,那么 $a$ 的取值范围是【】。
A。
$-\frac{2}{22}0$ C。
$a<-\frac{2}{22}$ D。
$-\frac{5}{77}<a<\frac{2}{22}$6.$A_1A_2A_3\cdots A_9$ 是一个正九边形,$A_1A_2=a$,$A_1A_3=b$,则 $A_1A_5$ 等于【】。
A。
$a^2+b^2$ B。
$a^2+ab+b^2$ C。
D。
$2a^2+2b^2$二、填空题7.设 $x_1$、$x_2$ 是关于 $x$ 的一元二次方程$x+ax+a=2$ 的两个实数根,则 $(x_1-2x_2)(x_2-2x_1)$ 的最大值为【】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
xOy 中,点 A 在 y 轴负半轴上,点
B、C 分别在 x 轴正、负半轴上,
AO 8, AB AC,sin C 4 5
C
O
B
x
。点 D 在线段AB 上,连结 CD 交
E
y 轴于点 E,且 SCOE SADE 。试
D
求图像经过 B、C、E 三点的二次
A
函数的解析式。
12(甲). 如图,⊙O 的直径为 AB ,
学海无 涯
x 2011
为
x1
,
x2
,那么
1
x 2012
的值为
.
2
8(乙).设 n 为整数,且 1≤n≤XXXX. 若 (n2 n 3)(n2 n 3) 能被 5 整除,则所有 n 的个数
为
.
9(甲). 2 位八年级同学和 m 位九年级同学一起参加象棋比赛,比赛为单循环,即所有参赛者彼此
恰好比赛一场.记分规则是:每场比赛胜者得 3 分,负者得 0 分;平局各得 1 分. 比赛结束后,
.
E
7(乙).如图所示,点 A 在半径为 20 的圆 O 上,以 OA 为一条
C
作矩形OBAC,设直线BC 交圆O 于 D、E 两点,若 OC 12 ,
段 CE、BD 的长度差是
。
O
8(甲). 如果关于 x 的方程 x2+kx+ 3 k2-3k+ 9 = 0 的两个实数
4
2
A
对角线 则线
BD
根分别
(A)(2,3) (B)(3,-2) (C)(-2,3) (D)(3,2)
2(乙).在平面直角坐标系 xOy 中,满足不等式 x2+y2≤2x+2y 的整数点坐标(x,y)的个数为 ). (
3(甲()A.)如1果0 a,b 为给(定B的)实9数,且1 a b(,C)那7么1,a1,(2Da)5b,a b 1 这四个数据的平均
数与中位数之差的绝对值是( ).
(A)1
(B) 2a 1 4
(C) 1 2
(D) 1 4
3(乙).如图,四边形 ABCD 中,AC,BD 是对角线,
△ABC 是等边三角形. ADC 30 ,AD = 3,BD = 5,
则 CD 的长为( ).
(A) 3 2
(B)4
(C) 2 5
(D)4.5
4(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我 2 元,我的钱 数将是你的 n 倍”;小玲对小倩说:“你若给我 n 元,我的钱数将是你的 2 倍”,其中 n 为正整数, 则 n 的可能值的个数是( ).
所有同学的得分总和为 130 分,而且平局数不超过比赛局数的一半,则 m 的值为
.
9(乙).如果正数 x,y,z 可以是一个三角形的三边长,那么称(x,y,z)是三角形数.若(a,b,c
)
和(1 ,1,1 )均为三角形数,且 a≤b≤c,则a 的取值范围是
.
ab c
c
10(甲)如图,四边形 ABCD 内接于⊙O,
学海无涯
中国教育学会中学数学教学专业委员会
全国初中数学竞赛试题
一、选择题(共 5 小题,每小题 6 分,共 30 分.)
1(甲).如果实数 a,b,c 在数轴上的位置如图所示,那么代数式 a2 | a b | (c a)2 | b c | 可
以化简为(
).
(A) 2c a
(B) 2a 2b
学海无涯 O1过点O ,且与⊙O 内切于点 B .C 为⊙O 上的点,OC 与 O1交于点 D ,且 OD CD .点 E 在 OD 上,且 DC DE ,BE 的延长线与 O1交于点 F ,求证:△BOC∽△ DO1F .
12(乙).如图,⊙O 的内接四边形 ABCD 中,AC,BD 是它的对角线,AC 的中点 I 是△ABD 的内 心. 求证: (1)OI 是△IBD 的外接圆的切线; (2)AB+AD = 2BD.
AB 是直径,AD = DC. 分别延长 BA,CD, 交点为 E. 作 BF⊥EC,并与 EC 的延长线
交于点 F. 若 AE = AO,BC = 6,则 CF 的
长为 .
10(乙).已知n 是偶数,且 1≤ n ≤100.若有唯一的正整数对(a,b)使得面上的两个数字之和除以 4 的余数分别是 0,1,2,3 的概率为 p0,p1,p2,p3,则
p0,p1,p2,p3中最大的是( ).
(A) p0
(B) p1
(C) p2
(D) p3
5(乙).黑板上写有1, 1, 1 , , 1 共 100 个数字.每次操作先从黑板上的数中选取 2 个数
23
值范围是
.
6(乙).如果 a,b,c 是正数,且满足 abc9 ,
1 1 1 10 ,那 么 a b c 的值
ab bc ca 9
bc ca ab
为
.
7(甲).如图,正方形 ABCD 的边长为 2 15 ,
E,F 分别是 AB,BC 的中点,AF 与 DE,DB
分别交于点 M,N,则△DMN 的面积是
(C) a
1(乙).如果a 2 2 ,那么1 1 的值为( 2 1 3a
(A) 2
(B) 2
(C)2
(D)a ).
(D) 2 2
b 2(甲).如果正比例函数 y = ax(a ≠ 0)与反比例函数 y = x (b ≠0 )的图象有两个交点,其中一
个交点的坐标为(-3,-2),那么另一个交点的坐标为( ).
100
a,b ,然后删去a,b ,并在黑板上写上数a b ab ,则经过 99 次操作后,黑板上剩下的数
是( ).
(A)XXXX
(B)101
(C)100
(D)99
二、填空题(共 5 小题,每小题 6 分,共 30 分)
6(甲).按如图的程序进行操作,规定:程序运行
从“输入一个值 x”到“结果是否>487?”为一次 操作. 如果操作进行四次才停止,那么 x 的取
.
三、解答题(共 4 题,每题 15 分,共 60 分)
11(甲).已知二次函数 y x2 (m 3)x m 2 ,当 1 x 3 时,恒有 y 0 ;关于 x 的方程
x2 (m 3)x m 2 0 的两个实数根的倒数和小于 9 .求 m 的取值范围. 10
11(乙). 如图所示,在直角坐标系
学海无涯
(A)1
(B)2
(C)3
(D)4
4(乙).如果关于 x 的方程 x2 px q 0(p,q 是正整数)的正根小于 3, 那么这样的方程的
个数是( ).
(A) 5
(B) 6
(C) 7
(D) 8
5(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是 1,2,3,4,5,6.掷两次骰子,设