弹性力学第二章 应力理论
弹性力学_第二章 应力
P / A0 cos2 ( P / A0 ) cos sin
§2-4 平面应力状态
平面应力状态应力关系
边界只存在正应力情况 平面应力状态如图所示,假设z=0。 x-1 ,y-2 ,任意截面上BC:(, ) 设截面BC的面积A, AC面积为Acos,
= 0。
§2-4 平面应力状态
边界同时存在正应力、剪应力情况
如图所示, x-x、 ;y-y、 任意截面上BC:( ,) 设截面BC的面积A, AC的面积为Acos , AB的面积为Asin 。
边界同时存在正应力、剪应 力时斜截面受力图
§2-4 平面应力状态
沿BC面的法线方向力的平衡方程为:
弹性力学
第二章 应力
§2-1 §2-2 §2-3 §2-4 §2-5 外力 应力与应力张量 平衡微分方程 平面应力状态 空间应力状态
§2-6 主平面、应力主方向与主应力 §2-7 空间应力状态几何表示
§2-8 纯剪切状态
§2-9 应力球张量和应力偏张量 §2-10 八面体应力
§2-1 外力
物体外力
1 1 2 2 1 2 1 2 2 4
应力圆:任一截面正应力与剪应力关系图 确定任一截面上的和 。 坐标系: - 圆 应力圆
(或莫尔圆,由德国工 程师:Otto Mohr引入)
2
心: 轴上点 径: 1 ( ) 1 2
当 d x , d y 0 时,得切应力互等定理:
xy yx
§2-3 平衡微分方程
推广到三维应力状态
x yx zx Fx 0 x y z xy y zy Fy 0 x y z xz yz z Fz 0 x y z
弹性力学 第二章 应力分析
ν
∫∫ ∫∫∫ eijkr j T k dS + eijk rj Fkdv = 0
S
V
ν
因为Tk = σ rkν r ,所以由 Gauss 公式有
∫∫ ∫∫∫( ) eijkr jσ rkν r dS =
eijk rjσ rk ,r dv
S
V
又因为
rj ,r
= δ jr
=
∂x j ∂xr
故使上式成为
方程(2.5.3)式有根,应有三个根,即σ1 ,σ 2 ,σ 3 ,称为主应力,(2.5.3) 和 (2.5.4)式可重写成
(σ − σ1 )(σ − σ 2 )(σ − σ 3 ) = 0
J1 = σ1 + σ 2 +σ 3
J 2 = σ 1σ 2 + σ 2σ 3 + σ 3σ 1
J 3 = σ1σ 2σ 3
消去公因子得 (2.3.1a) 式的第二式,同理由另两个方向的平衡得到其余的两式,
∂σ xx ∂x
+
∂σ yx ∂y
+
∂σ zx ∂z
+
X
=
0
∂σ xy ∂x
+
∂σ yy ∂y
+
∂σ zy ∂z
+Y
=0
∂σ xz ∂x
+
∂σ yz ∂y
+
∂σ zz ∂z
+
Z
=0
或
(2.3.1a)
2
对应σ 2 , 可求出 ν j = a j − ib j ,因此 (4) 式中的因子
( )( ) 1 2
② 积分方程法 上述的平衡方程也可用积分方程的方法得到。作用在被分割出物体上的合力为零的矢量 方程为
2 第二章 应力和应变
第二章应力和应变地震波传播的任何定量的描述,都要求其能表述固体介质的内力和变形的特征。
现在我们对后面几章所需要的应力、应变理论的有关部分作简要的复习。
虽然我们把这章作为独立的分析,但不对许多方程进行推导,读者想进一步了解其细节,可查阅连续介质力学的教科书。
三维介质的变形称为应变,介质不同部分之间的内力称为应力。
应力和应变不是独立存在的,它们通过描述弹性固体性质的本构关系相联系。
2.1 应力的表述——应力张量2.1.1应力表示考虑一个在静力平衡状态下,均匀弹性介质里一个任意取向的无限小平面。
平面的取向可以用这个平面的单位法向矢量nˆ来规定。
在nˆ方向的一侧施加在此面单位面积上的力叫做牵引力,用矢量),,()ˆ(zyxtttnt=表示。
在nˆ相反方向的另一侧施加在此面上的力与其大小相等,方向相反,即)ˆ()ˆ(ntnt-=-。
t在垂直于平面方向的分量叫做法应力,平行于平面方向的分量叫做剪应力。
在流体的情况下,没有剪应力,nptˆ-=,这里P 是压强。
上面的表示这是一个平面上的应力状况,为表示固体内部任意平面上的应力状态,应力张量τ在笛卡尔坐标系(图 2.1)里可以用作用于xyxzyz,,平面的牵引力来定义(:ˆˆˆ()()()ˆˆˆ()()()ˆˆˆ()()()xx xy xzx x xy y y yx yy yzz z z zx zy zzt x t y t zt x t y t zt x t y t zττττττττττ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2.1)在右式的表示中,第一个下角标表示面的法线方向,第二个下角标表示该面上应力在该坐标轴上的投影。
图2.1 在笛卡尔坐标系里描述作用在无限小立方体面上的力的牵引力矢量)ˆ(),ˆ(),ˆ(z t y t xt 。
应力分量的符号规定如下:对于正应力,我们规定拉应力为正,压应力为负。
对于剪应力,如果截面的外法线方向与坐标轴一致,则沿着坐标轴的正方向为正,反之为负;如果截面方向与外法线方向相反,则沿着坐标轴反方向为正。
弹性力学第二章 应力理论
主应力 & 应力不变量
应力1、第二主应力2和第三主应力3 ,且
1 2 3
Chapter 3.3
主应力 & 应力不变量
主应力的性质
3I12I2I30
➢ 不变性 由于特征方程的三个系数是不变量,所以作为特征 根的主应力及相应主方向都是不变量。
1, 2, 3
1, 2 , 3
➢ 实数性 即特征方程的根永远是实数。
Chapter 3.3
主应力 & 应力不变量
➢ 极值性
主应力1和3是一点正应力的最大值和最小值。
在主坐标系中,任意斜截面上正应力的表达式:
n==ijij =11 222 233 2
= 1 (1 2 )2 2 (2 3 )3 2 1 = (1 3 )1 2 (2 3 )2 2 3 3
Chapter 3.3
e3
11
e1
32
31
23
13
22
12 21
x2 e2
x1
Chapter 3.1
外力、内力与应力
把作用在正面dSi上的应力矢量沿坐标轴正向分解得:
(1) 11e1 12e2 13e3 1jej
(2) 21e1 22e2 23e3 2jej
(3) 31e1 32e2 33e3 Nhomakorabea 3jej x3 33
主应力 & 应力不变量
x l xym xzn 0
xyl y m yzn 0
xzl yzm z n 0
由于l2m2n21,所以要有非零解,则上述三
个方程必须是线性相关的,亦即系数行列式为零:
x xy xz
xy y
yz
xz yz 0 z
弹性力学第2章应力分析
N l p x m p y n p z N T p N N T T N
将上式展开,并应用切应力互等定理可得
(2-6a)
N l 2 x m 2 y n 2 z 2lm xy 2mn yz 2nl zx
应力分析
第 2 章
应力分析
本章用静力学观点研究物体在外力作用下的平衡状态,介绍应力的概念及其性质,包 括斜截面的应力、坐标变换公式、主应力状态、应力张量不变量及其在塑性力学中的应用, 八面体上的应力及其应力张量分解为球形应力张量和偏斜应力张量,最后导出应力应满足 的平衡微分方程。本章不涉及材料的力学性质,所得结论对各种连续介质均普遍适用。
或缩写成矩阵形式
(2-4)
p N T N N
其中, 为应力矩阵的转置矩阵。且 ,
T T
(2-5a)
(l , m, n)
N
T
称为斜截面的方向
余弦列阵。 或按下标记法与求和约定写为
pi ij n j
p2 2 2
应力的因次是[力]·[长度]
-2
(2-1)
§2.2 一点的应力状态
一般来说,物体内同一截面上不同点的应力是不同的,过同一点不同方向截面上应力
11
应力分析
的总体称为该点应力状态,研究一点的应力状态,就是确定过该点不同方向截面上应力的 大小和方向,建立它们之间的关系,这对于解决物体在弹性或塑性阶段的强度问题,尤其 是建立复杂应力状态下的强度理论,是很重要的。 为研究外力作用下物体内任意点 M ( x, y, z ) 的应力状态,可围绕 M 点用平行坐标面的 三 对 平 行 面 切 出 一 微 分 六 面 体 , 简 称 单 元 体 或 微 分 体 ( 图 2-3 ) 。当单元体各边长
弹性力学第二章应力状态理论(2015)
内力:由于外力作用,在构件内各部分之间引起的 “附加”的相互作用力。 内力的特点: 1. 随外力的变化而变化,是“附加内力”。 2. 内力是分布力系,常用其主矢量和主矩表示。 内力的求法:截面法。
F5
F1 F2
m
F4
F5 F3
F4
m
F1 F2
F3
2-2 应力和一点的应力状态
1.定义:物体承受外力作用,物体内部各截面 之间产生附加内力。为了求出这些内力,我们 用一截面截开物体,并取出其中一部分,其中 一部分对另一部分的作用,表现为内力,它们 是分布在截面上分布力系。单位面积上的分布 力即为应力。 2.性质:在物体内的某一点,不同截面上的应 力是不同的。
y
体力: Fx,Fy,Fz 均匀分布 应力分量: 位置坐标的函数
应力状态理论
z C
由
xy b
a
y
yx yz P zy
x xz
zx z
B
o x
A
dy ( yz yz dy )dxdz y 2 zy dz ( zy zy dz )dxdy 0 y 2 同理: zx xz , xy yx
x
zy
z面和x面上 的应力分量 的表示如图 2-9所示。
y
图2-9
z
z
正负规定:
zy yz
yx
zx
正面:截面的外 法线方向和坐标 轴正向一致,反 y 之为负面。
y
x
图2-10
正面上的应力沿坐标 正向或负面上的应力 沿坐标负向为正。
口诀:正面正向或负面负向的应力为正。
注意:
弹性力学
材料力学 图2-11
清华大学_弹性力学_第二章_应力理论_习题答案
第二章知识点: (1)应力矢量()0limS FSνσ∆→∆∆其中,ν是S ∆的法向量(2)应力张量()()()111121321222323132333σσσσσσσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪ ⎪== ⎪ ⎪⎪ ⎪⎝⎭⎝⎭其中,()()()123,,σσσ 分别是123,,e e e方向的应力矢量,且()()()111122133121122223323113223333e e e e e e e e e σσσσσσσσσσσσ=++=++=++上式可以写为张量形式ij i j e e σσ=或者用正应力剪应力将应力张量写为x xy xz yx y yz zx zy z σττστστττσ⎛⎫ ⎪= ⎪ ⎪⎝⎭(3)柯西公式(应力矢量和应力张量的关系)()νσνσ=⋅其中,ν是斜面的法向量,对于表面来说,就是外法向量。
可以将柯西公式写成如下形式()i i mj m j i mj i m j i mj im j i ij j e e e e e e e e νσνσνσνσνσδνσ=⋅=⋅=⋅== 即()i ij j νσνσ=这其实是三个式子,分量形式为()()()111122133112112222332231132233333++++i i i i i i νννσνσνσνσνσσνσνσνσνσσνσνσνσνσ==++====在表面上,所求出的()νσ就是外载荷。
(4)应力张量的转轴公式''''m n ij m i n j σσββ=证明如下:'''''''''''''''''''',ij i j m n m n i m i m j n j n ij m i n j m n m n m n m n ij m i n je e e e e e e e e e e e σσσββσββσσσββ====∴=∴=也可以将转轴公式写为矩阵形式[][][][]'Tσβσβ=其中,[]σ、[]'σ是坐标系变换前后的应力张量的分量,[]()'m i ββ=,'m i β是i e 在'm e上的分量,可以用如下公式计算()''cos ,m ii m e e β=(5)剪应力互等定理根据微元体的力矩平衡,可以得到 ,,yz zy xz zx xy yx ττττττ===也就是说ij ji σσ=应力张量是一个二阶对称的张量 (6)主应力由于应力张量是二阶对称的,所以可以将其对角化[][][]123Tσσβσβσ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦并且123,,σσσ从大到小排列,他们称为主应力,[]β是三个主应力的方向。
弹性力学-第二章
(a)
(b)
y
o
z
a
b
x
(c) 刚性槽
2.平面问题的应力边界条件 设在S 部分边界上给定了面力分量 f x ( s) 和 f y ( s) , 则可由边界上任一点微分体的平衡条件,导出应力 与面力之间的关系式。
0 o y P y
tyx txy
x
B
y
fx
A
x
P
x
fy
fx
n
fy
f
斜面上的应力
由式 (2-3)
x=-b为负x 面
l cos n, x cos180 1
m cos n, y cos 90 0
(σ x ) xb f x , (t xy ) x b f y
n
b a x
fx fy
σx
σx
fx fy
t xy
y
t xy
应力边界条件的两种表达式: (1)公式写法 公式写法通常只用于 边界为非坐标面时
x=a为正x 面
l cos n, x cos 0 1
m cos n, y cos 90 0
(σ x ) xa f x , (t xy ) xa f y
b a x
n
fx fy
σx
σx
fx fy
t xy
y
t xy
当边界面为坐标面时
(l x mt xy ) s f x ( s) (m y lt xy ) s f y ( s)
( 2) 斜边 y x tan
l cos n, x cos 90 sin
m cos n, y cos
《弹性力学》第二章_平面问题的基本理论
o
xy
x
y
P
yx
y
A
XN
x
设AB面在xy平面内的长度为dS, 厚度为一个单位长度,N为该面的外 法线方向,其方向余弦为:
B
N
N
N
cos(N , x) l , cos(N , y) m
9
YN S
图2 - 4
斜面AB上全应力沿x轴及y轴的投影分别为XN和YN。由PAB 的平衡条件 Fx 0 可得: X N dS xldS yxmdS
2.主应力的方向
1 与 2 互相垂直。
11
§2-4
几何方程、刚体位移
在平面问题中,弹性体中各点都可能产生任意方向的位移。 通过弹性体内的任一点P,取一单元体PAB,如图2-5所示。弹性 体受力以后P、A、B三点分别移动到P′、A′、B′。 一、P点的正应变
u (u dx) u u x x dx x
二、P点的剪应变
线段PA的转角:
同理可得线段PB的转角:
u y
所以
xy
v u x y
13
因此得到平面问题的几何方程:
u x x v y y v u xy x y
由几何方程可见,当物体的位移分量完全确定时,形变 分量即可完全确定。反之,当形变分量完全确定时,位移分 量却不能完全确定。
z
E
( x y )
16
二、平面应变问题的物理方程 1 2 x ( x y ) E 1 1 2 y ( y x ) E 1 2(1 ) xy xy E 三、平面应力的应力应变关系式与平面应变的关系式之间的 变换关系 1 ( ) y 将平面应力中的关系式: x E x
第二章应力状态理论(弹性力学)
第二章
应力状态理论
§2-1 张量分析基础
张量——在数学上,如果某些量依赖于坐标轴的选择, 并在坐标变换时,按某种指定的形式变化,则称这些 量的总体为张量。简化缩写记号表达物理量的集合。 显著优点——基本方程以及其数学推导简洁 张量的特征——整体与描述坐标系无关 ——分量需要通过适当的坐标系定义 一般张量——曲线坐标系定义
2 2 2 2 ∴ v = fvx + fvy + fvz −σv τ2
如已知 σ x ,σ y ,σz ,τ yz ,τ zx,τ xy, 就可求得任一斜截面 正应力和切应力。 正应力和切应力
应力状态理论
如果ABC是物体边界面:
lσx + m yx + n zx = fx τ τ
z
C v
fz
fxP
应力状态理论
§2-2 体力和面力
外力:构件外物体作用在构件上的力。 外力:构件外物体作用在构件上的力。
面力:作用在物体表面上的力,如接触力、 面力:作用在物体表面上的力,如接触力、液体压 力等。 表示。单位: 力等。用 fx , f y , fz 表示。单位:N/m2。 体力:分布在物体整个体积内部的力,如重力、 体力:分布在物体整个体积内部的力,如重力、惯
F 5
m
F 4
F 1 F 2
Ι
m
ΙΙ
F 3
F 5
F 4
F 1F 2ຫໍສະໝຸດ ΙΙΙF 3
应力状态理论
§2-3 应力和一点的应力状态 应力和一点的应力状态
应力:内力的分布集度。 应力:内力的分布集度。 r 平均应力: ①平均应力: r ∆ F f = ∆S 全应力: ②全应力: r r r ∆ F dF f v = lim = dS ∆S → 0 ∆ S
第二章弹性力学的基本方程
, , 1, 2
由此,向量 a可表示为
3
a a1e1 a2e2 a3e3 ai ei i 1
三阶线性代数方程组
a11x a12 y a13 z P1
a21
x
a22
y
a23
z
P2
a31
x
a32
y
a33
z
P3
可表示为
ai1x1 ai2 x2 ai3x3 Pi
(c) 非循环序列:i, j, k中有两个以上得指标取
相同值
e112 e222 e323 0
利用置换符号可以简化公式
(1)行列式
a11 a12 a13 a a21 a22 a23
( xix j
) ,ij
例如:
xi
,i
ui x j
ui, j
2ui x j xk
ui, jk
ui xi
ui,i
u1,1
u2,2
u3,3
f xi
dxi
f ,i dxi
f ,1dx1
f ,2 dx2
f ,3dx3
4、 克罗内克(Kroneker)符号
定义: ij ei e j cos(ei ˆ e j )
Fx
1 dh 3
0
同理可得:
Tx xl yx m zx n Ty xyl y m zy n Tz xzl yz m z n
上式称为斜面应力公式,又称Cauchy公式。
2、斜面上得正应力与剪应力
Tν Txl Tym Tz n
xl 2 y m 2 z n 2 2 xylm 2 yz mn 2 zx nl
ei
弹性力学_第二章__应力状态分析
第二章应力状态分析一、内容介绍弹性力学的研究对象为三维弹性体,因此分析从微分单元体入手,本章的任务就是从静力学观点出发,讨论一点的应力状态,建立平衡微分方程和面力边界条件。
应力状态是本章讨论的首要问题。
由于应力矢量与内力和作用截面方位均有关。
因此,一点各个截面的应力是不同的。
确定一点不同截面的应力变化规律称为应力状态分析。
首先是确定应力状态的描述方法,这包括应力矢量定义,及其分解为主应力、切应力和应力分量;其次是任意截面的应力分量的确定—转轴公式;最后是一点的特殊应力确定,主应力和主平面、最大切应力和应力圆等。
应力状态分析表明应力分量为二阶对称张量。
本课程分析中使用张量符号描述物理量和基本方程,如果你没有学习过张量概念,请进入附录一,或者查阅参考资料。
本章的另一个任务是讨论弹性体内一点-微分单元体的平衡。
弹性体内部单元体的平衡条件为平衡微分方程和切应力互等定理;边界单元体的平衡条件为面力边界条件。
二、重点1、应力状态的定义:应力矢量;正应力与切应力;应力分量;2、平衡微分方程与切应力互等定理;3、面力边界条件;4、应力分量的转轴公式;5、应力状态特征方程和应力不变量;知识点:体力;面力;应力矢量;正应力与切应力;应力分量;应力矢量与应力分量;平衡微分方程;面力边界条件;主平面与主应力;主应力性质;截面正应力与切应力;三向应力圆;八面体单元;偏应力张量不变量;切应力互等定理;应力分量转轴公式;平面问题的转轴公式;应力状态特征方程;应力不变量;最大切应力;球应力张量和偏应力张量§2.1 体力和面力学习思路:本节介绍弹性力学的基本概念——体力和面力,体力F b和面力F s的概念均不难理解。
应该注意的问题是,在弹性力学中,虽然体力和面力都是矢量,但是它们均为作用于一点的力,而且体力是指单位体积的力;面力为单位面积的作用力。
体力矢量用F b表示,其沿三个坐标轴的分量用F b i(i=1,2,3)或者F b x、F b y和F b z表示,称为体力分量。
弹性力学第2章—应力
τyz
px
O
τzy
τxz
τzx
σz
σx
py
B
y
( ) σ x′
=
σ
x
l
2 x′x
+
σ
y
l
2 x′y
+
σ
z
l
2 x′z
+
2 τ xy lx′xlx′y
+ τ yz l lx′y x′z
+ τ zxlx′xlx′z
即 σ1′1′ = l1′il1′ jσ ij
σ σ 同理可得 σ1′2′ = σ l l1′i 2′ j ij , = l l 1′3′ 1′i 3′ j ij
pn
=
lim
ΔSC →0
ΔP ΔSC
Bn
C σ n ΔP
P
ΔSC
τ
pn
n
A
O
y
x
2.1 应力的概念
应力的分解:
应力矢量分解为正应力(截面法向)和剪应力(切向)
正应力 剪应力
σn τn
= =
lim
ΔSC →0
lim
ΔSC →0
ΔPn ΔSC ΔPs ΔSC
⎫
⎪⎪ ⎬ ⎪ ⎪⎭
pn = σ nn + τ ns
z
Bn
C σ n ΔP
P
ΔSC
τ
pn
n
A
σ n = pn ⋅ n
O
τ n = pn ⋅ s =
p2
−
σ
2 n
y
x
2.1 应力的概念
一点的应力状态:
过固体内部一点的所有截面上应力的集合
弹性力学3-应力状态、几何方程
s x ,s y ,t xy t yx
应力张量: tsyxx
t xy sy
t t
xz yz
t zx t zy s z
s x t xy
t yx
s
y
第二章 平面问题的基本理论 2.3 平面问题中一点的应力状态
一点的应力状态可以用以下三种方法表示:
用包围该点的微元体(微正六面体)表征 过该点的任意斜截面上的应力 用一点的主应力与主方向表征
2.1 平面应力与平面应变 2.2 平衡微分方程 2.3 一点的应力状态 2.4 几何方程 2.5 物理方程 2.6 边界条件 2.7 圣维南原理 2.8 按位移求解平面问题 2.9 按应力求解平面问题 2.10 常体力情况下的简化
第二章 平面问题的基本理论 2.4几何方程
几何方程:应变分量与位移分量之间的关系。
fx
dxdy 2
1 0
上式分别将dx、dy用ds 表达:
pxds
s xlds
t yxmds
fx
ldsmds 2
0
ds趋于零时
O
x
t yx s y
P
A
t t xy
Px
n
px ls x mt xy
(2-3a)
sx
微元体竖直静力平衡条件: Fy 0 可得:
Py s n n
B
y pyds 1 s ydx 1 t xydy 1
过P点的微小三角形,两个边分别 O
平行于坐标轴,当面积SAPB无限减小, 趋近于P点时,平面AB上的应力即成
x
t yx s y
P
A
为过P点斜面上的应力。
P点应力分量(直角坐标面上的应
力)已知:s x ,s y ,t xy t yx
弹塑性力学题库与答案(可编辑)
弹塑性力学题库与答案第二章应力理论和应变理论2―3.试求图示单元体斜截面上的σ30°和τ30°(应力单位为MPa)并说明使用材料力学求斜截面应力为公式应用于弹性力学的应力计算时,其符号及正负值应作何修正。
…解:在右图示单元体上建立xoy坐标,则知σx -10 σy -4 τxy -2(以上应力符号均按材力的规定)代入材力有关公式得:代入弹性力学的有关公式得:己知σx -10 σy -4 τxy +2 由以上计算知,材力与弹力在计算某一斜截面上的应力时,所使用的公式是不同的,所得结果剪应力的正负值不同,但都反映了同一客观实事。
2―6. 悬挂的等直杆在自重W作用下(如图所示)。
材料比重为γ弹性模量为 E,横截面面积为A。
试求离固定端z处一点C的应变εz与杆的总伸长量Δl。
解:据题意选点如图所示坐标系xoz,在距下端(原点)为z处的c点取一截面考虑下半段杆的平衡得:c截面的内力:Nz γ??A??z ;c截面上的应力:;所以离下端为z处的任意一点c的线应变εz为:;则距下端(原点)为z的一段杆件在自重作用下,其伸长量为:;显然该杆件的总的伸长量为(也即下端面的位移):;(W γAl)2―9.己知物体内一点的应力张量为:σij应力单位为kg/cm2 。
试确定外法线为ni{,,}(也即三个方向余弦都相等)的微分斜截面上的总应力、正应力σn及剪应力τn 。
解:首先求出该斜截面上全应力在x、y、z三个方向的三个分量:n’ nx ny nzPx n’Py n’Pz n’所以知,该斜截面上的全应力及正应力σn、剪应力τn均为零,也即:Pn σn τn 02―15.如图所示三角形截面水坝材料的比重为γ,水的比重为γ1。
己求得应力解为:σx ax+by,σy cx+dy-γy ,τxy -dx-ay;试根据直边及斜边上的边界条件,确定常数a、b、c、d。
解:首先列出OA、OB两边的应力边界条件:OA边:l1 -1 ;l2 0 ;Tx γ1y ; Ty 0 则σx -γ1y ;τxy 0代入:σx ax+by;τxy -dx-ay 并注意此时:x 0得:b -γ1;a 0;OB边:l1 cosβ;l2 -sinβ,Tx Ty 0则:………………………………(a)将己知条件:σx -γ1y ;τxy -dx ;σy cx+dy-γy代入(a)式得:化简(b)式得:d γ1ctg2β;化简(c)式得:c γctgβ-2γ 1 ctg3β2―17.己知一点处的应力张量为试求该点的最大主应力及其主方向。
《弹性力学》第二章平面问题的基本理论
平面问题研究方法
01
02
03
解析法
通过弹性力学的基本方程 和边界条件,求解出满足 条件的应力、应变和位移 分量。
数值法
利用计算机进行数值计算, 如有限元法、差分法等, 求解出弹性体的应力、应 变和位移分布。
实验法
通过实验手段,如光弹性 实验、应变电测实验等, 直接测定弹性体的应力、 应变和位移。
02 基本方程与定解条件
物理方程反映了材料的力学性质,是弹性力学中的重要基础。
03
定解条件(边界条件与初始条件)
01
02
03
定解条件是弹性力学问 题中必须满足的附加条 件,包括边界条件和初
始条件。
边界条件描述了物体边 界上的应力、位移等物 理量的已知情况,是求 解弹性力学问题的重要
依据。
初始条件描述了物体在 初始时刻的应力、位移 等物理量的已知情况, 对于动态问题和瞬态问
04 平面问题解法及实例分析
按位移求解平面问题
位移边界条件
在位移边界上,物体受到的约束可以 转化为在给定位移边界上各点的位移。
平衡微分方程
根据弹性力学的基本方程,可以建立 以位移表示的平衡微分方程。
应力边界条件
在应力边界上,物体受到的面力可以 转化为应力边界上各点的应力分量。
求解方法
通过联立平衡微分方程和应力边界条 件,可以求解出位移分量,进而求得 应力分量。
复杂应力函数求解技巧
复杂应力函数的特点
复杂应力函数可能具有复杂的数学形式和边界条件,求解难度较大。
求解技巧
针对复杂应力函数的求解,可以采用变量分离法、积分变换法、复 变函数法等数学工具进行简化处理,降低求解难度。
实例分析
以一个复杂的弹性力学问题为例,介绍如何运用上述技巧求解复杂 应力函数,并给出相应的应力分量分布图。
弹性力学第二章:应力分析
py
yz M p x zy
B
根据斜截面应力状态
p x x l xy m xz n p y yx l y m yz n p z zx l zy m z n
已知一点的六个应力分量,可以确定该点任意斜截面上的应力
C z
y
cos( N , x) l cos( N , y ) m
pz px
xy x
yx
pN
py
N
cos( N , z ) n
SABC dA
yz
M
zx
z
xz
B
SABM ndA
SAMC mdA
zy
x
yz x
xz xy
yz
y
xy
xz
zy
zx
z
yx
o x
y
各应力分量的符号规定 正面 负面
单元体截面的外法线方向沿着坐标轴正方向
单元体截面的外法线方向沿坐标负方向者为负
正面正向,负面负向
正面上的应力分量以沿坐标轴正方向者为正,沿坐 标负方向者为负 负面上的应力分量以沿坐标轴负方向者为正,沿坐 标轴正方向者为负
x X x l1 Yx m1 Z x n1 1 T p x xy X x l 2 Yx m2 Z x n2 2
T
xz X x l 3 Yx m3 Z x n3 3 T
p x p x
3、应力边界条件 x xy m xz n p x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X x l xy m zx n Y yx l y m zy n Z xz l yz m z n
写成指标符号
p j i ij
其中pj是面力p沿坐标轴方向的分量,通常记为X , Y , Z
Chapter 3.2
应力理论
外力、内力与应力 柯西公式
主应力与应力不变量
最大剪应力,八面体剪应力
平衡微分方程
主应力 & 应力不变量
x3
11
1 12 23
13
31 33
x1
32
Chapter 3.3
主应力 & 应力不变量
概 念
• 切应力为零的微分面称为主微分平面,简称主平面。 • 主平面的法线称为应力主轴,或者称为应力主方向。 • 主平面上的正应力称为主应力。
弹性力学 Theory of Elasticity
陶嗣巍 北京吉利大学汽车学院
应力理论
外力、内力与应力
柯西公式 主应力与应力不变量 最大剪应力,八面体剪应力 平衡微分方程
Chapter 3
外力、内力与应力
外 力
Chapter 3.1
外力、内力与应力
外 力
体 力
即分布在物体体积内部各个质点上的力,又称为 质量力。例如物体的重力、运转零件的惯性力等。
主应力 & 应力不变量
对斜面BCD运用柯西公式,可得:
p n x x l yx m zx n p n y xy l y m zy n p n z xz l yz m z n
由剪应力互等定理可得:
p n x x l xy m xz n p n y xy l y m yz n p n z xz l yz m z n
Chapter 3.3
主应力 & 应力不变量
p nx x l xy m xz n p ny xy l y m yz n p nz xz l yz m z n
(1 )
p nx l p ny m p nz n
外力、内力与应力
应力矢量和 面力矢量的数 学定义和物理量纲都相同。
i ( ) lim
X i lim
Fi S
S 0
Pi S
S 0
区别在于:应力是作用在物体内界面上的未知内力,
而面力是作用在物体外表面的已知外力。当内截面无 限趋近于外表面时,应力也趋近于外加面力之值。
柯西公式
柯西公式应用-计算斜截面上的应力
斜面上应力的方向
n
即
co s ( ) , e 1 co s ( ) , e 3
( )
; co s ( ) , e 2
( )1 ( ) 3
( ) 2
( ij e i e j )
根据商判则,知 ij e i e j 必是一个二阶张量,于是定义 应力张量
ij e i e j
Chapter 3.2
柯西公式
( ) ( ij e i e j )
这就是著名的柯西公式,又称斜面应力公式。
Chapter 3.2
共出现九个应力分量:
11 ( ij ) 2 1 31
12 22 32
23
33
13
Chapter 3.1
外力、内力与应力
11 ( ij ) 2 1 31
12 22 32
23
面 力
即作用在物体表面上的力,例如作用在飞机机翼
上的空气动力、水坝所受的水压力等。
Chapter 3.1
外力、内力与应力
定 义 式
体力: f lim
F V
V 0
V
f 1 lim f 2 lim f 3 lim
F
F1 V F2 V F3 V
Chapter 3.1
( ) ( e 1 ) (1) ( e 2 ) ( 2 ) ( e 3 ) ( 3 )
( e 1 (1) e 2 ( 2 ) e 3 ( 3 ) )
Chapter 3.2
柯西公式
( ) ( e 1 1 j e j e 2 2 j e j e 3 3 j e j )
Chapter 3.3
主应力 & 应力不变量
主应力和应力不变量
假设存在主平面BCD,其法线方向为n(l,m,n),截面
上的总应力 pn= ,亦即n方向截面上剪应力为零。
则截面上总应力pn在坐标轴方向的分量可以表示为
p nx l p ny m p nz n
Chapter 3.3
Chapter 3
柯西公式
斜截面上的应力
四面体OABC,由三个负
x3
面和一个法向矢量为
1 e1 2 e 2 3 e 3 i e i
的斜截面组成,其中
i cos( , e i ) e i
x2 x1
为方向的方向余弦。
Chapter 3.2
柯西公式
Chapter 3.1
外力、内力与应力
应 力
应力矢量
S
Chapter 3.1
外力、内力与应力
应力矢量:
S
( ) lim
F S
S 0
若取 S 为变形前面元的初始面积,则上式给出工程 应力,亦称名义应力,常用于小变形情况。 对于大变形问题,应取 S 为变形后面元的实际面积, 称真实应力,简称真应力, 也称柯西应力。
f i lim
Fi V
V 0
V 0
V 0
V 0
外力、内力与应力
定 义 式
面力:
P
X lim
P S
S
S 0
X i lim
Pi S
S 0
Chapter 3.1
外力、内力与应力
内 力
物体内部各个部分之间将产生相互作用,这种物体一 部分与相邻部分之间的作用力,称为内力。 内力也是分布力,它起着平衡外力和传递外力的作用, 是变形体力学研究的重要对象之一。应力的概念正是 为了精确描述内力而引进的。
yy
xx
o
y
x
应力分量的个数
Chapter 3.1
外力、内力与应力
x3
33
32
31
e3
23 22
13 11 12
e2
21
x2
e1 x1
Chapter 3.1
外力、内力与应力
把作用在正面dSi上的应力矢量沿坐标轴正向分解得:
(1) 1 1 e 1 1 2 e 2 1 3 e 3 1 j e j ( 2 ) 2 1 e1 2 2 e 2 2 3 e 3 2 j e j ( 3 ) 3 1 e1 3 2 e 2 3 3 e 3 3 j e j
Chapter 3.1
外力、内力与应力
正六面体微元: 外法线与 坐标轴同向的三个面称 为正面,记为dSi,它们 的单位法向矢量为i=ei,
z
ei是沿坐标轴的单位矢量;
o
y
另三个外法线与坐标轴 反向的面元称为负面。
x
Chapter 3.1
外力、内力与应力
( )
yz
z
yy
yx
o
Chapter 3.1
外力、内力与应力
应力的定义
Chapter 3.1
外力、内力与应力
应力矢量的大小和方向不仅和 M 点的位置有关,而 且和面元法线方向 有关。
Chapter 3.1
外力、内力与应力
作用在同一点不同法向面元上的应力矢量各不相同, 反之,不同曲面上的面元,只要通过同一点且法线方 向相同,则应力矢量也相同。
Chapter 3.2
柯西公式
柯西公式应用-计算斜截面上的应力
斜面正应力
n ( ) = = ij i
斜面剪应力
j
( ) n
n
2 2
Chapter 3.2
柯西公式
柯西公式应用-给定应力边界条件
若斜面是物体的边界面,则柯西公式可用作未知应 力场的力边界条件:
柯西公式
( )
把斜面应力沿坐标轴方向分解:
( ) ( )1 e1 ( ) 2 e 2 ( ) 3 e 3 ( ) j e j
则柯西公式的分量表达式为
( )1 1 1 1 2 2 1 3 3 1 ( ) 2 1 1 2 2 2 2 3 3 2 ( ) 3 1 1 3 2 2 3 3 3 3
斜截面上的应力
x3
11
( ) ?
x2
22
2 1 12 23
13
31 33
x1
32
Chapter 3.2
柯西公式
A B C 的面积为dS,
则三个负面的面积分别为
d S 1 O B C 1 d S ( e 1 ) d S d S 2 O C A 2 d S ( e 2 ) d S d S 3 O A B 3 d S ( e 3 ) d S
斜截面的面元矢量为:
d S d S 1 e1 d S 2 e 2 d S 3 e 3