2相似三角形分类讨论
例谈相似三角形分类讨论问题
想方法i 2021年第5期中学数学教学参考(下旬相似三角形分类讨论问题李松(四川省成都市石室天府中学)摘要:分类讨论是重要的数学思想。
分类讨论思想的关键是要清楚为什么要进行分类讨论和分类讨论的依据是什么。
分类讨论思想的培养,需要教师有一个长期的教学规划,为学生提供合适的分类讨论的情境。
关键词:分类讨论;相似三角形;动点问题;折叠问题文章编号:1002-2171 (2021)5-0063-02《义务教育数学课程标准(2011年版)》(以下简 称《课标(2011年版)》)指出,“分类讨论是一种重要的数学思想方法,教学时要通过多次反复的思考和长时间的积累,使学生逐步感悟这种思想方法的精髓。
”例如,在学习“图形的相似”一章时,如果两个相似三角形未指明对应顶点,那么可能存在三种情况,此时 需要分类讨论。
分类讨论思想的渗透是一个较长的过程,所以在教学活动中,教师需要精心准备适切的、足量的、螺旋上升的问题帮助学生积累活动经验,形 成技能.从而使学生体会为什么要分类、如何分类等。
笔者下面以几个经典问题为例,就教学中哪类问题需l_ln(l+f)>l=ln e#0,所以在区间(工。
,|)内/(•T)无零点。
当:|,7r)时,jy^sin单调递减,:y=ln(l+*r)单调递减,则/(X)在区间(|,7t)内单调递减,/(7t)=0—ln(l+7T)<0,所以在区间(晋,K)内 /U)存在一个零点。
当 x6(7r,+°°)时,/(:c)=sin x_ln(1+x) 1—ln(1十7T)<C0 t旦成立,则/(工)在区间(t t,+°°)内无零点。
综上可得,/U)有且仅有2个零点。
7根的分布法对于特定的二次函数零点问题,利用根的分布来 求解也是一个有效的途径。
要分类讨论做归纳整理。
1类型归纳1.1单动点运动的相似问题需要分类讨论单动点运动的相似问题是指一个点在某条直线上运动引起图形变化,而动点运动到某几个位置时,会产生相似三角形的情况。
相似三角形分类讨论类
相似三角形中分类讨论的数学思想(汤杰)相似三角形中分类讨论的数学思想(汤杰)讨论标志一:当两个三角形不用相似符号对应联立的问题讨论标志一:当两个三角形不用相似符号对应联立的问题1.在直角三角形ABC 中,∠B=90°,点D 在边BC 上,过点D 的直线将直角三角形ABC 分成一个三角形和一个四边形,得到的小三角形与原三角形相似,这样的直线可以画几条?并画出示意图。
到的小三角形与原三角形相似,这样的直线可以画几条?并画出示意图。
2.(2013,永州)如图,已知AB ^BD ,CD ^BD (1)若AB=9,CD=4,BD=10,请问在BD 上是否存在P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?若存在,求BP 的长;若不存在,请说明理由;的长;若不存在,请说明理由;(2)若AB=9,CD=4,BD=12,请问在BD 上存在多少个P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;的长;(3)若AB=9,CD=4,BD=15,请问在BD 上存在多少个P 点,使以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似?并求BP 的长;的长;(4)若AB=m ,CD=n ,BD=l ,请问,,m n l 满足什么关系时,存在以P 、A 、B 三点为顶点的三角形与以P 、C 、D 三点为顶点的三角形相似的一个P 点?两个P 点?三个P 点?点?3(2014•武汉)如图,Rt △ABC 中,∠ACB =90°,AC =6cm ,BC =8cm ,动点P 从点B 出发,在BA 边上以每秒5cm 的速度向点A 匀速运动,同时动点Q 从点C 出发,在CB 边上以每秒4cm 的速度向点B 匀速运动,运动时间为t 秒(0<t <2),连接PQ .(1)若△BPQ 与△ABC 相似,求t 的值;的值;(2)连接AQ ,CP ,若AQ ⊥CP 求t 的值;的值;4.(2012014•4•益阳)如图,在四边形ABCD 中,AB ∥CD ,AD ⊥AB ,∠B =60°,AB =10,BC =4,点P 沿线段AB 从点A 向点B 运动,设AP =x .(1)求AD 的长;(2)点P 在运动过程中,是否存在以A 、P 、D 为顶点的三角形与以P 、C 、B 为顶点的三角形相似?若存在,求出x 的值;若不存在,请说明理由;的值;若不存在,请说明理由;A B CD P(2013徐州中考)徐州中考)讨论标志二:利用相似三角形解决等腰三角形的讨论问题。
相似三角形详细讲义
知识梳理相似三角形的概念对应角相等,对应边成比例的三角形,叫做相似三角形.相似用符号“∽”表示,读作“相似于”.相似三角形对应边的比叫做相似比(或相似系数).相似三角形对应角相等,对应边成比例.注意:①对应性:即两个三角形相似时,通常把表示对应顶点的字母写在对应位置上,这样写比较容易找到相似三角形的对应角和对应边.②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.二者的区别在于全等要求对应边相等,而相似要求对应边成比例.相似三角形的基本定理定理:平行于三角形一边的直线和其它两边(或两边延长线)相交,所构成的三角形与原三角形相似.定理的基本图形:用数学语言表述是:BC DE // ,ADE ∽ABC . 相似三角形的等价关系(1)反身性:对于任一ABC 有ABC ∽ABC .(2)对称性:若ABC ∽'''C B A ,则'''C B A ∽ABC .(3)传递性:若ABC ∽C B A '',且C B A ''∽C B A ,则ABC ∽C B A . 三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角 形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两 个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹 角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这 两个三角形相似.简述为:三边对应成比例,两三角形相似.(在遇到两个三角形的三边都知道的情况优先考虑,把边长分别从小到大排列,然后分别计算他们的比值是否相等来判断是否相似)6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。
相似三角形-动点问题-分类讨论问题(培优及答案)
相似三角形-动点问题-分类讨论问题(培优及答案)1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN△与四边形BCNM 重叠部分的面积为y,当x 为何值时,y 最大,最大值为多少?【答案】解:(1)MN BC Q ∥AMN ABC ∴△∽△68h x ∴=34xh ∴= (2)1AMN A MN Q △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM内或BC边上时,1A MNy S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h ,则132662h h x =-=- 11EF MNA EF A MN∴Q ∥△∽△11A MN ABC A EF ABC∴Q △∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=Q △22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭Q △△所291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大当48x <<时,2912248y xx =-+-,取163x =,8y=最大86>Q ∴当163x =时,y 最大,8y=最大2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点.(1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; 【答案】解:(1)Q 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-.将(40)A ,,(10)B ,代入,M NC BEF AA 1得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-.(2)存在.如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-,当14m <<时,4AM m =-,215222PM mm =-+-.又90COA PMA ∠=∠=Q °,∴①当21AM AO PM OC ==时,APM ACO △∽△, 即21542222m mm ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,.②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m mm -=-+-.解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,.类似地可求出当4m >时,(52)P -,.当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. 3.如图,已知直线128:33l y x =+与直线2:216ly x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=. 由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C点的坐标为()56,.∴111263622ABC C S AB y ==⨯⨯=△·.(2)解:∵点D 在1l 上且2888833DB D xx y ==∴=⨯+=,.∴D 点坐标为()88,. 又∵点E 在2l 上且821684ED E E yy x x ==∴-+=∴=,..∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG =,∴2RG t =. Rt Rt AFH AMC Q △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即241644333S t t =-++.·············································当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-,∴38038]32838)4(32[421+-=-++-⨯=t t t s当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t tt t s4.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米; (2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求(图(图(图出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围; (4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA积都相等?若存在,求a 明理由.【答案】解: (1)34PM =, (2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠Q ⊥,⊥,,AMP ABC △∽△,PM AMBN AB∴=即()PM a t t a t PM t a a--==Q ,,(1)3t a QM a-∴=-当梯形PMBN与梯形PQDA的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a =+,3t Q ≤,636a a ∴+≤,则636a a ∴<≤,≤,(4)36a <Q ≤时梯形PMBN 与梯形PQDA 的面积相等NM M∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3ta t t a∴-=-,把66a t a =+代入,解之得a =±,所以a =.所以,存在a ,当a =时梯形PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等.5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题:(1)当t =2时,判断△BPQ 的形状,并说明理由;(2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形. (2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ;(3)因为Q R ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600,所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t, 所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形,所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ,所以∠QPR=∠A=600,所以tan600=PRQR,即3326=-tt ,所以t=56,所以当t=56时, △APR ~△PRQ6.在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2E B ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N .使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.A B D EF C O M Nx y图7-2A DOBC21 MN图7-1ADBM N12图7-3ADOBC21 MNO.7.在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°. (1)如图15-1,若AO = OB ,请写出AO与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ; (3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD 的值. 【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°. ∵∠2 = 45°,∴BE = BD,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD . (3)如图5,过点B 作BE ∥CA 交DO 于E ,图4ADO B C21 MNEF A2E∴∠BEO = ∠ACO .又∵∠BOE = ∠AOC,∴△BOE ∽ △AOC .∴AOBOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD =. 10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟可到达A 点。
相似三角形中的分类讨论实录加反思
无可奈何“落去”,似曾“相似”归来——“一题一课”模型下的相似复习课课堂实录与反思背景介绍“一题一课”,倡导一个题目上一节课,就是围绕着说题时抽到的那一题来上一节课。
我抽到的题是第18题,主要考查相似三角形的判定与性质,涉及到分类讨论。
这道题对学生来讲说不上难,因为从学生接触相似三角形开始就已经在接触这类题了;可也说不上简单,毕竟分类讨论不是每个学生都能理解的了的。
可光就这个题目讲上一节课,是根本不可能的。
对这课我最初的设想是由浅入深,先温习或做些铺垫性的问题,把起点放在相似三角形的判定的复习上,编制单一的不涉及分类的相似题目,再重点像讲课文例题那样去启发分析,最后拓展提炼。
因此刚开始花了大量的时间去寻找合适的题目,无果之后又尝试着自己去改编题目:赋予△ABC为等腰三角形的背景下,DE∥BC,在BC边上寻一点F,使△DEF与△ABC相似。
试上之后,这道题反响还不错,引入等方面修正完善一下就好。
杭州听课回来还没缓过神来连着清明放假三天,期间我仔细思考教学设计中的这道题目,总觉得偏离了“一题一课”的理念。
可是箭在弦上不得不发,没机会再试上再磨课了!比赛当天,心里还是隐隐觉得不好,于是开始两手准备:一方面将这个课再次仔细整理准备上课;另一方面再次去找寻其他题目,最终决定只将该题作为课后拓展题让学生拓展提升。
感谢教研组听课的同事,每一位都给出了非常宝贵的意见和建议,帮我不断修正与完善。
在磨课的过程中,我受益良多。
课堂实录师:今天这节课我们一起探讨相似三角形中的分类讨论。
首先我们拿出练习纸,动手画画看。
(媒体显示题目,学生动手作图)如图,△ABC中,AB=12,AC=15。
D为AB 边上一点,过点D作一条截线交AC于点E,使△ADE与△ABC相似,你能作出几条?请画出图形。
师:谁来说说看你是怎么画的?生:先做BC的平行线,交AC于点E。
还有一个是做的那条线和AD相等……师:做的那条线和AD相等?生:作AD=AE师:在AC上取一点E,使得AD=AE师:说说看你是怎么想的?(学生回答不出)为什么这种情况下这两个三角形相似?生:因为平行师:依据的是什么?生:相似三角形中(学生说不出来师补充)师:作DE∥BC时,就是说∠ADE与∠ABC相等。
相似三角形的性质及应用(解析版)
4.5相似三角形的性质及应用一、相似三角形的性质1.相似三角形的对应角相等,对应边的比相等. 2. 相似三角形中的重要线段的比等于相似比.相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点:要特别注意“对应”两个字,在应用时,要注意找准对应线段. 3. 相似三角形周长的比等于相似比∽,则由比例性质可得:4. 相似三角形面积的比等于相似比的平方∽,则分别作出与的高和,则21122=1122ABCA B C BC AD k B C k A D S k S B C A D B C A D '''''''⋅⋅⋅⋅=='''''''''⋅⋅△△要点:相似三角形的性质是通过比例线段的性质推证出来的. 二、三角形的重心三角形三条中线的交点叫做三角形的重心,三角形的重心分每一条中线成1:2的两条线段.OEFDABC即12OD OE OF OA OB OC === . 要点:H OEFDAB C过点E 作EH ∥BC 交AD 于H ,根据三角形的中位线平行于第三边并且等于第三边的一半可得CD=2EH ,从而得到BD=2EH ,再根据△BDO 和△EHO 相似,利用相似三角形对应边成比例列出比例式计算即可得证1=2OE HE OB BD ,同理其他比例也可以得到. 三、相似三角形的应用1.测量高度测量不能到达顶部的物体的高度,通常使用“在同一时刻物高与影长的比例相等”的原理解决.要点:测量旗杆的高度的几种方法:平面镜测量法 影子测量法 手臂测量法 标杆测量法2.测量距离测量不能直接到达的两点间的距离,常构造如下两种相似三角形求解。
1.如甲图所示,通常可先测量图中的线段DC 、BD 、CE 的距离(长度),根据相似三角形的性质,求出AB 的长.2.如乙图所示,可先测AC 、DC 及DE 的长,再根据相似三角形的性质计算AB 的长.要点:1.比例尺:表示图上距离比实地距离缩小的程度,比例尺= 图上距离/ 实际距离;2.太阳离我们非常遥远,因此可以把太阳光近似看成平行光线.在同一时刻,两物体影子之比等于其对应高的比;3.视点:观察事物的着眼点(一般指观察者眼睛的位置); 4. 仰(俯)角:观察者向上(下)看时,视线与水平方向的夹角. 一、单选题1.两三角形的相似比是2:3,则其对应角的角平分线之比是( ) A .2:3 B .2:3 C .4:9 D .8:27 【解答】B【提示】根据相似三角形对应角平分线的比等于相似比解答即可. 【详解】解:∵两三角形的相似比是2:3, ∴相似三角形对应角平分线的比是2:3,故选:B .【点睛】本题考查了相似三角形的性质,主要利用了相似三角形对应角平分线的比,对应高的比,对应中线的比都等于相似比的性质.2.已知ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2,若BC 边上的中线长为1,则EF 边上的中线长是( ) A .2 B .2 C .3D .4【解答】A【提示】由ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2可知:相似比为1:2,则对应中线的比为1:2,即可求出答案.【详解】∵ABC DEF ∽△△,ABC 与DEF 的面积之比为1:2 ∴相似比为1:2 ∴其对应中线的比为1:2 ∵BC 边上的中线长为1 ∴EF 边上的中线长是2 故选:A【点睛】本题主要考查了相似三角形的相似比的相关知识点,熟练掌握相似三角形面积比、相似比、对应边的高线、中线的比的关系是解题的关键,属于基础知识题.3.如图点D 、E 分别在△ABC 的两边BA 、CA 的延长线上,下列条件能判定ED ∥BC 的是( ).A .AD DEAB BC =; B .AD AE AC AB =;C .AD AB DE BC ⋅=⋅; D .AD AC AB AE ⋅=⋅. 【解答】D【提示】根据选项选出能推出ADE ABC ∆∆∽,推出D B ∠=∠或E C ∠=∠的即可判断. 【详解】解:A 、∵AD DEAB BC =,EAD BAC ∠=∠,不符合两边对应成比例及夹角相等的相似三角形判定定理. 无法判断ADE ∆与ABC ∆相似,即不能推出//DE BC ,故本选项错误;B 、AD AE AC AB =EAD BAC ∠=∠, ADE ACB ∴∆∆∽,E B ∴∠=∠,D C ∠=∠,即不能推出//DE BC ,故本选项错误;C 、由AD AB DE BC ⋅=⋅可知AB DEBC AD =,不能推出DAE BAC ∆∆∽,即不能推出D B ∠=∠,即不能推出两直线平行,故本选项错误;D 、∵AD AC AB AE ⋅=⋅,AD AEAB AC ∴=,EAD BAC ∠=∠, DAE BAC ∴∆∆∽,D B ∴∠=∠,//DE BC ∴,故本选项正确;故选:D .【点睛】本题考查了相似三角形的性质和判定和平行线的判定的应用,主要考查学生的推理和辨析能力,注意:有两组对应边的比相等,且这两边的夹角相等的两三角形相似. 4.已知ABC 与DEF 相似,且A D ∠=∠,那么下列结论中,一定成立的是( ) A .B E ∠=∠ B .AB ACDE DF =C .相似比为AB DED .相似比为BCEF【解答】D【提示】根据相似三角形的性质对不同的对应角和对应边进行分类讨论.【详解】解:∵B 可以与E 对应,也可以与F 对应,∴∠B=∠E 或∠B=∠F ,A 不一定成立; 同上,AB 可以与DE 对应,也可以与DF 对应,∴AB AC DE DF =或AB ACDF DE =,B 不一定成立;同上,AB 可以与DE 对应,也可以与DF 对应,∴相似比可能是AB DE ,也可能是ABDF ,C 不一定成立;∵∠A=∠D ,即∠A 与∠D 是对应角,∴它们的对边一定是对应比,即BC 与EF 是对应比,∴相似比为BCEF ,∴D 一定成立, 故选D .【点睛】本题考查相似三角形的性质,注意相似三角形的性质是针对对应角和对应边而言的. 5.如图,小明站在 C 处看甲、乙两楼楼顶上的点 A 和点 E .C ,E ,A 三点在同一直线上,B ,C 相距 20 米,D ,C 相距 40 米,乙楼的高 BE 为 15 米,小明的身高忽略不计,则甲楼的高 AD 为 ( )A .40 米B .20 米C .15 米D .30 米【解答】D【提示】证明ADC EBC ∽△△,利用相似三角形的性质解答即可. 【详解】解:由题意可知:90ADC ∠=︒,90EBC ∠=︒,C ∠是公共角,∴ADC EBC ∽△△, ∴AD DCEB BC =, ∵20m BC =,40m DC =,15m BE =, ∴40=15=30m 20DC AD EB BC =⨯⨯.故选:D【点睛】本题考查相似三角形的判定及性质,解题的关键是熟练掌握相似三角形的判定及性质. 6.如图,在Rt △ABC 中,90ACB ∠=,CD AB ⊥垂足为D ,那么下列结论错误的是( )A .22AC BD BC AD ⋅=⋅B .22BC BD CD AB ⋅=⋅C .AD BC AC CD ⋅=⋅ D .CD BC AC BD ⋅=⋅ 【解答】B【提示】根据直角三角形的性质与相似三角形的判定可知△ADC ∽△CDB ∽△ACB ,利用相似三角形的对应线段成比例即可求解. 【详解】∵∠ACB=90°,CD ⊥AB , ∴△ADC ∽△CDB ∽△ACB ∴AC2=AD·AB ,BC2=BD·AB ,故22AC BD BC AD ⋅=⋅,A 正确,B 错误;∵△ADC ∽△CDB∴AD AC CDCD BC BD == ∴AD BC AC CD ⋅=⋅,CD BC AC BD ⋅=⋅,C,D 选项正确; 故选B.【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知直角三角形的性质及相似三角形的判定.7.如图,E ,F 是平行四边形ABCD 对角线AC 上两点,AE=CF=14AC .连接DE ,DF 并延长,分别交AB ,BC 于点G ,H ,连接GH ,则ADG BGHS S △△的值为( )A .12B .23C .34D .1【解答】C【提示】首先证明AG :AB=CH :BC=1:3,推出GH ∥AC ,推出△BGH ∽△BAC ,可得223924ADC BAC BGHBGHS S BA SSBG ()()====,13ADG ADCSS=,由此即可解决问题.【详解】∵四边形ABCD 是平行四边形 ∴AD=BC ,DC=AB , ∵AC=CA , ∴△ADC ≌△CBA , ∴S △ADC=S △ABC ,∵AE=CF=14AC ,AG ∥CD ,CH ∥AD ,∴AG :DC=AE :CE=1:3,CH :AD=CF :AF=1:3, ∴AG :AB=CH :BC=1:3, ∴GH ∥AC , ∴△BGH ∽△BAC , ∴223924ADC BAC BGHBGHS S BA S SBG ()()====,∵13ADG ADCS S=,∴913434ADG BGHS S=⨯=.故选C .【点睛】本题考查平行四边形的性质、相似三角形的判定和性质、全等三角形的判定和性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.8.如图,在正方形ABCD 中,ABP 是等边三角形,AP 、BP 的延长线分别交边CD 于点E 、F ,联结AC 、CP 、AC 与BF 相交于点H ,下列结论中错误的是( )A .AE=2DEB .CFP APHC .CFP APCD .2CP PH PB =⋅【解答】C【提示】A.利用直角三角形30度角的性质即可解决问题. B.根据两角相等两个三角形相似即可判断.C.通过计算证明∠DPB≠∠DPF ,即可判断.D.利用相似三角形的性质即可证明. 【详解】解:∵四边形ABCD 是正方形, ∴∠D=∠DAB=90°, ∵△ABP 是等边三角形, ∴∠PAB=∠PBA=∠APB=60°, ∴∠DAE=30°, ∴AE=2DE ,故A 正确; ∵AB ∥CD ,∴∠CFP=∠ABP=∠APH=60°,∵∠PHA=∠PBA+∠BAH=60°+45°=105°, 又∵BC=BP ,∠PBC=30°, ∴∠BPC=∠BCP=75°, ∴∠CPF=105°,∴∠PHA=∠CPF ,又易得∠APB=∠CFP=60°, ∴△CFP ∽△APH ,故B 正确; ∵∠CPB=60°+75°=135°≠∠DPF , ∴△PFC 与△PCA 不相似,故C 错误; ∵∠PCH=∠PCB-∠BCH=75°-45°=30°, ∴∠PCH=∠PBC , ∵∠CPH=∠BPC , ∴△PCH ∽△PBC ,∴PC PHPB PC =,∴PC2=PH•PB ,故D 正确, 故选:C .【点睛】本题考查相似三角形的判定和性质,等边三角形的性质,正方形的性质,直角三角形30度角的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.如图所示,D 、E 分别是ABC ∆的边AB 、BC 上的点,且//DE AC ,AE 、CD 相交于点O .若45::2DOE COA S S ∆∆=,则BDES ∆与CDE S ∆的比是( )A .1:2B .1: 3C .2:3D .2:5 【解答】C【提示】利用相似三角形的性质解决问题即可. 【详解】解:∵//DE AC , ∴DEO CAO ∆∆∽, ∵45::2DOE COA S S ∆∆=,∴2425DE AC ⎛⎫=⎪⎝⎭,∴25DE AC =, ∵//DE AC , ∴25BE DE BC AC ==, ∴23BE EC =,∴BDES ∆与CDE S ∆的比2:3=,故选:C .【点睛】本题主要考查的是相似三角形的性质和判定,熟练掌握相似三角形的性质和判定定理是解题的关键.10.如图,正方形ABCD 和正方形CGFE 的顶点,,C D E 在同一条直线上,顶点, ,B C G 在同一条直线上.O 是EG 的中点,EGC ∠的平分线GH 过点D ,交BE 于点H ,连接FH 交EG 于点M ,连接OH 交EC 于点N .则BCCG 的值为( )A .31-B .3C .21-D .2【解答】C【详解】∵四边形ABCD 和四边形CGFE 是正方形,,,BC DC CE CG BCE DCG ∴==∠=∠.在BCE和DCG △中,,,(),,BC DC BCE DCG BCE DCG SAS BEC BGH CE CG =⎧⎪∠=∠∴∴∠=∠⎨⎪=⎩≌.90BGH CDG ∠+∠=︒,,90CDG HDE BEC HDE ∠=∠∴∠+∠=︒.GH BE ∴⊥.GH 平分,EGC BGH EGH ∠∴∠=∠.()BGH EGH ASA ∴≌.BH EH ∴=.又O 是EG 的中点,//HO BG ∴.D C DHN G ∴∽△△.DN HN DC CG ∴=.设HN a =,正方形ECGF 的边长是2b ,则2BC a =,22,,22b a aCD a NC b a b -==∴=,即2220a ab b +-=,解得(12)a b =-+或(12)a b =--(舍去),则221,212a BCb CG =-∴=-.二、填空题11.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________. 【解答】3:5【提示】根据相似三角形的性质:相似三角形对应边上的中线之比等于相似比即可得出答案. 【详解】∵两个相似三角形的面积比是9:25 ∴两个相似三角形的相似比是3:5 ∴对应边上的中线的比为3:5 故答案为:3:5.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 12.如图,△ABC ∽△CBD ,AB=9,BD=25,则BC=______.【解答】15【提示】根据相似三角形的性质列出比例式,代入计算即可求解. 【详解】解:∵△ABC ∽△CBD ,∴AB CBCB BD =,即2BC AB BD =⨯, AB=9,BD=25,2292522515BC AB BD ∴=⨯=⨯==,15BC =∴, 故答案为:15【点睛】本题考查了相似三角形的性质,根据相似三角形的性质列出比例式是解题的关键. 13.一个三角形三边长度之比为2:5:6,另一个与它相似的三角形最长边为24,则三角形的最短边为_________. 【解答】8【提示】首先设与它相似的三角形的最短边的长为x ,然后根据相似三角形的对应边成比例,即可得方程,解此方程即可求得答案.【详解】解:设与它相似的三角形的最短边的长为x ,则 2624x =,∴8x =;∴三角形的最短边为8. 故答案为:8.【点睛】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的对应边成比例定理的应用.14.如图,在矩形ABCD 中,E 是BC 的中点,连接AE ,过点E 作EF AE ⊥交DC 于点F .若4AB =,6BC =,则DF 的长为______.【解答】74【提示】结合矩形的性质证明BAECEF ∆∆可求得CF 的长,再利用DF CD DF =-可求解.【详解】解:四边形ABCD 为矩形,90B C ∴∠=∠=︒,4CD AB ==,90BAE AEB ∴∠+∠=︒,EF AE⊥,90AEF∴∠=︒,90AEB CEF∴∠+∠=︒,BAE CEF∴∠=∠,BAE CEF∴∆∆,::AB CE BE CF∴=,E是BC的中点,6BC=,3BE CE∴==,4AB=,4:33:CF∴=,解得94CF=,97444DF CD DF∴=-=-=.故选:7 4.【点睛】本题主要考查矩形的性质,相似三角形的判定与性质,证明BAE CEF∆∆是解题的关键.15.用杠杆撬石头的示意图如图所示,P是支点,当用力压杠杆的A端时,杠杆绕P点转动,另一端B向上翘起,石头就被撬动.现有一块石头要使其滚动,杠杆的B端必须向上翘起8cm,已知杠杆的动力臂AP与阻力臂BP之比为4:1,要使这块石头滚动,至少要将杠杆的A端向下压_____cm.【解答】32【提示】首先根据题意画出图形,然后根据△APM∽△BPN有AP AMBP BN=,然后再利用动力臂AP与阻力臂BP之比为4:1和8BN≥即可求出AM的最小值.【详解】解:如图:AM、BN都与水平线垂直,即AM∥BN;∴△APM∽△BPN;∴APBP=AMBN,∵杠杆的动力臂AP与阻力臂BP之比为4:1,∴AMBN=41,即AM=4BN;∴当BN≥8cm时,AM≥32cm;故要使这块石头滚动,至少要将杠杆的端点A 向下压32cm . 故答案为:32.【点睛】本题主要考查相似三角形的判定及性质的应用,掌握相似三角形的判定及性质是解题的关键. 16.如图,已知,20,60AB BC ACBAD DAE AD DE AE ︒︒==∠=∠=,则DAC ∠的度数为_________.【解答】40°【提示】由AB BC ACAD DE AE ==可判定△ABC ∽△ADE ,得到∠BAC=∠DAE ,再根据20BAD ︒∠=,60DAE ︒∠=,可得出∠DAC 的度数.【详解】解:∵AB BC ACAD DE AE ==, ∴~ABC ADE , ∴60BAC DAE ︒∠=∠=, 又∵20BAD ︒∠=, ∴40DAC ︒∠=. 故答案为:40°.【点睛】本题考查了相似三角形的判定和性质,解题的关键是能根据AB BC ACAD DE AE ==判定出△ABC ∽△ADE.17.如图,已知在ABC 中,90C ∠=︒,10AB =,1cot 2B =,正方形DEFG 的顶点G 、F 分别在边AC 、BC 上,点D 、E 在斜边AB 上,那么正方形DEFG 的边长为_____.【解答】207【提示】作CM ⊥AB 于M ,交GF 于N ,由勾股定理可得出AB ,由面积法求出CM ,证明△CGF ∽△CAB ,再根据对应边成比例,即可得出答案. 【详解】作CM ⊥AB 于M ,交GF 于N ,如图所示: ∵Rt △ABC 中,∠C =90°,AB =10,1cot B 2=,∴设BC =k ,则AC =2k ,AB2=AC2+BC2,即:102=(2k )2+k2,解得:k =25, ∴BC =25,AC =45, ∴CM =AC BC AB ⋅=452510⨯=4,∵正方形DEFG 内接于△ABC , ∴GF =EF =MN ,GF ∥AB , ∴△CGF ∽△CAB ,∴CN GF =CM AB ,即4EF EF410-=, 解得:EF =207;故答案为:207.【点睛】本题考查的是相似三角形的判定和性质、正方形的性质、勾股定理等知识;正确作出辅助线、灵活运用相似三角形的判定定理和性质定理是解题的关键.18.如图,在ABC 中,90ACB ∠=︒,AC BC =,点E 是边AC 上一点,以BE 为斜边往BC 侧作等腰Rt BEF △,连接,CF AF ,若6AB =,四边形ABFC 的面积为12,则AE =_________,AF =_________.【解答】 234【提示】如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,由面积和差关系可求3BCF S ∆=,通过证明ABE CBF ∆∆∽,可得2()ABE BCF S AB S BC∆∆=,可求2EH =,由勾股定理可求AE ,BE ,EF 的长,通过证明BEH EFQ ∆∆∽,可得2BE EH BH EF QF EQ ===,可求22EQ =,2QF =,由勾股定理可求解.【详解】解:如图,过点E 作EH AB ⊥于H ,过点F 作FQ AC ⊥,交AC 的延长线于Q ,90ACB ∠=︒,AC BC =,2AB BC ∴,=6AB ,32AC BC ∴==四边形ABFC 的面积为12,12ABC BCF S S ∆∆∴+=, 3BCF S ∆∴=,等腰Rt BEF ∆,2BE BF ∴,45EBF∠=︒,=45ABC ∠︒,ABE CBF ∴∠=∠,2AB BE BC FB == ABE CBF ∴∆∆∽,∴2()ABE BCF S AB S BC ∆∆=, 326ABE S ∆∴=⨯=,∴162AB EH ⨯=,2EH ∴=,45CAB ∠=︒,EH AB ⊥,45CAB AEH ∴∠=∠=︒,2AH EH ∴==,222AE EH ==,4BH ∴=,2CE =,2221825BE CE BC ∴=+=+=,10EF ∴=,180AEH BEH FEB QEF ∠+∠+∠+∠=︒, 90BEH FEQ ∴∠+∠=︒,且90BEH EBH ∠+∠=︒EBH QEF ∴∠=∠,且90Q BHE ∠=∠=︒,BEH EFQ ∴∆∆∽, ∴2BE EH BHEF QF EQ ===, 22EQ ∴=,2QF =, 42AQ ∴=,2232234AF AQ QF ∴=+=+=,故答案为:22,34.【点睛】本题考查了相似三角形的判定和性质,等腰直角三角形的性质,勾股定理等知识,利用相似三角形的性质求出EH 的长是本题的关键.三、解答题19.如图,在ABP 中,C ,D 分别是,AP BP 上的点.若4,5,6,3CD CP DP AC BD =====.(1)求证:ABP DCP ∽△△; (2)求AB 的长. 【解答】(1)见解析(2)AB=8【提示】(1)△ABP与△DCP有公共角,分别计算PDPC与APBP的值,得到PD PCPA PB=,根据相似三角形的判定定理得出结论;(2)运用相似三角形的性质计算即可.(1)证明:∵CD=CP=4,DP=5,AC=6,BD=3,∴AP=AC+CP=6+4=10,BP=BD+DP=3+5=8,∴54PDPC=,10584APBP==,∴PD APPC BP=,即PD PCPA PB=,∵∠DPC=∠APB,∴△ABP∽△DCP;(2)解:∵△ABP∽△DCP,∴AB PBCD PC=,即844AB=,∴AB=8.【点睛】本题考查了相似三角形的判定与性质,属于基础题.解决问题的关键是掌握:有两边对应成比例且夹角相等的两个三角形相似.20.如图,在矩形ABCD中,AB:BC=1:2,点E在AD上,BE与对角线AC交于点F.(1)求证:△AEF∽△CBF;(2)若BE⊥AC,求AE:ED.【解答】(1)见解析(2)1:3【提示】(1)根据矩形的性质得到AD∥BC,然后根据相似三角形的判断方法可判断△AEF∽△CBF;(2)设AB=x,则BC=2x,利用矩形的性质得到AD=BC=2x,∠BAD=∠ABC=90°,接着证明△ABE∽△BCA,利用相似比得到AE=12x,则DE=32x,从而可计算出AE:DE.(1)解:证明:∵四边形ABCD为矩形,∴AD∥BC,∴△AEF∽△CBF;(2)设AB=x,则BC=2x,∵四边形ABCD为矩形,∴AD=BC=2x,∠BAD=∠ABC=90°,∵BE⊥AC,∴∠AFB=90°,∵∠ABF+∠BAF=90°,∠BAC+∠ACB=90°,∴∠ABF=∠ACB,∵∠BAE=∠ABC,∠ABE=∠BCA,∴△ABE∽△BCA,∴AE ABAB BC=,即2AE xx x=,∴AE=12x,∴DE=AD-AE=32x,∴AE:DE=13:22x x=1:3.【点睛】本题考查了三角形相似的判定与性质,应注意利用图形中已有的公共角、公共边等条件,同时利用相似三角形的性质进行几何计算.也考查了矩形的性质.21.如图,为了测量平静的河面的宽度EP,在离河岸D点3.2米远的B点,立一根长为1.6米的标杆AB,在河对岸的岸边有一根长为4.5米的电线杆MF,电线杆的顶端M在河里的倒影为点N,即PM PN=,两岸均高出水平面0.75米,即0.75DE FP==米,经测量此时A、D、N三点在同一直线上,并且点M、F、P、N N共线,点B、D、F共线,若AB、DE、MF均垂直与河面EP,求河宽EP是多少米?【解答】河宽为12米【提示】连接DF ,根据题意可得出四边形DEPF 为矩形,由ADB NDF ∽△△可求得DF ,便可解决问题.【详解】解:如图,连接DF ,∵点B 、D 、F 共线,DE 、MF 均垂直与河面EP ,且0.75DE FP ==, 4.5MF =, ∴四边形DEPF 为矩形, ∴DF EP =,∴ 4.50.75 5.25PN FM FP =+=+=, ∴ 5.250.756FN PN FP =+=+=, ∵AB 、DE 、MF 均垂直与河面EP , ∴90ABD NFD ∠=∠=︒, ∵ADB NDF ∠=∠, ∴ADB NDF ∽△△; ∴AB NFBD DF =, ∵ 1.6AB =, 3.2BD =, ∴1.663.2DF =,∴12DF =, ∴12EP =(米). 答:河宽EP 是12米.【点睛】本题主要考查了相似三角形的性质与判定,矩形的判定和性质等知识.关键是构造和证明三角形相似.22.如图,已知AD ,BC 相交于点E ,且△AEB ∽△DEC ,CD =2AB ,延长DC 到点G ,使CG =12CD ,连接AG .(1)求证:四边形ABCG 是平行四边形;(2)若∠GAD =90°,AE =2,CG =3,求AG 的长. 【解答】(1)证明见解析; (2)35AG =【提示】(1)根据相似三角形的性质可得AB ∥CD ,再由CD =2AB ,CG =12CD ,可得AB =CG ,即可证明;(2)由平行四边形的性质可得AG ∥BC ,可得∠AEB =90°,再由CG =3可得AB =3,利用勾股定理可得BE ,再由相似三角形的性质可得CE ,从而得出BC ,即可求解. (1)证明:∵△AEB ∽△DEC , ∴∠B =∠BCD , ∴AB ∥CD , 即AB ∥CG ,∵CD =2AB ,CG =12CD ,∴AB =CG ,∴四边形ABCG 是平行四边形; (2)解:∵四边形ABCG 是平行四边形,AE =2,CG =3, ∴AG ∥BC ,AG =BC ,AB =CG =3, ∵∠GAD =90°, ∴∠AEB =90°,在Rt △ABE 中,由勾股定理可得:BE 22AB AE -即BE =22325-=,∵△AEB ∽△DEC , ∴12BE AB CE CD ==, ∴CE =25,∴BC =BE+CE =35, ∴AG =BC =35.【点睛】本题考查相似三角形的性质,勾股定理,平行四边形的判定与性质,解题的关键是熟练掌握相似三角形的性质,勾股定理的运用,平行四边形的判定与性质.23.如图,在△ABC 中,AD 是角平分线,点E 是边AC 上一点,且满足ADE B ∠=∠.(1)证明:ADB AED ∆∆;(2)若3AE =,5AD =,求AB 的长. 【解答】(1)见解析(2)253【提示】(1)证出∠BAD=∠EAD .根据相似三角形的判定可得出结论; (2)由相似三角形的性质可得出AD ABAE AD =,则可得出答案. (1)∵AD 是∠BAC 的角平分线, ∴∠BAD=∠EAD . ∵∠ADE=∠B , ∴△ADB ∽△AED . (2)∵△ADB ∽△AED , ∴AD ABAE AD =,∵AE=3,AD=5, ∴535AB =, ∴253AB =. 【点睛】本题考查了相似三角形的判定与性质以及三角形内角和定理,熟练掌握相似三角形的判定定理和性质定理是解题的关键.24.已知:平行四边形ABCD ,E 是BA 延长线上一点,CE 与AD 、BD 交于G 、F .求证:2CF GF EF =⋅.【解答】见解析【提示】根据平行四边形的性质得到AD BC ∥,AB CD ∥,得到△DFG ∽△BFC ,△DFC ∽△BFE ,根据相似三角形的性质列出比例式,计算即可. 【详解】证明:∵四边形ABCD 是平行四边形, ∴AD BC ∥,AB CD ∥,∴△DFG ∽△BFC ,△DFC ∽△BFE ∴GF DF CF BF =,CF DFEF BF =, ∴GF CFCF EF =, 即2CF GF EF =⋅.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.25.如图,已知cm,cm,23,36,117AD a AC b BC AC B D ===∠∠=︒=︒,ABC DAC △∽△.(1)求AB 的长;(2)求DC 的长; (3)求BAD ∠的度数.【解答】(1)32cm a ;(2)2cm3b ;(3)153︒【提示】(1)由ABC DAC △∽△,可得:,AB BCAD AC =再代入数据可得答案;(2)由ABC DAC △∽△,可得:,AC BCDC AC =再代入数据可得答案;(3)由ABC DAC △∽△,可得:117,36,BAC D B DAC ∠=∠=︒∠=∠=︒再利用角的和差可得答案; 【详解】解:(1)23,,BC AC AD a ==3,2BC AC ∴= ABC DAC △∽△,,AB BCAD AC ∴= 3,2AB a ∴= 3.2AB a ∴=(2) ABC DAC △∽△,,AC BCDC AC ∴= 而3,,2BC AC b AC == 3,2b DC ∴=2.3DC b ∴=(3) ABC DAC △∽△,36,117,B D ∠=︒∠=︒117,36,BAC D B DAC ∴∠=∠=︒∠=∠=︒11736153.BAD BAC DAC ∴∠=∠+∠=︒+︒=︒【点睛】本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边成比例是解题的关键.26.如图,在四边形ABCD 中,AC ,BD 交于点F .点E 在BD 上,且BAE CAD ∠=∠,AB ACAE AD =.(1)求证:ABC AED ∽△△. (2)若20BAE ∠=︒,求∠CBD 的度数. 【解答】(1)证明见解析 (2)20︒【提示】(1)根据两边对应成比例,且夹角相等,两个三角形相似,即可证明.(2)根据(1)中ABC AED ∽△△,得出ADB ACB ∠=∠,再根据对顶角相等,AFD BFC ∠=∠,证得AFD BFC ∽△△,得出CBD CAD BAE ∠=∠=∠,即可求解. (1)∵BAE CAD ∠=∠∴BAE EAF CAD EAF ∠+∠=∠+∠, ∴BAC DAE ∠=∠, AB ACAE AD =,∵在ABC 和AED △中, AB ACAE AD BAC DAE ⎧=⎪⎨⎪∠=∠⎩,∴ABC AED ∽△△. (2)∵ABC AED ∽△△, ∴ADB ACB ∠=∠,又∵AFD BFC ∠=∠,对顶角相等,∴AFD BFC ∽△△, ∴CBD CAD ∠=∠,∵BAE CAD ∠=∠,20BAE ∠=︒,∴20CAD ∠=︒, 故答案为:20︒.【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 27.如图,四边形ABCD 为正方形,且E 是边BC 延长线上一点,过点B 作BF ⊥DE 于F 点,交AC 于H 点,交CD 于G 点.(1)求证:△BGC ∽△DGF ; (2)求证:GD AB DF BG ⋅=⋅; (3)若点G 是DC 中点,求GFCE 的值.【解答】(1)见解析 (2)见解析 (3)5GF CE=【提示】(1)由正方形性质和题干已知垂直条件得直角相等,后由对顶角相等,进而得到△BGC ∽△DCF .(2)由第一问的结论可得到相似比,既有DG BC DF BG ⋅=⋅,然后因为正方形四边相等,进行等量代换即可求出证明出结论.(3)通过ASA 判定出△BGC ≌△DEC ,进而根据第一问结论可得△BGC ∽△DGF ,然后通过相似比设未知数,赋值CG x =,即可求出GFCE 的值.(1)证明:∵四边形ABCD 是正方形 ∴90BCD ADC ∠=∠=︒ ∵BF DE ⊥ ∴90GFD ∠=︒ ∴BCD GFD ∠=∠,又∵BGC DGF ∠=∠, ∴△BGC ∽△DCF . (2)证明:由(1)知△BGC ∽△DGF , ∴BG BCDG DF =, ∴DG BC DF BG ⋅=⋅ ∵四边形ABCD 是正方形, ∴AB BC =∴DG AB DF BG ⋅=⋅. (3)解:由(1)知△BCC ∽△DGF , ∴FDG CBG ∠=∠,在△BGC 与△DEC 中,,{,=,CBG CDE BCG DCE BC CD ∠=∠∠=∠ ∴△BGC ≌△DEC (ASA ) ∴CG EC = ∵G 是CD 中点 ∴CG DG = ∴::GF CE CF DC = ∵△BGC ∽△DGF ∴::GF DG CG BG =在Rt △BGC 中,设CG x =,则2BC x =,BC =∴CG BG =∴GF CE=【点睛】本题主要考查了正方形的性质,全等三角形判定和性质,相似三角形判定和性质等知识点,熟练运用相似三角形判定和性质是解题的关键.28.如图1,在ABC 中,90ACB ∠=︒,AC BC =,点D 是AB 边上一点(含端点A 、B ),过点B 作BE 垂直于射线CD ,垂足为E ,点F 在射线CD 上,且EF BE =,连接AF 、BF .(1)求证:ABF CBE ∽;(2)如图2,连接AE ,点P 、M 、N 分别为线段AC 、AE 、EF 的中点,连接PM 、MN 、PN .求PMN ∠的度数及MNPM 的值;(3)在(2)的条件下,若2BC =PMN 面积的最大值.【解答】(1)证明见解析;(2)135PMN ∠=;=2MN PM 3)14 【提示】(1)根据两边对应成比例,夹角相等判定即可.(2)PMN ∠的值可以根据中位线性质,进行角转换,通过三角形内角和定理求解即可,MNPM 的比值转换为AFCE 的比值即可求得.(3)过点P 作PQ 垂直于NM 的延长线于点Q ,12PMN S MN PQ =△,将相关线段关系转化为CE ,可得关系218PMN S CE =△,观察图象,当2CE BC == 【详解】(1)证明:∵90ACB ∠=︒,AC BC = ∴2AB BC =,45ABC BAC ∠=∠= ∵BE 垂直于射线CD , ∴90,BEF ∠= 又∵EF BE =∴2FB EB =,45FBE EFB ∠=∠= ∵+ABC ABE ABE FBE ∠∠=∠+∠ 即:ABF CBE ∠=∠又∵2AB BFCB BE == ∴ABF CBE ∽(2)解:∵点P 、M 、N 分别为线段AC 、AE 、EF 的中点∴//PM CN ,//MN AF ,11,22PM CE MN AF== ∴MPN CNP ∠=∠,CNM EFA ∠=∠∴+MPN MNP CNP MNP CNM EFA ∠∠=∠+∠=∠=∠ 又∵ABF CBE ∽ ∴90AFB CEB ∠=∠= 又∵45EFB ∠=∴904545EFA AFB BFE ∠=∠-∠=-= ∴+45MPN MNP ∠∠=又∵++180MPN MNP PMN ∠∠∠= ∴18045135PMN ∠=-=又∵12=12AFMN AFPM CECE = 又∵ABF CBE ∽ ∴=2AF AB CE CB = ∴=2MNPM(3)如下图:过点P 作PQ 垂直于NM 的延长线于点Q , 135,PMN ∠=︒ 45,PMQ MPQ ∴∠=︒=∠,PQ ∴= 111221222228216PMNS MN PQ AF PM AF CE AF CE ==⨯⨯==△又∵BC =∴AF =∴221168PMN S CE ==△∴当CE 取得最大值时,PMN 取得最大值, ,BE CE ⊥E ∴在以BC 的中点为圆心,BC 为直径的圆上运动,∴当CE CB ==CE 最大,∴11=2=84S ⨯, 【点睛】本题考查的是三角形相似和判定、以及三角形面积最大值的求法,根据题意找见相关的等量是解题关键.。
浙教版九年级上学期第四章相似三角形动点问题分类讨论(包含答案)
由动点产生的相似三角形的解题方法和策略:1.寻找题目中特殊的条件和不变的量,并找出由条件引发的一些相等角、相等线段等特殊条件;(挖掘题目中的隐藏条件)2.注意分类讨论,先找是否有相等角,再决定分类讨论情况:3.相似三角形的边如果能直接求出列等式最好,如果不能求出,注意转化相似(是否产生新的相似、等腰、平行四边形等更特殊的条件)4.注意三个易忘定理:线段的中垂线定理、角平分线定理、直角三角形的性质。
例1.如图,在Rt △ABC 中,︒=∠90ACB ,CE 是斜边AB 上的中线,10=AB ,43tanA =,点P 是CE 延长线上的一动点,过点P 作CB PQ ⊥,交CB 延长线于点Q ,设EP x =,BQ y =。
(1)求y 关于x 的函数关系式及定义域;(2)过点B 作AB BF ⊥交PQ 于F ,当BEF ∆和QBF ∆相似时,求x 的值。
【解答】(1)在Rt △ABC 中,90ACB ︒∠=,∵4tan 3BC A AC ==,10AB = ∴8,6BC AC ==.∵CE 是斜边AB 上的中线,∴152CE BE AB === ∴,PCB ABC ∠=∠∵90PQC ACB ︒∠=∠=∴△PQC ∽△ABC∴484,555CQ BC y PC AB x +===+即 ; ∴445y x =-,定义域为5x >. (2)∵90,Q ACB QBF A ︒∠=∠=∠=∠∴△BQF ∽△ABC当△BEF 和△QBF 相似时,可得△BEF 和△ABC 也相似. 分两种情况: ①当FEB A ∠=∠时,在Rt △FBE 中,90FBE ︒∠=,5BE =,53BF y =∴54445353x ⎛⎫-=⨯⎪⎝⎭,解得10x =; ②当FEB ABC ∠=∠时,在Rt △FBE 中,590,5,3FBE BE BF y ︒∠===∴54345354x ⎛⎫-=⨯⎪⎝⎭,解得12516x = 综合①②,12516x =或10. 练习1.已知如图,在等腰梯形ABCD 中, AD ∥BC ,AB=CD ,AD=3,BC=9,34tan =∠ABC ,直线MN是梯形的对称轴,点P是线段MN上一个动点(不与M、N重合),射线BP交线段CD于点E,过点C作CF∥AB 交射线BP于点F。
沪教版 九年级(上)数学 秋季课程 第2讲 相似三角形
D ABCE相似三角形是九年级数学上学期第一章第三节的内容,本讲主要讲解相似三角形的判定和相似三角形的性质;重点是根据已知条件灵活运用不同的判定定理对三角形相似进行判定,并结合相似三角形的性质进行相关的证明,难点是相似三角形的性质与判定的互相结合,以及相似三角形与分类讨论及函数思想的互相结合.1、 相似三角形的定义如果一个三角形的三个角与另一个三角形的三个角对应相等,且它们各有的三边对应成比例,那么这两个三角形叫做相似三角形.如图,DE 是ABC ∆的中位线,那么在ADE ∆与ABC ∆中,A A ∠=∠, ADEB ∠=∠,AEDC ∠=∠;12AD DE AE AB BC AC ===. 由相似三角形的定义,可知这两个三角形相似.用符号来表示,记作ADE ∆∽ABC ∆,其中点A 与点A 、点D 与点B 、点E 与点C 分别是对应顶点;符号“∽”读作“相似于”.用符号表示两个相似三角形时,通常把对应顶点的字母分别写在三角形记号“∆”后相应的位置上.相似三角形内容分析知识结构模块一:相似三角形的判定知识精讲2 / 16ABC A 1B 1C 1根据相似三角形的定义,可以得出:(1)相似三角形的对应角相等,对应边成比例;两个相似三角形的对应边的比,叫做这两个三角形的相似比(或相似系数).(2)如果两个三角形分别与同一个三角形相似,那么这两个三角形也相似. 2、 相似三角形的预备定理平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似. 如图,已知直线l 与ABC ∆的两边AB 、AC 所在直线分别交于点D 和点E ,则ADE ∆∽ABC ∆.3、 相似三角形判定定理1如果一个三角形的两角与另一个三角形的两角对应相等,那么这两个三角形相似.可简述为:两角对应相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,如果1A A ∠=∠、1B B ∠=∠,那么ABC ∆∽111A B C ∆.常见模型如下:A BCDEABCDEABCDEABCA 1B 1C 1ABCA 1B 1C 14、 相似三角形判定定理2如果一个三角形的两边与另一个三角形的两边对应成比例,并且夹角相等,那么这两个三角形相似.可简述为:两边对应成比例且夹角相等,两个三角形相似.如图,在ABC ∆与111A B C ∆中,1A A ∠=∠,1111AB ACA B AC =,那么ABC ∆∽111A B C ∆.5、 相似三角形判定定理3如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.可简述为:三边对应成比例,两个三角形相似. 如图,在ABC ∆与111A B C ∆中,如果111111AB BC CAA B B C C A ==,那么ABC ∆∽111A B C ∆.6、 直角三角形相似的判定定理如果一个直角三角形的斜边及一条直角边与另一个直角三角形的斜边及一条直角边对应成比例,那么这两个直角三角形相似.可简述为:斜边和直角边对应成比例,两个直角三角形相似.如图,在Rt ABC ∆和111Rt A B C ∆中,如果190C C ∠=∠=︒,1111AB BCA B B C =,那么ABC ∆∽111A B C ∆.ABCA 1B 1C 14 / 16AB CABCDEABCP【例1】 如图,已知点P 是ABC ∆中边AC 上一点,联结BP ,要使ABP ∆∽ACB ∆,那么应添加的一个条件为____________,或____________,或____________.【例2】 下列命题正确的是( ) A .有一个角是40°的两个等腰三角形相似 B .有一个角是106°的两个等腰三角形相似 C .面积相等的两个直角三角形相似 D .两边之比为3 : 5的两个直角三角形相似【例3】 下列4⨯4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与ABC ∆相似的三角形所在的网格图形是( )A .B .C .D .【例4】 如图,ABC ∆中,AE 交BC 于点D ,C E ∠=∠,:3:5AD DE =,AE = 8, BD = 4,则DC 的长等于( )A .415B .125C .174D .154例题解析ABCDPA BCDE FP【例5】 在研究相似问题时,甲、乙同学的观点如下:甲:将边长为3、4、5的三角形按图1的方式向外扩张,得到新三角形,它们的对应边间距为1,则新三角形与原三角形相似;乙:将邻边为3和5的矩形按图2的方式向外扩张,得到新的矩形,它们的对应边间距均为1,则新矩形与原矩形相似.对于两人的观点,下列说法正确的是( ) A .两人多对B .两人都不对C .甲对乙不对D .甲不对,乙对【例6】 如图,ABC ∆中,AB = AC = 5,BC = 6,点M 为BC 中点,MN ⊥AC 于点N ,则MN =______.【例7】 如图,在平行四边形ABCD 中,F 是BC 上的一点,直线DF 与AB的延长线相交于点E ,BP // DF ,且与AD 相交于点P ,则图中有______对相似的三角形.【例8】 如图,在直角梯形ABCD 中,AD // BC ,90ABC ∠=︒,AB = 8,AD = 3,BC = 4,点P 为AB 边上一动点,若PAD ∆与PBC ∆是相似三角形,则满足条件的点P 的个数是( )A .1个B .2个C .3个D .4个图1图211 1 1111 AB CNM6 / 16A BCDEFAB CDE FGABCDEF 【例9】 如图,在Rt ABC ∆中,90ACB ∠=︒,BC = 3,AC = 4,AB 的垂直平分线DE 交BC的延长线于点E ,则CE 的长为( )A .32B .76C .256D .2【例10】如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F为线段DE 上一点,且AEF B ∠=∠.(1)求证:ADF ∆∽DEC ∆;(2)若AB = 8,AD =63,AF =43,求AE 的长.【例11】如图,梯形ABCD 中,AD // BC ,AB = DC ,对角线AC 、BD 相交于点F ,点E 是边BC 延长线上一点,且CDE ABD ∠=∠.(1)求证:四边形ACED 是平行四边形;(2)联结AE ,交BD 于点G ,求证:DG DFGB DB=.【例12】如图,在ABC ∆中,AB = AC ,点D 、E 分别是边AC 、AB 的中点,DF ⊥AC ,DF 与CE 相交于点F ,AF 的延长线与BD 相交于点G .(1)求证:2AD DG BD =;(2)联结CG ,求证:ECB DCG ∠=∠.【例13】 在ABC ∆中,AB = 40,AC = 24,BC = 32,点D 是射线BC 上的一点(不与端点重合),联结AD ,如果ACD ∆与ABC ∆相似,求BD 的值.ABCDEAB C DE FG H QAB CDNM【例14】正方形ABCD 的边长为1,M 、N 分别是BC 、CD 上的两个动点,且始终保持AM ⊥MN ,求当BM 为多少时,四边形ABCN 的面积最大,最大面积为多少?【例15】 如图,将边长为6 cm 的正方形ABCD 折叠,使点D 落在AB 边的中点E 处,折痕为FH ,点C 落在Q 处,EQ 与BC 交于点G ,则EBG ∆的周长为______cm .【例16】如图,Rt ABC ∆中,90ACB ∠=︒,AC = 4 cm ,BC = 2 cm ,D 为BC的中点,若动点E 以1 cm /s 的速度从A 点出发,沿着A B A →→的方向运动,设点E 的运动时间为t 秒,联结DE ,当t 为何值时,BDE ∆是直角三角形?【例17】如图,ABC ∆中,4AB = 5AC ,AD 为ABC ∆的角平分线,点E 在BC 的延长线上,EF ⊥AD 于点F ,点G 在AF 上,FG = FD ,联结EG 交AC 于点H ,若点H 是AC 的中点,求AGFD的值.A BCDE A BCDEF G H8 / 161、 相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比. 2、 相似三角形性质定理2 相似三角形周长的比等于相似比. 3、 相似三角形性质定理3相似三角形的面积的比等于相似比的平方.【例18】如果两个相似三角形的面积之比是9 : 25,其中小三角形一边上的中线长是12cm ,那么大三角形对应边上的中线长是______cm .【例19】在ABC ∆中,DE // BC ,且D 在AB 边上,E 在AC 边上,若:1:4ADE BCED S S ∆=,则:ADE ABC C C ∆∆=______,:AD DB =______.【例20】如图,梯形ABCD 中,AD // BC ,90B ACD ∠=∠=︒,AB = 2,DC = 3,则ABC∆与DCA ∆的面积比为( )A .2 : 3B .2 : 5C .4 : 9D .2:3【例21】【例22】如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值为( )A .只有1个B .可以有2个C .可以有3个D .有无数个模块二:相似三角形的性质知识精讲例题解析ABCDABCD E ABCDE【例23】如图,D 、E 分别在ABC ∆的边AB 、AC 上,23AD AE DE AB AC BC ===,且ABC ∆与ADE ∆的周长之差为15 cm ,求ABC ∆与ADE ∆的周长.【例24】如图,在ABC ∆中,D 、E 分别是AB 、BC 上的点,且DE // AC ,若:1:4BDE CDE S S ∆∆=,则:BDE ACD S S ∆∆=______.【例25】如图,在ABC ∆中,90C ∠=︒,将ABC ∆沿直线MN 翻折后,顶点C 恰好落在AB 边上的点D 处,已知MN // AB ,MC = 6,23NC =,那么四边形MABN 的面积是______.【例26】如图,在平行四边形ABCD 中,AB = 6,AD = 9,BAD ∠的平分线交BC 于E ,交DC 的延长线与F ,BG AE ⊥于G ,则EFC ∆的周长为______.【例27】如图,在ABC ∆中,BE 平分ABC ∠交AC 于点E ,过点E 作ED // BC 交AB于点D .(1)求证:AE BC BD AC =;(2)如果3ADE S ∆=,2BDE S ∆=,DE = 6,求BC 的长.AB CDEABCDNMABC DEFG10 / 16ABCD PQ【例28】如图,直角三角形ABC 中,90ACB ∠=︒,AB = 10,BC = 6,在线段AB 上取一点D ,作DF AB ⊥交AC 于点F ,现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ,AD 的中点E 的对应点记为1E ,若11E FA ∆∽1E BF ∆, 则AD =______.【例29】如图,在Rt ABC ∆中,90C ∠=︒,AB = 5,BC = 3,点D 、E 分别在BC 、AC上,且BD = CE ,设点C 关于DE 的对称点为F ,若DF // AB ,则BD 的长为______.【例30】如图,在Rt ABC ∆中,90ACB ∠=︒,AC = 8,BC = 6,CD AB ⊥于点D .点P从点D 出发,沿线段CD 向点C 运动,点O 从点C 出发,沿线段CA 向点A 运动,两点同时出发,速度都为每秒1个单位长度,当点P 运动到点C 时,两点都停止.设运动时间为t 秒.(1)求线段CD 的长;(2)设CPQ ∆的面积为S ,求S 与t 之间的关系式,并确定运动过程中是否存在某一时刻t ,使得:9:100CPQ ABC S S ∆∆=?若存在,求出t 的值;若不存在,请说明理由;(3)当t 为何值时,CPQ ∆为等腰三角形?ABCD E F A 1E 1 AB CDEA BCABCDE FGABCDE【习题1】 如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC ∆相似的是( )A .B .C .D .【难度】★ 【答案】 【解析】【习题2】 如图,D 是ABC ∆的边AC 上一点,CBD ∠的平分线交AC 于点E ,AE = AB ,则长度为线段AD 、AC 长度比例中项的线段是______.【习题3】 如图,在ABC ∆中,D 、F 是AB 的三等分点,DE // FG // BC ,分别交AC 于E 、G .记ADE ∆、四边形DFGE 、四边形FBCG 的面积分别为1S 、2S 、3S ,则123::S S S =______.【习题4】 如图,D 是ABC ∆的边BC 上一点,已知AB = 4,AD = 2,DAC B ∠=∠,若ABD ∆的面积为a ,则ACD ∆的面积为______.随堂检测ABCD12 / 16AB CPN MQA BCDEG Hx y xy xy xy O O O O 3 45 3 45 3 45 3 45 AB C D E FMG H【习题5】 如图,矩形ABCD 中,AB = 3,BC = 4,动点P 从A 点出发,按A B C →→的方向在AB 和BC 上移动,记P A = x ,点D 到直线P A 的距离为y ,则y 关于x 的函数图像大致是( )A .B .C .D .【习题6】 如图,已知点D 是等腰直角三角形ABC 斜边BC 上的一点,BC = 3BD ,CE ⊥AD ,则AE CE =______.【习题7】 在同一时刻,两根木竿在太阳光下的影子如图所示,其中木竿AB = 2 m ,它的影子BC = 1.6 m ,木竿PQ 的影子有一部分落在了墙上,PM = 1.2 m ,MN = 0.8 m ,则木竿PQ 的长度为______m .【习题8】 如图,点E 是矩形ABCD 的边BC 上一点,EF ⊥AE ,EF 分别交AC 、CD 于点M 、F ,BG ⊥AC ,垂足为点G ,BG 交AE 于点H .(1)求证:ABE ∆∽ECF ∆;(2)找出与ABH ∆相似的三角形,并证明;(3)若E 是BC 的中点,BC = 2AB ,AB = 2,求EM 的长.【习题9】 如图,在矩形ABCD 中,AB = 2,BC = 3,点E 、F 、G 、H分别在矩形ABCD 的各边上,EF // AC // HG ,EH // BD // FG ,求四边形EFGH 的周长.A B CDPx yA BC DEABCDEFmH【习题10】 如图,在ABC ∆中,AB = AC ,AD ⊥AB 于点D ,BC = 10 cm ,AD = 8 cm .点P 从点B 出发,在线段BC 上以每秒3 cm 的速度向点C 匀速运动,与此同时,垂直于AD 的直线m 从底边BC 出发,以每秒2 cm 的速度沿DA 方向匀速平移,分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时,点P 与直线m 同时停止运动,设运动时间为t 秒(t > 0).(1)当t = 2时,连接DE 、DF ,求证:四边形AEDF 为菱形;(2)在整个运动过程中,所形成的PEF ∆的面积存在最大值,当PEF ∆的面积最大时,求线段BP 的长;(3)是否存在某一时刻t ,使PEF ∆为直角三角形?若存在,请求出此时刻t 的值;若不存在,请说明理由.14 / 16AB C DE A BCDEABCDE AB C D O【作业1】 如图,在ABC ∆中,DE // BC ,12AD DB =,则下列结论正确的是( ) A .12AE AC =B .12DE BC = C .13ADE ABC ∆=∆的周长的周长D .13ADE ABC ∆=∆的面积的面积【作业2】 如图,在ABC ∆中,点D 和点E 分别在边AB 、AC 上,下列条件不能判定ABC∆∽AED ∆的是( )A .AEDB ∠=∠B .ADEC ∠=∠ C .AD AC AE AB=D .AD AE AB AC=【作业3】 一副三角尺按如图所示的方式叠放,则AOB ∆与DOC ∆的面积之比为____________.【作业4】 如图,点D 、E 分别在ABC ∆两边AB 、AC 上,且AD = 31,DB = 29,AE = 30,EC = 32.若50A ∠=︒,则关系式“○1ADE B ∠>∠;○2AED C ∠=∠;○3ADE C ∠>∠;○4AED B ∠=∠”中正确的有( ) A .1个 B .2个 C .3个 D .4个【作业5】 在ABC ∆中,P 是AB 上的动点(P 异于A 、B ),过点P 的一条直线截ABC ∆,使截得的三角形与ABC ∆相似,我们不妨称这种直线为过点P 的相似线.如图,36A ∠=︒,AB = AC ,当点P 在AC 的垂直平分线上时,过点P 的ABC ∆的相 似线最多有______条.课后作业AB CPAB O xyAB CDE FGOAB CDEFA B CDE F NM【作业6】 如图,四边形ABCD 、CEFG 都是正方形,点G 在线段CD 上,连接BG 、DE ,DE 和FG 相交于点O ,设AB = a ,CG = b (a > b ),下列结论:○1BCG ∆≌DCE ∆;○2BG DE ⊥;○3DG GO GC CE=;○4()22EFO DGO a b S b S ∆∆-=,其中正确的个数是( ) A .4个 B .3个 C .2个 D .1个【作业7】 已知,在菱形ABCD 中,CF ⊥AB ,垂直为E ;CE 与BD 相交于点F .(1)求证:AB CFBE EF=;(2)求证:22DF DB BC =.【作业8】 如图,四边形ABCD 中,AC ⊥BD 交BD 与点E ,点F 、M 分别是AB ,BC 的中点,BN 平分ABE ∠交AM 于点N ,AB = AC = BD ,连接MF ,NF . (1)判断BMN ∆的形状,并证明你的结论;(2)判断MFN ∆与BDC ∆之间的关系,并说明理由.【作业9】 如图,AOB ∆为等腰三角形,顶点A 的坐标为(2,5)底边OB 在x 轴上,将AOB ∆绕点B 按顺时针方向旋转一定角度后得''A O B ∆,点A 的对应点'A 在x 轴上,求点'O 的坐标.16 / 16ABCD EF GP Q【作业10】 已知:正方形ABCD 的边长为4,点E 为BC 边的中点,点P 为AB 边上一动点,沿PE 翻折得到BPE ∆,直线PF 交CD 边于点Q ,交直线AD 于点G . (1)如图,当BP = 1.5时,求CQ 的长;(2)如图,当点G 在射线AD 上时,设BP = x ,DG = y ,求y 关于x 的函数关系式,并写出x 的取值范围;(3)延长EF 交直线AD 于点H ,若CQE ∆与FHG ∆相似,求BP 的长.。
相似三角形及其判定(知识点串讲)(解析版)
专题11 相似三角形及其判定知识网络重难突破知识点相似三角形的判定一、相似三角形的判定方法①定义:各角对应相等,各边对应成比例.②平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似.③有两个角对应相等.④两边对应成比例,且夹角相等.⑤三边对应成比例.二、相似三角形基本图形1、8字型有一组隐含的等角(对顶角),此时需从已知条件或图中隐含条件通过证明得另一对角相等(AB、CD不平行,∠A=∠C)(AB∥CD)2.A字型有一个公共角(图①、图②)或角有公共部分(图③,∠DAF+∠BAD=∠DAF+∠EAF),此时需要找另一对角相等或相等角的两边对应成比例3.双垂直型有一个公共角及一个直角 (图①为母子型的特殊形式AC2=AD·AB仍成立,另CD2=AD·BD)4.三垂直型结论推导,如图①,∠D+∠DBA=∠E+∠EBC=∠DBA+∠EBC=90°,∴∠EBC=∠D,∠E=∠DBA,且一组直角相等,用任意两组等角即可证得三角形相似【典例1】(2019秋•保山期末)如图,在△ABC中,点P在边AB上,则在下列四个条件中:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP•AB;④AB•CP=AP•CB,能满足△APC与△ACB相似的条件是()A.①②④B.①③④C.②③④D.①②③【点拨】根据有两组角对应相等的两个三角形相似可对①②进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对③④进行判断.【解析】解:当∠ACP=∠B,∵∠A=∠A,所以△APC∽△ACB;当∠APC=∠ACB,∵∠A=∠A,所以△APC∽△ACB;当AC2=AP•AB,即AC:AB=AP:AC,∵∠A=∠A所以△APC∽△ACB;当AB•CP=AP•CB,即PC:BC=AP:AB,而∠P AC=∠CAB,所以不能判断△APC和△ACB相似.故选:D.【点睛】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.【典例2】如图,BD、CE是△ABC的两条高,AM是∠BAC的平分线,交BC于M,交DE于N,求证:(1)△ABD∽△ACE;(2)=.【点拨】(1)先根据有两组角对应相等的两个三角形相似,判定△ABD∽△ACE;(2)先相似三角形的性质,得出=,再根据∠DAE=∠BAC,判定△ADE∽△ABC,进而得到=,再根据∠CAM=∠EAN,判定△ACM∽△AEN,得到=,最后等量代换即可得到=.【解析】证明:(1)∵BD、CE是△ABC的两条高,∴∠ADB=∠AEC=90°,∵∠DAE=∠BAC,∴△ABD∽△ACE;(2)∵△ABD∽△ACE,∴=,即=,又∵∠DAE=∠BAC,∴△ADE∽△ABC,∴=,且∠ACB=∠AED,∵AM是∠BAC的平分线,∴∠CAM=∠EAN,∴△ACM∽△AEN,∴=,∴=.【点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:有两组角对应相等的两个三角形相似,两组对应边的比相等且夹角对应相等的两个三角形相似.【典例3】(2019秋•七里河区期末)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.【点拨】(1)根据等腰三角形的性质和相似三角形的判定和性质求三角形BDE边BE的高即可求解;(2)根据等腰三角形和相似三角形的判定和性质分两种情况说明即可.【解析】解:(1)分别过点D、A作DF⊥BC、AG⊥BC,垂足为F、G如图∴DF∥AG,=∵AB=AC=10,BC=16∴BG=8,∴AG=6.∵AD=BE=t,∴BD=10﹣t,∴=解得DF=(10﹣t)∵S△BDE=BE•DF=7.5∴(10﹣t)•t=15解得t=5.答:t为5秒时,△BDE的面积为7.5cm2.(2)存在.理由如下:①当BE=DE时,△BDE∽△BCA,∴=即=,解得t=,②当BD=DE时,△BDE∽△BAC,=即=,解得t=.答:存在时间t为或秒时,使得△BDE与△ABC相似.【点睛】本题考查了相似三角形的判定和性质、等腰三角形的性质,解决本题的关键是动点变化过程中形成不同的等腰三角形.【变式训练】1.(2020•浙江自主招生)如图,在4×4的正方形网格中,画2个相似三角形,在下列各图中,正确的画法有()A.1个B.2个C.3个D.4个【点拨】根据相似三角形的判定定理逐一判断即可得.【解析】解:第1个网格中两个三角形对应边的比例满足==,所以这两个三角形相似;第2个网格中两个三角形对应边的比例==,所以这两个三角形相似;第3个网格中两个三角形对应边的比例满足===,所以这两个三角形相似;第4个网格中两个三角形对应边的比例==,所以这两个三角形相似;故选:D.【点睛】本题考查了相似三角形的判定,熟练掌握三角形相似的判定并根据网格结构判断出三角形的三边的比例是解题的关键2.(2019秋•奉化区期末)如图,P为线段AB上一点,AD与BC交与点E,∠CPD=∠A=∠B,BC交PD与点F,AD交PC于点G,则下列结论中错误的是()A.△CGE∽△CBP B.△APD∽△PGD C.△APG∽△BFP D.△PCF∽△BCP【点拨】由相似三角形的判定依次判断可求解.【解析】解:∵∠CPD=∠A=∠B,且∠APD=∠B+∠PFB=∠APC+∠CPD,∴∠APC=∠BFP,且∠A=∠B,∴△APG∽△BFP,故选项C不合题意,∵∠A=∠CPD,∠D=∠D,∴△APD∽△PGD,故选项B不合题意,∵∠B=∠CPD,∠C=∠C,∴△PCF∽△BCP,故选项D不合题意,由条件无法证明△CGE∽△CBP,故选项A符合题意,故选:A.【点睛】本题考查了相似三角形的判定,牢固掌握相似三角形的判定是本题的关键.3.(2019秋•萧山区期末)如图,∠ACB=∠BDC=90°.要使△ABC∽△BCD,给出下列需要添加的条件:①AB∥CD;②BC2=AC•CD;③,其中正确的是()A.①②B.①③C.②③D.①②③【点拨】利用相似三角形的判定依次判断即可求解.【解析】解:①若AB∥CD,∴∠ABC=∠BCD,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故①符合题意;②若BC2=AC•CD,∴,且∠ACB=∠BDC=90°,无法判定△ABC∽△BCD,故②不符合题意;③若,且∠ACB=∠BDC=90°,∴△ABC∽△BCD,故③符合题意;故选:B.【点睛】本题考查了相似三角形的判定,灵活掌握相似三角形的判定方法是本题的关键.4.(2019秋•新华区校级月考)如图,四边形ABGH,四边形BCFG,四边形CDEF都是正方形,图中与△HBC相似的三角形为()A.△HBD B.△HCD C.△HAC D.△HAD【点拨】设正方形ABGH的边长为1,先运用勾股定理分别求出HB、HC的长,将其三边按照从大到小的顺序求出比值,再分别求出四个选项中每一个三角形三边的比值,根据三组对应边的比相等的两个三角形相似求解即可.【解析】解:设正方形ABGH的边长为1,运用勾股定理得HB=,HC=,则HC:HB:BC=::1.A、∵HB=,BD=2,HD=,∴HD:BD:HB=:2:=::1,∴HC:HB:BC=HD:BD:HB,∴△HBC∽△DBH,故本选项正确;B、∵HC=,CD=1,HD=,∴HD:HC:CD=::1,∴HC:HB:BC≠HD:HC:CD,∴△HBC与△HCD不相似,故本选项错误;C、∵HA=1,AC=2,HC=,HC:AC:HA=:2:1,∴HC:HB:BC≠HC:AC:HA,∴△HBC与△HAC不相似,故本选项错误;D、∵HA=1,AD=3,HD=,HD:AD:HA=:3:1,∴HC:HB:BC≠HD:AD:HA,∴△HBC与△HAD不相似,故本选项错误.故选:A.【点睛】本题考查了相似三角形的判定,判定两个三角形相似的一般方法有:(1)平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;(2)三边法:三组对应边的比相等的两个三角形相似;(3)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(4)两角法:有两组角对应相等的两个三角形相似.本题还可以利用方法(3)进行判定.5.(2018秋•秀洲区期末)如图,点D在△ABC的边AC上,若要使△ABD与△ACB相似,可添加的一个条件是∠ABD=∠C(答案不唯一)(只需写出一个).【点拨】两组对应角相等,两三角形相似.在本题中,两三角形共用一个角,因此再添一组对应角即可【解析】解:要使△ABC与△ABD相似,还需具备的一个条件是∠ABD=∠C或∠ADB=∠ABC等.故答案为:∠ABD=∠C(答案不唯一).【点睛】此题考查了相似三角形的判定.注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.6.(2019秋•崇川区校级月考)如图,∠A=∠B=90°,AB=7,BC=3,AD=2,在边AB上取点P,使得△P AD与△PBC相似,则满足条件的AP长为 2.8或1或6.【点拨】根据相似三角形的性质分两种情况列式计算:①若△APD∽△BPC②若△APD∽△BCP.【解析】解:∵∠A=∠B=90°①若△APD∽△BPC则=∴=解得AP=2.8.②若△APD∽△BCP则=∴=解得AP=1或6.∴则满足条件的AP长为2.8或1或6.故答案为:2.8或1或6.【点睛】本题考查了相似三角形的判定与性质,明确相关判定与性质及分类讨论,是解题的关键.7.(2019秋•临安区期末)如图,点B、D、E在一条直线上,BE交AC于点F,=,且∠BAD=∠CAE.(1)求证:△ABC∽△ADE;(2)求证:△AEF∽△BCF.【点拨】(1)根据相似三角形的判定定理证明;(2)根据相似三角形的性质定理得到∠C=∠E,结合图形,证明即可.【解析】(1)∵∠BAD=∠CAE∴∠BAD+∠CAD=∠CAE+∠CAD即∠BAC=∠DAE在△ABC和△ADE中=,∠BAC=∠DAE,∴△ABC∽△ADE;(2)∵△ABC∽△ADE,∴∠C=∠E、在△AEF和△BFC中,∠C=∠E,∠AFE=∠BFC,∴△AEF∽△BCF.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019春•广陵区校级月考)正方形ABCD边长为4,M、N分别是BC、CD上的两个动点,当M点在BC上运动时,保持AM和MN垂直,(1)证明:Rt△ABM∽Rt△MCN;(2)当M点运动到什么位置时Rt△ABM∽Rt△AMN,并请说明理由.【点拨】(1)理由等角的余角相等证明∠MBA=∠NMC,然后根据直角三角形相似的判定方法可判断Rt△ABM∽Rt△MCN;(2)利用勾股定理可得到AM=2,由于Rt△ABM∽Rt△MCN,利用相似比可计算出MN=,接着证明=,从而可判断Rt△ABM∽Rt△AMN.【解析】(1)证明:∵四边形ABCD为正方形,∴∠B=∠C=90°,∵AM⊥MN,∴∠AMN=90°,∴∠AMB+∠NMC=90°,而∠AMB+∠MAB=90°,∴∠MBA=∠NMC,∴Rt△ABM∽Rt△MCN;(2)解:当M点运动到BC为中点位置时,Rt△ABM∽Rt△AMN.理由如下:,∵四边形ABCD为正方形,∴AB=BC=4,BM=MC=2,∴AM=2,∵Rt△ABM∽Rt△MCN,∴==2,∴MN=AM=,∵==,==,∴=,而∠ABM=∠AMN=90°,∴Rt△ABM∽Rt△AMN.【点睛】本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.两组对应边的比相等且夹角对应相等的两个三角形相似.也考查了正方形的性质.巩固训练1.(2019•崇明区一模)如图,如果∠BAD=∠CAE,那么添加下列一个条件后,仍不能确定△ABC∽△ADE 的是()A.∠B=∠D B.∠C=∠AED C.=D.=【点拨】根据已知及相似三角形的判定方法对各个选项进行分析,从而得到最后答案.【解析】解:∵∠BAD=∠CAE,∴∠DAE=∠BAC,∴A,B,D都可判定△ABC∽△ADE选项C中不是夹这两个角的边,所以不相似,故选:C.【点睛】此题考查了相似三角形的判定:①如果两个三角形的三组对应边的比相等,那么这两个三角形相似;②如果两个三角形的两条对应边的比相等,且夹角相等,那么这两个三角形相似;③如果两个三角形的两个对应角相等,那么这两个三角形相似.2.(2020•上虞区校级一模)已知△ABC是正三角形,点D是边AC上一动点(不与A、C重合),以BD为边作正△BDE,边DE与边AB交于点F,则图中一定相似的三角形有()对.A.6 B.5 C.4 D.3【点拨】根据相似三角形的判定定理,两个等边三角形的3个角分别相等,可推出△ABC∽△EDB,根据对应角相等推出△BDC∽△BFE∽△DF A.△BDF∽△BAD.【解析】解:图中的相似三角形是△ABC∽△EDB,△BDC∽△BFE,△BFE∽△DF A,△BDC∽△DF A,△BDF∽△BAD.理由:∵△ABC和△BDE是正三角形,∴∠A=∠C=∠ABC=60°,∠E=∠BDE=∠EBD=60°,∴△ABC∽△EDB,可得∠EBF=∠DBC,∠E=∠C,∴△BDC∽△BFE,∴∠BDC=∠BFE=∠AFD,∴△BDC∽△DF A,∴△BFE∽△DF A,∵∠DBF=∠ABD,∠BDF=∠BAD,∴△BDF∽△BAD.故选:B.【点睛】本题主要考查相似三角形的判定定理及有关性质的运用,关键在于根据图中两个等边三角形,找出相关的相等关系,然后结合已知条件,得出结论.3.(2019秋•市中区期末)如图,Rt△ABC中,∠C=90°,∠B=60°,BC=4,D为BC的中点,E为AB 上的动点,若动点E以1cm/s的速度从A点出发,沿着A→B→A的方向运动,设E点的运动时间为t秒(0≤t<12),连接DE,当△BDE与△ABC相似时,t的值为4或7或9.【点拨】由条件可求得AB=8,可知E点的运动路线为从A到B,再从B到AB的中点,当△BDE为直角三角形时,当∠EDB=90°或∠DEB=90°,得出△BDE和△ABC相似,可求得BE的长,则可求得t的值.【解析】解:在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4,∴AB=2BC=8,∵D为BC中点,∴BD=2,∵0≤t<12,∴E点的运动路线为从A到B,再从B到AB的中点,按运动时间分为0≤t≤8和8<t<12两种情况,①当0≤t≤8时,AE=t,BE=BC﹣AE=8﹣t,当∠EDB=90°时,则有AC∥ED,∴△BDE∽△BCA,∵D为BC中点,∴E为AB中点,此时AE=4,可得t=4;当∠DEB=90°时,∵∠DEB=∠C,∠B=∠B,∴△BED∽△BCA,∴,即,解得t=7;②当8<t<12时,则此时E点又经过t=7秒时的位置,此时t=8+1=9;综上可知t的值为4或7或9,故答案为:4或7或9.【点睛】本题主要考查相似三角形的判定和性质,用t表示出线段的长,化动为静,再根据相似三角形的对应边成比例找到关于t的方程是解决这类问题的基本思路.4.(2019秋•海淀区期末)如图,⊙O是△ABC的外接圆,D是的中点,连结AD,BD,其中BD与AC 交于点E.写出图中所有与△ADE相似的三角形:△CBE,△BDA.【点拨】根据两角对应相等的两个三角形相似即可判断.【解析】解:∵=,∴∠ABD=∠DBC,∵∠DAE=∠DBC,∴∠DAE=∠ABD,∵∠ADE=∠ADB,∴△ADE∽△BDA,∵∠DAE=∠EBC,∠AED=∠BEC,∴△AED∽△BEC,故答案为△CBE,△BDA.【点睛】本题考查相似三角形的判定,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.5.(2020•成都模拟)如图,BC是⊙O的弦,A是劣弧BC上一点,AD⊥BC于D,若AB+AC=10,⊙O的半径为6,AD=2,则BD的长为2或4.【点拨】作直径AE,连接CE,证明△ABD∽△AEC,得,设AB=x,则AC=10﹣x,列方程可得AB的长,最后利用勾股定理可解答.【解析】解:作直径AE,连接CE,∴∠ACE=90°,∵AD⊥BC,∴∠ADB=90°,∴∠ADB=∠ACE,∵∠B=∠E,∴△ABD∽△AEC,∴,设AB=x,则AC=10﹣x,∵⊙O的半径为6,AD=2,∴,解得:x1=4,x2=6,当AB=4时,BD===2,当AB=6时,BD===4,∴BD的长是2或4;故答案为:2或4.【点睛】本题考查了圆周角定理,相似三角形的性质和判定,正确作辅助线,构建相似三角形是本题的关键.6.(2020•雨花区校级一模)如图,AB为⊙O的直径,点C、D在⊙O上,AC=3,BC=4,且AC=AD,弦CD交直径AB于点E.(1)求证:△ACE∽△ABC;(2)求弦CD的长.【点拨】(1)由垂径定理可知∠AEC=90°,然后根据相似三角形的判定即可求出答案.(2)根据相似三角形的性质可知AC2=AE•AB,从而可求出AE=,再由勾股定理以及垂径定理即可求出CD的长度.【解析】解:(1)∵AC=AD,AB是⊙O的直径,∴CD⊥AB,∴∠AEC=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE+∠BAC=∠BAC+∠B=90°,∴∠ACE=∠B,∴△ACE∽△ABC.(2)由(1)可知:,∴AC2=AE•AB,∵AC=3,BC=4,∴由勾股定理可知:AB=5,∴AE=,∴由勾股定理可知:CE=,∴由垂径定理可知:CD=2CE=.【点睛】本题考查相似三角形,解题的关键是熟练运用勾股定理,相似三角形的性质与判定,圆周角定理,本题属于中等题型.7.(2018秋•姜堰区校级月考)如图,点B、D、E在一条直线上,BE与AC相交于点F,==.(1)求证:∠BAD=∠CAE;(2)若∠BAD=21°,求∠EBC的度数:(3)若连接EC,求证:△ABD∽△ACE.【点拨】(1)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;(2)根据相似三角形的性质即可得到结论;(3)根据相似三角形的判定和性质即可得到结论.【解析】(1)证明:∵==.∴△ABC~△ADE;∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE;(2)解:∵△ABC~△ADE,∴∠ABC=∠ADE,∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,∴∠EBC=∠BAD=21°;(3)证明:连接CE,∵△ABC~△ADE,∴∠BAC=∠DAE,∴∠BAC﹣∠DAF=∠DAE﹣∠DAF,即∠BAD=∠CAE,∵=.∴△ABD∽△ACE.【点睛】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.8.(2019秋•江阴市期中)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)试探究t为何值时,△BPQ的面积是cm2;(3)直接写出t为何值时,△BPQ是等腰三角形;(4)连接AQ,CP,若AQ⊥CP,直接写出t的值.【点拨】(1)由勾股定理可求AB的长,分两种情况讨论,由相似三角形的性质可求解;(2)过点P作PE⊥BC于E,由平行线分线段成比例可得PE=3t,由三角形的面积公式列出方程可求解;(3)分三种情况讨论,由等腰三角形的性质可求解;(4)过P作PM⊥BC于点M,AQ,CP交于点N,则有PB=5t,PM=3t,MC=8﹣4t,根据△ACQ∽△CMP,得出AC:CM=CQ:MP,代入计算即可.【解析】解:(1)∵∠ACB=90°,AC=6cm,BC=8cm,∴AB===10cm,∵△BPQ与△ABC相似,且∠B=∠B,∴或,当时,∴,∴t=1,当,∴,∴t=;(2)如图1,过点P作PE⊥BC于E,∴PE∥AC,∴,∴PE==3t,∴S△BPQ=×(8﹣4t)×3t=,∴t1=或t2=;(3)①当PB=PQ时,如图1,过P作PE⊥BQ,则BE=BQ=4﹣2t,PB=5t,由(2)可知PE=3t,∴BE===4t,∴4t=4﹣2t,∴t=②当PB=BQ时,即5t=8﹣4t,解得:t=,③当BQ=PQ时,如图2,过Q作QG⊥AB于G,则BG=PB=t,BQ=8﹣4t,∵△BGQ∽△ACB,∴,∴解得:t=.综上所述:当t=或或时,△BPQ是等腰三角形;(3)过P作PM⊥BC于点M,AQ,CP交于点N,如图3所示:则PB=5t,∵AC⊥BC∴△PMB∽△ACB,∴=∴BM=4t,PM=3t,且BQ=8﹣4t,BC=8,∴MC=8﹣4t,CQ=4t,∵∠NAC+∠NCA=90°,∠PCM+∠NCA=90°,∴∠NAC=∠PCM,∵∠ACQ=∠PMC,∴△ACQ∽△CMP,∴,∴∴t=【点睛】此题是相似形综合题,主要考查了相似三角形的判定与性质,勾股定理,直角三角形的性质,等腰三角形的性质,由三角形相似得出对应边成比例是解题的关键.。
27.2.2+相似三角形的性质++课件++-2024-2025学年人教版九年级数学下册
数关系往往需要考虑相似比与对应线段的比,以及相似比
与面积比之间的关系.
综合应用创新
题型
4 利用相似三角形的性质解决实际问题
例 7 课本中有一道复习题:如图27.2-37 ①所示,有一
块三角形材料ABC,它的边BC=120 mm,高AD=
80 mm,要把它加工成正方形零件,使正方形的边
′′
= =k
′′
相似比为k
感悟新知
知1-讲
续表
图形
推理
结论
由两角分别相等
的两个三角形相 相 似 三 角
对应
似 , 得 △ABD ∽ 形 对 应 高
高的
AD , A′D′ 分 别 为 △A′B′D′ , 再 由 相 的 比 等 于
比
△ABC 和 △A′B′C′ 的 似 三 角 形 的 性 质 ,相似比
-6
3
2
6
3 2
2
) ×24= x -
2
12x
+24.
3
8
3
2
9
8
∴ y=S△A1MN-S△A1EF= x2-( x2-12x+24=- x2+12x-
24(4 <x<8).
16
易知当x= 时,y最大=8.
3
16
3
∵ 8>6,∴当x= 时,y最大,y 最大=8.
综合应用创新
解法提醒
本题运用了分类讨论思想,对点A1与四边形BCNM的
的平分线.
感悟新知
知1-练
例 1 如图27.2-32,在△ABC中,AD是BC边上的高,矩形
EFGH内接于△ABC,且长边FG在BC上,AD与EH的
相似三角形分类整理(超全)
第一节:相似形与相似三角形基本概念: 1.相似形:对应角相等,对应边成比例的两个多边形,我们称它们互为相似形。
2.相似三角形:对应角相等,对应边成比例的两个三角形,叫做相似三角形。
1.几个重要概念与性质(平行线分线段成比例定理)(1)平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例. 已知a ∥b ∥c,A D aB E bC F c可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或 等. (2)推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB C由DE ∥BC 可得:AC AEAB AD EA EC AD BD ECAE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.(3)推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.(4)定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.(5)①平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
②比例线段:四条线段a ,b ,c ,d 中,如果a 与b 的比等于c 与d 的比,即b a =dc,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段。
2.比例的有关性质①比例的基本性质:如果dcb a =,那么ad=bc 。
如果ad=bc (a ,b ,c ,d 都不等于0),那么dc b a =。
②合比性质:如果d c b a =,那么ddc b b a ±=±。
图1ABCD E图2ABCDE图3ABCD③等比性质:如果d c b a ==∙∙∙=n m (b+d+∙∙∙+n ≠0),那么ba n db mc a =+∙∙∙+++∙∙∙++ ④b 是线段a 、d 的比例中项,则b 2=ad.典例剖析例1:① 在比例尺是1:38000的南京交通游览图上,玄武湖隧道长约7cm ,则它的实际长度约为______Km.② 若b a =32 则b b a +=__________. ③ 若 b a b a -+22=59则a :b=__________.3.相似三角形的判定(1)如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。
上海1对3秋季课程讲义-数学-九年级-第8讲-相似综合二(动点产生的相似三角形分类讨论)-教案
1对3辅导讲义学员姓名:学科教师:年级:辅导科目:授课日期时间主题第8讲-相似综合二(相似三角形的分类讨论)学习目标1.相似三角形的基本图形;2.理解和掌握相似的分类讨论技巧.教学内容(一)上次课课后巩固作业处理,建议让学生互批互改,个别错题可以让学生进行分享,针对共性的错题教师讲解为主。
(二)上次预习思考内容讨论分享一、相似三角形的基本图形:1)直角三角形:2)非直角三角形:二、确定一个相等角的相似(证明等角的方法):1)两全等(相似)三角形的对应角相等;2)同一三角形中等边对等角;3)等腰三角形中三线合一平分顶角;4)两直线平行:同位角、内错角相等;5)同角的等角、余角、补角相等;6)相应三角比相同的两个角相等;7)同圆或等圆中,等弦(弧)所对的圆心角、圆周角相等;8)圆内接四边形的外角等于内对角;1、P是Rt△ABC斜边BC上异于B、C的一点,过点P作直线截△ABC,使截得的三角形与△ABC相似,满足这样条件的直线共有……………()(A)1条(B)2条(C)3条(D)4条答案:C2、如图,∠ABD=∠ACD,图中相似三角形的对数是……………()(A)2(B)3(C)4(D)5答案:C3、如图,已知△ABC,P是AB上一点,连结CP,要使△ACP∽△ABC,只需添加条件______(只要写出一种合适的条件).【答案】∠B=∠ACP,或∠ACB=∠APC,或AC2=AP·AB.不相似的是例题1、如图,是一个正方形网络,里面有许多三角形.在下面所列出的各三角形中,与ABC( )(A)△BDE (B)△BCD (C)△FGH(D)△BFG.参考答案:B例题2、在中,,,、分别为、上一点,,当取何值时,与相似.参考答案:这个让我们想到A 型图和反A 型图(1)(2)这种题目学生可以想到A 型图,容易疏忽反A 型图,这个要重点强调例题3: 在正方形ABCD 中,已知6=AB ,点E 在边CD 上,且2:1:=CE DE ,如图,点F 在BC 的延长线上,如果△ADE 与点C 、E 、F 所组成的三角形相似,那么=CF .参考答案:12或34. 例题4:点P 在线段AB 上移动,AB BD AB CA ⊥⊥,,7,3,2===AB BD CA ,当AP = __________时,△ACP 与△PBD 相似.答案:5146,1,例题5、如图,∠ABC =∠CDB =90°,AC =a ,BC =b . (1)当BD 与a 、b 之间满足怎样的关系时,△ABC ∽△CDB ?ABC ∆3AB =4AC =D E AB AC 1AD =AE ADE ∆ABC ∆ADAEAB AC=43AE ∴=ADAEACAB=34AE ∴=ABCD E(2)过A 作BD 的垂线,与DB 的延长线交于点E ,若△ABC ∽△CDB .求证四边形AEDC 为矩形(自己完成图形).【答案】(1)∵ ∠ABC =∠CDB =90°,∴ 当BC AC =BDBC时,△ABC ∽△CDB . 即b a =BDb .∴ BD =a b 2.即当BD =ab 2时,△ABC ∽△CDB .∵ △ABC ∽△CDB ,∴ ∠ACB =∠CBD .∴ AC ∥ED .又 ∠D =90°,∴ ∠ACD =90°.∴ ∠E =90°.∴ 四边形AEDC 为矩形.例题6、如图,在矩形ABCD 中,E 为AD 的中点,EF ⊥EC 交AB 于F ,连结FC (AB >AE ). (1)△AEF 与△EFC 是否相似?若相似,证明你的结论;若不相似,请说明理由; (2)设BCAB=k ,是否存在这样的k 值,使得△AEF ∽△BFC ,若存在,证明你的结论并求出k 的值;若不存在,说明理由.【答案】如图,是相似.【证明】延长FE ,与CD 的延长线交于点G .在Rt △AEF 与Rt △DEG 中, ∵ E 是AD 的中点,∴ AE =ED . ∵ ∠AEF =∠DEG ,∴ △AFE ≌△DGE .∴ ∠AFE =∠DGE .∴ E 为FG 的中点.又 CE ⊥FG ,∴ FC =GC .∴ ∠CFE =∠G .∴ ∠AFE =∠EFC . 又 △AEF 与△EFC 均为直角三角形,∴ △AEF ∽△EFC .① 存在.如果∠BCF =∠AEF ,即k =BCAB =23时,△AEF ∽△BCF .证明:当BC AB =23时,DEDC=3,∴∠ECG =30°.∴ ∠ECG =∠ECF =∠AEF =30°.∴ ∠BCF =90°-60°=30°. 又 △AEF 和△BCF 均为直角三角形,∴ △AEF ∽△BCF .② 因为EF 不平行于BC ,∴ ∠BCF ≠∠AFE .∴ 不存在第二种相似情况.例题7、如图,在Rt △ABC 中,∠C =90°,BC =6 cm ,CA =8 cm ,动点P 从点C 出发,以每秒2 cm 的速度沿AB 运动到点B ,则从C 点出发多少秒时,可使S △BCP =41S △ABC ?【答案】当点P 从点C 出发,运动在CA 上时,若S △BCP =41S △ABC,则21·CP ·BC =41·21AC ·BC , ∴ CP =41·AC =2(cm ). 故由点P 的运动速度为每秒2 cm ,它从C 点出发1秒时,有S △BCP =41S △ABC.当点P 从点C 出发运动到AB 上时,如图,可过点P 作PD ⊥BC 于D .若S △BCP =41S △ABC,则21PD ·BC =41·21AC ·BC . ∴PD =41AC =2(cm ).∵ Rt △BAC ∽Rt △BPD , ∴AB BP =ACPD. 又 AB =22BC AC =10,故 BP =8102⋅=25,AP =AB -BP =10-25=7.5. 也就是说,点P 从C 出发共行15.5 cm ,用去7.75秒,此时S △BCP =41S △ABC.答:1秒或7.75秒.例题8、已知:如图,AB ⊥BC ,AD ⊥BC ,3AB =,2AD =.点P 在线段AB 上,联结PD ,过点D 作PD 的垂线,与BC 相交于点C .设线段AP 的长为x . (1)当AP AD =时,求线段PC 的长;(2)设⊥PDC 的面积为y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当⊥APD ⊥⊥DPC 时,求线段BC 的长.参考答案:解:(1)过点C 作CE ⊥AD ,交AD 的延长线于点E .⊥AB BC ⊥,CE AD ⊥,PD ⊥CD ,AD // BC , ⊥⊥ABC =⊥AEC =⊥PDC = 90°,3CE AB ==. ⊥AD // BC ,⊥180A ABC ∠+∠=o .即得90A ∠=o . 又⊥ADC DCE DEC ∠=∠+∠,ADC ADP PDC ∠=∠+∠, ⊥ADP DCE ∠=∠.又由90A DEC ∠=∠=o ,得 ⊥APD ⊥⊥DCE . ⊥AD APCE DE=. 于是,由2AP AD ==,得 3DE CE ==.在Rt ⊥APD 和Rt ⊥DCE 中,得 22PD =,32CD =. 于是,在Rt ⊥PDC 中,得 22121827PC PD CD =+=+=.(2)在Rt⊥APD 中,由 2AD =,AP x =,得24PD x =+.⊥⊥APD ⊥⊥DCE , ⊥AD PD CE CD =.⊥233422CD PD x ==+.A BCDPA BCD(备用图)在Rt ⊥PCD 中,2221133(4)32224PCD S PD CD x x ∆=⋅⋅=⨯+=+.⊥所求函数解析式为2334y x =+. 函数的定义域为 0 < x ≤ 3.(3)当⊥APD ⊥⊥DPC 时,即得⊥APD ⊥⊥DPC ⊥⊥DCE .根据题意,当⊥APD ⊥⊥DPC 时,有下列两种情况:(⊥)当点P 与点B 不重合时,可知 APD DPC ∠=∠.由⊥APD ⊥⊥⊥DCE ,得AP PD DE DC =.即得AP DEPD CD =. 由⊥APD ⊥⊥DPC ,得AP ADPD DC=. ⊥AD DE CD CD=.即得2DE AD ==.⊥4AE =.易证得四边形ABCE 是矩形, ⊥4BC AE ==. (⊥)当点点P 与点B 重合时,可知 ABD DBC ∠=∠.在Rt⊥ABD 中,由2AD =,3AB =,得13BD =. 由⊥ABD ⊥⊥DBC ,得AD BDBD BC =.即得21313BC=. 解得132BC =. ⊥⊥APD ⊥⊥DPC 时,线段BC 的长分别为4或132.1、如图,D 是⊥ABC 的边AB 上的点,请你添加一个条件,使⊥ACD 与⊥ABC 相似.你添加的条件是 .【答案】∠B =∠ACD 或者∠ADC =∠ACB 或者2AC AD AB =g .2、如图,点P 是△ABC 边AB 上一点(AB >AC ),下列条件不一定能使△ACP ∽△ABC 的是( )A .AC AP AB AC = B .ABACBC PC =C .∠ACP =∠BD . ∠APC =∠ACB 【答案】B .3、例题2. 在⊥ABC 中,⊥B=25°,AD 是BC 边上的高,并且AD 2=BD•DC ,则⊥BCA 的度数为 . 考点:相似三角形的判定与性质。
相似三角形详细讲义(最新整理)
用数学语言表述是:
(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.
MC
,
AC,ADE=∠DE于点5,求:;
ADE 与△
3:2=AD 相交于点,若BD O COD ∆接矩形的一边在斜边上,且矩形的DEFG
FC
2
cm
10=DEFG S 矩形3和4,它的内接正方形有情况中正方形的大小。
AC和BC的延长线交于
的竹竿做测量工具测量学校旗杆的高度,移动竹竿,使竹竿、旗杆顶端的影子恰好落在地面的
7m
A.1.25m B.10m C.20m D.8m
(2008•金华)如图是小明设计用手电来测量某古城墙高度的示意图.点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是( )A.6米B.8米C.18米D.24米
课堂练习
练习题
1、如图1,∠ADC=∠ACB=900,∠1=∠B,AC=5,AB=6,则AD=______.
2.如图2,AD∥EF∥BC,则图的相似三角形共有_____对.
3.如图3,正方形ABCD中,E是AD的中点,BM⊥CE,AB=6,CE=3,则BM=______.
5
4.ΔABC的三边长为,,2,ΔA'B'C'的两边为1和,若ΔABC∽ΔA'B'C',则ΔA'B'C'的笫三边长为
2105
,AB=8,AD=6,EF垂直平分DBC,BC=,S。
相似三角形-动点问题-分类讨论问题(培优及答案)
1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h .(2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A ,1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)MN BC Q ∥AMN ABC ∴△∽△68h x ∴=34x h ∴=(2)1AMN A MN Q △≌△1A MN ∴△的边MN 上的高为h ,①当点1A 落在四边形BCNM 内或BC 边上时,1A MN y S =△=211332248MN h x x x ==··(04x <≤)②当1A 落在四边形BCNM 外时,如下图(48)x <<,设1A EF △的边EF 上的高为1h ,则132662h h x =-=- 11EF MNA EF A MN∴Q ∥△∽△11A MN ABC A EF ABC ∴Q △∽△△∽△1216A EF S h S ⎛⎫= ⎪⎝⎭△△ABC168242ABC S =⨯⨯=Q △22363224122462EFx S x x ⎛⎫- ⎪∴==⨯=-+ ⎪⎪⎝⎭1△A 1122233912241224828A MN A EF y S S x x x x x ⎛⎫=-=--+=-+- ⎪⎝⎭Q △△所291224(48)8y x x x =-+-<<综上所述:当04x <≤时,238y x =,取4x =,6y =最大 MNA当48x <<时,2912248y x x =-+-,取163x =,8y =最大 86>Q ∴当163x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式;(2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由;【答案】解:(1)Q 该抛物线过点(02)C -,,∴可设该抛物线的解析式为22y ax bx =+-. 将(40)A ,,(10)B ,代入,得1642020a b a b .+-=⎧⎨+-=⎩,解得1252a b .⎧=-⎪⎪⎨⎪=⎪⎩,∴此抛物线的解析式为215222y x x =-+-. (2)存在.如图,设P 点的横坐标为m ,则P 点的纵坐标为215222m m -+-, 当14m <<时,4AM m =-,215222PM m m =-+-. 又90COA PMA ∠=∠=Q °,∴①当21AM AO PM OC ==时,APM ACO △∽△,即21542222m m m ⎛⎫-=-+- ⎪⎝⎭.解得1224m m ==,(舍去),(21)P ∴,.②当12AM OC PM OA ==时,APM CAO △∽△,即2152(4)222m m m -=-+-. 解得14m =,25m =(均不合题意,舍去)∴当14m <<时,(21)P ,. 类似地可求出当4m >时,(52)P -,.当1m <时,(314)P --,.综上所述,符合条件的点P 为(21),或(52)-,或(314)--,. 3.如图,已知直线128:33l y x =+与直线2:216l y x =-+相交于点C l l 12,、分别交x 轴于A B 、两点.矩形DEFG 的顶点D E 、分别在直线12l l 、上,顶点F G 、都在x 轴上,且点G 与点B 重合.(1)求ABC △的面积;(2)求矩形DEFG 的边DE 与EF 的长;(3)若矩形DEFG 从原点出发,沿x 轴的反方向以每秒1个单位长度的速度平移,设移动时间为(012)t t ≤≤秒,矩形DEFG 与ABC △重叠部分的面积为S ,求S 关于t 的函数关系式,并写出相应的t 的取值范围.【答案】(1)解:由28033x +=,得4x A =-∴.点坐标为()40-,.由2160x -+=,得8x B =∴.点坐标为()80,.∴()8412AB =--=. 由2833216y x y x ⎧=+⎪⎨⎪=-+⎩,.解得56x y =⎧⎨=⎩,.∴C点的坐标为()56,.111263622ABC C S AB y ==⨯⨯=△·.(2)解:∵点D 在1l 上且2888833D B D x x y ==∴=⨯+=,.∴D 点坐标为()88,. 又∵点E 在2l 上且821684E D E E y y x x ==∴-+=∴=,..∴E 点坐标为()48,. ∴8448OE EF =-==,.(3)解法一:①当03t <≤时,如图1,矩形DEFG 与ABC △重叠部分为五边形CHFGR (0t =时,为四边形CHFG ).过C 作CM AB ⊥于M ,则Rt Rt RGB CMB △∽△.∴BG RG BM CM =,即36t RG=,∴2RG t =. Rt Rt AFH AMC Q △∽△,∴()()11236288223ABC BRG AFH S S S S t t t t =--=-⨯⨯--⨯-△△△.即(图3)(图1)(图2)241644333S t t =-++.····························· 当83<≤t 时,如图2,为梯形面积,∵G (8-t,0)∴GR=32838)8(32t t -=+-, ∴38038]32838)4(32[421+-=-++-⨯=t t t s 当128<≤t 时,如图3,为三角形面积,4883)12)(328(212+-=--=t t t t s4.如图,矩形ABCD 中,3AD =厘米,AB a =厘米(3a >).动点M N ,同时从B 点出发,分别沿B A →,B C →运动,速度是1厘米/秒.过M 作直线垂直于AB ,分别交AN ,CD 于P Q ,.当点N 到达终点C 时,点M 也随之停止运动.设运动时间为t 秒. (1)若4a =厘米,1t =秒,则PM =______厘米;(2)若5a =厘米,求时间t ,使PNB PAD △∽△,并求出它们的相似比;(3)若在运动过程中,存在某时刻使梯形PMBN 与梯形PQDA 的面积相等,求a 的取值范围;(4)是否存在这样的矩形:在运动过程中,存在某时刻使梯形PMBN ,梯形PQDA ,梯形PQCN 的面积都相等?若存在,求a【答案】解: (1)34PM =,(2)2t =,使PNB PAD △∽△,相似比为3:2 (3)PM AB CB AB AMP ABC ∠=∠Q ⊥,⊥,,AMP ABC△∽△,PM AM BN AB ∴=即()PM a t t a t PM t a a--==Q ,,(1)3t a QM a-∴=- 当梯形PMBN 与梯形PQDA 的面积相等,即()()22QP AD DQ MP BN BM++=()33(1)()22t a t t a a t t ta a -⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭==化简得66a t a=+,3t Q ≤,636aa∴+≤,则636a a ∴<≤,≤, N(4)36a <Q ≤时梯形PMBN 与梯形PQDA 的面积相等∴梯形PQCN 的面积与梯形PMBN 的面积相等即可,则CN PM =()3t a t t a ∴-=-,把66at a=+代入,解之得23a =±,所以23a =. 所以,存在a ,当23a =时梯形PMBN 与梯形PQDA 的面积、梯形PQCN 的面积相等. 5.如图,已知△ABC 是边长为6cm 的等边三角形,动点P 、Q 同时从A 、B 两点出发,分别沿AB 、BC 匀速运动,其中点P 运动的速度是1cm/s ,点Q 运动的速度是2cm/s ,当点Q 到达点C 时,P 、Q 两点都停止运动,设运动时间为t (s ),解答下列问题: (1)当t =2时,判断△BPQ 的形状,并说明理由; (2)设△BPQ 的面积为S (cm 2),求S 与t 的函数关系式;(3)作QR //BA 交AC 于点R ,连结PR ,当t 为何值时,△APR ∽△PRQ ?【答案】 解:(1)△BPQ 是等边三角形,当t=2时,AP=2×1=2,BQ=2×2=4,所以BP=AB-AP=6-2=4,所以BQ=BP.又因为∠B=600,所以△BPQ 是等边三角形. (2)过Q 作QE ⊥AB,垂足为E,由QB=2y,得QE=2t ·sin600=3t,由AP=t,得PB=6-t,所以S △BPQ=21×BP ×QE=21(6-t)×3t=-23t 2+33t ;(3)因为QR ∥BA,所以∠QRC=∠A=600,∠RQC=∠B=600,又因为∠C=600, 所以△QRC 是等边三角形,所以QR=RC=QC=6-2t.因为BE=BQ ·cos600=21×2t=t, 所以EP=AB-AP-BE=6-t-t=6-2t,所以EP ∥QR,EP=QR,所以四边形EPRQ 是平行四边形, 所以PR=EQ=3t,又因为∠PEQ=900,所以∠APR=∠PRQ=900.因为△APR ~△PRQ, 所以∠QPR=∠A=600,所以tan600=PR QR ,即3326=-tt ,所以t=56,所以当t=56时, △APR ~△PRQ6.在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系.(1)求点B 的坐标; (2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2E B ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N .使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.A BDEFC OMNxy精选文档图7-2A D O BC 2 1MN 图7-1ADB M N12图7-3AD O BC21MN O .7.在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°.(1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系; (2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB . 求证:AC = BD ,AC ⊥ BD ; (3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.【答案】 解:(1)AO = BD ,AO ⊥BD ;(2)证明:如图4,过点B 作BE ∥CA 交DO 于E ,∴∠ACO = ∠BEO .又∵AO = OB ,∠AOC = ∠BOE ,∴△AOC ≌ △BOE .∴AC = BE . 又∵∠1 = 45°, ∴∠ACO = ∠BEO = 135°.∴∠DEB = 45°. ∵∠2 = 45°,∴BE = BD ,∠EBD = 90°.∴AC = BD . 延长AC 交DB 的延长线于F ,如图4.∵BE ∥AC ,∴∠AFD = 90°.∴AC ⊥BD .(3)如图5,过点B 作BE ∥CA 交DO 于E ,∴∠BEO = ∠ACO . 又∵∠BOE = ∠AOC , ∴△BOE ∽ △AOC .∴AO BOAC BE =. 又∵OB = kAO ,由(2)的方法易得 BE = BD .∴k ACBD=. 10.如图,已知过A (2,4)分别作x 轴、y 轴的垂线,垂足分别为M 、N ,若点P 从O 点出发,沿OM 作匀速运动,1分钟可到达M 点,点Q 从M 点出发,沿MA 作匀速运动,1分钟可到达A 点。
相似三角形中的分类讨论
相似三角形中的分类讨论
胡柳青
【期刊名称】《数理天地:初中版》
【年(卷),期】2015(000)005
【摘要】对应边、对应角或其他因素不确定时,相似三角形问题需要分类讨论,请看以下各例.1.对应边不确定例1要做两个形状相同的三角形框架,其中一个框架的三边长分别是4、5、6,另一个框架的一边长为2,怎样选料可使这两个三角形相似?
【总页数】2页(P5-6)
【作者】胡柳青
【作者单位】浙江省桐庐县分水初中教育集团玉华校区,311519
【正文语种】中文
【中图分类】G633.63
【相关文献】
1.分类讨论思想在相似三角形中应用
2.分类讨论思想在相似三角形中的两种不同用法
3.来自分类讨论思想的温馨提示——两种方法助你找到相似三角形的对应关系
4.来自分类讨论思想的温馨提示——两种方法助你找到相似三角形的对应关系
5.小疑大究"小题大做"——以"相似三角形中的分类讨论"专题复习课为例
因版权原因,仅展示原文概要,查看原文内容请购买。
九上数学-第24章-24.4~24.7-知识点
1九上数学-第24章-24.4~24.7-知识点1、斜A 结论:如图,如果∠BCD=∠A ,则BC ²=BD · BA .2、母子三角形(射影定理):如图,∠ACB 是直角,CD ⊥AB ,则AC ²= AD ·AB ;BC ²= BD ·BA ;DC ²= DA ·DB ;由等积法有CD= AB CBCA .第1题 第2题3、相似三角形的预备定理可简记为:已知 平行_,则_相似 。
另外,相似还具有传递 性。
4、常见的相似模型主要分三类:①平行型,有 A 形 、 X 形 、 双A 、 双X 、A+X 等;②相交型,有 斜A 、斜X 、双斜A 、双斜X 、斜A+斜X 、有公共边的斜A 、 字母三角形(射影定理) 等;③旋转/翻折型,有 共点旋转相似 、 一线三等角 、对角相似、等腰相似等。
5、三个三角形两两相似,则有 3 对相似三角形;四个三角形两两相似,则有 6 对相似三角形;五个三角形两两相似,则有_10_对相似三角形。
6、相似的证明题中,要证对应角相等,常用 S A S 来先证相似;要证对应边成比例,常用 A A 来先证相似。
7、相似三角形的分类讨论,都是分 2_类情况。
步骤是:第一步:找 等角 ,第二步,通过 S A S 或者 A A 来进行分类。
8、相似三角形的性质:①对应 高 之比,对应 中线 之比,对应 角平分线 之比都等于相似比,②对应 周长 之比等于相似比,③对应 面积 之比都等于相似比的 平方 。
9、如图,已知三角形ABC 中,DE ∥FG ∥BC ,且AD=DF=FB ,那么△ABC 被分成2 的三部分面积之比S 1:S 2:S 3等于 1:3:5 。
10、如图,梯形ABCD 有以下结论:① BOC AOD S S ∆∆= ,② COD AOB ∆∆∽ ,③ k AB CD OB OD OA OC S S S S 相似比=====3221 ,④ 3122S S S ⋅= 。
相似三角形分类讨论课件
500
700 300 300
D
700
b
B A
700
C a
300
F D
700
E b
200 500
200 300
B
C
F
E
如图,在 如图 在△ABC中,∠C=90°,P为AB上 中∠ ° 为 上 一点,且点 不与点A重合 且点P不与点 重合,过 作 ⊥ 一点 且点 不与点 重合 过P作PE⊥AB 边于点E,点 不与点 重合,若 不与点C重合 交AC边于点 点E不与点 重合 若 边于点 AB=10,AC=8,设AP的长为 四边形 的长为x,四边形 设 的长为 PECB周长为 求y与x的函数关系式 周长为y,求 与 的函数关系式 的函数关系式. 周长为
M
OB=4,OC=2,OA=1 , , 在直线AC上是否存在点 , 在直线 上是否存在点M, 上是否存在点 使得以A, , 为顶点的三 使得以 ,B,M为顶点的三 角形和△ 相似, 角形和△AOC相似,若不存 相似 请说明理由.若存在 在,请说明理由 若存在 这样 请说明理由 若存在,这样 点共有几个?请求出 的M点共有几个 请求出 点共有几个 请求出AM 的长。 的长。
如图, 如图,在△ABC和△DEF中, ∠A=∠D=700, ∠B=500, ABC和 DEF中 分成两个三角形, a,把 ABC分成两个三角形 ∠E=300,画直线a,把△ABC分成两个三角形,画直线 b ,把△DEF分成两个三角形,使△ABC分成的两个三 分成两个三角形, ABC分成的两个三 把 DEF分成两个三角形 角形和△DEF分成的两个三角形分别相似.(要求标 分成的两个三角形分别相似.( 角形和△DEF分成的两个三角形分别相似.(要求标 注数据) 注数据)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题练习 姓名____________
1、如图在△ABC 中,AB=24,AC=18,D 是AC 上一点,
AD=12,在AB 取一点E ,使A ,D ,E 三点组成的三角形与△ABC 相 似,求AE 的长。
2、如图,AB ⊥BD,CD ⊥BD,AB=6cm,CD=4cm,
BD=14cm,点P 在BD 上由点向D 点移动.当P 点移动到离 B 点多远时,△ABP 与△CPD?
3、如图,△ABC 中,∠C=90°,BC=8cm ,5AC -3AB=0,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,点Q 从C 出发,沿CA 方向以1cm/s 的速度移动。
若P 、Q 分别从B 、C 出发,经过多少时间△CPQ 与△CBA 相似?
4、已知:如图,在平面直角坐标系xOy 中,直线AB 分别与x y 、轴交于点B 、A , 与反比例函数的图象分别交于点C 、D ,CE x ⊥轴于点E ,
1
tan 422
ABO OB OE ∠===,,.
(1)求该反比例函数的解析式;(2)求直线AB 的解析式.(3)求出点C 、D
的坐标
5. 如图,长方形ABCD 沿AE 折叠,使D 落在边BC 上的F 点处,如果∠BAF=60°,求∠DAE=___。
6. 如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD
上,得折痕DG ,若AB = 2,BC = 1,求AG.
C B 图一
A B
C D
F E G
B
如图一。