暖通空调文献综述

合集下载

暖通空调 毕业论文

暖通空调 毕业论文

暖通空调毕业论文暖通空调在现代建筑中扮演着重要角色,在提高室内环境质量和节能方面起着重要作用。

本文将从暖通空调的基本原理、节能技术以及现代温控系统等方面进行论述。

一、暖通空调的基本原理暖通空调主要是通过控制室内温度、湿度和空气品质来满足人们对室内环境的需求,其主要包括供暖系统、通风系统和空调系统三部分。

供暖系统主要包括采暖和热水供应两个方面,采用不同的热源、燃料和供热方式可以实现多种供暖方式,如热水辐射、空气加热、地暖等。

通风系统主要通过机械通风和自然通风两种方式来实现,机械通风采用送、排风机实现空气的循环和新鲜空气的补给,而自然通风则利用自然气流或温差实现空气流通和换气。

空调系统主要包括制冷、制热和空气调节等方面,其工作原理是通过制冷剂的循环流动来实现空调制冷,而制热则是依靠热泵或电热器等方式来实现。

空气调节包括控制室内空气湿度、质量和流量等方面。

二、暖通空调的节能技术暖通空调在实现舒适、健康的室内环境的同时,也消耗了大量的能源。

因此,节能技术的应用是提高暖通空调系统能效和降低能源消耗的关键。

1. 高效供暖采用高效、低耗的燃料和热源,如地源热泵、太阳能、燃气锅炉等。

2. 通风换气采用新型的通风换气方式,如温度和湿度控制、CO2浓度控制、热回收等技术,以降低能源消耗和排放。

3. 区域控制根据不同区域的不同需求,采用独立控制系统,实现室内温度、湿度和空气品质等的差异化调节,以提高能效。

4. 节能材料和技术采用节能建材和设计,如高效节能窗户、隔热墙体、优化日光利用等,以减少能量损失和提高系统效率。

三、现代温控系统的应用现代温控系统是暖通空调中的关键技术之一,其通过监测室内温度、湿度和空气品质等参数,自动调节供暖、通风和空调系统的运行,以实现目标温度、湿度和空气品质。

目前,市场上存在多种类型的温控系统,如传统的人工调节系统、数字智能温控系统和无人值守智能温控系统等。

数字智能温控系统在智能化程度方面更高,能够实现多种控制模式,并通过数据采集和处理来分析室内环境的变化趋势,优化供暖、通风和空调系统的运行,提高能效。

文献综述

文献综述

文献综述1.建筑空调系统节能国内研究现状概况随着经济建设的不断深入和人们生活水平的不断提高,空调建筑物越来越多,建筑物消耗的能量也越来越大,甚至出现了空调系统与经济建设争抢电力资源的情况。

因此,在建筑物节能显得十分迫切。

在我国建筑总能耗中,空调系统的能耗占有相当大的比重,因此研究探讨空调系统的节能就显得十分重要。

在建筑物空调系统运行能耗中,冷源系统的能耗是最大的。

近年来,我国暖通空调学术界和工程界在空调冷源系统的节能方面做了大量的研究工作。

研究工作主要集中在冷源系统的形式选择上,对压缩式冷水机组和吸收式冷水机组的技术经济比较研究较多,通过对众多方案的分析已经基本达成共识:吸收式冷水机组节电而不节能,对其在我国的应用应区别对待,对于有余热可以利用的地区,应大力提倡使用吸收式冷水机组,而一般建筑物则应采用蒸汽压缩式制冷。

当然,在进行冷热源系统的选择时,还要考虑建筑物所在地的气象条件、电力供应状况、能源情况、空调系统有无采用余热回收的可能性等方面的问题。

2.空调系统发展空调制冷技术的诞生是建筑技术史一项重大进步,它标志着人类从被动适应宏观自然气候发展到主动控制建筑微气候,在改造和征服自然的过程的又迈出了坚实的一步。

但是对空调的依赖也逐渐成为建筑能耗增长的最主要的原因。

制冷空调系统的出现为人们创造了舒适的空调环境,但20世纪70年代的全球能源危机,使制冷空调系统这一能源消耗大户面临严重考验,节能降耗成为空调系统设计的关键环节。

据统计,我国建筑能耗约占全国总能能耗的35%,空调能耗又约占建筑能耗的50%~60%左右。

由此可见,暖通空调能耗占总能耗的比例可高达22.75%。

因此,建筑中的空调系统节能已成为节能领域中的一个重点和热点。

于是降低空调能耗也被纳于建筑节能的任务中,如何更好的利用现在的空调技术服务人类同时又能满足建筑能耗的要求,是现阶段专业技术人员的工作要点。

而暖通空调设计方案的好坏直接影响着建筑环境的质量和节能状况。

暖通空调论文

暖通空调论文

暖通空调论文
暖通空调是一种用于调节室内温度、湿度和空气质量的系统,它在现代建筑中起着重要的作用。

暖通空调系统可以提供舒适的室内环境,同时减少能源消耗和环境影响。

在本论文中,将探讨暖通空调系统的设计、运行和优化。

首先,本论文将介绍暖通空调系统的基本原理和组成部分。

暖通空调系统通常由供暖、通风和空调三个部分组成。

供暖部分负责提供室内热量,通风部分负责循环和净化室内空气,而空调部分负责控制室内温度和湿度。

然后,本论文将讨论暖通空调系统的设计原则和方法。

暖通空调系统的设计应考虑室内外温度差、房间容积、建筑材料和使用需求等因素。

通过合理布局和选用合适的设备,可以实现能源高效和舒适的室内环境。

接下来,本论文将探讨暖通空调系统的运行和管理。

通过监控和调节设备运行参数,可以实现节能和环保的运营。

此外,定期维护和清洁设备也是确保系统正常运行和延长使用寿命的重要措施。

最后,本论文将介绍暖通空调系统的优化方法和未来发展趋势。

通过采用先进的控制策略和技术,如智能控制系统和可再生能源利用,可以进一步提高暖通空调系统的能效和环境影响。

综上所述,暖通空调系统是一种重要的建筑设施,它可以提供
舒适的室内环境,并减少能源消耗和环境影响。

通过合理的设计、运行和优化,可以实现暖通空调系统的高效和可持续发展。

暖通空调设计文献调研报告

暖通空调设计文献调研报告

暖通空调设计文献调研报告暖通空调是现代建筑中不可缺少的设备之一。

它的设计需要深入研究和了解相关的文献资料,以便选择适当的设备和技术来达到节能、环保和舒适的效果。

本文将对暖通空调设计方面的文献进行调研,并撰写调研报告。

在暖通空调设计中,节能是一个重要的目标。

根据文献资料的调研结果,可以采用一系列的节能措施来达到这个目标。

首先,可以采用高效的热交换设备和节能型电动机,以提高系统的效率。

同时,适当地使用太阳能和地热能等可再生能源,可以减少对传统能源的依赖。

此外,文献调研还发现,在空调系统的设计中,需要根据建筑的特点和使用要求来选择合适的设备和技术。

例如,在设计写字楼的空调系统时,可以采用新风系统来提供新鲜空气,并实现室内空气的循环,以提升室内空气的质量。

对于需要控制湿度的场所,可以采用湿度控制设备来控制湿度的变化。

此外,还可以采用智能控制系统,根据不同的使用需求动态调整空调运行状态,以提高能源利用率。

同时,文献调研还发现,在暖通空调设计中,还需要考虑到环保因素。

例如,要选择环保型制冷剂,避免使用对臭氧层有破坏作用的物质。

此外,在系统的运行中,还需要考虑到噪音和振动的问题,以避免对周围环境和人体健康造成不良影响。

最后,文献调研还强调了舒适性的重要性。

舒适的室内环境可以提高员工的工作效率和客户的满意度。

在设计空调系统时,需要考虑到温度、湿度、空气质量等因素,以确保室内环境的舒适性。

此外,还需要注意空气流通和照明等问题,以提供一个舒适、健康的室内环境。

综上所述,通过对暖通空调设计方面的文献资料进行调研,可以得出一些重要的结论。

节能、环保和舒适是暖通空调设计中需要关注的关键因素,需要选择合适的设备和技术来实现这些目标。

促进信息传授,同时保护用户数据,遵循隐私政策和相关法律法规。

在设计空调系统时,还需要考虑到建筑的特点和使用要求,并合理运用可再生能源和智能控制技术。

最后,需要关注室内环境的舒适性,提供一个良好的工作和生活环境。

空调毕业设计文献综述

空调毕业设计文献综述

空调毕业设计文献综述
空调毕业设计文献综述:
空气动力学设计在中央空调系统中的应用。

该文献介绍了中央空调系统中空气动力学设计的基本原理和方法,分析了空气流动对空调系统性能的影响,并探讨了优化设计的途径。

空气处理技术在空调系统中的应用。

该文献详细介绍了空气处理技术在空调系统中的应用,包括空气过滤、除湿、加湿、制冷等方面的技术,分析了不同技术的优缺点以及在实际应用中的效果。

中央空调系统的节能与环保。

该文献从节能和环保的角度出发,介绍了中央空调系统的设计和运行中需要注意的问题,包括选择高效的设备、合理布局和控制、优化操作等方面,并提出了可行的节能和环保措施。

多联机空调系统的设计与实现。

该文献介绍了多联机空调系统的基本原理、组成结构和工作方式,详细阐述了系统的设计和实现过程,包括控制系统的设计、网络通信协议的选用、硬件与软件的开发等方面。

空调系统的运行维护与管理。

该文献从空调系统的运行维护和管理方面出发,介绍了常见的故障分析和处理方法,阐述了空调系统的日常保养和检修,提出了有效的管理策略和措施,以确保系统的稳定性和可靠性。

以上是一些可能有参考价值的空调毕业设计文献综述内容,但具体的内容和选题还需根据个人情况和导师意见进行确定。

暖通空调 论文

暖通空调 论文

暖通空调论文绿色建筑设计中的空调系统1.前言上个世纪90 年代以来,随着地球温暖化进程的加速和全球异常气候出现周期的缩短,在人口不断膨胀,地球环境被破坏,资源估竭等问题困扰人类的今天,可持续发展这一课题引起全世界范围的关注。

“可持续性”这一定义的广泛引用来源于1987 年联全国环境与开发世界委员会报告“人类共通的地球”:所谓可持续的开发就是指在不损害将来人类社会经济利益的基础上,能够满足现在需要的开发。

”这一定义所昭示的开发便是一种有节制低能耗的开发。

可持续发展理论的提出,使人们开始反思此前的建筑发展历程,尤其是工业革命之后的短短一百多年间,人类所从事的活动中,建筑业对环境产生影响是巨大的。

2.现状建筑业是个耗能大户,据统计,全能量的50 %消耗于建筑,而暖通空调所占的建筑能中的30%~50%,并且随着人们对于生活质量要求的提高而逐年的增加。

在可持续设计的过程中,在各种各样金融危机能源危机的影响下,人们以减低新风量,减小空调运行功率,降低循环风机风量等等措施来降低建筑的能耗。

但是,在能耗降低的同时,也把人们的舒适程度降低到了最下限。

能耗下降了,但新的问题又产生了,那就是空气品质的恶化。

随着建筑业的发展,人们的认识水平不断提高,暖通设计师们逐渐明白,要把节能和保护环境有机地统一起来,因此,以最少的能耗,创造健康、舒适的室内环境,并保护大气环境,这也正是绿色建筑对暖通专业的要求。

绿色建筑就是充分利用可再生的材料和能源,亲和自然,尽量不破坏环境和文化传统,保护居住者的健康,充分体现了可持续发展的理念。

绿色建筑对室内环境品质给予特别的重视。

室内环境品质包括声、光、热等诸多环境物理因素以及室内空气品质中的诸多物理、化学因素。

绿色建筑的室内环境应与地球生物圈的生态环境协调、融合。

“以人为本”的室内环境首先要满足人的生物特性,即节能和环保并不是以影响居住者的健康和降低居住者的工作效率为代价。

因此,绿色建筑是资源和能源的有效利用、保护环境、亲和自然、舒适、健康、安全的建筑。

综述暖通空调节能设计

综述暖通空调节能设计

综述暖通空调节能设计摘要:随着经济的迅速发展,能源和环境问题日益尖锐,特别是在炎热的夏天,空调耗电已渐成为能耗大户,空调节能已日渐成为刻不容缓的大事。

本文论述了暖通空调节能的重要性,根据实际情况,全方面的分析协调各种方法,以得到最优的节能效果。

关键词:暖通;建筑节能;重要性;应用1 暖通空调节能的重要性当前社会快速的发展,建筑能耗在总能耗中所占的比例越来越大,而在建筑能耗里,用于暖通空调的能耗又占建筑能耗的30%-50%,且在逐年上升。

这势必会使能源供求矛盾进一步激化。

另一方面,现有的暖通空调系统所使用的能源基本上是高品位的不可再生能源,其中电能占了绝对比例。

对这些能源的大量使用,使得地球资源日益匮乏,同时也带来严重的环境问题,如在我国的一些地区出现了酸雨、飘尘问题呈日益严重之势,对生态环境和可持续发展带来了很大影响。

在最热的夏天,如果对暖通空调系统采取节能措施,不仅可以大大缓解电力紧张状况,同时,对于降低不可再生能源的消耗、保护生态环境、维持可持续发展等都有着重要的意义。

2 暖通空调系统节能设计首先,要合理地选择热源系统。

在设计暖通空调节能系统时,要根据具体的工程建筑选择实用有效的热源系统。

一般来说,当前国内市场上的热源种类主要有热电站、热泵、直燃型溴化锂吸收式冷热水机组、小型锅炉、区域锅炉房等。

而从能量利用效率上来看,其中以热电站的效率最高,热泵技术次之。

另外,地源热泵、水源热泵等新技术的推广使用可以大幅度提高制冷采暖系统的能效比,减少能耗,降低运行费用。

此外在国外已广泛使用的冰蓄冷技术,虽然对于单个空调系统来说并未体现出节能效果,但该技术的削峰填谷的效果对于城市电网乃至发电机组的效率有较大幅度的提升,还可以缓解经济发展与供电紧张之间的矛盾。

这需要政府部门进行政策引导。

在欧美等国,政府为推广冰蓄冷技术,制定了一系列的优惠政策,法国的分时电价峰谷电价比例达到1︰11。

其次,在设计时必须考虑减少热媒介输送过程中的能耗。

暖通文献综述范文文献综述要写摘要

暖通文献综述范文文献综述要写摘要

暖通文献综述范文文献综述要写摘要最好写摘要,方便以后别人阅读。

另外附上综述写作格式:文献综述的格式与一般研究性论文的格式有所不同。

这是因为研究性的论文注重文献综述研究的方法和结果,而文献综述介绍与主题有关的详细资料、动态、进展、展望以及对以上方面的评述。

因此文献综述的格式相对多样,但总的来说,一般都包含以下四部分:即前言、主题、总结和 ___。

撰写文献综述时可按这四部分拟写提纲,再根据提纲进行撰写工作。

前言前言要用简明扼要的文字说明写作的目的、必要性、有关概念的定义,综述的范围,阐述有关问题的现状和动态,以及目前对主要问题争论的焦点等。

前言一般200-300字为宜,不宜超过500字。

正文正文是综述的重点,写法上没有固定的格式,只要能较好地表达综合的内容,作者可创造性采用诸多形式。

正文主要包括论据和论证两个部分,通过提出问题、分析问题和解决问题,比较不同学者对同一问题的看法及其理论依据,进一步阐明问题 ___和作者自己的见解。

当然,作者也可从问题发生的历史背景、目前现状、发展方向等提出文献的不同观点。

正文部分可根据内容的多少可分为若干个小标题分别论述。

小结小结是对综述正文部分作扼要的总结,作者应对各种观点进行综合评价,提出自文献综述己的看法,指出存在的问题及今后发展的方向和展望。

内容单纯的综述也可不写小结。

______是综述的重要组成部分。

一般 ___的多少可体现作者阅读文献的广度和深度。

对综述类论文 ___的数量不同杂志有不同的要求,一般以30条以内为宜,以最近3-5年内的最新文献为主。

科目:本科是后来改成建筑环境与设备工程的,简称建环,硕士学历还是叫供热供燃气通风及空调工程,暖通专业一定要在好的学校去念,找工作一定没有问题,这个专业不强的学校还是不要念了,特别是女生,学校不好,超难找工作的。

学校:很负责的回答你,同济大学。

同济在建筑商的优势,带动了其暖通方向。

而且四校中间同济从出guo、升学(读博),就业上讲,都是性价比最高的。

暖通空调英文参考文献(精选124个最新)

暖通空调英文参考文献(精选124个最新)

随着现代社会建筑业和经济的发展,空调已成为人们生活中不可缺少的部分,已遍布社会的各个领域,对空调质量的要求也越来越高。

暖通空调技术发展迅速,取得了较好的社会反响,下面是搜索整理的暖通空调英文参考文献,欢迎借鉴参考。

暖通空调英文参考文献一: [1]. Foreign-Trade Zone (FTZ) 281--Miami, Florida; Authorization of Production Activity; Carrier InterAmerica Corporation (Heating, Ventilating and Air Conditioning Systems); Miami, Florida[J]. The Federal Register / FIND,2016,81(238). [2]. Energy; New Energy Study Results Reported from Chengdu University (Study on the utilization of heat in the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system)[J]. Energy Weekly News,2018. [3]. Volvo Truck Corporation; "Energy Consumption Of A Multiple Zone Heating, Ventilating And Air Conditioning System For A Vehicle And Method" in Patent Application Approval Process (USPTO 20180297443)[J]. Energy Weekly News,2018. [4]. Energy; Studies from Lawrence Berkeley National Laboratory Provide New Data on Energy (Practical Factors of Envelope Model Setup and Their Effects On the Performance of Model Predictive Control for Building Heating, Ventilating, and Air Conditioning ...)[J]. Energy Weekly News,2019. [5]Qingsong Ma,Hiroatsu Fukuda,Myonghyang Lee,TakumiKobatake,Yuko Kuma,Akihito Ozaki. Study on the utilization of heatin the mechanically ventilated Trombe wall in a house with a central air conditioning and air circulation system[J]. AppliedEnergy,2018,222. [6]F.J. Fernández,M.B. Folgueras,I. Suárez. Energy study in water loop heat pump systems for office buildings in the IberianPeninsula[J]. Energy Procedia,2017,136. [7]G. Benndorf,N. Réhault,M. Clairembault,T. Rist. Describing HVAC controls in IFC – Method and application[J]. EnergyProcedia,2017,122. [8]D.H. Blum,K. Arendt,L. Rivalin,M.A. Piette,M. Wetter,C.T. Veje. Practical factors of envelope model setup and their effects on the performance of model predictive control for building heating, ventilating, and air conditioning systems[J]. AppliedEnergy,2019,236. [9]Kai Chang,Qingyuan Zhang. Improvement of the hourly global solar model and solar radiation for air-conditioning design inChina[J]. Renewable Energy,2019,138. [10]Dingyi Cheng,Wen Zhang,Kai Wang. Hierarchical reserve allocation with air conditioning loads considering lock time using Benders decomposition[J]. International Journal of Electrical Power and Energy Systems,2019,110. [11]Chen Yue,Le Tong,Shizhong Zhang. Thermal and economicanalysis on vehicle energy supplying system based on waste heat recovery organic Rankine cycle[J]. Applied Energy,2019,248. [12]Honghai Yang,Jun Wang,Ning Wang,Fengchang Yang. Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer[J]. Energy & Buildings,2019,197. [13]Lisha Liu,Yanwei Dou,Bo Yao,Pengju Bie,Lei Wang,MinPeng,Jianxin Hu. Historical and projected HFC-410A emission from room air conditioning sector in China[J]. AtmosphericEnvironment,2019,212. [14]Huakeer Wang,Wei Lu,Zhigen Wu,Guanhua Zhang. Parametric analysis of applying PCM wallboards for energy saving in high-rise lightweight buildings in Shanghai[J]. Renewable Energy,2020,145. [15]Chao Liang,Xianting Li,Arsen Krikor Melikov,XiaoliangShao,Baoming Li. A quantitative relationship between heat gain and local cooling load in a general non-uniform indoor environment[J]. Energy,2019,182. [16]Mohamed Abdelgaied,A.E. Kabeel,Yehya Zakaria. Performance improvement of desiccant air conditioner coupled withhumidification-dehumidification desalination unit using solar reheating of regeneration air[J]. Energy Conversion and Management,2019,198. [17]K. Harby,Fahad Al-Amri. An investigation on energy savings ofa split air-conditioning using different commercial cooling pad thicknesses and climatic conditions[J]. Energy,2019,182. [18]Yang Lv,Guangyao Hu,Jingyi Liang,Xi Chen,Bin Chen,Tongke Zhao,Xiaoying Lu,Bin Wang,Wenjie Yuan,Yimin Li. Study on microwave sterilization technology of humidifier in central air conditioning system[J]. Building and Environment,2019,160. [19]Pui Kwan Cheung,C.Y. Jim. Impacts of air conditioning on air quality in tiny homes in Hong Kong[J]. Science of the Total Environment,2019,684. [20]Xu Zhu,Zhimin Du,Zhijie Chen,Xinqiao Jin,Xiaoqing Huang. Hybrid model based refrigerant charge fault estimation for the data centre air conditioning system[J]. International Journal of Refrigeration,2019. [21]Jixiang Wang,Xingying Chen,Jun Xie,Shuyang Xu,Kun Yu,Lei Gan. Dynamic control strategy of residential air conditioningsconsidering environmental and behavioral uncertainties[J]. Applied Energy,2019,250. [22]Jun Mei,Xiaohua Xia. Distributed control for a multi-evaporator air conditioning system[J]. Control EngineeringPractice,2019,90. [23]Feng Cheng,Xiu-Wei Li,Xiao-Song Zhang. Integral thermal and electrical energy utilization of the capacitive deionization regeneration method for absorption air-conditioning system[J]. Renewable Energy,2020,145. [24]Bourhan Tashtoush,Almutaz Ballah R. Algharbawi. Parametric study of a Novel Hybrid Solar Variable Geometry Ejector cooling with Organic Rankine Cycles[J]. Energy Conversion andManagement,2019,198. [25]Garrett J. Marshall,Colin P. Mahony,Matthew J. Rhodes,Steve R. Daniewicz,Nicholas Tsolas,Scott M. Thompson. Thermal Managementof Vehicle Cabins, External Surfaces, and Onboard Electronics: An Overview[J]. Engineering,2019. [26]M.A. Said,Hamdy HASSAN. A study on the thermal energy storage of different phase change materials incorporated with the condenser of air-conditioning unit and their effect on the unitperformance[J]. Energy & Buildings,2019,202. [27]Carsten Palkowski,Stefan von Schwarzenberg,Anne Simo. Seasonal cooling performance of air conditioners: The importance of independent test procedures used for MEPS and labels[J].International Journal of Refrigeration,2019,104. [28]Mauro. Cannistraro,Michele Trancossi. Enhancement of Indoor comfort in the presence of Large glazed radiant surfaces by a local Heat Pump system based on Peltier cells[J]. Thermal Science and Engineering Progress,2019. [29]Abolfazl Mohammadi,Amin Jodat. Investigation of the kinetics of TBAB + carbon dioxide semiclathrate hydrate in presence of tween 80 as a cold storage material[J]. Journal of MolecularLiquids,2019,293. [30]Farkad A. Lattieff,Mohammed A. Atiya,Adel A. Al-Hemiri. Test of solar adsorption air-conditioning powered by evacuated tube collectors under the climatic conditions of Iraq[J]. Renewable Energy,2019,142. [31]Guilherme B. Ribeiro,Jader R. Barbosa. Use of peripheral fins for R-290 charge reduction in split-type residential air-conditioners[J]. International Journal of Refrigeration,2019,106. 暖通空调英文参考文献二: [32]Jianzhong SUN,Fangyuan WANG,Shungang NING. Aircraft air conditioning system health state estimation and prediction for predictive maintenance[J]. Chinese Journal of Aeronautics,2019. [33]Seyed Mohsen Pourkiaei,Mohammad Hossein Ahmadi,Milad Sadeghzadeh,Soroush Moosavi,Fathollah Pourfayaz,Lingen Chen,Mohammad Arab Pour Yazdi,Ravinder Kumar. Thermoelectric cooler and thermoelectric generator devices: A review of present and potential applications, modeling and materials[J]. Energy,2019,186. [34]S. Lowrey,G. Le Bonniec,Z. Sun. Fluid flow modulation in a domestic refrigerative dehumidifier with air-side gearing[J]. International Journal of Refrigeration,2019,106. [35]Xin Wu,Kaixin Liang,Dian Jiao. Air conditioner group collaborative method under multi-layer information interaction structure[J]. Energy,2019,186. [36]Hongtao Zhang,Huanxin Chen,Yabin Guo,Jiangyu Wang,Guannan Li,Limei Shen. Sensor fault detection and diagnosis for a water source heat pump air-conditioning system based on PCA and preprocessed by combined clustering[J]. Applied Thermal Engineering,2019,160. [37]Binjian Nie,Xiaohui She,Zheng Du,Chunping Xie,YongliangLi,Zhubing He,Yulong Ding. System performance and economic assessment of a thermal energy storage based air-conditioning unit for transport applications[J]. Applied Energy,2019,251. [38]Carolina M. Rodriguez,Marta D'Alessandro. Indoor thermal comfort review: The tropics as the next frontier[J]. UrbanClimate,2019,29. [39]Shiyu Yang,Man Pun Wan,Wanyu Chen,Bing Feng Ng,Deqing Zhai. An adaptive robust model predictive control for indoor climate optimization and uncertainties handling in buildings[J]. Building and Environment,2019,163. [40]F. Fellin,M. Boldrin,E.S. Cucinotta,M. Zaupa. Simulation and verification of air cooling system for -1MVdc MITICA High Voltage hall in Padova[J]. Fusion Engineering and Design,2019,146. [41]B.Y. Zhao,Z.G. Zhao,Y. Li,R.Z. Wang,R.A. Taylor. An adaptive PID control method to improve the power tracking performance ofsolar photovoltaic air-conditioning systems[J]. Renewable and Sustainable Energy Reviews,2019,113. [42]Yukun Xu,Xin Wang,Jingsi Ma,Chen Huang,Zhuo Zhu. Study of convective heat transfer load induced by nozzle air supply in large spaces with thermal stratification based on Block-Gebhart model[J]. Sustainable Cities and Society,2019,50. [43]Junqing Wei,Jinping Liu,Xiongwen Xu,Jiangao Ruan,Guoli Li. Experimental and computational investigation of the thermalperformance of a vertical tube evaporative condenser[J]. Applied Thermal Engineering,2019,160. [44]Xi Meng,Junfei Du,Yanna Gao,Hanting Yu. Effect of inner decoration coating on inner surface temperatures and heat flows under air-conditioning intermittent operation[J]. Case Studies in Thermal Engineering,2019,14. [45]A. Gurubalan,M.P. Maiya,Patrick J. Geoghegan. A comprehensive review of liquid desiccant air conditioning system[J]. Applied Energy,2019,254. [46]Xu Zhu,Zhimin Du,Xinqiao Jin,Zhijie Chen. Fault diagnosis based operation risk evaluation for air conditioning systems in data centers[J]. Building and Environment,2019,163. [47]Liu Chen,Yikun Tan. The performance of a desiccant wheel air conditioning system with high-temperature chilled water from natural cold source[J]. Renewable Energy,2020,146. [48]Peter Niemann,Gerhard Schmitz. Experimental investigation ofa ground-coupled air conditioning system with desiccant assisted enthalpy recovery during winter mode[J]. Applied Thermal Engineering,2019,160. [49]Xi Wu,Chaobin Dang,Shiming Xu,Eiji Hihara. State of the art on the flammability of hydrofluoroolefin (HFO) refrigerants[J]. International Journal of Refrigeration,2019. [50]Bharat Soni,Ameeya Kumar Nayak. Effect of inspiration cycle and ventilation rate on heat exchange in human respiratoryairways[J]. Journal of Thermal Biology,2019,84. [51]A. Siricharoenpanich,S. Wiriyasart,R. Prurapark,P. Naphon. Effect of cooling water loop on the thermal performance of air conditioning system[J]. Case Studies in Thermal Engineering,2019. [52]Lun Zhang,Xia Song,Xiaosong Zhang. Theoretical analysis of exergy destruction and exergy flow in direct contact process between humid air and water/liquid desiccant solution[J]. Energy,2019,187. [53]Giorgio Baldinelli,Antonella Rotili,Riccardo Narducci,Maria Luisa Di Vona,Assunta Marrocchi. Experimental analysis of an innovative organic membrane for air to air enthalpy exchangers[J]. International Communications in Heat and Mass Transfer,2019,108. [54]Qingang Xiong,M. Vaseghi,Jagar A. Ali,Samir Mustafa Hamad,M. Jafaryar,M. Sheikholeslami,Ahmad Shafee,Tawfeeq AbdullahAlkanhal,Trung Nguyen-Thoi,I. Tlili,Zhixiong Li. Nanoparticle application for heat transfer and irreversibility analysis in an air conditioning unit[J]. Journal of Molecular Liquids,2019,292. [55]Chaobo Zhang,Xue Xue,Yang Zhao,Xuejun Zhang,Tingting Li. An improved association rule mining-based method for revealingoperational problems of building heating, ventilation and air conditioning (HVAC) systems[J]. Applied Energy,2019,253. [56]Rui Chen,Jianhua Wu,Jvyuan Duan. Performance and refrigerant mass distribution of a R290 split air conditioner with different lubricating oils[J]. Applied Thermal Engineering,2019,162. [57]Ilse María Hernández-Romero,Luis Fabián Fuentes-Cortés,Rajib Mukherjee,Mahmoud M. El-Halwagi,Medardo Serna-González,FabricioNápoles-Rivera. Multi-scenario model for optimal design of seawater air-conditioning systems under demand uncertainty[J]. Journal of Cleaner Production,2019,238. [58]M. Salem Ahmed,Ashraf Mimi Elsaid. Effect of Hybrid and Single Nanofluids on the Performance Characteristics of Chilled Water Air Conditioning System[J]. Applied Thermal Engineering,2019. [59]Sebastian Gonzato,Joseph Chimento,Edward O’Dwyer,Gonzalo Bustos-Turu,Salvador Acha,Nilay Shah. Hierarchical pricecoordination of heat pumps in a building network controlled using model predictive control[J]. Energy & Buildings,2019. [60]Dongxiao Wang,Runji Wu,Xuecong Li,Chun Sing Lai,XueqingWu,Jinxiao Wei,Yi Xu,Wanli Wu,Loi Lei Lai. Two-stage optimal scheduling of air conditioning resources with high photovoltaic penetrations[J]. Journal of Cleaner Production,2019,241. [61]Yuren Zhou,Clement Lork,Wen-Tai Li,Chau Yuen,Yeong Ming Keow. Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques[J]. Applied Energy,2019,253. [62]Athanasios Besis,Elisavet Botsaropoulou,ConstantiniSamara,Athanasios Katsoyiannis,Linda Hanssen,Sandra Huber. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure[J]. Ecotoxicology and Environmental Safety,2019,183. 暖通空调英文参考文献三: [63]Yuan Wang,Yonggao Yin,Xiaosong Zhang,Xing Jin. Study of an integrated radiant heating/cooling system with fresh air supply for household utilization[J]. Building and Environment,2019,165. [64]Mark Goldsworthy,Lavinia Poruschi. Air-conditioning in low income households; a comparison of ownership, use, energy consumption and indoor comfort in Australia[J]. Energy &Buildings,2019,203. [65]Zhiyao Yang,Ming Qu,Omar Abdelaziz,Kyle R. Gluesenkamp. Development and case study of the liquid desiccant system module in sorption system simulation program (SorpSim)[J]. Applied Thermal Engineering,2019,162. [66]Hyun-Guk Kim,Can Nerse,Semyung Wang. Topography optimization of an enclosure panel for low-frequency noise and vibrationreduction using the equivalent radiated power approach[J]. Materials & Design,2019,183. [67]Jose A. Becerra,Jesus Lizana,Maite Gil,Angela Barrios-Padura,Patrice Blondeau,Ricardo Chacartegui. Identification of potential indoor air pollutants in schools[J]. Journal of Cleaner Production,2019. [68]Lin Cheng,Yuxiang Wan,Liting Tian,Fang Zhang. Evaluating energy supply service reliability for commercial air conditioning loads from the distribution network aspect[J]. AppliedEnergy,2019,253. [69]Chaoqun Zhuang,Shengwei Wang,Kui Shan. Probabilistic optimal design of cleanroom air-conditioning systems facilitating optimal ventilation control under uncertainties[J]. Applied Energy,2019,253. [70]Santiphap Nakkaew,Thunyawat Chitipalungsri,Ho Seon Ahn,Dong-Wook Jerng,Lazarus Godson Asirvatham,Ahmet Selim Dalk?l,Omid Mahian,Somchai Wongwises. Application of the heat pipe to enhance the performance of the vapor compression refrigeration system[J]. Case Studies in Thermal Engineering,2019. [71]X. Cui,M.R. Islam,K.J. Chua. An experimental and analytical study of a hybrid air-conditioning system in buildings residing in tropics[J]. Energy & Buildings,2019,201. [72]Xiaolin Wang,Xiaoqiang Zhai,Huanqi Zhang,Lei Zhou. A theoretical and experimental study of a TBAB salt hydrate based cold thermal energy storage in an air conditioning system[J]. Thermal Science and Engineering Progress,2019,13. [73]M. Duquesne,C. Mailhé,K. Ruiz-Onofre,F. Achchaq. Biosourced organic materials for latent heat storage: An economic and eco-friendly alternative[J]. Energy,2019,188. [74]Zhenjun Ma,Haoshan Ren,Wenye Lin. A review of heating, ventilation and air conditioning technologies and innovations usedin solar-powered net zero energy Solar Decathlon houses[J]. Journal of Cleaner Production,2019,240. [75]Sen Huang,Di Wu. Validation on aggregate flexibility from residential air conditioning systems for building-to-gridintegration[J]. Energy & Buildings,2019,200. [76]Abhijit Dutta,Himadri Chattopadhyay,Humaira Yasmin,Mohammad Rahimi-Gorji. Entropy generation in the human lung due to effect of psychrometric condition and friction in the respiratory tract[J]. Computer Methods and Programs in Biomedicine,2019,180. [77]Chaoqun Zhuang,Shengwei Wang. An adaptive full-range decoupled ventilation strategy for buildings with spaces requiring strict humidity control and its applications in different climatic conditions[J]. Sustainable Cities and Society,2019. [78]A. Avgelis,A. M. Papadopoulos. On the evaluation of heating, ventilating and air conditioning systems[J]. Advances in Building Energy Research,2010,4(1). [79]. Excessive Noise Levels in Laboratory Work Spaces Produced by the Heating, Ventilating, and Air Conditioning Systems[J].Applied Occupational and Environmental Hygiene,2001,16(5). [80]Joseph Firrantello,William Bahnfleth,Paul Kremer. Field measurement and modeling of UVC cooling coil irradiation for heating, ventilating, and air conditioning energy use reduction (RP-1738)—Part 1: Field measurements[J]. Science and Technology for the Built Environment,2018,24(6). [81]Xia Wu,Zhe Tian,Chengzhi Tian,Yuanyuan Wang,Jiaqing Li. New design-day method for building cooling load calculation in China[J]. Building Research & Information,2019,47(8). [82]金勲,大泽元毅,阪东美智子. Indoor Environment and Health in Facilities for Elderly Part 2. Survey on Heating, Ventilating andAir Conditioning[J]. Techinical Papers of Annual Meeting the Society of Heating,Air-conditioning and Sanitary Engineers ofJapan,2016,2014.8(0). [83]KAMITANI katsuhiro. D-21 A Study on energy conservation estimate of HVAC fan and pump systems used for comfort heating, ventilating and air conditioning[J]. Techinical Papers of Annual Meeting the Society of Heating,Air-conditioning and Sanitary Engineers of Japan,1990,1990(0). [84]内田秀雄. 〔140〕空気调和に适した吸收式冷冻机 : A.A.Giannini : "Absorption Refrigeration Applied for Air Conditioning Offices", Heating and Ventilating, Jan 1950,pp 65-70.A.A.Berestneff, "A New Development in Absorption Refrigeration, "Refrigerating Engineering, vol.57,June 1949,pp 553-557.L.Bert Nye : "Use of Gas for Air Conditioning, "Refrigerating Engineering, Apr 1950,pp 366-369.A.A.Berestheff, "Absorption Refrigeration, "Mechanical Engineering, March 1950,vol.72,No.3,pp 216-220.(15.暖冷房および冷冻)[J]. Journal of the Society of Mechanical Engineers,1950,53(381). [85]Syahril Ardi,Setyowati Setyowati. DESAIN SISTEM KENDALI MESIN PENGUJI KEBOCORAN UDARA MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC (HEATING, VENTILATING, AND AIR CONDITIONING)[J]. Jurnal Teknik Mesin,2016,5(4). [86]Syahril Ardi,Setyowati .. DISAIN SISTEM KENDALI MESIN AIR LEAK TEST MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC(HEATING, VENTILATING, AND AIR CONDITIONING) LINE 6[J]. JurnalIlmiah SINERGI,2015,19(1). [87]. 5421192 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material[J]. Journal of Cleaner Production,1995,3(4). [88]Thomas Glatzl,Harald Steiner,Franz Kohl,Thilo Sauter,Franz Keplinger. Development of an air flow sensor for heating, ventilating, and air conditioning systems based on printed circuit board technology[J]. Sensors & Actuators: A. Physical,2016,237. [89]Eusébio Z.E. Conceio,M a Manuela J.R. Lúcio. Heating, Ventilating and Air Conditioning Systems Control Based in the Predicted Mean Vote Index[J]. IFAC Proceedings Volumes,2010,43(1). [90]Yuguo Li. Special Issue—Selected Papers Presented in the 6th International Symposium on Heating, Ventilating and Air Conditioning, Nanjing, China, 6–9 November, 2009[J]. Energy & Buildings,2010,43(5). [91]Mahdi Mohammadi Tehrani,Yvan Beauregard,Michel Rioux,Jean Pierre Kenne,Rejean Ouellet. A Predictive Preference Model for Maintenance of a Heating Ventilating and Air Conditioning System[J]. IFAC PapersOnLine,2015,48(3). [92]Michael Anderson,Michael Buehner,Peter Young,DouglasHittle,Charles Anderson,Jilin Tu,David Hodgson. An experimental system for advanced heating, ventilating and air conditioning (HVAC) control[J]. Energy & Buildings,2006,39(2). [93]B. Stephens,J. A. Siegel. Ultrafine particle removal by residential heating, ventilating, and air‐conditioning filters[J]. Indoor Air,2013,23(6). 暖通空调英文参考文献四: [94]María José Gacto,Rafael Alcalá,Francisco Herrera. A multi-objective evolutionary algorithm for an effective tuning of fuzzy logic controllers in heating, ventilating and air conditioning systems[J]. Applied Intelligence,2012,36(2). [95]Ming-Li Chiang, Yuan-Ming Chan, Li-Chen Fu. Integration of Supervisory and Nonlinear Control for a Heating, Ventilating, andAir Conditioning System[P]. Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on,2005. [96]Jiangjiang Wang, Dawei An, Chengzhi Lou. Application of Fuzzy-PID Controller in Heating Ventilating and Air-Conditioning System[P]. Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on,2006. [97]Jiangjiang Wang, Chunfa Zhang, Youyin Jing. Hybrid CMAC-PID Controller in Heating Ventilating and Air-Conditioning System[P]. Mechatronics and Automation, 2007. ICMA 2007. International Conference on,2007. [98]Jiangjiang Wang, Chunfa Zhang, Youyin Jing. Application of an intelligent PID control in heating ventilating and air-conditioning system[P]. Intelligent Control and Automation, 2008. WCICA 2008. 7th World Congress on,2008. [99]Gacto, M.J., Alcala, R., Herrera, F.. Evolutionary Multi-Objective Algorithm to effectively improve the performance of the classic tuning of fuzzy logic controllers for a heating, ventilating and Air Conditioning system[P]. Genetic and Evolutionary Fuzzy Systems (GEFS), 2011 IEEE 5th International Workshop on,2011. [100]Anderson, M., Young, P., Hittle, D., Anderson, C., Tu, J., Hodgson, D.. MIMO robust control for heating, ventilating and air conditioning (HVAC) systems[P]. Decision and Control, 2002, Proceedings of the 41st IEEE Conference on,2002. [101]An Yu Wang,Jun Li. The Cooperative Organizational Modes for Technological Exploitation: Evidence from Chinese HeatingVentilating and Air Conditioning Industry[J]. Advanced Materials Research,2010,983. [102]Avgelis, A.,Papadopoulos, A. M.. On the evaluation of heating, ventilating and air conditioning systems[J]. Advances in Building Energy Research,2010,4(1). [103]Hossein Mirinejad,Seyed Hossein Sadati,Maryam Ghasemian,Hamid Torab. Control Techniques in Heating, Ventilating and Air Conditioning Systems[J]. Journal of Computer Science,2008,4(9). [104]Tubbs R L. Excessive noise levels in laboratory work spaces produced by the heating, ventilating, and air conditioningsystems.[J]. Applied occupational and environmentalhygiene,2001,16(5). [105]Bellucci Sessa R,Riccio G. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].[J]. Giornale Italiano di Medicina del Lavoro ed Ergonomia,2004,26(4). [106]. 35395 Leak detection in heating, ventilating and air conditioning systems using an environmentally safe material[J]. Applied Thermal Engineering,1997,17(7). [107]M. Zaheer-uddin,G.R. Zheng. Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings[J]. Energy Conversion and Management,2000,41(1). [108]Rafael Alcalá,Jorge Casillas,Oscar Cordón,AntonioGonzález,Francisco Herrera. A genetic rule weighting and selection process for fuzzy control of heating, ventilating and airconditioning systems[J]. Engineering Applications of Artificial Intelligence,2004,18(3). [109]. 97/04121 Thermal and behavioral modeling of occupant-controlled heating, ventilating and air conditioning systems[J].Fuel and Energy Abstracts,1997,38(5). [110]. 00/00504 Optimal control of time-scheduled heating, ventilating and air conditioning processes in buildings[J]. Fuel and Energy Abstracts,2000,41(1). [111]Leon R. Glicksman,Steven Taub. Thermal and behavioral modeling of occupant-controlled heating, ventilating and air conditioning systems[J]. Energy & Buildings,1997,25(3). [112]Waiel F. Abd El-Wahed. A multi-attribute model for selecting the best heat ventilating air conditioning system[J]. Journal of Discrete Mathematical Sciences and Cryptography,1999,2(1). [113]R. B. Simmons,S. A. Crow. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC)systems[J]. Journal of Industrial Microbiology,1995,14(1). [114]Junying Zhang, Xuelai Zhang, Ai'qing Fu Cold Thermal Storage Technology Institute of Shanghai Maritime University, Shanghai, China 200135. The Design of the Cool Storage Transportation Container[A]. 中国土木工程学会.Proceedings of the World Engineers' Convention 2004[C].中国土木工程学会:中国土木工程学会,2004:3. [115]Sharma Kashika,Ravindra Khaiwal,Mor Suman,Kaur-Sidhu Maninder,Sehgal Rakesh. Detection and identification of dust mite allergens in the air conditioning filters in Chandigarh, India.[J]. Environmental science and pollution researchinternational,2019,26(23). [116]Soni Bharat,Nayak Ameeya Kumar. Effect of inspiration cycle and ventilation rate on heat exchange in human respiratoryairways.[J]. Journal of thermal biology,2019,84. [117]Dutta Abhijit,Chattopadhyay Himadri,Yasmin Humaira,Rahimi-Gorji Mohammad. Entropy generation in the human lung due to effectof psychrometric condition and friction in the respiratorytract.[J]. Computer methods and programs in biomedicine,2019,180. [118]Wagner Jennifer A,Greeley Damon G,Gormley Thomas C,Markel Troy A. Analyzing ICU Patient Room Environmental Quality Through Unoccupied, Normal, and Emergency Procedure Modes: An EQI Evaluation.[J]. HERD,2019,12(4). [119]Johnston James D,Cowger Ashlin E,Graul Robert J,NashRyan,Tueller Josie A,Hendrickson Nathan R,Robinson Daniel R,Beard John D,Weber K Scott. Associations between evaporative cooling anddust-mite allergens, endotoxins, and β-(1→ 3)-d-glucans in house dust: A study of low-income homes.[J]. Indoor air,2019. [120]Besis Athanasios,Botsaropoulou Elisavet,SamaraConstantini,Katsoyiannis Athanasios,Hanssen Linda,Huber Sandra. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: Implications for exposure.[J]. Ecotoxicology and environmental safety,2019,183. [121]Nishimura Takeshi,Kaneko Akihisa. Temperature profile of the nasal cavity in Japanese macaques.[J]. Primates; journal of primatology,2019,60(5). [122]Qiushi Wan,Chuqi Su,Xiaohong Yuan,Linli Tian,Zuguo Shen,Xun Liu. Assessment of a Truck Localized Air Conditioning System with Thermoelectric Coolers[J]. Journal of ElectronicMaterials,2019,48(9). [123]Ma?gorzata Go?ofit-Szymczak,Agata Stobnicka-Kupiec,Rafa? L. Górny. Impact of air-conditioning system disinfection on microbial contamination of passenger cars[J]. Air Quality, Atmosphere & Health,2019,12(9). [124]Takeshi Nishimura,Akihisa Kaneko. Temperature profile of the nasal cavity in Japanese macaques[J]. Primates,2019,60(5). 以上就是关于暖通空调英文参考文献的分享,希望对你有所帮助。

基于民用建筑暖通空调设计问题综述

基于民用建筑暖通空调设计问题综述

基于民用建筑暖通空调设计问题综述摘要:民用建筑中的暖通空调贯穿于整个设计、施工和运行维护的过程中,已经成为了一个独立的系统。

本文首先论述了民用建筑暖通空调设计中需要了解的问题,公共建筑的分区和常用的空调方式,民用建筑空调系统选用时的注重点及设备间布置的基本要求;分析研究了制冷空调设备机房、风道、管井与建筑的关系。

关键词:民用建筑;暖通空调;设计一个好的建筑物暖通空调设计, 需要达到良好的使用效果, 当然是各工种综合的好效果。

用我们的政策语言, 就是适用、经济、美观三者俱备。

为达到此目标,在作设计时各工种必须相互配合好。

一、建筑暖通空调设计中需要了解的问题分析一是该建筑物的位置, 四邻建筑物情况及其周围供热、供水、供电等管线的敷设方式与可能的接口地点。

二是建筑物内的人员数量、使用时间、有无废气要排等。

这些可作为计算负荷及划分系统的依据。

三是层数、层高及建筑物的总高度, 看其是否属于高层建筑。

四是空间的实际尺寸, 外墙、梁和柱子的尺寸。

五是防火分区、防烟分区的划分及防火墙的位置, 火灾时的疏散路线。

六是建筑结构的方案, 如剪力墙的位置、屋面做法、外墙做法等。

七是窗户的大小、层数及采用玻璃的热工性能,判断其是否满足节能要求。

八是周围环境。

九是室内的照明负荷、电子设备、电动机及其他发热设备。

十是可能提供的制冷机房、空调机房、冷却塔、水泵房、电源室及热力点等的位置。

二、空调设计与建筑的关系分析研究1.分区:内区与外区。

现代办公楼多为高层, 面积大, 玻璃窗也大, 室内电子办公设备多, 照明散热量大, 有的人员也多, 这些都会形成空调冷负荷。

室外温度波动和太阳辐射热也能引起通过围护结构的传热, 但只影响到进深一定的区域, 这一区域称为外区。

外区一般为距外墙 4~ 6 m 内的区域。

而室内负荷只有照明负荷、人员负荷、电子设备负荷等不受外界温度波动影响的区域称为内区。

内区全年的空调负荷均为冷负荷。

内区多用全空气定风量或变风量 ( VAV )的空调方式; 外区( 周边区) 常用风机盘管加新风的空调方式或 VAV 带末端加热的方式。

暖通毕业设计文献综述

暖通毕业设计文献综述

暖通毕业设计文献综述【篇一:暖通毕业文献综述】文献综述题目家用中央空调的研究与发展前景学生姓名专业班级学号院(系)指导教师(职称)完成时间家用中央空调的研究与发展前景1 家用中央空调具有的特点1.1 家用中央空调的优点(1)具有单台房间空调器的优势。

如质量可靠、故障率低、使用灵活、安装方便、维护简单等。

(2)具有中央空调的优势,如房间内温度分布均匀,不占有房间的使用面积,能和装修较好的配合,室内噪音低等。

(3)具有较好的个性化,~方面要体现在住户个人购买、个人使用,另一方面室内空调机布置能够灵活多样,可根据房间的布局、个人喜好有多种方案可供选择。

(4)家用中央空调消费群体不光是针对高消费群体,而逐步针对普通的工薪阶层。

随着空调厂家大规模生产、开发,其价格会逐渐回落,使家用中央空调能落户于普通百姓家庭成为可能。

1.2家用中央空调的缺点(1)比分体空调贵不少,但是配合装修效果非常好。

(2)耗电量比较大,不容易清洗。

机组噪音比较大。

噪音方面主要影响的是夜间睡眠,可以调成最低风速运行。

另外,在选择中央空调品牌时可以关注室内机噪音值。

(3)不同品牌价格差距很大,制冷效果也有差距。

2 家用中央空调方式的分析比较2.1几种家用中央空调输送介质方式的分析比较中央空调是集中处理空调负荷的系统型式,其冷/热量是通过一定的介质输送到空调房间里去的。

按照家用小型中央空调的输送介质的不同,常见的家用小型中央空调可以分成以下三种主要型式。

2.1.1风管式系统风管式系统以空气为输送介质,其原理与大型全空气中央空调系统的原理基本相同。

它利用室外主机集中产生冷/热量,将从室内引回的回风(或回风和新风的混风)进行冷却/力d热处理后,再送入室内消除其空调冷/热负荷。

相对于其它的家用小型中央空调型式,风管式系统初投资较小。

如若引入新风,其空气品质能得到较大的改善。

但风管式系统的空气输配系统所占用建筑物空间较大,一般要求住宅要有较大的层高。

暖通最新文献研究报告

暖通最新文献研究报告

暖通最新文献研究报告暖通工程是建筑设计中关键的一部分,涵盖了供暖、通风和空调系统的设计与管理。

本文旨在综述近期的暖通领域最新研究成果,并分析其对建筑能源效率、室内舒适度和环境可持续性的影响。

一项重要的研究成果是关于建筑供暖系统的优化。

研究人员运用数值模拟方法,研究不同供热策略在不同气候条件下的效果。

他们发现,在冬季,根据建筑特点和气象条件调整供暖系统的工作模式,可以显著提高能源利用效率。

该研究为供暖系统的智能化和个性化提供了理论基础,有助于减少能源消耗并改善室内舒适度。

在通风方面的研究,研究人员通过数值模拟和实地实验,探讨了通风系统对于室内空气质量和能源消耗的影响。

研究结果表明,在特定的室内外条件下,轴流式通风系统可以提供更好的室内空气质量,并降低能源消耗。

此外,通过引入智能控制策略,可以进一步优化通风系统的性能,实现精细调控和节能效果。

另一项重要研究关注建筑空调系统的可持续性和环境影响。

研究人员提出了一种基于可再生能源的空调系统设计方法,并与传统空调系统进行对比。

研究结果显示,利用太阳能和地热能驱动空调系统可以显著减少对传统能源的依赖,降低环境污染。

这一研究为建筑空调系统的可持续发展提供了新的思路和方法。

此外,近年来关于暖通工程与建筑设计相结合的研究也得到了广泛关注。

研究人员通过优化建筑外墙结构、改进传热材料等方法,探索了能源节约与建筑外观设计的综合性平衡。

这些研究成果为建筑设计者提供了实用的指导,可以在保证建筑外观质量的同时,实现能源效率的提升。

综上所述,最新的暖通工程研究成果涉及供暖系统优化、通风系统改进、空调系统可持续发展以及暖通与建筑设计的综合性平衡等方面。

这些研究成果有望为建筑能源效率提升、室内舒适度改善和环境可持续性发展提供有效的解决方案。

未来的研究应进一步深入挖掘暖通工程的潜力,促进其在建筑领域的应用和发展。

暖通空调外文文献

暖通空调外文文献

An investigation of the existing situationand trends in buildingenergy efficiency management in ChinaAbstractAccording to the Chinese State Council’s‘‘Building Energy Efficiency Management Ordinance’’,a large-scale investigation of energy efficiency(EE)in buildings in contemporary China has been carried out in22provincial capitals and major cities in China.The aim of this project is to provide reliable information for drawing up the‘‘Decision on reinforcing building energy efficiency’’by the Ministry of Construction of China.The surveyed organizations include government departments,research institutions,property developers,design institutions, construction companies,construction consultancy services companies,facility management departments,financial institutions and those which relate to the business of building energy efficiency.In addition,representatives of the media and residents were also involved.A detailed analysis of the results of the investigation concerning aspects of the current situation and trends in building energy consumption,energy efficiency strategy and the implementation of energy efficiency measures has been conducted.The investigation supplies essential information to formulate the market entrance policy for new buildings and the refurbishment policy for existing buildings to encourage the development of energy efficient technology.Keywords:Energy efficiency(EE);Building;Survey;Policy;Legislation; Reform;China1.IntroductionFuture trends in China’s energy will have considerable consequences for both China and the global environment.Although China’s carbon emissions are low on a per capita basis,China has been already ranked the world’s second largest producer of carbon,behind only the USA. China’s buildings sector currently accounts for23%of China’s total energy use and this is projected to increase to one-third by2010.China has set a target for a50% reduction of energy consumption for buildings.Energy policy plays an important rolein China’s sustainable development.Improving energy efficiency in buildings is one of the most cost-effective measures for reducing CO2emission,which is recognisedas one of the main causes of global warming.The climate in China is very diverse.According to the national‘‘Standard of Climatic Regionalization for Architecture’’GB50178-93,China is divided into the following zones based on climate characteristics:very cold,cold,hot summer and cold winter,hot summer and warm winter,and moderate.Air conditioning and heating requirements for different zones are as follows:in the very cold zone,the major requirement is heating,and few residential buildings are equipped with air conditioning.In the cold zone,the primary requirement is heating,followed by air conditioning.In the hot summer and cold winter zone,both air conditioning and heating are needed.In the hot summer and warm winter zone,the major requirement is air conditioning and few residential buildings require heating.In some parts of the moderate zone,heating is needed;in other parts,both heating and air conditioning are needed.The availability of heating and air conditioning depends on several factors, including the degree of economic development in an area,the availability of energy supplies and the requirements for environmental protectionThe Chinese government has focused on energy efficiency in buildings since the 1980s,and numerous standards,building codes,incentive policies and administrative rules have been issued.For example,the‘‘Energy Design Code for Heated Residential Buildings JGJ26-86’’,‘‘Energy Design Code for Heated New Residential Buildings JGJ26-95’’and‘‘Technical Specification for Energy Conservation Renovation of Existing Heated Residential Buildings JGJ129-2000’’are for the Very Cold and Cold zones.The‘‘Design Standard for Energy Efficiency of Residential Buildings in the Hot Summer and Cold Winter zone JGJ134-2001’’and ‘‘Design Standard for Energy Efficiency of Residential Buildings in the Hot Summer and Warm Winter zone JGJ75-2003’’are for non-central heating areas.According to the Chinese government timetable,standards for the energy efficient design for residential buildings in all climate zones should have taken effect by the end of2003 In order to enhance the energy efficiency strategies’implementation,on behalf of the State Council,The Ministry of Construction is drawing up the‘‘Decision on reinforcing building energy efficiency’’,which aims to establish a building energy efficiency legislation system,principally using a policy of economic incentives in order to stimulate the reform in building energy efficiency.To fulfill this task,a large-scale investigation has been carried out focusing on the awareness, understanding and degree of support for the reform of energyefficiency in buildings.2.MethodologyThe survey method has been applied in this investigation.The questionnaire survey is a common method,which has been used by many researchers worldwide.A detailed description of the survey method used in this work is as follows.2.1.Objects and subjects of the investigationThe survey into the‘‘existing situation and trends of building energy efficiency management in China’’was carried out from September2005to February2006and aimed to supply realistic information for providing a reliable warranty for drawing up building energy management regulations.Extensive discussionshave been conducted with experts in the country in order to design the survey questionnaire.About22,000copies of the survey questionnaire have been distributed to about22provincial capitals and the major cities throughout the country.The survey subjects are mainly government administrative departments,research institutions, property developers,design institutions,construction companies,construction consultancy service companies,facility management departments,finance organizations,the media and residents.The informationderived from the investigation becomes an important reference for the drawing up of the‘‘Decision on reinforcing building energy efficiency’’.The topics of the investigation are divided into one general part and eight specific parts.The general part is to investigate the existing situation of energy efficiency management,the development tendency and the cost of building energyefficiency.The specific parts include:Part1:New building market entrance permission;Part2:Promotion,limitation and restriction;Part3:Statistic of building energy consumption;Part4:Energy efficiency labelling and certification;Part5:Energy efficiency management and refurbishment for public buildings;Part6:Energy efficiency management and refurbishment for residential buildings;Part7:Application of renewable energy;Part8:Incentive policy for energy efficiency.The subjects come from11groups,they are:No.1:Government departments;No.2:Property developers;No.3:Design and construction companies;No.4:Energy service companies;No.5:Clients of public buildings;No.6:Property service companies;No.7:Heating suppliers;No.8:Manufacturers of construction materials and products;No.9:Financial institutions;No.10:Residents;No.11:The Media.The11subjects were required to answer the questions in the general part but did not necessarily have to answer all the questions in the specific parts.The11types of questionnaire were designed for the different subjects.3.Analysis of samplesThe22,000copies of the questionnaire have been distributed,and about13,125 valid copies have been returned,a response rate of59.7%.Among these valid completed questionnaires,10,236copies were from residents and2889copies from institutions.3.1.Resident subject samplesThe resident questionnaire includes four criteria:ownership of property, building type,building age and average family income.From the investigation we can see that the ownership of property accounts for67.8%;the multi-floor buildings account for61.8%;the buildings aged less than10years old account for62.9%; and households with monthly average family income less than5000Yuan account for61.8%.These figures match the real situation in China.In general,the valid completed questionnaires from resident subjects reflect the general situation in Chinese society.It represents the society’s mainstream.3.2.Institutions included in the sampleThe institutions included in the sample were classified according to three criteria,namely the administrative characteristics of their cities,their climate zone, and whether or not they were building owners.From the investigation we can see that the surveyed cities are mainly provincial capitals and Municipalities(a Municipality is a specific administrative city which is governed directly by the central government.There are four such cities:Beijing, Tainjin,Shanghai and Chongqing),which account for90%of the whole surveyed cities.The building energy consumption in provincial capitals is more remarkable than that in other cities,which reflect the country’s real situation.The surveyed cities are mostly located in the very cold,cold,hot summer andcold winter zones.and mild zones areat the moment.make up the lowest proportion of0.6%because the building energy efficiency service system is not yet fully mature.The proportion of design institutions, construction and consultancy companies is38%,which is the largest group.The second largest group,with14.3%,is made up of manufacturers of building materials and equipment.These two institutions are the practical executive bodies for the implementation of building energy efficiency.The proportion of clients of public building is9.0%,which is particularly selected to reflect public building energy management and renovation.The proportions of these institution subject samples reflect the real situation in China[4.Result analysisThe surveys were carried out within four groups:consumers,producers, services and consultancy supervisions.The consumers include residents and clients of public buildings.The producers include property developers and manufacturers. The services include design construction and construction consultancy companies, energy service companies,facility management services,energy resource services companies and finance institutions.The consultancy supervisions include government departments and the media.4.1Consumers of energy efficient products4.1.1The degree of acceptability of energy efficient productsThe investigationfrom the survey.From of energy efficient building products does not remain high and there exists a regional difference.The feedback from the resident survey shows that,the energy efficient products are more likely to be accepted in the very cold,cold and hot summer and cold winter zones than the hot summer and warm winter zone.In recent years,a heating metering and payment system reform has been conducted in the very cold and cold zones;therefore the residents in these zones are more interested in energy efficient products.In the hot summer and cold winter zone,the indoor climate is severe in winter and summer without both air conditioning and electric heating; therefore the residents are keen to use energy efficient products to improve their living conditions as well as to save money.The feedback from clients of public buildings shows that the energy efficient products are more favoured in the very cold,cold,and hot summer and cold winter zones.From the survey results we can conclude that the consumers’degree of acceptance of energy efficient building products isaffected by the following factors:1.The metering and payment system for heating in north China;2.The quantity of energy consumed;3.Climate characteristics.rge-scale public buildingsThe energy consumption in large-scale public buildings is10–15times that in residential buildings.For example,the floor area of large public buildings in Beijing only accounts for5.4%of the city’s total building floor area,however,its electricity energy consumption is almost equal to that of residential buildings.It is obvious that energy efficiency reform should focus on large-scale public and government office buildings.In order to investigate the public expectations of energy efficiency reform,the question‘‘Can energy efficiency reform save more or less than20%of energy consumption?’’has been included in the survey(see Fig.1).The result from government office buildings is that40.7%of respondents vote‘‘less’’and59.3%‘‘more’’.The result from the large-scale public buildings shows that32%of respondents vote‘‘less’’and68%‘‘more’’.This implies a positive opinion and high expectation that energy efficiency reform will save energy consumption in buildings for these two types of buildings.4.2.Energy efficient building developers4.2.1.Property developersAccording oftheir energy to buildings built in the1980s.These new Energy Efficient Buildings.The survey has been carried out with411property developers involved with the newly constructed buildings to investigate if this target has been met in the following three areas:1.The number of EE buildings as a proportion of the total number of newly constructed buildings;2.The costs of EE buildings;3.The sales of EE buildings in the market.The survey result reveals that only20.6%of the total buildings have met the requirement of this standard.The investigation shows the increment of cost of the EE buildings.From this figure,we can see that there is a difference in the cost increments for EE buildings constructed by the different property developers. Investigation shows the market situation for EE buildings.From this,we can see that there is no overwhelming advantage for EE buildings on the property market.This survey identifies some of the problems in developing EE buildings in China, which are:1.There is a great mismatch between design and construction and this affects the actual energy saving;2.There is no stable ratio of cost increment to energy saving and this causes problems for the budget estimations for EE buildings;3.There is no market guidance for energy efficient buildings and this causes low sensitivity to the EE buildings on the property market;4.Property developers underestimate the requirement of the EE buildings for property buyers.Meanwhile,we investigated the impact of Building Energy Efficiency Labelling on purchasing intentions and the attitude of property developers to the provision of building energy efficiency labelling.The survey results show that the more information that has been supplied to the buyers,the more attention they pay to a building’s EE status.see Fig.4.The intention to‘‘consider buying an energy efficient building’’increases by more than five times after the provision of the information than before.efficiency building labeling to stimulate the demand for energy efficient buildings on the property market.Fig.5.shows the attitude towards energy efficiency building labelling of the administrative departments,property developers and buyers.From this,we can see that81.6%of the buyers are very supportive of energy efficiency building information and labelling;however,in contrast about66%of property developers are notconcerned about energy efficiency information.It is very important for legislation on the energy efficiency labelling system to require the property developers to supply the energy efficiency building information to buyers in order to support energy efficiency and avoid overwhelming profit-making on the property market.4.2.2.Manufacturers of materials and equipmentThe investigation on the energy efficiency in building materials and products has been carried out with405manufacturers throughout the country and focused on the following two questions:1.What are the approaches to the introduction of energy efficiency technology development and transfer?2.Why do disputes about energy efficiency products occur in practice?Fig.6shows the approaches to energy efficiency product technology transfer. From this figure we can see that about15%of energy efficiency products are self-developed by the enterprises,22%are jointly developed with research institutions,35%are technology introduced from overseas,15%are imported directly from overseas and13%are from other channels.There is much dispute about the quality of energy efficiency products.Table5 shows the causes of these disputes.From the table we can see that the quality of the energy efficiency products produced independently by enterprises and jointlydeveloped with research institutions is responsible for many problems,43.4%and 65.1%,respectively.The last figure in particular is a cause for concern since it demonstrates the weakness of Research and Development(R&D)in China.Both R&D and technology transfer need to be strengthened.Although there are fewer quality problems with imported technologies and products from overseas,there are many problems with their installation and matching with original designs.About 43.3%of the technologies introduced from overseas are improperly used.About30%of imported energy efficiency products have problems due to improper installation and30%of them do not match with the design.4.3.Building energy efficiency service system4.3.1.The design,consultancy services and construction of buildingsThe survey has been carried out in1079design institutions,consultancy services and construction companies.The topics focused on were the following:1.The pass standard implementation;2.The pass rate of construction abiding by the energy efficient design;3.The pass rate of the actual energy efficiency of the buildings.Fig.7shows the pass rates for the above three criteria.From the figure,we can see that energy efficiency design standard implementation has the highest pass rate of90.3%and construction implementation has a high rate of77%,however,the pass rate for the actual energy efficiency of buildings(42.8%)is low.The results imply that the intention of designing and constructing energy efficient buildings has substantially increased due to the promulgation of the new building design codes.However, unfortunately this did not lead to a substantial increase in energy saving for the actual buildings.This is due to the lack of skilled construction and installation workers.4.3.2.The building heating suppliersThe survey has been carried out in71heating suppliers and focused on the following three criteria:1.How much does heating efficiency increase due to upgrading the heat source and pipe network?2.How popular are central heating3.How much would they accept to afford the cost of refurbishment of a heating system?Fig.8shows the increased heating efficiency due to the refurbishment of heating supply systems inBeijing andDalian.From the figure,we can see that there is little significant improvement in energy efficiency due to the refurbishment of heating supply systems.The investigation of71 heating supply companies reveals that central heating systems account for about 35–40%of the total heating systems.The heating systems of newly built residential buildings have been designed and installed with thermostats to control the indoor air temperature.This increases costs by about20RMB/m2compared with the old system. The average cost of refurbishment of the old heating system with a thermostat andreplacement of pipes and radiators will cost about20–30RMB/m2.We investigated the acceptability of contributing different proportions of the cost of refurbishment.The percentages of the payment are grouped as‘Not at all’.Fig.9 shows the results.From the figure we can see that not many respondents like to pay the costs.This information is very useful for drafting the heating system metering payment system.About42%of the refurbishments of the heating network did not achieve a10%improvement in efficiency.The reform of the heating systems will focus on the improvement of energy efficiency to the end-user.The survey result reveals that the installation of thermostats and a metering payment system can achieve a30%Theinsuppliers who are willing to undertake over30%of the refurbishment costs are mainly the producers of combined heat and power.In China,heat resource suppliers charge heat supply agents for the heat while the heat supply agents charge the users by floor area.。

综述生态建筑中空调暖通技术

综述生态建筑中空调暖通技术

综述生态建筑中空调暖通技术【摘要】下文主要通过介绍暖通空调领域中具有较大节能意义和良好应用前景的途径,提出了几点建筑规划设计阶段的节能措施。

【关键词】:暖通空调;设计原理;途径;节能。

随着人均建筑面积的不断增大,暖通空调系统的广泛应用,用于暖通空调系统的能耗将进一步增大,使能源供求矛盾进一步激化。

现有暖通空调系统使用的能源基本上是不可再生能源,对生态环境和可持续发展带来了很大影响。

1 暖通空调系统的合理设计对暖通空调的设计,应本着严格要求,采用规范的技术手段,对各系统进行认真安装和调试,以满足预期的功能需要。

暖通空调系统的合理设计主要从以下方面考虑:系统的选择、设备的选配及系统的运行管理。

以空调系统为例,一个完整的空调系统从最初的设计、运行到最后的管理三个环节都对空调系统的节能性有着重要的影响。

设计中冷热源的选择、主机容量的配备、新风系统的设计等都影响空调的节能效果。

在选定空调系统设计方案时,应将节能作为重要依据之一。

例如在冬季,采用传统的空调供热方式,把室内空气加热实现人体与环境的热湿交换,需要较高的空气温度,维护结构的热损失和加热新风的热损失都比较大。

如果根据热湿环境的研究成果,增加辐射热(如低温地板辐射采暖),所需要的空气温度一般可下降至12 ℃~14 ℃,而传统方式需加热至18 ℃~20 ℃,显然,后者比前者具有显著的节能效果。

在夏季也有类似的效果。

系统设计方面可采用冰蓄冷技术,利用峰谷电价的差别将用电高峰时的空调负荷转移到电价较为便宜的夜间,从而节约运行费用。

一些工艺性的恒温恒湿空调,新回风单独处理的温湿度解耦控制能够有效地节能。

过去,这种空气调节系统多采用新风和回风先混合,然后经降温去湿处理,实行露点温度控制再加热控制,这必然带来大量的冷热抵消,导致能量的大量浪费。

尤其是一些大中型的项目,因冷热抵消引起的能耗量更是令人难以估量。

空调系统新风由单独设置的新风空调器统一处理至露点,去除新风空气中的湿负荷。

暖通空调设计中关于室外气象参数的文献综述

暖通空调设计中关于室外气象参数的文献综述

暖通空调设计中关于室外气象参数的文献综述关于室外气象参数的文献综述通过对《建筑热过程》这门课程的学习,使我体会到在做暖通空调设计时,室外气象参数的重要性。

所以,需要对室外气象参数的来源、处理、计算方法、使用等等做进一步学习。

空调设计气象参数,包括设计干球温度、湿球温度和太阳辐射,是建筑空调系统设计必要和基本的数据。

它们同时作用于建筑物,.是导致围护结构的传热和通过渗透和通风直接进行质交换的驱动势。

在空调系统中同时发生的设计气象条件是确定空调系统容量的峰值冷负荷所必需的条件。

不适当的设计气象数据将造成容量过大或偏小的HV AC系统,会导致不必要的额外初投资和较低的部分负荷效率,或者经常不能提供充足的制冷量。

1.室外空气计算参数的数据来源及分析比较原始数据来源于中国气象局气象信息中心气象室编制的我国地面气象资料数据集和气象辐射资料数据集。

我国地面气象资料数据集由我国地面气候观测网国家基准气候站和国家基本气象站连续定时探测大气变化所记录的各种气象要素资料组成。

基准气候站每天进行24次定时观测,基本气象站每天进行4次定时观测,分别为02:00、08:00、14:00、20:00。

采用国家气象信息中心气象资料室提供的26城市1978年1月1月至2007年12月31日的地面气候资料为观测基础数据,按我国规范的确定方法和国外不保证率的方法为基础,对室外空气计算参数的确定方法进行讨论,并更新了部分城市的主要室外空气计算参数,主要结论如下:(1)分别计算统计年限为10年、15年、20年及30年的室外空气计算参数,参考气象学上的规定并综合冬夏室外空气计算参数的变化与累年气温的变化规律,认为30年是比较适宜的统计期。

(2)我国空调室外空气计算参数与ASHRAE相比,数值处于保证级别比较高的水平,只是形式不够灵活,不能让设计师在设计时根据建筑的不同用途、实际需要来选择对应的设计值。

而且我国现在还不能提供满足统计要求的逐时气温数据,使用不保证率的方法条件还不够成熟。

暖通空调的论文参考文献分享

暖通空调的论文参考文献分享

暖通空调的论文参考文献分享暖通空调的论文参考文献分享暖通空调参考文献一:[1]唐顺。

BIM技术在暖通空调设计中的应用分析[J].绿色环保建材,2017,(04):49.[2]张珂,姚月姣。

暖通空调系统水力平衡的探讨[J].绿色环保建材,2017,(04):183-184.[3]秦渊平。

分析公共建筑项目中暖通空调专业的绿色设计[J].绿色环保建材,2017,(04):206.[4]潘雅坤。

试析暖通空调中通风与防排烟设计[J].中国新技术新产品,2017,(08):96-97.[5]梁劲,杨宝华。

民建工程暖通空调系统节能设计探析[J].科技创新与应用,2017,(11):257.[6]胡亮。

现用暖通空调节能设计措施探讨[J].电子制作,2017,(07):75-76+78.[7]薛勇。

商业建筑暖通空调设计的相关影响因素[J].工程建设与设计,2017,(06):45-46.[8]侯丹琳,潘毅群,黄治钟。

一种基于粒子群算法的暖通空调过程对象辨识方法[J].建筑节能,2017,(03):19-23.[9]吕龙。

暖通空调系统制冷管道安装的管理方法[J].应用能源技术,2017,(03):41-44.[10]马式娇。

浅谈现代暖通空调设备安装的施工问题与解决方案[J].黑龙江科技信息,2017,(09):237.[11]熊盎然,陈亚争,周雨先。

高层建筑暖通空调系统设计对策[J].江西建材,2017,(05):23+27.[12]高庆龙。

基于空间分布的暖通空调负荷计算室外计算温度参数确定方法[J].暖通空调,2017,(03):13-15+56.[13]董瑞荷。

暖通空调方案设计现状分析[J].四川建材,2017,(03):213-214.[14]李春林。

暖通空调的节能问题分析与节能减排探讨[J].绿色环保建材,2017,(02):174.[15]徐婧。

暖通工程施工的关键分析及技术改善探讨[J].绿色环保建材,2017,(02):118.[16]张胜。

暖通空调文献综述

暖通空调文献综述

文献综述一、课题国内外现状:1.美国中央空调发展现状:美国的中央空调普及率较高,这与其良好的居住条件以及较高的生活水平是分不开的。

美国是世界第一经济大国,人民生活水准较高,对居住的舒适性要求也较高,这些都促进了该国中央空调的普及使用。

美国的别墅型住宅具有宽敞、高大的特点,通常由中、高收入的家庭居住。

由于其层高较大,具有足够的建筑空间用于布置风道,因此在美国,风管式系统在家用小型中央空调中所占的比重相当大。

同时,由于美国居民对家用空调舒适性的要求较高,因此多采用有新风的风管式系统。

目前,美国风管式系统的年产量约为600万台/年,占其家用空调产量的一半左右。

美国的公寓型住宅适合于中、低收入的人群居住,其家用空调的型式以窗式空调器为主,也有采用小区供冷/热水的,一般不使用家用小型中央空调。

目前美国窗式空调器年产量约为600万台/年,占其家用空调产量的一半左右。

美国的中央空调的型式以风管式系统为主,其具体形式多种多样。

风管式单元空调系统和风管式空调箱系统在美国的应用都很广泛,此外,集成了燃气炉的家用小型中央空调系统在美国的应用也非常普遍。

此种家用小型中央空调系统在供冷季由制冷机组提供冷量,在供热季由燃气炉提供热量,对室内回风和新风进行处理,消除房间空调负荷,同时也可以满足家庭生活热水的需求。

2.日本小型中央空调发展现状:与美国以风管式系统为主的特点不同,日本的家用空调走的是一条"氟系统"为主的发展道路,从窗式空调器到定速分体式空调器,再到变频分体式空调器。

同样,日本的家用小型中央空调也以冷剂式空调即VRV系统为主。

在世界冷剂式空调行业中,在二十世纪九十年代以前,60%的市场被日本所占有,并且在设备开发和控制技术上都处于世界最前沿。

这为日本发展VRV 系统提供了技术保证。

同时,日本国土面积小而人口众多,人口密度非常大,其住宅多属于高密度住宅,建筑结构较为紧凑。

一般层高均较低,不适合于布置需要占用较大层高的风管式空调系统。

空调毕业设计文献综述

空调毕业设计文献综述

空调毕业设计文献综述
空调是现代社会不可或缺的一种家电,空调的运作原理和技术不断得到改进和完善。

本文将综述一些相关的毕业设计文献,主要包括以下方面:
1. 空调的运作原理和技术
通过对空调的运作原理和技术的研究,可以更好地了解空调的性能和优化空调的设计。

文献中提到了很多关于空调运作原理和技术的研究,例如:变频空调的控制策略、基于热泵技术的空调系统、传统空调系统的节能优化等等。

2. 空调的节能设计
随着人们对节能环保的要求越来越高,空调的节能设计也越来越重要。

文献中提到了很多关于空调节能设计的研究,例如:基于数学模型的空调节能控制、基于物联网技术的智能空调设计、太阳能空调的设计等等。

3. 空调的控制系统设计
空调的控制系统是空调的关键组成部分,控制系统的设计直接影响着空调的性能和效率。

文献中提到了很多关于空调控制系统设计的研究,例如:基于模糊控制的空调控制、基于PLC控制的空调控制、基于PID控制的空调控制等等。

4. 空调的设计与制造
空调的设计和制造是空调行业的核心部分,设计与制造的质量直接影响着空调的性能和使用寿命。

文献中提到了很多关于空调设计与
制造的研究,例如:基于CAD技术的空调设计、空调的结构模拟与优化、空调的制造工艺等等。

综上所述,空调作为一种不可或缺的家电,其运作原理和技术、节能设计、控制系统设计以及设计与制造等方面的研究都至关重要。

这些研究为空调行业的发展和进步提供了重要的支持和帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文献综述一、课题国内外现状:1.美国中央空调发展现状:美国的中央空调普及率较高,这与其良好的居住条件以及较高的生活水平是分不开的。

美国是世界第一经济大国,人民生活水准较高,对居住的舒适性要求也较高,这些都促进了该国中央空调的普及使用。

美国的别墅型住宅具有宽敞、高大的特点,通常由中、高收入的家庭居住。

由于其层高较大,具有足够的建筑空间用于布置风道,因此在美国,风管式系统在家用小型中央空调中所占的比重相当大。

同时,由于美国居民对家用空调舒适性的要求较高,因此多采用有新风的风管式系统。

目前,美国风管式系统的年产量约为600万台/年,占其家用空调产量的一半左右。

美国的公寓型住宅适合于中、低收入的人群居住,其家用空调的型式以窗式空调器为主,也有采用小区供冷/热水的,一般不使用家用小型中央空调。

目前美国窗式空调器年产量约为600万台/年,占其家用空调产量的一半左右。

美国的中央空调的型式以风管式系统为主,其具体形式多种多样。

风管式单元空调系统和风管式空调箱系统在美国的应用都很广泛,此外,集成了燃气炉的家用小型中央空调系统在美国的应用也非常普遍。

此种家用小型中央空调系统在供冷季由制冷机组提供冷量,在供热季由燃气炉提供热量,对室内回风和新风进行处理,消除房间空调负荷,同时也可以满足家庭生活热水的需求。

2.日本小型中央空调发展现状:与美国以风管式系统为主的特点不同,日本的家用空调走的是一条"氟系统"为主的发展道路,从窗式空调器到定速分体式空调器,再到变频分体式空调器。

同样,日本的家用小型中央空调也以冷剂式空调即VRV系统为主。

在世界冷剂式空调行业中,在二十世纪九十年代以前,60%的市场被日本所占有,并且在设备开发和控制技术上都处于世界最前沿。

这为日本发展VRV系统提供了技术保证。

同时,日本国土面积小而人口众多,人口密度非常大,其住宅多属于高密度住宅,建筑结构较为紧凑。

一般层高均较低,不适合于布置需要占用较大层高的风管式空调系统。

而且日本是个国内资源匮乏的国家,其能源消耗主要依赖于从国外进口,因此该国非常强调节能。

家用空调作为能源消耗大户,其节能技术的开发尤其受到重视。

VRV系统的节能性是其在日本得到广泛应用的一个重要原因。

另外,对于专业的空调安装队伍来讲,VRV系统的安装非常规范,施工费用低。

以上这些因素决定了日本家用小型中央空调的型式以VRV系统为主。

此外,在日本,对于比较高档的别墅住宅,也有采用风管式系统的,风管式单元空调系统和风管式空调箱系统都有应用。

对于面积很大的高级住宅还采用新风机组+风管式空调箱系统,通过新风道将室外空气引入室内,运行时需要关闭房间所有的窗户,原则上可实现全年连续运行。

对于中级住宅或规模较小的高级住宅也有采用冷/热水机组的,在这种系统中,室内末端装置多采用落地式风机盘管,当采用吊顶式风机盘管,在冬季供热时,室内上下温差太大,通常辅以电热壁毯作为辅助热源。

二、研究主要成果:近年来,各种形式的中央空调的发展都很迅速。

三、发展趋势:中国中央空调发展趋势:随着我国经济的逐步增长,居住条件日益改善,人们对生活环境的舒适性的要求越来越高,对中央空调的需求越来越大,家用空调从奢侈品变成了舒适家居的不可缺少的重要部分。

中国的国情与美国和日本都有很大的不同,因此,在发展家用小型中央空调的道路上,应当结合中国自身的特点,在仔细分析中国具体国情的基础上,推进我国在中央空调领域中的研究和应用。

第一,我国是一个幅员辽阔的国家,地理、气候条件极为复杂,拥有多种多样的气候类型。

这就必然要求我们的中央空调具有多样性的特点。

如何根据不同的气候特征选择合适的空调型式,如何在系统设计中充分考虑不同气候的影响,这是我们在发展中央空调时应当考虑的问题。

第二,我国经济发展水平地区差异性大,在不同的地区人们对空调的需求不一样。

即使在同一地区,由于人们的收入水平不一样,住宅形式也千差万别,而且生活习惯也不尽相同,因此对家用空调的需求也是多层次的。

如何针对不同层次的用户设计不同型式的家用空调,这也是值得研究的一个问题。

第三,从能源的角度来看,我国虽然能源总量很大,但由于人口众多,人均能源拥有量不高,能源供应相对较为紧张。

而住宅空调在当前的能源消耗结构中所占的比重是非常大的。

这就要求我国的家用小型中央空调的发展必需注重节能性,一方面要注重提高机组本身的能效比,另外一方面应当注重能源的综合利用。

这样也就对变流量技术、蓄能技术、能源综合利用技术等提出了更高的要求。

第四,从环境的角度来看,目前我国环境污染的问题较为突出,许多城市出现了如"热岛"效应、空气污染等现象。

考虑上述问题,一方面是要求所开发的家用小型中央空调必须具有环保的特点,把对环境的影响尽量减小到最小,另一方面是要充分考虑到环境污染对空调系统本身的性能带来的影响,针对它进行一些相应的设计。

例如,在使用风冷热泵作为室外主机时,目前我国大城市中污染较为严重的空气对机组换热性能的影响就应当充分考虑。

通过以上分析可以看出,我国对中央空调的需求是多样化、多层次的,因此我们对家用小型中央空调的研究也应当遵循相应原则,对各种型式的家用小型中央空调进行研究和开发,不应当只强调某一种型式的系统而忽视其它类型。

在研究和设计过程中,应当充分考虑到中国在地理气候条件、居住住宅形式、人们生活习惯等诸方面的因素,针对中国的用户开发出适合中国国情的家用小型中央空调系统。

2.发展趋势:中央空调系统有三种主要形式:中央空调是集中处理空调负荷的系统型式,其冷/热量是通过一定的介质输送到空调房间里去的。

按照家用小型中央空调的输送介质的不同,常见的家用小型中央空调可以分成以下三种主要型式。

风管式系统:风管式系统以空气为输送介质,其原理与大型全空气中央空调系统的原理基本相同,是一个小型化的全空气中央空调系统。

它利用室外主机集中产生冷/热量,将从室内引回的回风进行冷却/加热处理后,再送入室内消除其空调冷/热负荷。

相对于其它的家用小型中央空调型式,风管式系统初投资较小。

如若引入新风,其空气品质能得到较大的改善。

但风管式系统的空气输配系统所占用建筑物空间较大,一般要求住宅要有较大的层高。

而且它采用统一送风的方式,在没有变风量末端的情况下,难以满足不同房间不同的空调负荷要求。

而变风量末端的引入将会使整个空调系统的初投资大大增加。

冷/热水机组:冷/热水机组的输送介质通常为水或乙二醇溶液,它的基本原理与通常所说的风机盘管系统类似。

通过室外主机产生出空调冷/热水,由管路系统输送至室内的各末端装置,在末端装置处冷/热水与室内空气进行热量交换,产生出冷/热风,从而消除房间空调负荷。

它是一种集中产生冷/热量,但分散处理各房间负荷的空调系统型式。

该系统的室内末端装置通常为风机盘管。

目前风机盘管一般均可以调节其风机转速,从而调节送入室内的冷/热量,因此该系统可以对每个空调房间进行单独调节,满足不同房间不同的空调需求,同时其节能性也较好。

此外,由于冷/热水机组的输配系统所占空间很小,因此一般不受住宅层高的限制。

但此种系统一般难以引进新风,因此对于通常密闭的空调房间而言,其舒适性较差。

VRV系统: VRV空调系统是一种冷剂式空调系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其他制冷附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机。

一台室外机通过管路能够向若干个室内机输送制冷剂液体。

通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,适时地满足室内冷、热负荷要求,是一种可以根据室内负荷大小自动调节系统容量的节能、舒适、环保的空调系统。

VRV系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间的不同空调负荷的需求。

但其系统控制复杂,且其初投资高。

除了上述三种基本的系统型式以外,还可以互相交叉,衍生出一些新型的系统。

例如,将冷/热水机组和风管式系统进行组合,往室内送冷热水处理房间空调负荷,而新风统一由室外机处理后分别送入各个房间。

中国中央空调未来发展趋势:市场趋势1、市场需求快速增长国内经济高速发展催生大型现代化商业办公楼、宾馆、商场、超市不断兴起,为商用中央空调撑起巨大市场空间,预计2003年商用空调的市场容量为35亿,至2005年可达到80亿。

2、燃气空调份额上升随着天然气普及和和环保意识提高,燃气空调有望成为中国最主要的制冷产品,未来我国能源结构的调整,将为燃气空调的发展带来更好的发展空间。

能源结构和居住结构与我国都比较接近的日本、韩国,燃气空调负荷占中央空调总负荷的比例分别高达80%和88%。

而目前国内燃气中央空调所占的比例尚不到10%,因此燃气空调拥有巨大市场潜力,广东LNG项目和福建LNG项目的相继启动,西气东输项目的实施为燃气空调发展奠定了基础,同时,政府的政策引导和支持将给燃气空调增长带来巨大机遇。

3、短期内价格战不明显因为商用中央空调从产品设计、生产、直至安装、服务更强调个性化,并且由于商用空调有多种类型,所以产品差异化明显,国外品牌由于存在技术优势和品牌优势,为维持自己利润水平不会轻易降价,而国内许多品牌初涉这个领域,前期投入巨大,也需要保证较高利润以消化前期投入。

因此短期内大规模价格战不会发生,但是国内品牌产品与国外品牌产品有着1/3价格差距,国内品牌价格优势将逐渐使市场格局发生变化。

品牌竞争趋势由于国外品牌进入这个领域远远早于国内企业,因此目前国内市场上的主角依然是约克、开利、大金等国外品牌,但是随着海尔、格力、美的等国内军团的不断壮大,国内产品价格和服务优势将逐渐显现出来,国外品牌一统天下的局面也会随之改变。

可以预测2005年将会有国内品牌跻身国内市场的三甲之列。

产品趋势1、远程控制成为技术趋势大型商用空调由于本身结构复杂,一旦维护起来也较为繁琐,而且大型商用空调往往安装在地下室等较隐蔽场所,也为日常的维护造成诸多不便。

因此一些企业开始将目光瞄准远程控制功能上面。

海尔在每一台大型商用空调上安装一个模拟接收站,同时与海尔远程控制系统接轨。

只要登陆远程控制系统,所有产品运行情况一目了然,大大方便日常的维护保养。

不仅是海尔,其它企业也纷纷将中央空调远程控制系统作为研发重点,富尔达便开发出国内第一个无线远程监控系统,通过于GSM公网,对机组实施远程测控,直接观察用户的操作情况和测控分析机组的运行状态。

国内另一燃气空调企业远大也开发了电话联网监控系统,通过网络技术的运用和电话线数据传送,确保每台机组在良好的状态下运行。

远程控制功能的应用为厂家和用户都带来极大便利,不仅提高服务质量,而且也成为厂家竞标有利武器,可以预见的是未来商用空调的远程控制系统将会成为实力商用中央空调企业的标准配置。

2、健康升级大势所趋2003年夏天,非典传播特性使中央空调成为交叉感染的重要源头之一。

相关文档
最新文档