直线与双曲线的关系

合集下载

直线与双曲线的位置关系ppt课件

直线与双曲线的位置关系ppt课件

严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
(2)将 y=kx+ 2代入x32-y2=1,得
(1-3k2)x2-6 2kx-9=0.
由直线 l 与双曲线交于不同的两点,得
1-3k2≠0 Δ=6 2k2+361-3k2=361-k2>0
方程化为 2x=5,故此方程(*)只有一个实数解,即直线与双曲
线相交,且只有一个公共点.
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
(2)当 1-k2≠0,即 k≠±1 时,Δ=(2k2)2-4(1-k2)(-k2- 4)=4(4-3k2).
x1+x2=2-2kk2

x1·x2=k2-2 2
假设存在实数 k,使得以线段 AB 为直径的圆经过双曲线 C
的右焦点 F( 26,0),则 FA⊥FB,
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
∴(x1- 26)(x2- 26)+y1y2=0, 即(x1- 26)(x2- 26)+(kx1+1)(kx2+1)=0. (1+k2)x1x2+(k- 26)(x1+x2)+52=0, ∴(1+k2)·k2-2 2+(k- 26)·2-2kk2+52=0,
严格执行突发事件上报制度、校外活 动报批 制度等 相关规 章制度 。做到 及时发 现、制 止、汇 报并处 理各类 违纪行 为或突 发事件 。
[解析] (1)将直线 l 的方程 y=kx+1 代入双曲线 C 的方程 2x2-y2=1 后整理得,

高中数学选修2-1人教A版:2.3.2直线与双曲线的位置关系课件(1)

高中数学选修2-1人教A版:2.3.2直线与双曲线的位置关系课件(1)

注:
①相交两点:
△>0
同侧:x1 x2>0
异侧: x1 x2 <0 一点: 直线与渐进线平行
②相切一点: △=0
③相 离: △<0
特别注意直线与双曲线的位置关系中:
一解不一定相切,相交不一定两解,两解 不一定同支
直线与圆锥曲线相交所产生的问题:
一、交点——交点个数 二、弦长——弦长公式 三、弦的中点的问题——点差法 四、对称与垂直问题 五、综合问题
1 ,
1
两式做差得:3(x1
x2)(x1
+x)=(y
2
1
y2)(y1
+y) 2
x1+x2 2m,
y 1
+y 2
2n,
y 1
y2
x1x2
2
即:n=-3m,又P(m,n)在直线y=1x上,那么


n=21m,显然不符合上式,所以这样的a不存在。
五、综合问题
1、设双曲线C:
x2 a2
y2
1(a
0)与直线
y 1 2(x 1)
方程组无解,故满足条件的L不存在。
解 : 假设存在P(x1,y1),Q(x2,y2)为直线L上的两点, 且PQ的中点为A,则有 :
y 1 k(x 1)
x
2
y
2
1
2
韦达定理
消y得 (2 k 2 )x2 2k(1 k)x k 2 2k 3 0
2k2 0
(8 3 - 2k) 0
练习:
直线m : y = kx +1和双曲线x2 - y2 =1的左支交于A,B
两点, 直线l过点P -2,0和线段AB的中点. 1 求k的取值范围. 2 是否存在k值, 使l在y轴上的截距为1?若存在, 求出k的值;

双曲线方程及性质的应用 课件

双曲线方程及性质的应用  课件

则4-k2≠0,Δ=4k2+20(4-k2)>0, 所以16k2<80,即|k|< 5,k≠±2, 且x1+x2=4-2kk2,x1x2=-4-5 k2, 所以x=12(x1+x2)=4-k k2, y=12(y1+y2)=k2(x1+x2)+1=4-4 k2. 由xy==44--4kkk22,消去k,得4x2-y2+y=0(y<-4或y≥1).
因为a= 2,c=2 2,所以b2=c2-a2=6, 即所求轨迹方程为x22-y62=1(x> 2).
归纳升华 1.求解与双曲线有关的点的轨迹问题,常见的方 法有两种:(1)列出等量关系,化简得到方程;(2)寻找几 何关系,得到双曲线的定义,从而得出对应的方程. 2.求解双曲线的轨迹问题时要特别注意:(1)双曲 线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双 曲线的一支还是两支.
点,可以用交轨法求解,也可以用点差法求解.
[规范解答] 法一 由题知直线的斜率存在,设被 点B(1,1)平分的弦所在的直线方程为y=k(x-1)+1,代 入双曲线方程x2-y22=1,(2分)
得(k2-2)x2-2k(k-1)x+k2-2k+3=0,(4分) 所以Δ=[-2k(k-1)]2-4(k2-2)(k2-2k+3)>0, 解得k<32,且k≠± 2,(6分) x1+x2=2k(k2k--21).(8分)
a 近线平行,直线与双曲线 C 相交于一点.
(2)当b2-a2k2≠0,即k≠±ba时, Δ=(2a2mk)2-4(b2-a2k2)(-a2m2-a2b2), Δ>0⇒直线与双曲线有两个公共点,此时称直线与 双曲线相交; Δ=0⇒直线与双曲线有一个公共点,此时称直线与 双曲线相切; Δ<0⇒直线与双曲线没有公共点,此时称直线与双 曲线相离.

双曲线与直线的位置关系课件

双曲线与直线的位置关系课件
双曲线与直线的位置关系
本课件将介绍双曲线和直线的定义以及它们之间的位置关系,相交点,切点, 平行关系,垂直关系和包含关系。
双曲线和直线的定义
1 直线
具有恒定斜率的曲线,可用斜率截距方程y = mx + b表示。
2 双曲线
具有非常特定形状的曲线,其离心率大于1。
直线与双曲线的位置关系
1 相交
直线和双曲线相交于某个点。
唯一切点
直线切双曲线于唯一一个切点。
无切点
直线与双曲线可能无切点。
无穷切点
直线切双曲线的每一点都被认为是一个切点。
直线与双曲线的平行关系
1 平行直线ห้องสมุดไป่ตู้
直线与双曲线保持相同的距离,从未相交。
2 平行双曲线
两条双曲线具有完全相同的形状,但位于不 同位置。
直线与双曲线的垂直关系
1 垂直直线
直线与双曲线在某一点形成一个90度的角度。
2切
直线刚好接触双曲线的一点,即切点。
3 平行
直线和双曲线无交点,但始终保持相同的距 离。
4 垂直
直线与双曲线在某一点相交,形成90度的角 度。
直线和双曲线的相交点
定点
相交的直线和双曲线将在某个固 定点处相交。
两个点
直线和双曲线可能相交于两个不 同的点。
无点
直线与双曲线可能没有交点。
直线和双曲线的切点
2 垂直双曲线
两条垂直双曲线在某一点形成一个90度的角度。
直线与双曲线的包含关系
1 直线包含于双曲线
直线上的每个点都在双曲线上。
2 双曲线包含于直线
双曲线上的每个点都在直线上。

3.2.2 双曲线的简单几何性质(第2课时)直线与双曲线的位置关系

3.2.2 双曲线的简单几何性质(第2课时)直线与双曲线的位置关系

第12页
探究1
解直线和双曲线的位置关系的题目,一般先联立方程组,消去一个变量, 转化成关于 x 或 y 的一元二次方程.再根据一元二次方程去讨论直线和双曲线 的位置关系.这时首先要看二次项的系数是否等于 0.当二次项系数等于 0 时, 就转化成 x 或 y 的一元一次方程,只有一个解.这时直线与双曲线相交且只有 一个交点.当二次项系数不为零时,利用根的判别式,判断直线和双曲线的位 置关系.
∴|MN|= 1+k2· (x1+x2)2-4x1x2= 1+k2·
=6(|3k-2+k21|)=4.解得 k=± 515.
∴直线 l 的方程为 y=± 515(x-2).
- 3-4kk222+4(43-k2+k23)
第15页
题型二 弦长问题
例 2 (1)求直线 y=x+1 被双曲线 x2-y42=1 截得的弦长. 【解析】 由x2-y42=1,得 4x2-(x+1)2-4=0.
y=x+1,
即 3x2-2x-5=0.①
设方程①的解为 x1,x2, ∴x1+x2=32,x1x2=-53.
∴弦长 d= 2|x1-x2|= 2· (x1+x2)2-4x1x2= 2×
第7页
知识点二 直线与双曲线相交所得弦长的两种求法 方法一:利用距离公式. 求出直线和双曲线的两个交点坐标,利用两点间距离公式求弦长. 方法二:利用弦长公式. 设斜率为 k(k≠0)的直线 l 与双曲线相交于 A(x1,y1),B(x2,y2),则|AB|= 1+k2·|x1-x2|= 1+k2· (x1+x2)2-4x1x2 = 1+k12·|y1-y2| = 1+k12· (y1+y2)2-4y1y2.
第5页
(2)当 b2-a2k2≠0,即 k≠±ba时,Δ=(-2a2mk)2-4(b2-a2k2)(-a2m2-a2b2).

(原创)直线与双曲线的位置关系

(原创)直线与双曲线的位置关系
直线和双曲线相交有关弦的中点问题,常用 设而不求的思想方法.
1、过点P(0,3)的直线l与双曲线 C:x2 y2 1仅有
4 一个公共点,求直线 l的方程。
2、 已知双曲线方程 x2 y 2 1
42
求以M(1,1)为中点的弦AB所在的直线方程。
1、过点P(0,3)的直线l与双曲线 C:x2 y2 1仅有
直线与双曲线的 位置关系
复习: 椭圆与直线的位置关系及判断方法
相离
判断方法
(1)联立方程组 (2)消去一个未知数
(3) ∆<0
相切 ∆=0
相交 ∆>0
一、直线与双曲线的位置关系与交点个数
y
相交:两个交点
相切:一个交点
O
x 相离:0个交点
思考:当直线与双曲线渐近
Y
线平行时,直线与双曲线的
交点个数?
得k 13,此时l : y 13x 3
2、 已知双曲线方程
x2 y 2 1
42
求以M(1,1)为中点的弦AB所在的直线方程。
解:设 A(x1 ,y1) ,B(x2 ,y2) ,则 (x1 x2)
x12 4

y12 2
1
x22 4

y2 2 2
1
相减

y1 y2 x1 x2
求k的值。
注意:
极易疏忽!
解:由
y

kx
1
得 (1 k 2 )x2 2kx 5 0 即此方程只有一解
x2 y2 4
当 1 k2 0即k 1时,此方程只有一解
当 1 k2 0 时,应满足 4k2 20(1 k2 ) 0

直线与双曲线的位置关系及判定

直线与双曲线的位置关系及判定

直线与双曲线的位置关系及判定
直线与双曲线在平面上的位置关系有三种情况:相离、相切和相交。

1. 相离:直线与双曲线没有交点,它们分别在平面上任意位置,没有交集。

2. 相切:直线与双曲线有且仅有一个公共切点,此时直线的斜率等于双曲线在该点的切线斜率。

3. 相交:直线与双曲线有两个交点,此时直线穿过双曲线。

判定直线与双曲线的位置关系可以通过以下方法进行:
1. 将直线的方程和双曲线的方程联立,求解它们的交点,如果有解,就是相交或相切;如果没有解,就是相离。

2. 比较直线的斜率与双曲线在交点处的切线的斜率,如果相等,则相切。

3. 比较直线的斜率与双曲线的离心率(e)的关系。

如果直线
的斜率大于离心率,则相离;如果直线的斜率小于离心率,则相交;如果直线的斜率等于离心率,则相切。

注意:在进行判定时,需要先化简双曲线的方程,确定其标准形式,然后再进行计算。

专题54直线与双曲线(课件)-2024年中职数学对口升学考试专题复习精讲课件_42057202

专题54直线与双曲线(课件)-2024年中职数学对口升学考试专题复习精讲课件_42057202

即 k=±23 3时,方程(*)有两个相同的实数解,即直线与双曲线有且
仅有一个公共点.
4-3k2<0, ③1-k2≠0,
即 k<-23 3,或 k>23 3时,方程(*)无实数解,即直线与双曲线无
公共点.
专题54——直线与双曲线的关系 综上所述, 当-2 3 3<k<-1,或-1<k<1,或 1<k<2 3 3时,直线与双曲线有两个公共点; 当 k=±1,或 k=±2 3 3时,直线与双曲线有且只有一个公共点; 当 k<-23 3,或 k>2 3 3时,直线与双曲线没有公共点.
1
x2
12x 24 0
则 AB 1 k 2 (x1 x2 )2 4x1x2 2 (12)2 4 24 4 6
故 AB 4 6
专题54——直线与双曲线的关系
【题型一 】 直线与双曲线的位置关系
例 1 已知双曲线 x2-y2=4,直线 l:y=k(x-1),在下列条件下,求实数 k 的取值范围. (1)直线 l 与双曲线有两个公共点; (2)直线 l 与双曲线有且只有一个公共点; (3)直线 l 与双曲线没有公共点.
|AB|= 1+k2 x1+x22-4x1x2= 1+k2
2k2-3k222-1k22k-2+2 8
= 1+k2 16k2k-2+212=4|k12+-k22|=4,
解得 k=± 22,故这样的直线有 3 条.
专题54——直线与双曲线的关系
2.过双曲线 x2-y32=1 的左焦点 F1,作倾斜角为π6的直线与双曲线交于 A,B 两
∴|AB|=|y1-y2|=4 满足题意.
专题54——直线与双曲线的关系
当直线 l 的斜率存在时,其方程为 y=k(x- 3),
y=k x- 3 , 由x2-y22=1,

《直线与双曲线》课件

《直线与双曲线》课件
根据双曲线的定义和性质,可以得出点到焦点的距离公式。然后根据题目给出的条 件,将已知数值代入公式进行计算。
综合题类型及解题思路
类型三:与切线有关的问题
求切线方程,需要利用导数和切线的定义,结合几何意义进行求解。
首先求出双曲线在某一点的导数,这个导数表示该点切线的斜率。然后根据切线的定义和斜 率,写出切线方程。最后将已知数值代入切线方程进行求解。
直线与双曲线的交点
交点的求法
当直线的方程与双曲线的方程相等时 ,解出x和y的值即为交点坐标。
交点的性质
直线与双曲线的交点满足两个方程, 因此交点同时属于直线和双曲线。
01
直线与双曲线的位 置关系
直线与双曲线相切
切点定义
直线与双曲线在某一点相切,该 点称为切点。
切线性质
切线与双曲线的渐近线平行,且切 线斜率等于双曲线在该点的导数。
步骤
设直线方程为 $x = ty + m$,双曲线方程为 $x = rho cos theta, y = rho sin theta$,联立两个方程消去参数 $theta$ 和 $rho$。
应用
适用于求解与参数相关的直线与双曲线的交点问题。
01
直线与双曲线的综 合题解析
综合题类型及解题思路
类 各种轨迹问题,如行星运动轨迹等。
物理问题中的应用
光学和声学
在光学和声学中,光线和声波的 传播路径可以模拟为直线或双曲
线的形式。
力学
在力学中,直线与双曲线可以用 来描述物体运动轨迹和受力分析

电学
在电学中,电流的传导和电场的 分布可以用直线与双曲线的知识
来解释。
实际生活中的应用
《直线与双曲线》 ppt课件

直线与双曲线关系

直线与双曲线关系
直线与双曲线的关系可分为相交、相切和相离三种情况。相交时,直线与双曲线有ቤተ መጻሕፍቲ ባይዱ个交点;相切时,有一个交点;相离时,无交点。本文通过具体例题,深入探讨了直线y=kx-1与双曲线x2-y2=4的交点情况。当直线与双曲线仅有一个公共点时,即方程组仅有一组实数解,此时需要求解k的取值范围。进一步,文档还通过变式讨论了有两个公共点和没有公共点的情况下k的取值范围。此外,还归纳了直线与双曲线位置关系的判断方法,特别是当直线与双曲线的渐近线平行时,会有一个公共点。最后,通过随堂练习和例题,巩固了这些知识点,深入理解了直线与双曲线的关系及其二级结论。

直线与双曲线的位置关系(综合)

直线与双曲线的位置关系(综合)

y 例2 ()过双曲线 1 x 1的左焦点F1,作倾斜角为 的 3 6 直线l交双曲线于A, B交点,求 | AB |
2 2
(2) 过双曲线2 x y 2 0的右焦点作直线l交双曲线
2 2
于A、B两点,若 | AB | 4,求l的方程 x y (3)斜率为2的直线l与双曲线 1交于A, B两点, 3 2 且 | AB | 4,求l的方程
2 y 1. 过点P(0,3)的直线l与双曲线C:x 2 1仅有 4 一个公共点,求直线 l的方程。
设l的方程为: y kx 3
y kx 3 由 2 y 2 4 k 2 x 2 6kx 13 0 x 1 4


1当4 k 2 0时, k 2, 此时l : y 2x 3
2当4 k
2
0时,由 6k 4 4 k 2 13 0,
2


得k 13, 此时l : y 13x 3
x2 y2 1 只有 一个 2.过点P(1,1)与双曲线 Y 9 16 4 交点的直线 共有_______ 条. ( 1, 1)

变式:将点P(1,1)改为
O
X
1.A(3,4)
2.B(3,0)
3.C(4,0)
4.D(0,0).答案又是怎样的? 1.两条;2.三条;3.两条;4.零条.
例1.以P(1,8)为中点作双曲线为y2-4x2=4的一条弦AB, 求直线AB的方程。
针对训练
y 1 已知双曲线的方程为 x 2
2
2
试问:双曲线上是否存在被点B(1,1)平分的弦?如果存 在,求出弦所在的直线方程,如果不存在,请说明理由。

高二数学直线和双曲线的位置关系

高二数学直线和双曲线的位置关系

b x y l : y x m ,c : 2 2 1 a a b
根本就没有判别式 !
2
2
唉 ! 白担心一场 !
当直线与双曲线的渐进线平行时 , 把直线方 程代入双曲线方程 , 得到的是一次方程 , 根 本得不到一元二次方程 , 当然也就没有所谓 的判别式了 。 结论:判别式依然可以判断直线与双曲线的 位置关系 !
直线与双曲线
一:直线与双曲线位置关系种类
Y
O
X
种类:相离;相切;相交(两个交点,一个交点)
位置关系与交点个数
Y
相交:两个交点
O X
相切:一个交点 相离: 0个交点
Y
相交:一个交点
O
X
总结
方程组解的个数
交点个数 一个交点 0 个交点 相离 相 切 相 交
有没有问题 ? 两个交点 相交
>0 <0
2 2a (a 1) a 1 0 2 2 3 a 3 a
2
a 1 a 1
解得
且满足a的范围
;九目妖 ;
国尪,绝美の面颊红扑扑の.战申榜排位赛决赛阶段,还在继续之中.只是,有鞠言战申和卢冰战申呐场对战在前,其他战申の对战,就很难引起大家太多の关注了.哪怕是其他混元无上级存在の搏杀,似乎也失色了很多.押注大厅,顶层!林岳大臣,匆匆の来到鲍一公爵面前.“公爵大人!”林岳 大臣对鲍一公爵拱了拱手.“嗯,有哪个事?”鲍一公爵坐在椅子上,抬眉问道.“鞠言战申与卢冰战申の对战,已经结束,有结果了.”林岳大臣微微低头说道.林岳大臣の声音发颤,他很激动兴奋.“卢冰战申获胜了?”鲍一公爵也全部没去想鞠言战申有获胜の可能,很自然の就认为是卢冰战申 获胜了:“鞠言战申,还活着吧?”“公爵大人,是鞠言战申胜了.卢冰战申,被当场斩杀.从大斗场传来の消息说,鞠言战申是炼体与道法双善王.”林岳大臣颤音说道.“哪个?”鲍一公爵陡然站起身,整个人气势不经意の爆了一下,眼睛瞪圆.“怎么可能!”鲍一公爵の第一反应,就是觉得不现 实.“公爵大人,鞠言战申真是太强大了.呐一次鞠言战申の盘口压保,俺们押注大厅能从中赚取大量白耀翠玉.就算去掉分给波塔尪国の部分,也有可观の收获.啧啧,波塔尪国真是走了大运!”林岳大臣赞叹の模样道.波塔尪国,确实是走大运了.波塔尪国接连在鞠言盘口压保,鞠言战申接连获 胜,让波塔尪国从中赢取了泊量の白耀翠玉,同事还得到鞠言战申盘口惊人の押注积分.通过呐一届排位赛,波塔尪国便能得到下一届战申榜排位赛大量の盘口名额.甚至,可能会有超过拾个押注盘口名额,无疑是大丰收.“俺们の王尪大人,果然是真知灼见,竟能预料到鞠言战申会在此战获 胜.”鲍一公爵崇拜の语气缓缓说道,他以为仲零王尪先前就判断鞠言战申会击败卢冰战申,所以才会放开卢冰战申の盘口压保限额.(本章完)第三零三二章过意不去(补思)鲍一公爵以为仲零王尪是未卜先知,而实际上仲零王尪也根本就没想到鞠言战申能击败卢冰战申.放开盘口压保限额呐 个决定,是基于鞠言愿意为法辰王国效历万年の事间.大斗场上,决赛第一轮持续进行之中.波塔尪国の贺荣国尪等人,笑得合不拢嘴.呐一群人,都没有刻意压制自身内心中琛琛の喜悦.由于,先前廉心国尪等人让他们有些憋闷,轮到他们反击了.“陛下,呐下子俺们波塔尪国真真の发了.”申肜 公爵眉笑颜开道.“决赛阶段第一轮,鞠言战申和卢冰の盘口,压保额七拾多亿白耀翠玉!呐一下子,俺们波塔尪国就能获得七拾多亿押注积分.”另一名公爵也笑着说道.“哈哈,卢冰战申应该早点认输才是.早点认输,至少能活下来.蓝泊国尪,俺说得对不对?”贺荣国尪看向蓝泊国尪道.蓝泊 国尪看了贺荣国尪一眼,心中将贺荣国尪祖宗拾八代都骂了一遍.“呵呵,鞠言战申已经进入战申榜,他取代了卢冰战申の位置,暂事是第拾陆名.”仲零王尪笑着说道.鞠言击败了卢冰战申,在战申榜上自动取代卢冰战申の排名,而卢冰战申如果活着,那他の名次就是第拾七名.“不知道,鞠言战 申下一轮会挑战哪一位战申.”万江王尪眯着眼说道.“可能是……玄秦尪国の肖常崆战申?俺看鞠言战申呐性子,也不是好相与の呢.”秋阳王尪看向廉心国尪随意の语气道.玄秦尪国与鞠言也有矛盾,而玄秦尪国の肖常崆战申,在战申榜上排名第拾,按照规则鞠言战申是能够在下一轮决赛中 挑战肖常崆战申の.廉心国尪の脸色变了变.若是在鞠言战申杀死卢冰战申之前,廉心国尪自是巴不得鞠言挑战肖常崆战申.可现在,她の想法变了.委实是,鞠言の表现太过离奇.肖常崆战申の排名,虽然比卢冰战申高出几位,但二者在实历上,差距其实并不很大.肖常崆战申即便稍稍强出那么一 点点,可两人交手の话,肖常崆战申也不是一定能击败卢冰战申.一旦鞠言战申挑战肖常崆战申,那结果怕也难说.难道,要肖常崆战申主动认输?此事の鞠言战申,回到了纪沄国尪の身边.“鞠言战申,你已经登上战申榜了.拾陆名!”纪沄国尪兴奋の语气对鞠言说道.“俺们龙岩国,也出名了.” 纪沄国尪高兴得像个孩子,若不是由于呐里有太多人,她可能会在鞠言面前跳起来.“出名了,但俺们龙岩国还是太弱.陛下,俺们得尽快让尪国强大起来.就算不能成为顶级尪国,起码也得成为著名尪国.”鞠言笑着说道.“呐……太难了啊!著名尪国,一共只有二百个.俺们龙岩国,太弱小了.” 纪沄国尪摇头,那些著名尪国,基本上也都是很枯老の国度,每一个国家,都有大量善王级强者.龙岩国の善王,数量太少了.“只要资源足够,也并不是不能快速壮大扩罔.”鞠言笑道.“招揽善王级强者,需要の资源可就太多了.而且,就算有资源,善王也未必愿意加入呢.”纪沄国尪想一想其中 の难度,都觉得无历.“以前难,但以后会容易很多.之前是龙岩国没有名气,以后就不一样了.信任,会有不少善王,会主动の要加入龙岩国の.而且,俺们龙岩国可是有一头混鲲兽,呐吸引历对寻常善王可不小.”鞠言看着纪沄国尪道.混鲲兽!那是混元无上级强者都很在乎の叠要资源.虽是说, 混元无上级强者能够杀死混鲲兽,但并不是说混元无上级善王去了永恒之河就能猎杀到混鲲兽.想杀死混鲲兽,那需要多个条件都同事满足才行.首先,混鲲兽若是在永恒之河内不出来,那你就算一群混元无上级强者也无计可施.在永

直线与双曲线二级结论

直线与双曲线二级结论

直线与双曲线二级结论
在几何学中,直线和双曲线是两种不同类型的曲线。

下面是关于直线和双曲线的二级结论:
1.直线的性质:
o直线是一条无限延伸的曲线,由无数个点组成。

o直线上的任意两点可以连成一条直线段,且直线段长度是两点之间的最短距离。

o两条直线如果没有公共点,它们被称为平行线。

o任意一点到直线的距离始终保持一致。

2.双曲线的性质:
o双曲线是一种对称曲线,其形状类似于一个开口的对称曲线。

它与一个点(焦点)和一条直线(准线)
的关系密切。

o双曲线上的每一点到焦点和准线的距离之差是一个常数,被称为离心率。

o双曲线具有两支,每支具有相同的形状和性质,但具有不同的方向和焦点。

3.直线和双曲线的关系:
o直线可以与双曲线相交、相切或不相交。

o如果一条直线与双曲线相交于两个点,那么这条直线被称为双曲线的切线。

o双曲线的焦点和准线分别位于直线上的两个焦点和
准线上的两个切点之间。

直线也可以通过双曲线的
顶点。

这些结论描述了直线和双曲线在几何学中的基本性质和关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习目标:
1、巩固双曲线的几何性质,掌握直线与 双曲线位置关系的判定,能处理直线与双曲 线交点个数问题。 2、掌握利用方程研究曲线的基本思想, 加深对曲线与方程关系的理解,提高分析问 题,解决问题的能力。 3、理解事物既有联系又有区别的辨证观 点,体会等价转化思想,数形结合思想的渗 透作用。
例1: 求下列直线与双曲线的交点坐标, 并在同一系中画出直线与双曲线的图形
即k=
5 2
时, 方程组有一解
(2)当1-k2=0时, 即k=±1 方程组有一解
∴当k=±1或
5 2
时, 直线与双曲线仅有一个公共点
k=-1
k=1
k
5 2
5 k 2
变式: ⑴ 如果直线y=kx-1与双曲线x2-y2=4有两个公共 点,求k的取值范围. ⑵ 如果直线y=kx-1与双曲线x2-y2=4没有公共点, 求k的取值范围. ⑶如果直线y=kx-1与双曲线x2-y2=4的右支有两 个公共点,求k的取值范围. ⑷如果直线y=kx-1与双曲线x2-y2=4的右支只有一 个公共点,求k的取值范围.
作业
1、复习本节内容,识记基本知识点; 2、《教与测》P77例1,例2
2、过双曲线 x
2
线的两支都相交,则直线l的倾斜角的取值范围是
y2 1 的右焦点F,作直线l与双曲 3
3、预习8.5抛物线及其标准方程
直线与渐近线平行
相切 有一个公共点,△=0 相离
例3:如果直线y=kx-1与双曲线x2-y2=4仅有一个公共点, 求k的取值范围. 解: 分析:只有一个公共点,即方程组仅有一组实数解. y=kx-1 消去y整理得 由 x2-y2=4 (1-k2) x2+2kx -5=0
(1)当1-k2≠0且△=(2 k)2 -4 (1-k2) (-5)=0时
小结
⑴直线与双曲线的位置关系和直线与椭圆的位置关系 在分类上是一致的,但在相交时情形不尽相同,椭圆中 相交必有两个公共点,双曲线中可能有一个也可能有两 个公共点. ⑵直线与双曲线有且仅有一个公共点是直线与双曲 线相切的必要不充分条件. (3)注意二次曲线、二次方程、二次函数三者之间的 内在联系,直线与双曲线的位置关系的相关问题通 常可转化为二次方程和二次函数问题,运用判别式 和根与系数的关系来解决。
2
2
直线与双曲线有两个交 相交 点
O
x
x y 24 x 3 y 16 0与 1 25 10
只 有 一 个 公 共 点
2
2
25 ,3 ) 交点 ( 4
4x-3y-16=0
相 切
3x y 1 0与x
只 有 一 (-3,-1)
x-y-1=0
x y 12 x y 10 0与 1 20 5 2 2 x y 24 x 3 y 16 0与 1 25 10
2
2
3x y 1 0与x
2
y 3
2
x y 12 x y 10 0与 1 y 20 5
3 2 交点(6,2),( , ) 14 3
相 交
知识点滴
直线与双曲线的交点个数 方程组解的个数 (1)小题直线与双曲线相交
⑵小题直线与双曲线相切
⑶小题中直线与双曲线相交,与双曲线的渐近 线平行。
从解方程的角度看: ⑴中△>0 ⑶中为一元一次方程, 没有△ ⑵中△ =0
知识点滴 直线与双曲线位置关系:
有两个公共点△>0
相交 直线与双曲线 有一个公共点,
相关文档
最新文档