2020届巴中市南江县七年级下册期末数学试卷(有答案)(已审阅)
2020年四川省巴中市七年级第二学期期末学业质量监测数学试题含解析

2020年四川省巴中市七年级第二学期期末学业质量监测数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每题只有一个答案正确)1.若关于x,y的二元一次方程组33224x y mx y+=-+⎧⎨+=⎩的解满足x+y>﹣32,满足条件的m的所有正整数值为()A.1,2,3,4,5 B.0,1,2,3,4 C.1,2,3,4 D.1,2,3 【答案】A【解析】【分析】先解二元一次方程组求得x和y,再由x+y>﹣32列出关于m的不等式,求解即可.【详解】解:33224x y mx y+=-+⎧⎨+=⎩①②,①×2-②得,65x m =-,将65x m=-代入②得,y=2+35m,∵x+y>﹣32,∴6332552m m-++>-,解得,m<35 6,∴满足条件的m的所有正整数为:1,2,3,4,5.故选:A.【点睛】本题考查了解含参的二元一次方程组和解一元一次不等式,正确用参量m表示方程组的解是解题关键. 2.不等式组的解集是x<3,那么m的取值范围是()A.m>3 B.m≥3 C.m<2 D.m≤2【答案】B【解析】【分析】由已知不等式组的解集确定出m的范围即可.【详解】不等式组整理得:,由解集为x<3,得到m的范围为m≥3,故选:B.【点睛】考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.3.江苏淮安与新疆奎屯两地之间的距离约为3780000m,用科学记数法把3780000m可以写成()A.8⨯D.43.7810m⨯3.7810m3.7810m⨯B.73.7810m⨯C.6【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【详解】解:3780000,用科学记数法表示为3.78×106,故选:C.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.若是关于的方的解,则关于的不等式的最大整数解为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】把x=-3代入方程x=m+1,即可求得m的值,然后把m的值代入2(1-2x)≥-6+m求解即可.【详解】把x=−3代入方程x=m+1得:m+1=−3,解得:m=−4.则2(1−2x)⩾−6+m 即2−4x ⩾−10,解得:x ⩽3.所以最大整数解为3,故选:C.【点睛】此题考查不等式的整数解,解题关键在于求得m 的值.5.方程(m -2 016)x |m|-2 015+(n +4)y |n|-3=2 018是关于x 、y 的二元一次方程,则( )A .m =±2 016;n =±4B .m =2 016,n =4C .m =-2 016,n =-4D .m =-2 016,n =4 【答案】D【解析】【分析】根据二元一次方程的定义可得m-2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解不等式及方程即可得.【详解】∵()()20153201642018m n m x n y ---++=是关于x 、y 的二元一次方程,∴m-2016≠0,n+4≠0,|m|-2015=1,|n|-3=1,解得:m=-2016,n=4,故选D .【点睛】本题考查了二元一次方程定义的应用,明确含有未知数的项的系数不能为0,次数为1是解题的关键.6.下列等式由左边到右边的变形中,属于因式分解的是( )A .(a ﹣2)(a+2)=a 2﹣4B .8x 2y =8×x 2yC .m 2﹣1+n 2=(m+1)(m ﹣1)+n 2D .x 2+2x ﹣3=(x ﹣1)(x+3)【答案】D【解析】【分析】认真审题,根据因式分解的定义,即:将多项式写成几个因式的乘积的形式,进行分析,据此即可得到本题的答案.【详解】解:A .不是乘积的形式,错误;B .等号左边的式子不是多项式,不符合因式分解的定义,错误;C .不是乘积的形式,错误;D.x2+2x﹣3=(x﹣1)(x+3),是因式分解,正确;故选:D.【点睛】本题主要考查了因式分解的定义,即:将多项式写成几个因式的乘积的形式,牢记定义是解题的关键,要注意认真总结.7.已知21xy=⎧⎨=-⎩是二元一次方程21x my+=的一个解,则m的值为()A.3 B.-5 C.-3 D.5 【答案】A【解析】【分析】把21xy=⎧⎨=-⎩代入方程,即可得出关于m的方程,求出方程的解即可.【详解】解:∵21xy=⎧⎨=-⎩是关于x的二元一次方程21x my+=的一个解,∴代入得:4- m =1,解得:m=3,故选A.【点睛】本题考查了二元一次方程的解和解一元一次方程,能根据题意得出关于m的方程是解此题的关键.8.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD(不包括∠FCD)相等的角有( )A.5个B.2个C.3个D.4个【答案】D【解析】分析:如下图,根据“三角形内角和为180°”结合“垂直的定义”和已知条件进行分析解答即可.详解:如下图,∵AB⊥EF,CD⊥EF,∴∠ABE=∠ABF=∠CDF=90°,∵∠1=∠F=45°,∴∠FCD=180°-90°-45°=45°,∠A=180°-90°-45°=45°,∠2=90°-45°=45°,∴∠FCD=∠F=∠1=∠A=∠2=45°,即和∠FCD 相等的角有4个.故选D.点睛:“根据三角形内角和为180°结合垂直的定义及已知条件证得∠FCD=∠A=∠2=45°”是解答本题的关键.9.在△AOC 中,OB 交AC 于点D ,量角器的摆放如图所示,则∠CDO 的度数为( )A .90°B .95°C .100°D .120°【答案】B【解析】 分析:依据CO=AO ,∠AOC=130°,即可得到∠CAO=25°,再根据∠AOB=70°,即可得出∠CDO=∠CAO+∠AOB=25°+70°=95°.详解:∵CO=AO ,∠AOC=130°,∴∠CAO=25°,又∵∠AOB=70°,∴∠CDO=∠CAO+∠AOB=25°+70°=95°,故选B .点睛:本题主要考查了三角形内角和定理以及三角形外角性质的运用,解题时注意:三角形内角和等于180°.10.把22a a -分解因式,正确的是( )A .()2a a -B .()2a a +C .()222a -D .()2a a -【答案】A【解析】【分析】提取公因式a 即可.【详解】解:22=(2)a a a a --,故选:A.【点睛】本题考查了分解因式,熟练掌握提取公因式法和公式法分解因式是解题关键.二、填空题11.一个长方形的长减少3cm ,同时宽增加2cm ,就成为一个正方形,并且这两个图形的面积相等,则原长方形的长是_____,宽是_____.【答案】9cm 4cm【解析】【分析】设这个长方形的长为xcm ,宽为ycm ,根据长方形的长减少5cm ,宽增加2cm ,组成正方形,且面积相等,列方程组求解.【详解】解:设这个长方形的长为xcm ,宽为ycm , 由题意得,32(3)(2)x y xy x y -=+⎧⎨=-+⎩, 解得:94x y =⎧⎨=⎩. 故答案为:9cm ,4cm .【点睛】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.12.如图,如果AB BC ⊥垂足为B ,5AB =,4BC =,那么点C 到AB 的距离为_______.【答案】4【解析】【分析】根据AB ⊥BC ,BC=1,可知点C 到AB 的距离为1.【详解】∵AB⊥BC,BC=1,∴可知点C到AB的距离为1,故答案是:1.【点睛】本题运用了点到直线的距离定义,关键是理解好定义.13.方程|x+1|+|2x-1|=6的解为:______.【答案】x=±1【解析】【分析】分三种情况去掉绝对值符号:当x≤-1时,|x+1|+|1x-1|=-x-1-1x+1=-3x=6;当-1<x<12时,|x+1|+|1x-1|=x+1-1x+1=-x+1=6;当12≤x时,|x+1|+|1x-1|=x+1+1x-1=3x=6;【详解】解:当x≤-1时,|x+1|+|1x-1|=-x-1-1x+1=-3x=6,∴x=-1;当-1<x<12时,|x+1|+|1x-1|=x+1-1x+1=-x+1=6,∴x=-4(舍);当12≤x时,|x+1|+|1x-1|=x+1+1x-1=3x=6,∴x=1;综上所述,x=±1,故答案为:x=±1.【点睛】本题考查绝对值与一元一次方程;能够根据绝对值的意义,分情况去掉绝对值符号,将方程转化为一元一次方程是解题的关键.14.在一不透明的口袋中有4个为红球,3个绿球,2个白球,它们除颜色不同外完全一样,现从中任摸一球,恰为红球的概率为__________.【答案】4 9【解析】【分析】先求出袋子中球的总个数及红球的个数,再根据概率公式解答即可.【详解】袋子中球的总数为4+3+2=9,而红球有4个,则从中任摸一球,恰为红球的概率为49. 故答案为:49. 【点睛】此题考查概率公式,解题关键在于掌握公式运算法则.15.某校七年级学生中,团员与非团员的人数比为1:4,若用扇形统计图表示这一结果,则对应团员和非团员的圆心角分别为_____.【答案】72°、288°.【解析】【分析】根据题意根据按比例可以计算出对应团员和非团员的圆心角的度数即可.【详解】由题意可得,对应团员的圆心角是:360°×114+=72°, 对应非团员的圆心角是:360°-72°=288°,故答案是:72°、288°.【点睛】考查扇形统计图,解答本题的关键是明确题意,按比分配求出相应的圆心角的度数.16.如图,直线//AB CD ,BC 平分ABD ∠,若165∠=,则2∠=__________.【答案】50°.【解析】【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC 平分∠ABD ,得到∠ABD=2∠ABC=130°,于是得到结论.【详解】∵AB//CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC 平分∠ABD ,∴∠ABD=2∠ABC=130°,∴∠BDC=180°−∠ABD=50°,∴∠2=∠BDC=50°.【点睛】本题考查平行线的性质和角平分线的性质,解决本题的关键是利用平行线的性质和角平分线的性质,建立未知角和已知角之间的联系,从而解决问题.17.如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m ∥n ,那么∠1=_____(度).【答案】1【解析】【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=1°.故答案为1.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.三、解答题18.王勇和李华一起做风筝,选用细木棒做成如图所示的“筝形”框架,要求AB AD =,BC CD =,AB BC >.(1)观察此图,是否是轴对称图形,若是,指出对称轴;(2)ABC ∠和ADC ∠相等吗?为什么?(3)判断BD 是否被AC 垂直平分,并说明你的理由.【答案】(1)是轴对称图形,对称轴是AC 所在直线;(2)ABC ADC ∠=∠;(3)BD 被AC 垂直平分【解析】【分析】(1)是轴对称图形.对称轴是AC 所在的直线.(2)∠ABC =∠ADC .理由:△ABC △ADC(SSS),∴∠ABC =∠ADC .(3)BD 被AC 垂直平分.理由多方面:比如B 、D 关于AC 所在直线对称,∴BD 被AC 垂直平分;或者:BC =CD 知△BCD 是等腰三角形,又CA 平分∠BCD ,所以AC 垂直平分BD ;或者:证△BCO ≌△DCO ,∴BO =DO .又∠BOC =∠DOC ,∴AC ⊥BD .【详解】解:(1)是轴对称图形,对称轴是AC 所在直线(2)ABC ADC ∠=∠,理由:因为AB AD =,BC CD =,AC AC =,所以ABC ADC ∆≅∆,因此ABC ADC ∠=∠.(或者:因为AB AD =,BC CD =,所以ABD ADB ∠=∠,CBD CDB ∠=∠,因此,ABC ADC ∠=∠)(3)BD 被AC 垂直平分,理由:因为BC CD =,所以,BCD ∆是等腰三角形,由(2)知:ABC ADC ∆≅∆,可得ACB ACD ∠=∠,由等腰三角形的“三线合一”,所以AC 垂直平分BD .【点睛】本题考查等腰三角形,解题关键在于熟练掌握等腰三角形的性质.19.解下列不等式(组),并把它们的解集在数轴上表示出来:(1)﹣2x+4>3x+24(2)3(2)8143x x x x ++⎧⎪-⎨≥⎪⎩>【答案】(1) x<-4 (2)1<x≤4【解析】【分析】(1)利用不等式的性质即可求解,再在数轴上表示解集即可;(2)先分别解出各不等式的解集再求出公共解集,再数轴上表示即可.【详解】(1)﹣2x+4>3x+24-5x>20x<-4把解集在数轴上表示为:(2)3(2)8143x xx x>①②++⎧⎪⎨-≥⎪⎩解不等式①得x>1解不等式②得x≤4∴不等式组的解集为1<x≤4在数轴上表示为:【点睛】此题主要考查不等式的求解,解题的关键是数轴不等式的性质及在数轴上的表示方法.20.某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,请解答以下问题;级别 A B C D E F月均用水量x(t)0<x≤55<x≤1010<x≤1515<x≤2020<x≤2525<x≤30频数(户) 6 12 m 10 4 2(1)本次调查采用的方式是(填“全面调查”或“抽样调查);(2)若将月均用水量的频数绘成形统计图,月均用水量“15<x≤20”组对应的圆心角度数是72°,则本次调查的样本容量是,表格中m的值是,补全频数分布直方图.(3)该小区有500户家庭,求该小区月均用水量超过15t的家庭大约有多少户?【答案】(1)抽样调查;(2)50、16;(3)160户【解析】【分析】(1)由“随机调查了该小区部分家庭”可得答案;(2)用B级别户数除以其所占比例可得样本容量,用总户数减去其它级别户数求出C级别户数m的值;(3)利用样本估计总体思想求解可得.【详解】解:(1)由于是随机调查了该小区部分家庭,所以本次调查采用的方式是抽样调查,故答案为:抽样调查;(2)本次调查的样本容量是10÷72360=50,m=50﹣(6+12+10+4+2)=16,补全频数分布直方图如下:故答案为:50、16;(3)该小区月均用水量超过15t的家庭大约有500×104250++=160(户).【点睛】本题考查频数(率)分布直方图:提高读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了用样本估计总体.21.某园林的门票每张10元,一次使用,考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类:A类年票每张120元,持票者进入园林时,无需再用门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果只选择一种购买门票的方式,并且计划在一年中用不多于80元花在该园林的门票上,试通过计算,找出可进入该园林次数最多的购票方式,(2)一年中进入该园林至少超过______________次时,购买A类年票最合算.【答案】(1) 购买C类年票可进入该园林的次数最多;(2)1.【解析】【分析】(1)根据题意分别求出直接购买门票、购买A类年票、购买B类年票、购买C类年票的次数,比较即可(2)设一年中进入该园林至少超过x次时,购买A类年票比较合算,根据题意列出不等式60+2x≥120,解答;解不等式即可求解.【详解】(1)解:①若直接购买门票,设可进入x次,根据题意,得10x≤80解得x≤8最多可进入该园林8次②若购买A类年票∵120>80∴不能购买A类年票③若购买B类年票,设可进入y次,根据题意,得60+2y≤80解得y≤10∴最多可进入该园林10次.④若购买C类年票,设可进入m次,根据题意,得40+3m≤80解得m≤∵m是整数,所以m最大取13∴最多可进入该园林13次综上:∵8<10<13∴购买C 类年票可进入该园林的次数最多(2) 设一年中进入该园林至少超过x 次时,购买A 类年票比较合算,根据题意得,60+2x ≥120,解得x ≥1.∴一年中进入该园林至少超过1次时,购买A 类年票比较合算.故答案为:1.【点睛】本题考查了一元一次不等式的应用,解决本题时注意运用分类讨论的数学思想.22.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“奇巧数”,如12=2242-,20=2264-,28=2286-,……,因此12,20,28这三个数都是奇巧数。
巴中市南江县2019-2020学年七年级下期末数学试卷((有答案))

四川省巴中市南江县2019-2020学年下学期期末考试七年级数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个 C.3个 D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为=1故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是根据等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C.+=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】根据等式的基本性质逐个判断即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的基本型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个 C.4个 D.5个【专题】多边形与平行四边形.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD 的周长为()A.14 B.12 C.10 D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:① a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个 C.3个 D.4个分析】由a<b<0得a+1<b+1<b+2判断①,不等式a<b两边都除以b判断②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判断③,a<b两边都除以ab可判断④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题主要考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4 B.6 C.8 D.10【专题】综合题.【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,所以可列方程组为:【点评】此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a:b:c=1:1:2【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题主要考查了三角形的三边关系,当三条线段成比例时可以设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【专题】应用题;压轴题.【分析】先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y= .【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】计算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可根据未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n= .【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】根据c2为非负数,利用不等式的基本性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.【专题】常规题型.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需根据旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题主要考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】根据两直线平行,同旁内角互补求出∠1的同旁内角,再根据翻折的性质以及平角等于180°列式进行计算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°, ∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°. 故答案为:110°.【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.20.(3分)如图,∠MON=30°,点A 1、A 2、A 3…在射线ON 上,点B 1、B 2、B 3…在射线OM 上,△A 1B 1A 2、△A 2B 2A 3、△A 3B 3A 4…均为等边三角形,从左起第1个等边三角形的边长记为a 1,第2个等边三角形的边长记为a 2,以此类推.若OA 1=1,则a 2019= .【专题】三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A 1B 1∥A 2B 2∥A 3B 3,以及a 2=2a 1,得出a 3=4a 1=4,a 4=8a 1=8,a 5=16a 1=16,进而得出答案. 【解答】解:∵△A 1B 1A 2是等边三角形, ∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°, ∴∠2=120°, ∵∠MON=30°,∴∠1=180°-120°-30°=30°, 又∵∠3=60°,∴∠5=180°-60°-30°=90°, ∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a 4=8a1=8,a5=16a1=16,以此类推:a2019=22018.故答案为:22018.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a 3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)+1=x﹣(2)(3)解不等式:﹣1,并把解集表示在数轴上.(4)解不等式组:,并写出整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)根据解一元一次方程的步骤依次计算可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)先分别解两个不等式得到x≤1和x>-2,再根据大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,所以不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.【解答】解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.【点评】此题主要考查了图形的平移和旋转以及轴对称图形的性质等知识,根据题意找出对应点是解题关键.23.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范围.【分析】先求出不等式组的解集,根据已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2018+(﹣0.1b)2019的值.【专题】计算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a 与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a2018+(-0.1b)2019=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情况下,购买A、B两种门票共15张,要求A种门票的数量不少于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中的结果可以计算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD= ∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;-- (2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
2020-2021学年四川省巴中市七年级(下)期末数学试卷

2020-2021学年四川省巴中市七年级(下)期末数学试卷一、选择题(本大题共12小题,共48.0分)1.方程2a=−4的解是()D. a=−6A. a=2B. a=−2C. a=−122.以下四个标志中,是轴对称图形的是()A. B. C. D.3.根据不等式的性质,下列变形正确的是()A. 由a>b得ac2>bc2B. 由ac2>bc2得a>ba>2得a<2 D. 由2x+1>x得x>1C. 由−124.人字梯中间一般会设计一“拉杆”,这样做的道理是()A. 两点之间,线段最短B. 垂线段最短C. 两直线平行,内错角相等D. 三角形具有稳定性5.如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A. 4B. 6C. 8D. 106.二元一次方程2x+3y=11的正整数解有()A. 2组B. 3组C. 4组D. 5组7.如图,在△ABC中,∠BAC=65°,∠C=20°,将△ABC绕点A逆时针旋转n度(0<n<180)得到△ADE,若DE//AB,则n的值为()A. 65B. 75C. 85D. 1308. 已知等腰三角形的两边长分别为a ,b ,且a ,b 满足√2a −3b +5+(2a +3b −13)2=0,则此等腰三角形的周长为( )A. 7或8B. 6或10C. 6或7D. 7或109. 《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x ,y 的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是{2x +3y =27x +2y =14,类似地,图2所示的算筹图我们可以表述为( ) A. {2x +y =164x +3y =22B. {2x +y =164x +3y =27 C. {2x +y =114x +3y =27 D. {2x +y =114x +3y =22 10. 如图,已知四边形ABCD 中,∠B =98°,∠D =62°,点E 、F 分别在边BC 、CD 上.将△CEF 沿EF 翻折得到△GEF ,若GE//AB ,GF//AD ,则∠C 的度数为( )A. 80°B. 90°C. 100°D. 110°11. 关于x 的不等式组{x −a ≥03−2x >−1的整数解共有5个,则a 的取值范围是( ) A. a =−3 B. −4<a <−3 C. −4≤a <−3 D. −4<a ≤−312. 在直角三角形ABC 中,∠C =90°,AD 平分∠BAC 交BC 于点D ,BE 平分∠ABC 交AC 于点E ,AD 、BE相交于点F ,过点D 作DG//AB ,过点B 作BG ⊥DG 交DG 于点G.下列结论:①∠AFB =135°;②∠BDG =2∠CBE ;③BC 平分∠ABG ;④∠BEC =∠FBG.其中正确的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)13. 若一个正多边形的一个内角等于140°,那么这个多边形是正______ 边形.14. 如图,已知△ABC≌△ADE ,若AB =7,AC =3,则BE 的值为______.15. 若关于x 的方程(k −2)x |k−1|+5k +1=0是一元一次方程,则k = ______ .16. 若不等式组{x −b <0x +a >0的解集为2<x <3,则(a +b)2021=______. 17. 按下面的程序计算,若开始输入的x 值为正数,最后输出的结果为53,请写出符合条件的所有x 的值______.18. 如图,长方形ABCD 中,AB =4,AD =2.点Q 与点P 同时从点A 出发,点Q 以每秒1个单位的速度沿A →D →C →B 的方向运动,点P 以每秒3个单位的速度沿A →B →C →D 的方向运动,当P ,Q 两点相遇时,它们同时停止运动.设Q 点运动的时间为x(秒),在整个运动过程中,当△APQ 为直角三角形时,则相应的x 的值或取值范围是______.三、解答题(本大题共8小题,共84.0分)19. (1)解方程:2+5x =8+3x .(2)解不等式组{2(x −1)≥3x −4①x+12≥3−x 4−1②,并把解集在数轴上表示出来.20. 甲、乙两位同学在解关于x 、y 的方程组{2x +ay =1bx −y =2时,甲同学看错a 得到方程的解为{x =3y =4,乙同学看错b 得到方程组的{x =2y =−3,求x +y 的值.21. 如图所示的正方形网格中,每个小正方形的边长均为1个单位,△ABC 的三个顶点都在格点上.(1)在网格中画出△ABC 向下平移3个单位得到的△A 1B 1C 1;(2)在网格中画出△ABC 关于直线m 对称的△A 2B 2C 2;(3)在直线m 上画一点P ,使得C 1P +C 2P 的值最小.22.已知关于x、y的方程组{x−y=11−mx+y=7−3m中,x为非负数、y为负数.(1)试求m的取值范围;(2)当m取何整数时,不等式3mx+2x>3m+2的解集为x<1.23.如图,在△ABC中,CM⊥AB于点M,∠ACB的平分线CN交AB于点N,过点N作ND//AC交BC点D.若∠A=78°,∠B=50°.求:(1)∠CND的度数;(2)∠MCN的度数.24.某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的2,求该校本次购买A型和B型课桌凳共有几种方案?哪种方案的总费3用最低?25.定义:对于任何有理数m,符号【m】表示不大于m的最大整数.例如:【4.5】=4,【8】=8,【−3.2】=−4.(1)填空:【π】=______,【−2.1】+【5.1】=______.(2)求方程4x−3【x】+5=0的整数解;(3)如果【5−2x】=−4,求满足条件的x的取值范围.326.如图1,点D为△ABC边BC的延长线上一点.(1)若∠A:∠ABC=3:4,∠ACD=140°,求∠A的度数;(2)若∠ABC的角平分线与∠ACD的角平分线交于点M,过点C作CP⊥BM于点P.求证:∠MCP=90°−1∠A;2(3)在(2)的条件下,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q(如图2),试探究∠BQC与∠A有怎样的数量关系,请写出你的猜想并证明.答案和解析1.【答案】B【解析】解:2a=−4,方程两边同时除以2,得a=−2.故选:B.根据等式的性质,把方程的系数化为1即可.本题考查了解一元一次方程,解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1.2.【答案】A【解析】解:选项B,C,D不能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以这些图形不是轴对称图形;选项A能找到这样的一条直线,使这个图形沿一条直线折叠,直线两旁的部分能够互相重合,所以这个图形是轴对称图形;故选:A.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,利用轴对称图形的定义进行解答即可.此题主要考查了轴对称图形,识别轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】B【解析】解;A、a>b,c=0时,ac2=bc2,故A不符合题意;B、由ac2>bc2得a>b,故B符合题意;a>2得a<−4,故C不符合题意;C、由−12D、由2x+1>x得x>−1,故D不符合题意;故选:B.根据不等式的性质,可得答案.本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.4.【答案】D【解析】【分析】此题考查了三角形的性质,关键是根据三角形的稳定性解答.根据三角形的稳定性解答即可.【解答】解:人字梯中间一般会设计一“拉杆”,是为了形成三角形,利用三角形具有稳定性来增加其稳定性,故选D.5.【答案】C【解析】【分析】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°−90°)÷2=135°,则135°n=(n−2)180°,解得n=8.故选C.6.【答案】A,【解析】解:原方程可变形为:x=11−3y2由于方程的解是正整数,所以y为不大于3的奇数.当y=1时,x=4;当y=3时,x=1;所以满足条件的正整数有两组.故选:A.先变形二元一次方程,用含一个字母的代数式表示另一个字母,根据奇偶性,可得结论.本题考查了二元一次方程,理解方程解的意义是解决本题的关键.解决本题亦可通过试验的办法.7.【答案】C【解析】解:∵在△ABC 中,∠BAC =65°,∠C =20°,∴∠ABC =180°−∠BAC −∠C =180°−65°−20°=95°,∵将△ABC 绕点A 逆时针旋转n 角度(0<n <180°)得到△ADE ,∴∠ADE =∠ABC =95°,∵DE//AB ,∴∠ADE +∠DAB =180°,∴∠DAB =180°−∠ADE =85°,∴旋转角n 的度数是85°,故选:C .根据三角形内角和定理求出∠ABC ,根据旋转得出∠EDA =∠ABC =95°,根据平行四边形的性质求出∠DAB 即可.本题考查了平行线的性质,三角形内角和定理,旋转的性质等知识点,能根据旋转得出∠ADE =∠ABC =95°是解此题的关键.8.【答案】A【解析】解:∵√2a −3b +5+(2a +3b −13)2=0,∴{2a −3b +5=02a +3b −13=0解得:{a =2b =3, 当a 为底时,三角形的三边长为2,3,3,则周长为8;当b 为底时,三角形的三边长为2,2,3,则周长为7.故选:A .首先根据√2a −3b +5+(2a +3b −13)2=0求得a 、b 的值,然后求得等腰三角形的周长即可.本题考查了等腰三角形的性质,三角形三边关系定理.关键是根据2,3分别作为腰,由三边关系定理,分类讨论.9.【答案】C【解析】解:第一个方程x 的系数为2,y 的系数为1,相加的结果为11;第二个方程x 的系数为4,y 的系数为3,相加的结果为27,所以可列方程组为:{2x +y =114x +3y =27, 故选:C .由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x 的系数,第二个数是y 的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.10.【答案】C【解析】【分析】本题主要考查了折叠问题以及平行线的性质,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.依据平行线的性质,即可得到∠CEG =∠B =98°,∠CFG =∠D =62°,再根据四边形内角和进行计算即可.【解答】解:∵GE//AB ,GF//AD ,∴∠CEG =∠B =98°,∠CFG =∠D =62°,由折叠可得,∠C =∠G ,∴四边形CEGF 中,∠C =12×(360°−98°−62°)=100°,故选C . 11.【答案】D【解析】解:{x −a ≥0①3−2x >−1②, 解①得:x ≥a ,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则−4<a≤−3,故选:D.首先解不等式组确定不等式组的解集,然后根据不等式组的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.12.【答案】C【解析】解:∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG//AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C.根据三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.本题主要考查了平行线的性质以及三角形内角和定理,解题时注意:两直线平行,内错角相等.13.【答案】九【解析】【分析】本题考查了多边形的内角与外角,解决本题的关键是由外角和求正多边形的边数.一个正多边形的每个内角都相等,根据内角与外角互为邻补角,因而就可以求出外角的度数.根据任何多边形的外角和都是360°,利用360°除以外角的度数就可以求出外角和中外角的个数,即多边形的边数.【解答】解:∵内角与外角互为邻补角,∴正多边形的一个外角是180°−140°=40°,∵多边形外角和为360°,∴360°÷40°=9,则这个多边形是九边形.故答案为九.14.【答案】4【解析】解:∵△ABC≌△ADE ,∴AE =AC ,∵AB =7,AC =3,∴BE =AB −AE =AB −AC =7−3=4.故答案为:4.根据△ABC≌△ADE ,得到AE =AC ,由AB =7,AC =3,根据BE =AB −AE 即可解答.本题考查全等三角形的性质,解决本题的关键是熟记全等三角形的对应边相等.15.【答案】0【解析】解:根据题意得:{|k −1|=1k −2≠0, 解得:k =0,故答案为:0.根据x 的次数为1,x 的系数不等于0,计算即可.本题考查了一元一次方程的定义,解题时注意x的系数不等于0.16.【答案】1【解析】解:由x−b<0,得:x<b,由x+a>0,得:x>−a,∵不等式组的解集为2<x<3,∴−a=2,b=3,则a=−2,∴(a+b)2021=(−2+3)2021=12021=1,故答案为:1.分别求出每一个不等式的解集,根据不等式组的解集得出a、b的值,代入计算即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.17.【答案】1、5、17【解析】解:根据题意得:3x+2=53,解得,x=17.根据题意得:3x+2=17,解得,x=5.根据题意得:3x+2=5,解得,x=1.故答案为:1、5、17.根据输出结果,由运算顺序,列一元一次方程求出结果.本题考查有理数的混合运算,掌握用方程的思想解决此题,转化为一元一次方程解决此题是关键.18.【答案】0<x≤4或x=23【解析】解:当点P 在AB 上时,点Q 在AD 上时,此时△APQ 为直角三角形,则0<x ≤43;当点P 在BC 上时,点Q 在AD 上时,此时△APQ 为锐角三角形,则43<x <2;当点P 在C 处,此时点Q 在D 处,此时△APQ 为直角三角形,则x =2时;当点P 在CD 上时,点Q 在DC 上时,此时△APQ 为钝角三角形,则2<x <3.故答案是:0<x ≤43或x =2.由题意可得当0<x ≤43△AQM 是直角三角形,当 43<x <2时△AQM 是锐角三角形,当x =2时,△AQM 是直角三角形,当2<x <3时△AQM 是钝角三角形.本题主要考查矩形的性质和列代数式的知识点,解答本题的关键是熟练掌握矩形的性质,还要熟练掌握三角形形状的判断,此题难度一般.19.【答案】解:(1)移项,得:5x −3x =8−2,合并同类项,得:2x =6,系数化为1,得:x =3;(2)解不等式①,得:x ≤2,解不等式②,得:x ≥−1,则不等式组的解集为−1≤x ≤2,将不等式组的解集表示在数轴上如下:【解析】(1)移项、合并同类项、系数化为1即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.本题考查的是解一元一次方程和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.20.【答案】解:把{x =3y =4代入bx −y =2得:3b −4=2,解得:b =2,把{x =2y =−3代入2x +ay =1得:4−3a =1, 解得:a =1,∴原方程组为{2x +y =12x −y =2, 解得:{x =34y =−12, ∴x +y =34−12=14.【解析】把{x =3y =4代入bx −y =2可求出b 的值,把{x =2y =−3代入2x +ay =1可求出a 的值,把a 、b 的值代入原方程组即可求出x 、y 的值,进而求出x +y 的值.本题考查了二元一次方程组的解法,正确理解题意先求出a 、b 的值是解决问题的关键.21.【答案】解:(1)如图,△A 1B 1C 1即为所求;(2)如图,△A 2B 2C 2即为所求;(3)连接连接C 1C 2交直线m 于点P ,则点P 即为所求点.【解析】本题考查的是作图−轴对称变换和作图−平移变换.(1)根据图形平移的性质画出△A 1B 1C 1即可;(2)根据轴对称的性质画出△ABC 关于直线m 对称的△A 2B 2C 2即可;(3)连接C 1C 2交直线m 于点P ,则点P 即为所求点.22.【答案】解:(1){x −y =11−m①x +y =7−3m②, ①+②得:2x =18−4m ,x =9−2m ,①−②得:−2y =4+2m ,y =−2−m ,∵x 为非负数、y 为负数,∴{9−2m ≥0−2−m <0,解得:−2<m ≤92; (2)3mx +2x >3m +2,(3m +2)x >3m +2,∵不等式3mx +2x >3m +2的解为x <1,∴3m +2<0,∴m <−23,由(1)得:−2<m ≤92,∴−2<m <−23, ∵m 整数,∴m =−1;即当m =−1时,不等式3mx +2x >3m +2的解为x <1.【解析】(1)把m 看作常数,解方程组,根据x 为非负数、y 为负数,列不等式组解出即可;(2)根据不等式3mx +2x >3m +2的解为x <1,求出m 的取值范围,综合①即可解答.本题考查了解二元一次方程组和一元一次不等式,解决本题的关键是求出方程组的解集,同时学会利用参数解决问题.23.【答案】(1)解:在△ABC 中,∵∠A =78°,∠B =50°,∴∠ACB =52°,又∵CN 平分∠ACB ,∴∠ACN =12∠ACB =26°, ∵ND//AC ,∴∠CND =∠ACN =26°.(2)在△ACN 中,∠ANC =180°−(∠A +∠ACN)=180°−(78°+26°)=76°,又∵CM ⊥AB ,∴∠MCN =90°−76°=14°.【解析】(1)求出∠ACN ,利用平行线的性质解决问题即可.(2)利用直角三角形的两锐角互余解决问题即可.本题考查三角形内角和定理,平行线的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.24.【答案】解:(1)设A 型每套x 元,则B 型每套(x +40)元.由题意得:4x +5(x +40)=1820.解得:x =180,x +40=220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元和220元;(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200−a)套.由题意得:{a ≤23(200−a)180a +220(200−a)≤40880, 解得:78≤a ≤80.∵a 为整数,∴a =78或79或80.∴共有3种方案,设购买课桌凳总费用为y 元,则y =180a +220(200−a)=−40a +44000.∵−40<0,y 随a 的增大而减小,∴当a =80时,总费用最低,此时200−a =120,即总费用最低的方案是:购买A 型80套,购买B 型120套.【解析】此题主要考查了一元一次方程的应用,不等式组的应用以及一次函数的性质,根据已知得出不等式组,求出a 的值是解题关键.(1)根据购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,以及购买4套A 型和5套B 型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的23,得出不等式组,求出a 的值即可,再利用一次函数的增减性得出答案即可.25.【答案】3 2【解析】解:(1)由题意得:【π】=3,【−2.1】+【5.1】=−3+5=2,故答案为3,2;(2)∵4x −3【x 】+5=0,∴【x 】=4x+53,∴x −1<4x+53≤x , 解得不等式组的解集为:−8<x ≤−5,∵【x 】是整数,设4x +5=3n(n 是整数),∴x =3n−54,∴−8<3n−54≤−5, 解得不等式组的解集为:−9<n ≤−5,∵n 是整数,∴n 为−8,−7,−6,−5,∴当n =−5,方程的整数解为x =−5;(3)根据题意得:−4≤5−2x 3<−3, 解得:7<x ≤172,则满足条件的x 的取值范围为7<x ≤172. (1)根据题目所给信息求解;(2)整理方程得【x 】=4x+53,根据定义得出x −1<4x+53≤x ,解不等式组求得x 的取值范围,由[x]是整数,设4x +5=3n(n 是整数)得到x =3n−54,则−8<3n−54≤−5,解得−9<n ≤−5,即可求得当n =−5,方程的整数解为x =−5;(3)根据题意得出:−4≤5−2x 3<−3,求出x 的取值范围.本题考查了一元一次不等式组的应用,解答本题的关键是读懂题意,根据题目所给的信息进行解答.26.【答案】(1)解:∵∠A:∠ABC=3:4,∴可设∠A=3k,∠ABC=4k,又∵∠ACD=∠A+∠ABC=140°,∴3k+4k=140°,解得k=20°.∴∠A=3k=60°.(2)证明:∵∠MCD是△MBC的外角,∴∠M=∠MCD−∠MBC.同理可得,∠A=∠ACD−∠ABC.∵MC、MB分别平分∠ACD、∠ABC,∴∠MCD=12∠ACD,∠MBC=12∠ABC,∴∠M=12(∠ACD−∠ABC)=12∠A.∵CP⊥BM,∴∠PCM=90°−∠M=90°−12∠A.(3)猜想∠BQC=90°+14∠A.证明如下:∵BQ平分∠CBN,CQ平分∠BCN,∴∠QBC=12∠CBN,∠QCB=12∠BCN,∴∠Q=180°−12(∠CBN+∠BCN)=12(180°−∠N)=90°+12∠N.由(2)知:∠M=12∠A.又由轴对称性质知:∠M=∠N,∴∠BQC=90°+14∠A.【解析】(1)先根据∠A:∠ABC=3:4,设∠A=3k,∠ABC=4k,再由三角形外角的性质求出k的值,进而可得出结论;(2)根据三角形外角的性质得出∠M=∠MCD−∠MBC,∠A=∠ACD−∠ABC.再由MC、MB分别平分∠ACD、∠ABC得出∠MCD=12∠ACD,∠MBC=12∠ABC,故∠M=12(∠ACD−∠ABC)=12∠A.根据CP⊥BM即可得出结论;(3)根据BQ平分∠CBN,CQ平分∠BCN可知∠QBC=12∠CBN,∠QCB=12∠BCN,再根据三角形内角和定理可知,∠Q=180°−12(∠CBN+∠BCN)=12(180°−∠N)=90°+12∠N.由(2)知:∠M=12∠A.根据轴对称性质知:∠M=∠N,由此可得出结论.本题考查的是三角形内角和定理,在解答此题时要注意轴对称的性质及翻折变换、三角形外角的性质及角平分线的性质等知识的灵活运用,难度适中.第21页,共21页。
巴中市南江县2019-2020学年七年级下期末数学试卷(含答案解析)

巴中市南江县2019-2020学年七年级下期末数学试卷(含答案解析)-学年下学期期末考试七年级数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2, +=0, =1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为 =1故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是根据等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C. +=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】根据等式的基本性质逐个判断即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的基本型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个【专题】多边形与平行四边形.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD的周长为()A.14 B.12 C.10 D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个分析】由a<b<0得a+1<b+1<b+2判断①,不等式a<b两边都除以b判断②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判断③,a<b两边都除以ab可判断④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题主要考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4 B.6 C.8 D.10【专题】综合题.【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,所以可列方程组为:【点评】此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a:b:c=1:1:2【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题主要考查了三角形的三边关系,当三条线段成比例时可以设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【专题】应用题;压轴题.【分析】先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y=.【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】计算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可根据未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n=.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】根据c2为非负数,利用不等式的基本性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.【专题】常规题型.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需根据旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题主要考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】根据两直线平行,同旁内角互补求出∠1的同旁内角,再根据翻折的性质以及平角等于180°列式进行计算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°,∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.20.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=.【专题】三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1=16,以此类推:a2019=2.故答案为:2.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)+1=x﹣(2)﹣1,并把解集表示在数轴上.(3)解不等式:(4)解不等式组:,并写出整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)根据解一元一次方程的步骤依次计算可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)先分别解两个不等式得到x≤1和x>-2,再根据大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,所以不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.【解答】解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.【点评】此题主要考查了图形的平移和旋转以及轴对称图形的性质等知识,根据题意找出对应点是解题关键.23.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范围.【分析】先求出不等式组的解集,根据已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a+(﹣0.1b)2019的值.【专题】计算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a+(-0.1b)2019=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情况下,购买A、B两种门票共15张,要求A种门票的数量不少于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中的结果可以计算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD= ∠BAO=30°,最后由外角性质可得∠D 度数; ②设∠BAD=α,利用外角性质和角平分线性质求得∠AB C=45°+α,利用∠D=∠ABC-∠BAD 可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD 可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC 平分∠ABN 、AD 平分∠BAO ,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA ﹣∠BAD=45°,故答案为:45;②∠D 的度数不变.理由是:设∠BAD=α,∵AD 平分∠BAO ,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC 平分∠ABN ,∴∠ABC=45°+α,∴∠D=∠ABC ﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO ,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
巴中市南江县学年初中七年级的下期末数学试卷习题包括答案解析

巴中市南江县2021-2021学年七年级下期末数学试卷含答案解析2021-2021学年四川省巴中市南江县七年级〔下〕期末数学试卷一、选择题〔每题3分〕.在以下方程中①2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+1是一元一次方程的有〔〕个.A.1 B.2 C.3 D.42.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是〔〕A.0 B.2 C.5 D.83.如果a<b<0,以下不等式中错误的选项是〔〕A.ab>0 B.a+b<0C.<1 D.a﹣b<04.三角形的两边长分别为 5cm和7cm,以下长度的四条线段中能作为第三边的是〔〕A.14cmB.13cm C.8cmD.2cm5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的选项是〔〕A.B.C.D.6.|2x﹣y﹣3|+〔2x y11〕2=0,那么〔〕++A.B.C.D.7.在三角形的三个外角中,锐角最多只有〔〕个.A.0 B.1 C.2 D.38.以下列图形中,既是轴对称图形,又是中心对称图形的是〔〕A.B.C.D.9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,那么四边形ABFD的周长为〔〕A.8 B.9 C.10 D.1110.以下几种组合中,恰不能密铺的是〔〕A.同样大小的任意四边形B.边长相同的正三角形、正方形、正十二边形C.边长相同的正十边形和正五角形D.边长相同的正八边形和正三角形二、填空题〔每题3分〕11.方程y+=的解为.12.由3x﹣y=5,假设用含有x的代数式表示y,那么.13.是方程的解,那么m=.14.一个多边形的内角和等于2340°,它的边数是.15.等腰三角形一腰上的高与另一腰的夹角为30°,那么它的顶角为.16.三元一次方程组的解是.17.是方程组的解,那么a=,b=.18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,那么△ABE的周长等于cm.19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C落在△ABC内,如图,假设∠1=50°,那么∠2=.20.我知道分数写小数即0.,反之,无限循小数0.写成分数即一般地,任何一个无限循小数都可以写成分数形式.以0.例行:0.=x,由0. ⋯,得⋯,由于⋯⋯因此10x=7+x,解方程得x=.于是得0.=.仿照上述方法把无限循小数0.化成分数得.三、解答21.解方程〔〕:x=2.22.解方程.23.解不等式≥1〔把解集在数上表示出来〕(24.解不等式.((25.如所示的正方形网格中,每个小正方形的均1个位,△ABC的(三个点都在格点上.(1〕在网格中画出△ABC向下平移3个位得到的△A1B1C1;(2〕在网格中画出△ABC关于直m称的△A2B2C2;(3〕在直m上画一点P,使得C1P+C2P的最小.(26.如图,∠A=20°,∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.((((((((((27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并(给出证明.(((((((((((28.假设关于x的不等式组的整数解恰有5个,求a的范围.((29.某协会组织会员旅游,如果单独租用45座客车假设干辆,那么刚好坐满;如果单独租用60座客车,那么可少租2辆,并且剩余15个座位.(1〕求参加旅游的人数;(2〕假设采用混租两种客车,使每辆车都不空位,有几种租车方案.30.如图,一副直角三角板△ABC和△DEF,BC=DF,EF=2DE.(1〕直接写出∠B,∠C,∠E,∠F的度数的度数;(2〕将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点(A在DE上,△ABC固定不动,将△DEF绕点D逆时针旋转至EF∥CB〔如图2〕,求△DEF旋转的度数;并通过计算判断点A是否在EF上;(3〕在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?假设存在直接写出旋转的角度和平行关系,假设不存在,请说明理由.2021-2021学年四川省巴中市南江县七年级〔下〕期末数学试卷参考答案与试题解析一、选择题〔每题3分〕22x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y 1.在以下方程中①x++是一元一次方程的有〔〕个.A.1 B.2 C.3 D.4【考点】一元一次方程的定义.【分析】根据一元一次方程的定义,即可解答.【解答】解:①x2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;x=0,是一元一次方程;④3﹣=2,是等式;=y+是一元一次方程;一元一次方程的有2个,应选:B.〕2.如果a﹣3b=﹣3,那么代数式5﹣a+3b的值是〔A.0B.2C.5【考点】D.8代数式求值.【分析】将a﹣3b=﹣3整体代入即可求出所求的结果.【解答】解:∵a﹣3b=﹣3,代入5﹣a+3b,得5﹣a+3b=5﹣〔a﹣3b〕=5+3=8.应选:D.3.如果a<b<0,以下不等式中错误的选项是〔〕A.ab>0 B.a+b<0C.<1D.a﹣b<0【考点】不等式的性质.【分析】根据不等式的性质分析判断.【解答】解:A、如果a<b<0,那么a、b同是负数,因而ab>0,故A正确;B、因为a、b同是负数,所以a+b<0,故B正确;C、a<b<0,那么|a|>|b|,那>1,也可以设a=﹣2,b=﹣1代入检验得到<么1是错误的.故C错误;D、因为a<b,所以a﹣b<0,故D正确;应选:C.4.三角形的两边长分别为5cm和7cm,以下长度的四条线段中能作为第三边的是〔〕A.14cm B.13cm C.8cmD.2cm【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,两边之差小于第三边求出第三边的取值范围,然后选择答案即可.【解答】解:∵5+7=12cm,7﹣5=2cm,2cm<第三边<12cm,14cm、13cm、8cm、2cm中只有8cm在此范围内,∴能作为第三边的是8cm.应选C.〕5.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的选项是〔A.B.C.D.【考点】在数轴上表示不等式的解集;解一元一次不等式.【分析】不等式移项,再两边同时除以2,即可求解.【解答】解:不等式得:x≥﹣2,其数轴上表示为:应选B6.|2x﹣y﹣3|+〔2x y11〕2=0,那么〔〕++A.B.C.D.【考点】解二元一次方程组;非负数的性质:绝对值;非负数的性质:偶次方.【分析】利用非负数的性质列出方程组,求出方程组的解即可.【解答】解:∵|2x﹣y﹣3|+〔2x+y+11〕2=0,∴,+②得:4x=﹣8,即x=﹣2,②﹣①得:2y=﹣14,即y=﹣7,那么方程组的解为,应选D.7.在三角形的三个外角中,锐角最多只有〔〕个.A.0 B.1 C.2 D.3【考点】三角形的外角性质.【分析】利用三角形的内角和外角之间的关系分析.【解答】解:根据三角形的内角和是180°可知,三角形内角最多只能有 1个钝角,所以在三角形的三个外角中,锐角最多只有1个.应选:B.8.以下列图形中,既是轴对称图形,又是中心对称图形的是〔〕A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念判断即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.应选:C.9.如图,将周长为7的△ABC沿BC方向平移1个单位得到△DEF,那么四边形ABFD的周长为〔〕A.8 B.9 C.10 D.11【考点】平移的性质.【分析】根据平移的根本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC 即可得出答案.【解答】解:根据题意,将周长为7的△ABC沿BC方向向右平移1个单位得到△DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又∵AB+BC+AC=7,∴四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=9.应选B.10.以下几种组合中,恰不能密铺的是〔〕A.同样大小的任意四边形B.边长相同的正三角形、正方形、正十二边形C.边长相同的正十边形和正五角形D.边长相同的正八边形和正三角形【考点】平面镶嵌〔密铺〕.【分析】几何图形镶嵌成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角,结合选项即可作出判断.【解答】A、同样大小的任意四边形可以密铺的,故本选项错误;B、边长相同的正三角形、正方形、正十二边形可以密铺,故本选项错误;C、边长相同的正十边形和正五角形可以密铺,故本选项错误;D、边长相同的正八边形和正三角形不可以密铺,故本选项正确.应选D.二、填空题〔每题3分〕11.方程y+ =的解为y=.【考点】一元一次方程的解.【分析】根据解一元一次方程的方法可以求得方程y+ =的解,此题得以解决.【解答】解:y+ =去分母,得6y+3=4﹣2y移项及合并同类项,得8y=1系数化为1,得y=,故答案为:.12.由3x﹣y=5,假设用含有x的代数式表示y,那么 y=3x﹣5.【考点】列代数式.【分析】因为3x﹣y=5,移项即可求出用x表示y的代数式.【解答】解:∵3x﹣y=5,移项可得:y=3x﹣5.13.是方程的解,那么m=.【考点】一元一次方程的解.【分析】把x=代入方程即可得到一个关于m的方程,即可求得m的值.【解答】解:把x=代入方程,得:3〔m﹣〕+1=5m,解得:m=﹣.故答案是:﹣.14.一个多边形的内角和等于2340°,它的边数是15.【考点】多边形内角与外角.【分析】多边形的内角和可以表示成〔n﹣2〕?180°,依此列方程可求解.【解答】解:设多边形边数为n.2340°=〔n﹣2〕?180°,解得n=15.故答案为:15.15.等腰三角形一腰上的高与另一腰的夹角为30°,那么它的顶角为60°或120°.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时,顶角是120°;当高在三角形外部时,顶角是60°.故答案为:60°或120°.16.三元一次方程组的解是.【考点】解三元一次方程组.【分析】将方程组三个方程相加求出x+y+z的值,进而将每一个方程代入即可求出x,y,z的值.【解答】解:,+②+③得:2〔x+y+z〕=22,即x+y+z=11④,将①代入④得:z=6,将②代入④得:x=2,将③代入④得:y=3,那么方程组的解为.故答案为:17.是方程组的解,那么a=1,b=1.【考点】二元一次方程组的解.【分析】根据方程组的解的定义,只需把解代入方程组得到关于a,b的方程组,即可求解.【解答】解:把代入方程组,得,解得.故答案为1,1.18.如图,Rt△ABC中,∠B=90°,AB=3cm,BC=4cm,将△ABC折叠,使点C与A重合,得折痕DE,那么△ABE的周长等于7 cm.【考点】翻折变换〔折叠问题〕.【分析】根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等【解答】解:由折叠的性质知,AE=CE,∴△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故答案为:7.19.如图,三角形纸片ABC中∠A=63°,∠B=77°,将纸片的一角折叠,使点C落在△ABC内,如图,假设∠1=50°,那么∠2=30°.【考点】翻折变换〔折叠问题〕.【分析】先由折叠性质得:∠C=∠C′=40°,根据三角形内角和求出∠CEC′+∠CFC′=280,°由平角定义可知:∠1+∠2+∠CFC′+∠CEC′=360,°从而得出∠2=30°.【解答】解:∵∠A=63°,∠B=77°,∴∠C=180°﹣∠A﹣∠B=180°﹣63°﹣77°=40°,由折叠得:∠C=∠C′=40,°∠CEF=∠C′EF,∠CFE=∠C′FE,∴∠CEC′+∠CFC′=180°+180°﹣40°﹣40°=280°,∵∠1+∠CFC′=180°,∠2+∠CEC′=180°,∴∠1+∠2+∠CFC′+∠CEC′=360°,∴∠1+∠2=360°﹣280°=80°,∵∠1=50°,∴∠2=30°,故答案为:30°.20.我知道分数写小数即0.,反之,无限循小数0.写成分数即一般地,任何一个无限循小数都可以写成分数形式.以0.例行:0.=x,由0. ⋯,得⋯,由于⋯⋯因此10x=7+x,解方程得x=.于是得0.=.仿照上述方法把无限循小数0.化成分数得.【考点】解一元一次方程.【分析】0.=x,找出律,列出方程100x x=37,解方程即可.【解答】解:0.=x,⋯,得⋯.可知,⋯⋯=37,即100x x=37,解得:x=,故答案:.三、解答21.解方程〔〕:x=2.【考点】解一元一次方程.【分析】方程去分母,去括号,移合并,把x系数化1,即可求出解.【解答】解:去分母得:6x 3x+3=12 2x 4,移合并得:5x=5,解得:x=1.22.解方程.【考点】解二元一次方程.【分析】方程利用加减消元法求出解即可.【解答】解:,①×3﹣②得:2a=﹣6,即a=﹣3,a=﹣3代入①得:b=6,那么方程组的解为.23.解不等式﹣≥﹣1〔把解集在数轴上表示出来〕【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】通过解一元一次不等式,得出不等式的解决,再将解集在数轴上表示出来即可.【解答】解:﹣≥﹣1,去分母,得:6x﹣3﹣4x﹣8≥﹣12,移项、合并同类项,得:2x≥﹣1,不等式两边同时÷2,得:x≥﹣.把解集在数轴上表示出来,如下列图.24.解不等式组.【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x>﹣4,由②得,x>﹣1,故不等式组的解集为:x>﹣1.25.如下列图的正方形网格中,每个小正方形的边长均为1个单位,△ABC的三个顶点都在格点上.〔1〕在网格中画出△ABC向下平移3个单位得到的△A1B1C1;2〕在网格中画出△ABC关于直线m对称的△A2B2C2;3〕在直线m上画一点P,使得C1P+C2P的值最小.(【考点】作图-轴对称变换;轴对称-最短路线问题;作图-平移变换.(【分析】〔1〕根据图形平移的性质画出△A1B1C1即可;(2〕根据轴对称的性质画出△ABC关于直线m对称的△A2B2C2即可;(3〕连接C1C2交直线m于点P,那么点P即为所求点.(【解答】解:〔1〕如图,△A1B1C1即为所求;(((2〕如图,△A2B2C2即为所求;(((3〕连接连接C1C2交直线m于点P,那么点P即为所求点.26.如图,∠A=20°,∠B=37°,AC⊥DE,垂足为F,求∠1,∠D的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】利用三角形外角性质,得∠1=∠A+∠APE,只需求∠APE,由AC⊥DE,得∠APE=90°;由三角形内角和定理得出∠D的度数.【解答】解:∵AC⊥DE,∴∠APE=90°.∵∠1是△AEP的外角,∴∠1=∠A+∠APE.∵∠A=20°,∴∠1=20°+90°=110°.在△BDE中,∠1+∠D+∠B=180°,∵∠B=37°,∴∠D=180°﹣110°﹣37°=33°.27.如图,△ABC中,AD平分∠BAC,EG∥AD,找出图中的等腰三角形,并给出证明.【考点】等腰三角形的判定;平行线的性质.【分析】根据平行线的性质和“等角对等边〞推知AE=AF,易得△AEF是等腰三角形.【解答】解:△AEF是等腰三角形.理由如下:AD平分∠BAC,∴∠BAD=∠CAD.又∵EG∥AD,∴∠E=∠CAD,∠EFA=∠BAD,∴∠E=∠EFA,AE=AF,∴△AEF是等腰三角形.28.假设关于x的不等式组的整数解恰有5个,求a的范围.【考点】一元一次不等式组的整数解.【分析】先求出不等式的解集,根据不等式组的解集可求得整数解恰有推a的取值范围即可.5个,逆【解答】解:由①得由②得x≥a,x<2,∵关于x的不等式组的整数解恰有5个,a≤x<2,其整数解为﹣3,﹣2,﹣1,0,1a的取范围是﹣4<a≤﹣3.29.某协会组织会员旅游,如果单独租用45座客车假设干辆,那么刚好坐满;如果单独租用60座客车,那么可少租2辆,并且剩余15个座位.1〕求参加旅游的人数;2〕假设采用混租两种客车,使每辆车都不空位,有几种租车方案.【考点】二元一次方程的应用;一元一次方程的应用.【分析】〔1〕设参加旅游的人数为x人,根据旅游总人数不变,分别表示出不同车辆乘坐人数,进而列出方程;2〕首先列出二元一次方程,根据题意得到正整数的解即可.【解答】解:〔1〕设参加旅游的人数为x 人,根据题意,得﹣2=,解得x=405人,答:参加旅游的人数为405人.2〕设租45座a辆,60座b辆,那么有45a+60b=405,根据题意有正整数解为,,即方案1,租45座1辆,60座6辆;方案2,租45座5辆,60座3辆.30.如图,一副直角三角板△EF=2DE ABC和△DEF,BC=DF,.1〕直接写出∠B,∠C,∠E,∠F的度数的度数;2〕将△ABC和△DEF放置像图2的位置,点B、D、C、F在同一直线上,点A在DE上,△ABC固定不动,将△DEF绕点D逆时针旋转至EF∥CB〔如图2〕,求△DEF旋转的度数;并通过计算判断点A是否在EF上;3〕在图3的位置上,△DEF绕点D继续逆时针旋转至DE与BC重合,在旋转过程中,两个三角形的边是否存在平行关系?假设存在直接写出旋转的角度和平行关系,假设不存在,请说明理由.【考点】几何变换综合题.【分析】〔1〕根据直角三角板的直接可求得答案;2〕由EF∥BC,可求得∠FDC的角度,可求得旋转角;过D作DG⊥EF于点G,可求得DG= DF,AD= BC,可得到DG=AD,可得出结论;3〕分DF∥AB、DE∥AC和EF∥AB三种情况,可分别求得相应的旋转角.【解答】解:1〕∵△ABC为等腰直角三角形,∴∠B=∠C=45°,由题可知△DEF为含30°角的三角板,EF=2DE,∴∠E=60°,∠F=30°;2〕旋转的角度为30°,理由如下:如图1,△ABC中,AB=AC,AD⊥BC,AD=BC,在△DEF中,过D作DG⊥EF,垂足为G,在Rt△DFG中,∠F=30°,DG=DF,BC=DF,∴DG=AD,∴当EF∥BC时,点A在EF上;〔3〕存在.如图2,当DF∥AB时,那么∠FDC=∠B=45°,∵∠EDF=90°,∴∠EDB=45°=∠C,∴此时DE∥AC;如图3,当EF∥AB时,那么∠AHD=∠E=60°,∴∠EDB=∠AHD﹣∠B=60°﹣45°=15°,∵∠EDF=90°,∴∠FDC=75°,综上可知当旋转角为45°时有DE∥AC和DF∥AB,当旋转角为75°时,有EF∥AB.2021年2月17日。
巴中市七年级下学期数学期末考试试卷

巴中市七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)方程的解是().A .B .C .D .2. (2分)若a<b,则下列不等式成立的是()A . a2<b2B . <1C . >D . -3a>-3b3. (2分)(2012·来宾) 在下列平面图形中,是中心对称图形的是()A .B .C .D .4. (2分)在下列长度的四根木棒中,能与4cm,9cm长的两根木棒钉成一个三角形的是()A . 4cmB . 5cmC . 9cmD . 13cm5. (2分)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A . 76°B . 62°C . 42°D . 76°、62°或42°都可以6. (2分) (2019七下·宽城期末) 某中学阅览室在装修过程中,准备用边长相等的正方形、正三角形两种地砖铺满地面,在每个顶点的周围正方形、正三角形地砖的块数分别是()A . 1、2B . 2、1C . 2、2D . 2、37. (2分) (2019八上·海伦期中) 下列各组数中互为相反数的是()A . -2与B . -2与C . -2与-D . |2|与28. (2分) (2020九上·陆丰月考) 如图,,且,,则的度数是()A .B .C .D .9. (2分) (2019八上·深圳期末) 已知不等式组有解,则m的取值范围字数轴上可表示为()A .B .C .D .10. (2分)(2020·宁波模拟) 如图,双曲线y= (x>0 )经过四边形OABC的顶点A和C,∠ABC=90°,OC平分OA与x轴正半轴的夹角,AB∥x轴,将△ABC沿AC翻折后得△AB'C,点B'落在OA上,则△ABC的面积是()A .B .C .D . 3二、填空题 (共5题;共7分)11. (1分) (2020七下·丽水期中) 写出一个解为的二元一次方程组:________。
巴中市南江县七年级下册期末数学试卷(有答案)

四川省巴中市南江县七年级下学期期末考试数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为=1故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是根据等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C.+=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】根据等式的基本性质逐个判断即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的基本型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个【专题】多边形与平行四边形.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD 的周长为()A.14 B.12 C.10 D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个分析】由a<b<0得a+1<b+1<b+2判断①,不等式a<b两边都除以b判断②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判断③,a<b两边都除以ab可判断④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题主要考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4 B.6 C.8 D.10【专题】综合题.【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,所以可列方程组为:【点评】此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a:b:c=1:1:2【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题主要考查了三角形的三边关系,当三条线段成比例时可以设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【专题】应用题;压轴题.【分析】先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y=.【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】计算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可根据未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n=.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】根据c2为非负数,利用不等式的基本性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.【专题】常规题型.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需根据旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题主要考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】根据两直线平行,同旁内角互补求出∠1的同旁内角,再根据翻折的性质以及平角等于180°列式进行计算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°,∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.20.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=.【专题】三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1=16,以此类推:a2019=22018.故答案为:22018.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)+1=x﹣(2)(3)解不等式:﹣1,并把解集表示在数轴上.(4)解不等式组:,并写出整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)根据解一元一次方程的步骤依次计算可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)先分别解两个不等式得到x≤1和x>-2,再根据大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,所以不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.【解答】解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.【点评】此题主要考查了图形的平移和旋转以及轴对称图形的性质等知识,根据题意找出对应点是解题关键.23.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范围.【分析】先求出不等式组的解集,根据已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2018+(﹣0.1b)2019的值.【专题】计算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a 与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a2018+(-0.1b)2019=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情况下,购买A、B两种门票共15张,要求A种门票的数量不少于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中的结果可以计算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD= ∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。
四川省巴中市2020年七年级下学期数学期末试卷A卷

四川省巴中市2020年七年级下学期数学期末试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共38分)1. (4分)下列实数中,是无理数的是()A . πB .C .D . |﹣2|2. (4分)下列命题是假命题的是()A . 三角形的中线平分三角形的面积B . 三角形的角平分线交点到三角形各边距离相等C . 三角形的高线至少有两条在三角形内部D . 三角形外心是三边垂直平分线的交点3. (4分) (2020七下·邛崃期末) 下列说法.正确的个数有()① 三角形具有稳定性;② 如果两个角相等,那么这两个角是对顶角;③ 三角形的角平分线是射线;④ 直线外一点到这条直线的垂线段叫做这点到直线的距离;⑤ 任何一个三角形都有三条高、三条中线、三条角平分线;⑥ 三角形的三条角平分线交于一点,且这点在三角形内;A . 2B . 3C . 4D . 54. (4分)(2011·扬州) 下列调査,适合用普査方式的是()A . 了解一批炮弹的杀伤半径B . 了解扬州电视台《关注》栏目的收视率C . 了解长江中鱼的种类D . 了解某班学生对“扬州精神”的知晓率5. (4分) (2019七上·南海月考) 下列的点在函数y= x-2上的是()A . (0,2)B . (3,-2)C . (-3,3)D . (6,0)6. (4分)如图,△ABC中,AB=AC,AD平分∠BAC,DE⊥AB,DF⊥AC,E,F为垂足,则下列四个结论:①AD 上任意一点到点C,点B的距离相等;②AD上任意一点到AB,AC的距离相等;③AD⊥BC且BD=CD;④∠BDE=∠CDF.其中正确的个数是()A . 1个B . 2个C . 3个D . 4个7. (4分)方程y=1﹣x与3x+2y=5的公共解是()A .B .C .D .8. (2分)当a<0时,抛物线y=x2+2ax+1+2a2的顶点在()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (4分) (2019七下·青山月考) 小明从A地向南偏东m°(0<m<90)的方向行走到B地,然后向左转30°行走到C地,则下面表述中,正确的个数是()①B可能在C的北偏西m°方向;②当m<60时,B在C的北偏西(m+30)°方向;③B不可能在C的南偏西m°方向;④当m>60时,B在C的南偏西(150-m)°方向A . 1B . 2C . 3D . 410. (4分)(2018·泰安) 夏季来临,某超市试销,两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问,两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A .B .C .D .二、填空题 (共6题;共24分)11. (4分)(2012·温州) 某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有________人(用含有m的代数式表示)12. (4分) (2017七下·阳信期中) 如果 +|b﹣2|=0,那么(a+b)2017=________.13. (4分) (2017七下·嘉兴期中) 如图,已知∠1=∠2,∠B=∠C ,可推得AB∥CD .理由如下:∵∠1=∠2(已知),且∠1=∠CGD(________)∴∠2=∠CGD(等量代换)∴CE∥BF(________)∴∠________=∠BFD(________)又∵∠B=∠C(已知)∴________(等量代换)∴AB∥CD(________)14. (4分)补全解题过程.如图,∵AD∥BC∴∠FAD=________(________)∵∠1=∠2∴________∥________(________)15. (4分)(2019·广西模拟) 有3人携带会议材料乘坐电梯,这3人的体重共210 kg,每捆材料重20 kg,电梯最大负荷为1050 kg,则该电梯在此3人乘坐的情况下最多还能搭载________捆材料.16. (4分)(2017·邵阳模拟) 如图,将一张正方形纸片ABCD进行折叠,使得点D落在对角线AC上的点E 处,折痕为AF.若AD=1,则DF=________.三、解答题 (共9题;共86分)17. (8分) (2020七下·原州期末) 解方程组: .18. (8分)(2019·扬州模拟)(1)计算:2cos60°﹣(2)解不等式组:,并求不等式组的整数解.19. (8分)(2019·乌鲁木齐模拟) 先化简,再求值:,其中 .20. (8分)如图,在城市改造中,市政府欲在一条人工河上架一座桥,河的两岸PQ与MN平行,河岸MN上有A、B两个相距50米的凉亭,小亮在河对岸D处测得∠ADP=60°,然后沿河岸走了110米到达C处,测得∠BCP=30°,求这条河的宽.(结果保留根号)21. (8分) (2015七下·威远期中) 已知方程组与有相同的解,求m,n 的值.22. (10.0分)(2013·南通) 某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为________kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为________度.23. (10分) (2019八上·香坊月考) 某商店欲购进A、B两种商品,若购进A种商品5件和B种商品4件需300元;若购进A种商品6件和B种商品8件需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)商店准备用不超过1625元购进50件这两种商品,求购进A种商品最多是多少件?24. (12分) (2020七下·武隆月考) 如图,三角形中,是上一点,是上一点,,, .(1)请你证明;(2)求的度数.25. (14.0分)已知ab<0,>0,且|c|>|b|>|a|,数轴上a、b、c对应的点是A、B、C。
四川省巴中市2020年七年级下学期数学期末考试试卷(II)卷

四川省巴中市2020年七年级下学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)下列运算正确的是()A . a2+2a3=3a5B . ﹣3a+2a=﹣aC . (3a3)2=6a6D . a8÷a2=a42. (2分)据悉,世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00000007克,用科学记数法表示此数正确的是()A . 7.0×108B . 7.0×10-8C . 0.7×109D . 0.7×10-93. (2分) (2020八上·渝北月考) 等腰三角形的两边长分别为和,则周长为() .A . 17B . 13C . 13或17D . 17或114. (2分)如图,直线l∥OB,则∠1的度数是()A . 120°B . 30°C . 40°D . 60°5. (2分) (2020七上·浦东期末) 下列等式中,能成立的是()A .B .C .D .6. (2分) (2019八下·盐湖期中) 若关于x的不等式(a+2019)x>a+2019的解为x<1,则a的取值范围是()A . a>﹣2019B . a<﹣2019C . a>2019D . a<20197. (2分) (2018八上·桐乡月考) 能够说明命题“若,则”是假命题的反例是()A .B .C .D .8. (2分)为保护生态环境,陕西省某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A .B .C .D .二、填空题 (共18题;共71分)9. (1分)运算结果为a6b12的一个算式是________(答案不唯一).10. (1分)(2019·蒙城模拟) 我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)=________;(2)若[3+ ,则x的取值范围是________.11. (1分) (2017八上·上杭期末) 正六边形的每个内角的度数是________.12. (1分)数348﹣1能被30以内的两位数(偶数)整除,这个数是________.13. (1分)如果x=3,y=2是二元一次方程ax﹣by﹣5=0的一个解,则3a﹣2b﹣1=________.14. (1分) (2020七下·徽县期末) 把方程组中,若未知数满足,则的取值范围是________.15. (1分) (2019七下·东海期末) 分解因式:x2-1=________.16. (1分)(2020·慈溪模拟) 不等式 <x的解是________。
四川省巴中市2020版七年级下学期数学期末考试试卷(I)卷

四川省巴中市2020版七年级下学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·郑州开学考) 两根木棒的长分别是和,要选择第三根木棒,将它们首尾相接钉成一个三角形.如果第三根木棒的长为整数,则第三根木棒的取值情况有()种.A . 5B . 6C . 7D . 82. (2分) (2017八上·宜昌期中) 如图,直线MN是四边形AMBN的对称轴,点P是直线MN上的点,下列判断错误的是()A . AM=BMB . AP=BNC . ∠MAP=∠MBPD . ∠ANM=∠BNM3. (2分)(2017·港南模拟) 下列运算正确的是()A . ﹣3a+a=﹣2aB . a6÷a3=a2C . + =10D . (﹣2a2b3)2=4a4b54. (2分) (2019七上·崂山期中) 与图中实物图相类似的立体图形按从左到右的顺序依次是()A . 圆柱、圆锥、正方体、长方体B . 圆柱、球、正方体、长方体C . 棱柱、球、正方体、棱柱D . 棱柱、圆锥、棱柱、长方体5. (2分) (2019八上·淮安期中) 如图,用直尺和圆规作一个角的平分线,是运用了“全等三角形对应角相等”这一性质,由作图所得条件,判定三角形全等运用的方法是()A . SASB . ASAC . AASD . SSS6. (2分) (2020八上·江阴月考) 下列说法正确的是()A . 两角及一边分别相等的两三角形全等B . 全等的两个图形一定成轴对称C . 两个成轴对称的图形的对应点一定在对称轴的两侧D . 有一个角是60°的等腰三角形是等边三角形7. (2分) (2018八上·苏州期末) 下列四个腾讯软件图标中,属于轴对称图形的是()A .B .C .D .8. (2分)据统计,2008中国某小商品城市场全年成交额约为348.4亿元。
四川省巴中市2020初一下学期期末数学教学质量检测试题

2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,将周长为4的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为( )A .5B .6C .7D .82.若关于的不等式组的整数解共5个,则的取值范围是( )A .B .C .D .3.25的算术平方根是( )A .5B .5±C .5-D .254.事件:“在只装有2个红球和8个黑球的袋子里,摸出一个白球”是( )A .可能事件B .不可能事件C .随机事件D .必然事件5.如果点P (m ,1﹣2m )在第一象限,那么m 的取值范围是( )A .0<m <12B .﹣12<m <0C .m <0D .m >126.下列调查中,最适合采用全面调查(普查)方式的是 ( )A .对重庆市居民日平均用水量的调查B .对一批LED 节能灯使用寿命的调查C .对重庆新闻频道“天天630”栏目收视率的调查D .对某校九年级(1)班同学的身高情况的调查7.下列命题是真命题的是( )A .相等的角是对顶角B .若22x y =,则x y =C .同角的余角相等D .两直线平行,同旁内角相等8.已知实数x ,y 满足(x-2)2y 1+=0,则点P(x ,y)所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限9.下列调查,适合用普查方式的是( )A .了解义乌市居民年人均收入B .了解义乌市民对“低头族”的看法C .了解义乌市初中生体育中考的成绩D .了解某一天离开义乌市的人口流量10.若一个三角形的两边长分别为3和7,则第三边长可能是( )A .2B .3C .4D .5二、填空题题11.|2﹣|=_____.12.若单项式﹣2x a﹣1y3与3x﹣b y2a+b是同类项,则b a的值为_____.13.如图所示,∠A+∠B+∠C+∠D+∠E=________.14.观察下列各式:(1)42-12=3×5;(2)52-22=3×7;(3)62-32=3×9;………则第n(n是正整数)个等式为_____________________________.15.如图,在平面直角坐标系中,已知长方形ABCD的顶点坐标:A(-4,-4),B(12,6),D(-8,2),则C点坐标为______.16.不等式5x-3<3-x的解集为_____.17.对于实数x,y,定义新运算x※y=ax+by,其中a,b为常数,等式右边为通常的加法和乘法运算,若3※5=11,4※7=15,则5※9=______.三、解答题18.某园林的门票每张10元,一次性使用.考虑到人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种“购买个人年票”的售票方法(个人年票从购买日起,可供持票者使用一年).年票分A、B、C三类,A类年票每张120元,持票者进人园林时,无需再购买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出可使进入该园林的次数最多的购票方式.最多几次?(2)求一年中进入该园林超过多少次时,购买A类年票比较合算.19.(6分)已知点P(3m﹣6,m+1),试分别根据下列条件,求出点P的坐标.(1)点P在y轴上;(2)点P在x轴上;(3)点P的纵坐标比横坐标大5;(4)点P在过点A(﹣1,2),且与x轴平行的直线上.20.(6分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段频数频率30~40 10 0.0540~50 3650~60 0.3960~7070~80 20 0.10总计200 1注:30~40为时速大于等于30千米而小于40千米,其他类同(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?21.(6分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频率分布表和频率直方图的一部分如下:请根据图表信息回答下列问题:(1)频数分布表中的a =____________,b =____________;(2)将频数直方图补充完整;(3)学校将每周课外阅读时间在6小时以上的学生评为“阅读之星”,请你估计该校2 000名学生中评为“阅读之星”的有多少人?22.(8分)某电器超市销售每台进价分别为160元、120元的A 、B 两种型号的电风扇,如表是近两周的销售情况:(进价、售价均保持不变,利润=销售收入﹣进货成本)(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A 种型号的电风扇最多能采购多少台?23.(8分)解方程式或方程组(1)13542x x -=+ (2)12323329412x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩24.(10分)阅读第(1)题,在解答过程后面空格中填写理由(依据),并解答第(2)题.(1)已知,如图1:AB CD ∥,P 为AB 、CD 之间一点,求B C BPC ∠+∠+∠的大小.解:过点P 作PM AB .∵AB CD ∥(已知).∴PM CD (_________________________),∴1180B ∠+∠=︒,2180C ∠+∠=︒(_________________________). ∵12BPC ∠=∠+∠,∴360B C BPC ∠+∠+∠=︒.(2)如图,是我们生活中经常接触的小刀,刀片的外形如图2,刀片上、下是平行的,即AB CD∥,90AEC∠=︒.转动刀片时会形成1∠和2∠,那么12∠+∠的大小是否会随刀片的转动面改变?说明理由.25.(10分)(阅读理解题)阅读下面情境:甲、乙两人共同解方程组515...4 2...ax yx by+=⎧⎨-=-⎩①②由于甲看错了方程①中的a,得到方程组的解为-3,-1;xy=⎧⎨=⎩乙看错了方程②中的b,得到方程组的解为5,4.xy=⎧⎨=⎩试求出a,b的正确值,并计算a2 018+20191-10b⎛⎫⎪⎝⎭的值.参考答案一、选择题(每题只有一个答案正确)1.B【解析】【分析】根据平移的性质可得DF=AC,AD=CF=1,再根据周长的定义列式计算即可得解.【详解】解:∵△ABC沿BC方向向右平移1个单位得到△DEF,∴DF=AC,AD=CF=1,∴四边形ABFD的周长=AB+BF+DF+AD=AB+BC+CF+AC+AD=△ABC的周长+CF+AD=4+1+1=1.故选B.【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.2.B求出不等式组的解集,再根据已知得出关于m的不等式组,即可打得出答案.【详解】解不等式①得:x<m,解不等式②得:x⩾3,所以不等式组的解集是3⩽x<m,∵关于x的不等式的整数解共有5个,∴7<m⩽8,故选B.【点睛】此题考查一元一次不等式组的整数解,解题关键在于掌握运算法则.3.A【解析】分析:根据“算术平方根”的定义进行分析判断即可.详解:∵2525,∴25的算术平方根是5.故选A.点睛:熟记“算术平方根”的定义:“对于一个非负数x,若x2=a,则x叫做a的算术平方根”是解答本题的关键.4.B【解析】分析:不可能事件是指不可能发生的事情,必然事件是指肯定会发生的事情,可能事件和随机事件是指有可能发生的事情.本题根据定义即可得出答案.详解:∵口袋里面没有白球,∴摸出白球是不可能事件,故选B.点睛:本题主要考试的是“不可能事件”、“随机事件”和“必然事件”的定义,属于基础题型.理解定义是解决这个问题的关键.5.A根据第一象限内点的横坐标与纵坐标都是正数,列出不等式组求解即可.【详解】解:∵点P(m,1﹣2m)在第一象限,∴120mm>⎧⎨->⎩①②,由②得,m<12,所以,m的取值范围是0<m<12.故选:A.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).6.D【解析】试题分析:普查适用于范围较小,事件较短的一些事件,或者是精确度要求非常高的事件.本题中A、B、C 三个选项都不适合普查,只适合做抽样调查.考点:调查的方式7.C【解析】【分析】根据对顶角、偶次幂、平行线的性质以及互余进行判断即可.【详解】解:A、相等的角不一定是对顶角,是假命题;B、若x2=y2,则x=y或x=-y,是假命题;C、同角的余角相等,是真命题;D、两直线平行,同旁内角互补,是假命题;故选:C.【点睛】此题主要考查了命题与定理,正确把握相关定义是解题关键.8.D【解析】根据非负数的性质得到x﹣2=0,y+1=0,则可确定点P(x,y)的坐标为(2,﹣1),然后根据象限内点的坐标特点即可得到答案.【详解】∵(x﹣2)2=0,∴x﹣2=0,y+1=0,∴x=2,y=﹣1,∴点P(x,y)的坐标为(2,﹣1),在第四象限.故选D.【点睛】本题考查了点的坐标及非负数的性质.熟记象限点的坐标特征是解答本题的关键.9.C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似. 【详解】A、了解义乌市居民年人均收入适合抽样调查,不符合题意;B、了解义乌市民对“低头族”的看法适合抽样调查,不符合题意;C、了解义乌市初中生体育中考的成绩适合全面调查,符合题意;D、了解某一天离开义乌市的人口流量适合抽样调查,不符合题意;故选:C.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10.D【解析】【分析】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边即可解答.【详解】设第三边长为x,由题意得:7﹣3<x<7+3,则4<x<10,∴只有选项D符合要求.故选D.本题考查三角形三边关系定理,熟记两边之和大于第三边,两边之差小于第三边是解题的关键.二、填空题题11.【解析】【分析】先判断1-的正负值,再根据“正数的绝对值是它本身,负数的绝对值是其相反数”即可求解.【详解】解:|1-|=-1.故答案-1.【点睛】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.12.1【解析】【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)列出方程,求出a,b的值,再代入代数式计算即可.【详解】∵﹣2x a﹣1y3与3x﹣b y2a+b是同类项,∴132a ba b-=-⎧⎨=+⎩,解得:21 ab=⎧⎨=-⎩,∴b a=(﹣1)2=1,故答案为:1.【点睛】本题考查了同类项:所含字母相同,并且相同字母的指数相同的项叫同类项.13.180°【解析】【分析】根据三角形内角与外角的关系可得∠A+∠B=∠BFC,∠D+∠BED=∠COF;再根据三角形内角和定理可得∠BFC+∠COF +∠C=180°,进而可得答案.延长BE交AC于F,BE,CD交点记为O;∵∠A+∠B=∠BFC,∠D+∠BED=∠COF;∵∠BFC+∠COF +∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,故答案为:180°.【点睛】此题主要考查了三角形的内角与外角的关系,以及三角形内角和定理,关键是掌握三角形一个外角等于和它不相邻的两个内角的和.14.(n+3)2-n2=3(2n+3)【解析】试题解析:观察分析可得:1式可化为(1+3)2-12=3×(2×1+3);2式可化为(2+3)2-22=3×(2×2+3);…故则第n个等式为(n+3)2-n2=3(2n+3).考点:规律型:数字的变化类.-15.(8,13)【解析】【分析】设点C的坐标为(x,y),根据矩形的对角线互相平分且相等,利用中点公式列式计算即可得解.【详解】解:设点C的坐标为(x,y),根据矩形的性质,AC、BD的中点为矩形的中心,所以,42x-+=1282-,4 2y-+=622+,解得x=8,y=13,所以,点C的坐标为(8,13).故答案为:(8,13).【点睛】本题考查了坐标与图形性质,主要利用了矩形的对角线互相平分且相等的性质,以及中点公式.16.x<1【解析】【分析】先移项,再合并同类项,最后系数化为1,即可得出答案.【详解】5x-3<3-x移项:5x+x<3+3合并:6x<6系数化为1:x<1∴解集为x<1【点睛】本题考查的是解一元一次不等式,解一元一次不等式的步骤为:去分母、去括号、移项、合并同类项、系数化为1.17.1【解析】【分析】根据定义新运算和等式列出方程组,即可求出a和b的值,然后根据定义新运算即可求出结论.【详解】解:根据定义新运算3※5=3a+5b= 11,4※7=4a+7b=15解得:a=2,b=1∴5※9=5×2+9×1=1故答案为:1.【点睛】此题考查的是定义新运算和解方程组,掌握定义新运算公式和方程组的解法是解决此题的关键.三、解答题18.(1)13次;(2)至少超过1次,购买A类年票比较合算.【解析】【分析】(1)根据题意,需分类讨论:若只选择购买B类年票,则能够进入该园林8060102(次);若只选择购买C类年票,则能够进入该园林8040133(次);若不购买年票,则能够进入该园林80810(次);通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C类年票;(2)设一年中进入该园林至少超过x 次时,购买A 类年票比较合算,根据题意,得60212040312010120x x x +>⎧⎪+>⎨⎪>⎩求得解集即可得解.【详解】(1)因为80<120,所以不可能选择A 类年票;若只选择购买B 类年票,则能够进入该园林8060102(次); 若只选择购买C 类年票,则能够进入该园林8040133(次); 若不购买年票,则能够进入该园林80810(次);所以,计划在一年中用80元花在该园林的门票上,通过计算发现:可使进入该园林的次数最多的购票方式是选择购买C 类年票,最多为13次.(2)设一年中进入该园林x 次时,购买A 类年票比较合算,根据题意,得60212040312010120x x x +>⎧⎪+>⎨⎪>⎩解得原不等式组的解集为x >1.答:一年中进入该园林至少超过1次时,购买A 类年票比较合算.【点睛】本题考查了一元一次不等式组的应用,要注意(1)用分类讨论的方法;(2)注意不等式组确定解集的规律:同大取大.19.(1)点P 的坐标为(0,3);(2)点P 的坐标为(﹣9,0);(3)点P 的坐标为(﹣3,2);(4)点P 的坐标为(﹣3,2).【解析】【分析】(1)让横坐标为0求得m 的值,代入点P 的坐标即可求解;(2)让纵坐标为0求得m 的值,代入点P 的坐标即可求解;(3)让纵坐标-横坐标=5得m 的值,代入点P 的坐标即可求解;(4)让纵坐标为2求得m 的值,代入点P 的坐标即可求解.【详解】(1)∵点P (3m-6,m+1)在y 轴上,∴3m-6=0,解得:m=2,∴m+1=1+2+1=3-,∴点P的坐标为:(0,3);(2)∵点P(3m-6,m+1)在x轴上,∴m+1=0,解得:m=-1,∴3m-6=3×(-1)-6=-9,∴P点坐标为:(-9,0).(3)∵点P(3m-6,m+1)的点P的纵坐标比横坐标大5,∴m+1-(3m-6)=5, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P点坐标为:(-3,2).(4) ∵点P(3m-6,m+1)在过点A(-1,2),并且与x轴平行的直线上,∴m+1=2, 解得:m=1,∴3m-6=3×1-6=-3,m+1=1+1=2,∴P点坐标为:(-3,2).20.(1)见解析;(2)见解析;(3)76(辆).【解析】【分析】(1)根据频数÷总数=频率进行计算即可:36÷200=0.18,200×0.39=78,200﹣10﹣36﹣78﹣20=56,56÷200=0.1.(2)结合(1)中的数据补全图形即可.(3)根据频数分布直方图可看出汽车时速不低于60千米的车的数量.【详解】解:(1)填表如下:总计200 1(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.21.(1)a=25;b=0.1;(2)见解析;(3)1200.【解析】【分析】第一问:因为知道a所对应的的频率,所以先找总数,2对应的频率为0.04,就用2÷0.04=50,所以总数有50人,50×0.5=25,所以a=25,5b===0.1050频数频率总数第二问:将6-8的25补上即可,答案见详解第三问:因为6小时以上的频率为0.50+0.10=0.60,2000×0.60=1200人【详解】解:(1)频数分布表中的a=__25__________,b=____0.1________;(2)补充直方图:(3)0.50+0.10=0.60,2000×0.60=1200人【点睛】本题第一问主要考查频数,频率和总数之间的关系,弄清这个就好做了,第二问主要补全图形,第三问利用频数,频率和总数之间的关系,求频数22.(1)分别为200元、150元;(2)A种型号电风扇37台时,采购金额不多于7500元【解析】【分析】(1)设A、B两种型号电风扇的销售单价分别为x元、y元,根据3台A型号4台B型号的电扇收入1200元,5台A型号6台B型号的电扇收入1900元,列方程组求解;(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50−a)台,根据金额不多余7500元,列不等式求解.【详解】解:(1)设A、B两种型号电风扇的销售单价分别为x元、y元,依题意得:341200561900x yx y+=⎧⎨+=⎩,解得:200{150xy==,答:A、B两种型号电风扇的销售单价分别为200元、150元.(2)设采购A种型号电风扇a台,则采购B种型号电风扇(50﹣a)台.依题意得:160a+120(50﹣a)≤7500,解得:a≤3712.答:超市最多采购A种型号电风扇37台.【点睛】此题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.23.(1)x=-149;(2)259xy=-⎧⎪⎨=⎪⎩【解析】【分析】(1)依次移项、合并同类项、系数化为1即可;(2)方程组利用加减消元法求出解即可.【详解】(1)12x﹣3=5x+4,化简得:x﹣6=10x+8,移项,合并同类项得,9x=﹣14,系数化为1得,x=﹣149,故方程的解为x=﹣149,(2)12323329412x yx y⎧+=⎪⎪⎨⎪-=⎪⎩①②,①化简得:3x+18y =4③,②化简得:12x ﹣9y =﹣29④,③×4﹣④得:81y =45,解得y =59, 把y =59带入③得:3x+10=4,解得x =﹣2, 故方程组的解为259x y =-⎧⎪⎨=⎪⎩【点睛】此题考查了一元一次方程和二元一次方程组的解,熟练掌握运算法则是解本题的关键.24.(1)平行的传递性;两直线平行,同旁内角互补;(2)不变【解析】【分析】(1)两直线平行性质的应用;(2)按照第(1)问的思路,过点E 作AB 的平行线,结论与第(1)问相同.【详解】(1)解:过点P 作PMAB . ∵AB CD ∥(已知).∴PM CD (平行的传递性),∴1180B ∠+∠=︒,2180C ∠+∠=︒(两直线平行,同旁内角互补). ∵12BPC ∠=∠+∠,∴360B C BPC ∠+∠+∠=︒.(2)如下图,过点E 作EF ∥AB∵EF ∥AB ,AB ∥CD∴EF ∥CD∴∠1+∠AEF=180°,∠2+∠FEC=180°∴∠1+∠AEF+∠2+∠FEC=360°∵∠AEC=90°∴∠AEF+∠FEC=270°∴∠1+∠2=90°∴不变,始终为90°.【点睛】本题考查了平行线的性质定理的应用,“M型”图案,我们常见的解题技巧即过中间点作两边的平行线,从而将各个角利用平行联系上进而推导数量关系.25.0【解析】【分析】将-3-1xy=⎧⎨=⎩代入方程组的第二个方程,将54xy=⎧⎨=⎩代入方程组的第一个方程,联立求出a与b的值,即可求出所求式子的值.【详解】解:∵-3-1xy=⎧⎨=⎩满足方程组中的②,将-3-1xy=⎧⎨=⎩代入②,得b=10;又∵54xy=⎧⎨=⎩满足方程组中的①,将54xy=⎧⎨=⎩代入①,得a=-1.所以a2 018+20191-10b⎛⎫⎪⎝⎭=(-1)2 018+20191-1010⎛⎫⨯⎪⎝⎭=0.【点睛】本题考查二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.若分式31x有意义,则x的取值范围是()A.x≠1B.x>1 C.x=1 D.x<12.不等式x﹣3≤3x+1的解集在数轴上表示如下,其中正确的是()A.B.C.D.3.已知平面内不同的两点A(a+2,4)和B(3,2a+2)到x轴的距离相等,则a的值为( ) A.﹣3 B.﹣5 C.1或﹣3 D.1或﹣54.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是( )A.5-313B.3C.313-5D.-35.下列长度的线段能组成三角形的是()A.2,3,5B.4,4,8C.14,6,7D.15,10,96.在这些汽车标识中,既是轴对称图形又是中心对称图形的是( )A.B.C.D.7.下面各调查中,最适合使用全面调查方式收集数据的是()A.了解一批节能灯的使用寿命B.了解某班全体同学的身高情况C.了解动物园全年的游客人数D.了解央视“新闻联播”的收视率8.如图,已知直线AB∥CD,∠C=125°,∠A=45°,那么∠E的大小为()A.70°B.80°C.90°D.100°9.如图,△ABC沿着BC方向平移3cm得到△DEF,已知BC=5cm,那么EC的长为()cm.A .2B .4C .6D .810.下列式子中,正确的是( )A .327-=-3B . 3.60.6-=-C .2(13)13-=-D .366=±二、填空题题11.我们知道下面的结论:若a m =a n (a >0,且a ≠2),则m =n .利用这个结论解决下列问题:设2m =3,2n =6,2p =2.现给出m ,n ,p 三者之间的三个关系式:①m+p =2n ,②m+n =2p ﹣3,③n 2﹣mp =2.其中正确的是___.(填编号)12.如图,在ABC ∆中,B 与C ∠的平分线交于点P .若130BPC ∠=︒,则A ∠=______.13.一个正数的两个平方根分别为3﹣a 和2a +1,则这个正数是_____.14.若a ﹣3b=2,3a ﹣b=6,则b ﹣a 的值为______.15.已知方程组24{221x y mx y m +=+=+的解满足10x y -<-<,则m 的取值范围为__________________.16.计算:()03=__________,212-⎛⎫= ⎪⎝⎭__________. 17.如图,△ABC 中,DE 垂直平分AC ,与AC 交于E ,与BC 交于D ,∠C =15°,∠BAD =60°.若CD =10,则AB 的长度为_____.三、解答题18.把如图所示的方格中的“风筝”图形向右平移5格,再向上平移3格,在方格中画出最后的图形.19.(6分)先化简,再求值:(2+a)(2-a)+a(a-5b)+3a 5b 3÷(-a 2b)2,其中a=3,b=12-. 20.(6分)某校七(1)班学生为了解某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理,已知该小区用水量不超过5t 的家庭占被调查家庭总数的百分比为12%,请根据以上信息解答下列问题:级别A B C D E F 月均用水量()x t05x <≤ 510x <≤ 1015x <≤ 1520x <≤ 2025x <≤ 2530x <≤ 频数(户) 6 12 m 10 42 (1)本次调查采用的方式是 (填“普查”或“抽样调查”),样本容量是 ; (2)补全频率分布直方图;(3)若将调查数据绘制成扇形统计图,则月均用水量“1520x <≤”的圆心角度数是 . 21.(6分)如图1,在三角形ABC 中,D 是BC 上一点,且∠CDA =∠CAB .(注:三角形内角和等于180°)(1)求证:∠CDA =∠DAB+∠DBA ;(2)如图2,MN 是经过点D 的一条直线,若直线MN 交AC 边于点E ,且∠CDE =∠CAD .求证:∠AED+∠EAB=180°;(3)将图2中的直线MN 绕点D 旋转,使它与射线AB 交于点P (点P 不与点A ,B 重合).在图3中画出直线MN ,并用等式表示∠CAD ,∠BDP ,∠BPD 这三个角之间的数量关系,不需证明.22.(8分)线段AB 在平面直角坐标系中的位置如图.(1)写出A、B两点的坐标.(2)在y轴上找点C,使BC长度最短,写出点C的坐标.(3)连接AC、BC,将三角形ABC平移,使点B与原点重合,画出平移后的三角形111A B C. 23.(8分)为了更好地保护环境,治污公司决定购买10台污水处理设备,现有A,B两种型号的设备,已知购买1台A型号设备比购买1台B型号设备多2万元,购买2台A型设备比购买3台B型号设备少6万元.求A,B两种型号设备的单价.24.(10分)观察下列等式:111122⨯=-,222233⨯=-,333344⨯=-,……(1)写出第四个等式是;(2)探索这些等式中的规律,直接写出第n个等式(用含n的等式表示);(3)试说明你的结论的正确性.25.(10分)如图,已知单位长度为1的方格中有个△ABC.(1)请画出△ABC向上平移4格,再向右平移2格所得的△A′B′C′;(2)请以点A为坐标原点建立平面直角坐标系(在图中画出),然后写出点B,点B′的坐标:B( , ),B′(, ).参考答案一、选择题(每题只有一个答案正确)1.A【解析】分析:分母为零,分式无意义;分母不为零,分式有意义.详解:根据题意得:x-1≠2,解得:x≠1.故选A.点睛:本题考查了的知识点为:分式有意义,分母不为2.2.B【解析】【分析】【详解】x﹣3≤3x+1,移项,得x-3x≤1+3,合并同类项,得-2x≤4,系数化为1,得x≥﹣2,其数轴上表示为:.故选B.3.A【解析】分析:根据点A(a+2,4)和B(3,2a+2)到x轴的距离相等,得到4=|2a+2|,即可解答.详解:∵点A(a+2,4)和B(3,2a+2)到x轴的距离相等,∴4=|2a+2|,a+2≠3,解得:a=−3,故选A.点睛:考查点的坐标的相关知识;用到的知识点为:到x轴和y轴的距离相等的点的横纵坐标相等或互为相反数.4.B【解析】因为21313=,2239,416,==所以3134<<,所以26133<<,所以613x=2,小数部分y=413,所以(2x13y=(41341316133=-=,故选B.点睛:本题主要考查无理数的整数部分和小数部分,解决本题的关键是熟练掌握无理数的估算方法求无理数整数部分和小数部分.5.D【解析】【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】根据三角形的三边关系,知A. 2+3=5,不能组成三角形;B. 4+4=8,不能组成三角形;C. 6+7=13<14,不能组成三角形;D. 9+10>15,能组成三角形。
四川省巴中市2020版七年级下学期数学期末试卷C卷

四川省巴中市2020版七年级下学期数学期末试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共40分)1. (4分) (2020七下·盐池期末) 若,则点M(,-7)在第()象限A . 第一象限B . 第二象限C . 第三象限D . 第四象限2. (4分)如图,直线a∥b,∠1=108°,则∠2的度数是()A . 72°B . 82°C . 92°D . 108°3. (4分) (2020九上·郑州期末) 下面几个抽样调查选取样本的方法合理的有()( 1 )为调查我国的人均国民收入状况,只在杭州市进行调查;(2)为估计杭州市中考数学成绩,抽取所有学号尾数是0和5中考学生进行调查;(3)为调查杭州市中学生的健康状况,共调查10名中学生的健康状况.A . 0个B . 1个C . 2个D . 3个4. (4分) (2017七下·无锡开学考) 如图,表示点D到AB所在直线的距离的是()A . 线段AD的长度B . 线段AE的长度C . 线段BE的长度D . 线段DE的长度5. (4分) (2020七下·沈阳期中) 如图,一条公路修到湖边时,需拐弯绕湖而过,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,则∠C 是()A . 120°B . 130°C . 140°D . 150°6. (4分) (2019七下·浦城期中) 下列说法中,正确是()A . 16的算术平方根是﹣4B . 25的平方根是5C . ﹣27的立方根是﹣3D . 1的立方根是±17. (4分)在实数数-5,-0.1,,中为无理数的是()A . -5B . -0.1C .D .8. (4分)(2020·顺义模拟) 《九章算术》是中国古代重要的数学著作,其中“盈不足术”记载:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数鸡价各几何?译文:今有人合伙买鸡,每人出九钱,会多出11钱;每人出6钱,又差16钱.问人数、买鸡的钱数各是多少?设人数为,买鸡的钱数为,可列方程组为()A .B .C .D .9. (4分) (2020七下·汕头期中) 下列命题中是假命题的是()A . 垂线段最短B . 两条直线被第三条直线所截,同位角相等C . 在同一平面内,垂直于同一直线的两条直线平行D . 不等式两边加同一个数,不等号的方向不变10. (4分) (2019七下·利辛期末) 观察下列等式:a1=n,a2=1- ,a3=1- ,…;根据其蕴含的规律可得()A . a2013=nB . a2013=C . a2013=D . a2013=二、填空题 (共6题;共32分)11. (12分) (2019七下·顺德期末) 计算:(﹣2)2×23=________.12. (4分)(2017·天桥模拟) 不等式3x﹣2>2x﹣1的解集是________.13. (4分)(2019·南县模拟) 如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=________.14. (4分)对某班同学的身高(单位:cm)进行统计,频数分布表中165.5~170.5cm这一组学生人数是12,所占百分比为25%,则该班共有________名同学.15. (4分)清明节期间,七(1)班全体同学分成若干小组到革命传统教育基地缅怀先烈.若每小组7人,则余下3人;若每小组8人,则少5人,由此可知该班共有________ 名同学.16. (4分) (2020九下·贵港模拟) 如图,已知反比例函数y= (x>0)与正比例函数y=x(x≥0)的图象,点A(1,4),点A'(4,b)与点B'均在反比例函数的图象上,点B在直线y=x上,四边形AA'B'B是平行四边形,则B点的坐标为________.三、解答题 (共9题;共78分)17. (8分) (2019七下·上饶期末) 计算:(1)(2)解方程组18. (8分)解不等式组:.19. (8分)如图,已知∠B=∠C,∠B+∠D=180°,指出图中的平行线,并说明理由.20. (8.0分)(2020·深圳模拟) 复课返校后,为了让同学们进一步了解“新型冠状病毒”的防控知识,某学校组织了一次关于“新型冠状病毒”的防控知识比赛,从问卷中随机抽查了一部分,对调查结果进行了分组统计,并制作了如下表格与条形统计图:分组结果频数频率A.完全掌握300.3B.比较清楚50C.不怎么清楚0.15D.不清楚50.05请根据上图完成下面题目:(1)总人数为________人, ________, ________;(2)请你补全条形统计图;(3)若全校有2700人,请你估算一下全校对“新型冠状病毒”的防控知识“完全掌握”的人数有多少.21. (8分)在边长为1的小正方形网格中,△ABC的顶点均在格点上,(1) B点关于y轴的对称点坐标为________;(2)将△ABC向右平移3个单位长度得到△A1B1C1 ,请画出△A1B1C1;(3)在(2)的条件下,A1的坐标为________;(4)求△ABC的面积.22. (8分) (2016九上·端州期末) 某汽车生产企业产量和效益逐年增加.据统计,2009年某种品牌汽车的年产量为6.4万辆,到2011年,该品牌汽车的年产量达到10万辆.若该品牌汽车年产量的年平均增长率从2009年开始五年内保持不变,求该品牌汽车年平均增长率和2012年的年产量.23. (9.0分)(2018·德州) 为积极响应新旧动能转换.提高公司经济效益.某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价 (单位:万元)成一次函数关系.(1)求年销售量与销售单价的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润.则该设备的销售单价应是多少万元?24. (10分) (2017七下·萧山期中) 如图所示,一个四边形纸片ABCD,∠B=∠D=90°,把纸片按如图所示折叠,使点B落在AD边上的B′点,AE是折痕.(1)试判断B′E与DC的位置关系,并说明理由;(2)如果∠C=128°,求∠AEB的度数.25. (11.0分)(2018·奉贤模拟) 已知抛物线y=﹣2x2﹣4x+1.(1)求这个抛物线的对称轴和顶点坐标;(2)将这个抛物线平移,使顶点移到点P(2,0)的位置,写出所得新抛物线的表达式和平移的过程.参考答案一、选择题 (共10题;共40分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共6题;共32分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:三、解答题 (共9题;共78分)答案:17-1、答案:17-2、考点:解析:答案:18-1、考点:解析:答案:19-1、考点:解析:答案:20-1、答案:20-2、答案:20-3、考点:解析:答案:21-1、答案:21-2、答案:21-3、答案:21-4、考点:解析:答案:22-1、考点:解析:答案:23-1、答案:23-2、考点:解析:答案:24-1、答案:24-2、考点:解析:答案:25-1、答案:25-2、考点:解析:。
2019-2020学年四川省巴中市七年级第二学期期末教学质量检测数学试题含解析

B、∠1与∠3互为对顶角,因而相等,正确;
C、∠AOD与∠1互为邻补角,正确;
D、∵∠1+75°30′=15°30′+75°30′=91°,
∴∠1的余角等于75°30′,不成立.
故选D.
【点睛】
本题主要考查邻补角以及对顶角的概念,和为180°的两角互补,和为90°的两角互余.
故选D.
【点睛】
本题考查了坐标与位置,找出各点在平面直角坐标系中的具体位置是解题的关键.
【详解】
∵
∴
∴估算得
∴
故与 的值最接近的是3
故选A
【点睛】
本题考查了二次根式的估算,熟练掌握估算的相关知识点是解题关键.
8.小何所在年级准备开展参观北京故宫博物院的实践活动,他和他选修的“博物馆课程”小组成员共同为同学们推荐了一条“古建之美”线路:行走在对公众开放的古老城墙之上,观“营造之道——紫禁城建筑艺术展”,赏数字影视作品《角楼》,品“古建中的数学之美”.在故宫导览图中建立如图所示的平面直角坐标系 ,午门的坐标为 ,那么以下关于古建馆的这条参观线路“从午门途经东南角楼到达东华门展厅”的说法中,正确的是()
A.沿 到达东华门展厅
B.沿 到达东华门展厅
C.沿 到达东华门展厅需要走4个单位长度
D.沿 到达东华门展厅需要走4个单位长度
【答案】D
【解析】
【分析】
先确定各点的具体坐标,再根据参观线路求解即可.
【详解】
从平面直角坐标系可确定“东南角楼”的坐标为(3,-3),“东华门展厅”的坐标为(3,-2),
所以,从午门途经东南角楼到达东华门展厅的参观线路为:沿 到达东华门展厅需要走4个单位长度.
四川省巴中市2020年七年级第二学期期末检测数学试题含解析

四川省巴中市2020年七年级第二学期期末检测数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题只有一个答案正确)1.如图所示的立体图形,从上面看到的图形是( )A .B .C .D .【答案】C【解析】【分析】 根据从上边看得到的图形是俯视图,可得答案.【详解】解:从上边看得到从左往右3列正方形的个数依次为:第一列是二个小正方形,第二列是一个小正方形,第三列是一个小正方形.故选:C .【点睛】本题考查简单组合体的三视图,从上边看得到的图形是俯视图.2.化简2211444a a a a a --÷-+-,其结果是( ) A .22a a -+ B .22a a +- C .22a a +- D .22aa 【答案】C【解析】原式=()()()2221·12a a a a a +----=22a a+-, 故选C.3.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为( )A.75°B.65°C.60°D.45°【答案】A【解析】【分析】根据直角三角板的度数和三角形内角和定理可知∠2度数,再根据对顶角相等可知∠3度数,最后利用三角形外角定理即可知∠1度数.【详解】如图,根据三角板的角度特征可知∠2=45°,因为∠3与∠2是对顶角,所以∠3=45°,根据三角形外角和定理可知∠1=∠3+30°=45°+30°=75°,故答案选A.【点睛】本题考查的是与三角形有关的角的问题,熟知三角形内角和定理和外角定理是解题的关键.4.如果x的立方根是3,那么x的值为()A.3 B.9 C33D.27【答案】D【解析】【分析】根据立方根的定义求出即可.【详解】解:∵x的立方根是3,∴x=33=27故选:D.【点睛】本题考查了立方根的定义,能熟记立方根的定义是解此题的关键.5.计算(-2)2019+(-2)2018的值是()A.-2 B.201822C.2 D.-2018【答案】D【解析】【分析】直接利用提取公因式法分解因式进而计算得出答案.【详解】解:(-2)2019+(-2)2018=(-2)2018×(-2+1)=-1.故选:D.【点睛】此题考查提取公因式法分解因式,正确找出公因式是解题关键.6.为了解全校学生的上学方式,在全校1000名学生中随机抽取了150名学生进行调查.下列说法正确的是()A.总体是全校学生B.样本容量是1000C.个体是每名学生D.样本是随机抽取的150名学生的上学方式【答案】D【解析】【分析】直接利用总体、个体、样本容量、样本的定义分别分析得出答案。
[合集3份试卷]2020四川省巴中市初一下学期期末数学教学质量检测试题
![[合集3份试卷]2020四川省巴中市初一下学期期末数学教学质量检测试题](https://img.taocdn.com/s3/m/af1b86dda45177232f60a2e0.png)
2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.10m =2,10n =3,则103m+2n ﹣1的值为( )A .7B .7.1C .7.2D .7.42.扬州某中学七年级一班 40 名同学第二次为四川灾区捐款,共捐款 2000 元,捐款情况如下表: 捐款(元)20 40 50 100 人数 10 8表格中捐款 40 元和 50 元的人数不小心被墨水污染已看不清楚、若设捐款 40 元的有 x 名同学,捐款 50 元的有y 名同学,根据题意,可得方程组( )A .B .C .D .3.甲、乙两人去买东西,他们所带钱数的和为120元,甲花去30元,乙花去20元,两人余下的钱数之比为3:2,则甲、乙两人所带的钱数分别是 ( )A .70,49B .65,48C .72,48D .73,474.当12x ≤≤时,20ax +>,则a 的取值范围是( )A .1a >-B .2a >-C .0a >D .1a >-且0a ≠5.已知点,,且,则的值为( ) A .1 B .1或5 C .5或-1 D .不能确定 6.在平面直角坐标系中,点P 在x 轴上方,y 轴左边,且到x 轴距离为5,到y 轴距离为1,则点P 的坐标为( )A .()1,5-B .()5,1C .()1,5-D .()5,1-7.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( )A .62B .31C .17D .148.不等式组21x x >-⎧⎨<⎩的解集在数轴上表示正确的是A .B .C .D . 9.周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A .小丽从家到达公园共用时间20分钟B .公园离小丽家的距离为2000米C .小丽在便利店时间为15分钟D .便利店离小丽家的距离为1000米10.分式方程的解为( ). A . B . C .无解 D .二、填空题题11.如图,AB CD ∥,78B ∠=︒,32D ∠=︒,求F ∠=________.12.如图是一副普通扑克牌中的13张黑桃牌,将它们洗匀后正面向下放在桌子上,从中任意抽取一张,则抽出的牌点数小于9的概率为_________.13.一个不透明的袋子中装有3个白球和若干个黑球,它们除颜色外,完全相同.从袋子中随机摸出一球,记下颜色并放回,重复该试验多次,发现得到白球的频率稳定在0.6,则可判断袋子中黑球的个数为______. 14.如图,点 P 是∠AOB 内部一定点(1)若∠AOB =50°,作点 P 关于 OA 的对称点 P 1,作点 P 关于 OB 的对称点 P 2,连 OP 1、OP 2,则∠P 1OP 2=___.(2)若∠AOB =α,点 C 、D 分别在射线 OA 、OB 上移动,当△PCD 的周长最小时,则∠CPD =___(用 α 的代数式表示).15.环形跑道400米,小明跑步每秒行9米,爸爸骑车每秒行16米,两人同时同地反向而行,经过______ 秒两人第一次相遇?16.如图,梯子的各条横档互相平行,若1220∠=∠+︒,则3∠=__________.17.如图,直线12l l //,120︒∠=,则23∠+∠=______.三、解答题18.有大小两种盛酒的桶,已知10个大桶加上2个小桶可以盛酒6斛(斛,音h ú́́,是古代的一种容量单位),3个大桶加上15个小桶也可以盛酒6斛.(1)求1个大桶可盛酒多少斛?(2)分析2个大桶加上3个小桶可以盛酒2斛吗?19.(6分)已知ABC ∆中,三边长a 、b 、c ,且满足2a b =+,1b c =+.(1)试说明b 一定大于3;(2)若这个三角形周长为22,求a 、b 、c .20.(6分)(1)阅读下面的材料并把解答过程补充完整.问题:在关于x ,y 的二元一次方程组2x y x y a-=⎧⎨+=⎩中,1x >,0y <,求a 的取值范围. 分析:在关于x ,y 的二元一次方程组中,利用参数a 的代数式表示x ,y ,然后根据1x >,0y <列出关于参数a 的不等式组即可求得a的取值范围.解:由2x y x y a -=⎧⎨+=⎩,解得2222a x a y +⎧=⎪⎪⎨-⎪=⎪⎩,又因为1x >,0y <,所以212202a a +⎧>⎪⎪⎨-⎪<⎪⎩解得____________. (2)请你按照上述方法,完成下列问题:①已知4x y -=,且3x >,1y <,求x y +的取值范围;②已知a b m -=,在关于x ,y 的二元一次方程组21258x y x y a -=-⎧⎨+=-⎩中,0x <,0y >,请直接写出+a b 的取值范围(结果用含m 的式子表示)____________.21.(6分)某水果商从批发市场用8000元购进了大樱桃和小樱桃各200千克,大樱桃的进价比小樱桃的进价每千克多20元,大樱桃售价为每千克40元,小樱桃售价为每千克16元.(1)大樱桃和小樱桃的进价分别是每千克多少元?销售完后,该水果商共赚了多少元钱?(2)该水果商第二次仍用8000元钱从批发市场购进了大樱桃和小樱桃各200千克,进价不变,但在运输过程中小樱桃损耗了20%.若小樱桃的售价不变,要想让第二次赚的钱不少于第一次所赚钱的90%,大樱桃的售价最少应为多少?22.(8分)解不等式组131722523(1)x x x x ⎧-≤-⎪⎨⎪+>-⎩,并把其解集表示在数轴上.23.(8分)某校七年级400名学生到郊外参加植树活动,已知用2辆小客车和1辆大客车每次可运送学生85人,用3辆小客车和2辆大客车每次可运送学生150人.(1)每辆小客车和每辆大客车各能坐多少名学生?(2)若计划租小客车m 辆,大客车n 辆,一次送完,且恰好每辆车都坐满:①请你设计出所有的租车方案;②若小客车每辆租金300元,大客车每辆租金500元,请选出最省线的租车方案,并求出最少租金.24.(10分)解不等式组3(2)41213x x x x --≥-⎧⎪+⎨>-⎪⎩,并把它们的解集在数轴上表示出来. 25.(10分)为开展全科大阅读活动,学校花费了3400元在书店购买了40套古典文学书籍和20套现代文学书籍,每套现代文学书籍比每套古典文学书籍多花20元.(1)求每套古典文学习书籍和现代文学书籍分别是多少元?(2)为满足学生的阅读需求,学校计划用不超过2500元再次购买古典文学和现代文学书籍共40套,经市场调查得知,每套古典文学书籍价格上浮了20%,每套现代文学书籍价格下调了10%,学校最多能购买多少套现代文学书籍?参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】利用积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘把代数式化简,再把已知代入求值即可【详解】∵10m=1,10n=3,∴103m+1n﹣1=103m×101n÷10=(10m)3×(10n)1÷10=13×31÷10=7.1.故选C.【点睛】此题考查幂的乘方与积的乘方,掌握运算法则是解题关键2.C【解析】【分析】两个定量:捐40元和50元的总人数,捐40元和50元的总钱数.等量关系为:①捐40元和50元的总人数=40-10-1名同学;②捐40元和50元的总钱数=2000-20×10-100×1.【详解】解:根据七年级一班有40名同学,得方程x+y=40-10-1,即x+y=22;根据题意,得方程40x+50y=2000-20×10-100×1,40x+50y=2.列方程组为.故选:C.【点睛】读懂题意,找到捐40元和50元的总人数和捐40元和50元的总钱数列出方式是解答本题的关键.3.C【解析】【分析】设甲带的钱数为x元,则乙带的钱数为(120-x)元,甲花去30元,乙花去20元后两人剩下的钱数分别为(x-30)元、(120-x-20)元,余下的钱数比为3:2即(x-30):(120-x-20) =3:2,求解x【详解】设甲带的钱数为x元,则乙带的钱数为(120-x)元,(x-30):(120-x-20) =3:2,解得x=72,120-x=48故选:C.【点睛】此题考查有理数的减法,解题关键在于根据题意列出方程.4.A【解析】【分析】【详解】解:当x=1时,a+2>0,解得:a>﹣2;当x=2,2a+2>0,解得:a>﹣1,∴a的取值范围为:a>﹣1.故选A.【点睛】本土考查不等式的性质.5.B【解析】【分析】因为点M和点N的纵坐标相同,所以这两点间的距离也就是两点的横坐标间的距离,点M,N间的距离即为,由题意得,解之即可.【详解】解:因为点M和点N的纵坐标相同,所以由题意得,即或解得或故选:B【点睛】本题考查了平面直角坐标系内点坐标的应用,正确理解平面直角坐标系中点之间的距离的含义是解题的关键.求平面直角坐标系中点之间距离的方法:横坐标相同时,点与点之间的距离为;纵坐标相同时,点与点之间的距离为;横纵坐标都不同时,可构造直角三角形,用勾股定理求点与点之间的距离,为.6.C【解析】【分析】先判断出点P在第二象限,再根据点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在x轴上方,y轴上的左边,∴点P在第二象限,∵点P到x轴的距离为5,到y轴的距离是1,∴点P的横坐标为-1,纵坐标为5,∴点P的坐标为(-1,5).故选:C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.7.D【解析】【分析】根据∠DAE=∠DAC-∠CAE,只要求出∠DAC,∠CAE即可.【详解】解:∵∠BAC=180°-∠B-∠C,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠DAC=12∠BAC=31°,∵AE⊥BC,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:D.【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.C【解析】【分析】先求出的解集,然后在数轴上把解集表示出来即可,不等式组的解集在数轴上表示时,空心圈表示不包含该点,实心点表示包含该点.【详解】∵21 xx>-⎧⎨<⎩∴解集是-2<x<1,在数轴上可表示为:.故选C.【点睛】本题考查了不等式组的解法,先分别解两个不等式,求出它们的解集,再求两个不等式解集的公共部分.不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.9.C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.10.D【解析】试题分析:解分式方程的一般步骤:先去分母化分式方程为整式方程,再解这个整式方程即可,注意解分式方程最后一步要写检验.两边同乘得解这个方程得经检验是原方程的解故选D.考点:解分式方程点评:解方程是中考必考题,一般难度不大,学生要特别慎重,尽量不在计算上失分.二、填空题题11.46°【解析】【分析】根据平行线的性质可得∠B=∠1,再根据三角形外角的性质可得∠F=∠1-∠D,进而可得答案.【详解】∵AB∥CD,∴∠B=∠1=78°,∵∠D=32°,∴∠F=∠1-∠D=78°-32°=46°.【点睛】此题主要考查了平行线的性质,以及三角形外角的性质,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.12.8 13【解析】分析:由题意可知:在13张扑克牌中,点数小于9的共有8张,由此即可求出所求概率了. 详解:∵在13张扑克牌中,点数小于9的共有8张,∴从中任抽一张,抽出的扑克牌的点数小于9的概率为:P(点数小于9)=8 13.故答案为:8 13.点睛:知道“13张黑桃牌里点数小于9的有8张”是解答本题的关键.13.2【解析】【分析】由摸到白球的频率稳定在0.6附近得出口袋中得到白色球的概率,进而求出黑球个数即可.【详解】解:设黑球个数为:x个,∵摸到白色球的频率稳定在0.6左右,∴口袋中得到白色球的概率为0.6,∴30.6 3x=+,解得:x=2,故黑球的个数为2个.故答案为:2.【点睛】此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.14.100°180°-2α【解析】【分析】(1)根据对称性证明∠P1OP2=2∠AOB,即可解决问题;(2)如图,作点P关于OA的对称点P1,作点P关于OB的对称点P2,连P1P2交OA于C,交OB于D,连接PC,PD,此时△PCD的周长最小.利用(1)中结论,根据对称性以及三角形内角和定理即可解决问题;【详解】(1)如图,由对称性可知:∠AOP=∠AOP1,∠POB=∠BOP2,∴∠P1OP2=2∠AOB=100°,故答案为100°.(2)如图,作点P 关于OA 的对称点P 1,作点P 关于OB 的对称点P 2,连P 1P 2交OA 于C ,交OB 于D ,连接PC ,PD ,此时△PCD 的周长最小.根据对称性可知:∠OP 1C=∠OPC ,∠OP 2D=∠OPD ,∠P 1OP 2=2∠AOB=2α.∴∠CPD=∠OP 1C+∠OP 2D=180°-2α.故答案为180°-2α.【点睛】本题考查作图-最短问题、三角形的内角和定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.15.1【解析】【分析】经过x 秒两人首次相遇,根据路程=速度×时间,即可得出关于x 的一元一次方程,解之即可得出结论.【详解】解:设经过x 秒两人首次相遇,根据题意得:1x+9x=400,解得:x=1,答:经过1秒两人首次相遇,故答案为1.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.16.100︒【解析】【分析】根据平行线的性质进行计算即可得到答案.【详解】由题意可知AB CD ∥,所以根据平行线的性质可知13∠=∠,因为1220∠=∠+︒,所以3220∠=∠+︒,而3+2=180∠∠︒,则可得3180-320∠=︒∠+︒,故3100∠=︒.【点睛】本题考查平行线的性质,解题的关键是掌握平行线的性质.17.200°【解析】【分析】如图,过∠2的顶点作l2的平行线l,则l∥l1∥l2,由平行线的性质得出∠4=∠1=20°,∠BAC+∠3=180°,即可得出∠2+∠3=200°.【详解】如图,过∠2的顶点作l2的平行线l,则l∥l1∥l2,∴∠4=∠1=20°,∠BAC+∠3=180°,∴∠2+∠3=180°+20°=200°;故答案为200°.【点睛】本题考查了平行线性质,正确作出辅助线,利用平行线的性质是解决问题的关键.三、解答题18.(1)1个大桶可盛酒1324斛;(2)不可以.【解析】【分析】(1)设1个大桶可盛酒x斛,1个小桶可盛酒y斛,根据“10个大桶加上2个小桶可以盛酒6斛,3个大桶加上15个小桶也可以盛酒6斛”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)由(1)的结论可求出2个大桶加上3个小桶可盛酒的斛数,将其与2比较后即可得出结论.【详解】(1)设1个大桶可盛酒x斛,1个小桶可盛酒y斛,依题意,得:10263156x yx y+=⎧⎨+=⎩,解得:1324724xy⎧=⎪⎪⎨⎪=⎪⎩.答:1个大桶可盛酒1324斛.(2)1324⨯2724+⨯34724=(斛).∵4724<2,∴2个大桶加上3个小桶不可以盛酒2斛.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.(1)见解析;(2) a=9,b=7,c=6.【解析】【分析】(1)由题设条件,本题要结合三角形的性质两边之和大于第三边及题设中的不等式a-c<b,b<a+c,利用不等式的性质进行变形得到b的取值范围;(2)根据三角形的周长为22,再利用三角形三边关系求解即可.【详解】解:(1)∵a = b+2,b = c+1.∴c=b-1由a-c<b<a+c得3<b<2b+1,∴b一定大于3;.(2)由a+b+c=b+2+b+b-1=22解得b=7,∴a=9,c=6,【点睛】本题考查了不等式的综合,熟练掌握不等式的性质,能灵活运用不等式的性质进行变形,求出要求的范围是解题的关键,对题设中隐含条件的挖掘对解题的完整性很重要,谨记.20.(1)0<a<2;(2)①2<x+y<6;②3−m<a+b<4−m.【解析】【分析】(1)先求出不等式组中每一个不等式的解集,再求出它们的公共部分即可;(2)①根据(1)阅读中的方法解题即可求解;②解方程组21258x yx y a-=-⎧⎨+=-⎩得:223x ay a=-⎧⎨=-⎩,根据x<0,y>0可得1.5<a<2,进一步得到a+b的取值范围.【详解】(1)21222aa+⎧>⎪⎪⎨-⎪<⎪⎩①②,∵解不等式①得:a>0,解不等式②得:a<2,∴不等式组的解集为0<a<2,故答案为:0<a<2;(2)①设x+y=a,则4. x yx y a-=⎧⎨+=⎩,解得:4242axay+⎧=⎪⎪⎨-⎪=⎪⎩,∵x>3,y<1,∴432412aa+⎧>⎪⎪⎨-⎪<⎪⎩,解得:2<a<6,即2<x+y<6;②解方程组21258x yx y a-=-⎧⎨+=-⎩得:223x ay a=-⎧⎨=-⎩,∵x<0,y>0,∴20 230 aa-<⎧⎨->⎩,解得:1.5<a<2,∵a−b=m,3−m<a+b<4−m.故答案为:3−m<a+b<4−m.【点睛】此题考查二元一次方程组的解,一元一次不等式组的解,解题关键在于掌握运算法则.21.(1)小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,销售完后,该水果商共赚了3200元;(2)41.6元/千克.【解析】【分析】(1)根据用8000元购进了大樱桃和小樱桃各200千克,以及大樱桃的进价比小樱桃的进价每千克多20元,分别得出方程求出答案;(2)根据让第二次赚的钱不少于第一次所赚钱的90%,得出不等式求出答案.【详解】(1)设小樱桃的进价为每千克x元,大樱桃的进价为每千克y元,根据题意可得:200200800020x yy x+=⎧⎨-=⎩,解得:1030xy=⎧⎨=⎩,小樱桃的进价为每千克10元,大樱桃的进价为每千克30元,200×[(40﹣30)+(16﹣10)]=3200(元),∴销售完后,该水果商共赚了3200元;(2)设大樱桃的售价为a元/千克,(1﹣20%)×200×16+200a﹣8000≥3200×90%,解得:a≥41.6,答:大樱桃的售价最少应为41.6元/千克.考点:1、一元一次不等式的应用;2、二元一次方程组的应用22. 2.54x-<≤【解析】【分析】分别求出不等式组中两不等式的解集,确定出不等式组的解集,表示在数轴上即可.【详解】131722523(1)x xx x⎧--⎪⎨⎪+>-⎩①②解不等式①,得4x≤解不等式②,得 2.5x>-,把不等式的解集在数轴上表示为:所以原不等式组的解集为{| 2.54}x x-<≤.【点睛】此题考查在数轴上表示不等式的解集,解一元一次不等式组,解题关键在于掌握运算法则23.(1)每辆小客车能坐20人,每辆大客车能坐45人;(2)①租车方案有三种:方案一:小客车20辆、大客车0辆;方案二:小客车11辆,大客车4辆;方案三:小客车2辆,大客车8辆;②最省钱的是租车方案三,最少租金是4600元.【解析】【分析】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人根据题意可得等量关系:2辆小客车座的人数+1辆大客车座的人数=85人;3辆小客车座的人数+2辆大客车座的人数=150人,根据等量关系列出方程组,再解即可(2)①根据题意可得小客车m 辆运的人数+大客车n 辆运的人数=400,然后求出整数解即可;②根据①所得方案和小客车每辆租金300元,大客车每辆租金500元分别计算出租金即可【详解】(1)设每辆小客车能坐x 人,每辆大客车能坐y 人,据题意;28532150x y x y +=⎧⎨+=⎩, 解得:2045x y =⎧⎨=⎩, 答:每辆小客车能坐20人,每辆大客车能坐45人;(2)①由题意得:2045400m n +=, ∴8049m n -=, ∵m 、n 为非负整数, ∴200m n =⎧⎨=⎩或114m n =⎧⎨=⎩或28m n =⎧⎨=⎩, ∴租车方案有三种:方案一:小客车20辆、大客车0辆,方案二:小客车11辆,大客车4辆,方案三:小客车2辆,大客车8辆;②方案一租金:300206000⨯=(元),方案二租金:3001150045300⨯+⨯=(元),方案三租金:300250084600⨯+⨯=(元),∴最省钱的是租车方案三,最少租金是4600元.【点睛】此题考查二元一次方程组的应用和二元一次方程的应用,解题关键在于列出方程24.x ≤1.【解析】分析:先分别解两个不等式得到x≥1和x <4,再根据大于小的小于大的取中间确定不等式组的解集,然后用数轴表示解集.详解:()3241213x xxx⎧--≥-⎪⎨+>-⎪⎩①②解不等式①,得1x≤解不等式②,得x<4所以原不等式组的解集是1x≤,将其解集表示在数轴上如下:点睛:本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.也考查了在数轴上表示不等式的解集.25.(1)每套古典文学书籍是50元,现代文学书籍是70元;(2)学校最多能购买33套现代文学书籍. 【解析】【分析】(1)首先设每套古典文学习书籍是x元,则现代文学书籍是20x+元,根据题意可列出一元一次方程,即可得解;(2)首先设学校购买了x套现代文学书籍,则古典文学书籍是()40x-套,根据题意可列出不等式,解得即可.【详解】解:(1)设每套古典文学习书籍是x元,则现代文学书籍是20x+元,根据题意可得,()4020203400x x++⨯=解得50x=答:每套古典文学书籍是50元,现代文学书籍是70元.(2)设学校购买了x套现代文学书籍,则古典文学书籍是()40x-套,根据题意可得,()()()50120%4070110%2500x x⨯+⨯-+⨯-⨯≤⎡⎤⎡⎤⎣⎦⎣⎦解得1003x≤x为整数,则最大为33答:学校最多能购买33套现代文学书籍.【点睛】此题主要考查一元一次方程的应用和不等式的应用,熟练运用,找出关系式,即可解题.2019-2020学年初一下学期期末模拟数学试卷一、选择题(每题只有一个答案正确)1.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D ,C 两点分别落在点D ′,C ′的位置,∠DEF =∠D ′EF ,并利用量角器量得∠EFB =66°,则∠AED ′的度数为( )A .66°B .132°C .48°D .38°2.某种服装的进价为240元,出售时标价为320元,由于换季,商店准备打折销售,但要保持利润不低于20%,那么至多打( )A .6折B .7折C .8折D .9折3.下列调查中,最适合采用全面调查(普查)的是( )A .了解一批IPAD 的使用寿命B .了解某鱼塘中鱼的数量C .了解某班学生对国家“一带一路”战略的知晓率D .了解电视栏目《朗读者》的收视率4.若关于x 的不等式组3122x m x x ->⎧⎨->-⎩无解,则m 的取值范围是( ) A .2m >- B .2m ≥-C .2m <-D .2m ≤- 52时只能显示1.41421356237十三位(包括小数点),现在想知道7后面的数字是什么,可以在这个计算器中计算下面哪一个值( )A .2B .102-1)C .2D 2-16.下列说法中错误..的个数是( ) (1)过一点有且只有一条直线与已知直线平行(2)过一点有且只有一条直线与已知直线垂直(3)在同一平面内,两条直线的位置关系只有相交、平行两种(4)不相交的两条直线叫做平行线(5)有公共顶点且有一条公共边的两个角互为邻补角.A .1个B .2个C .3个D .4个7.下列命题是真命题的是( )A .相等的角是对顶角B .若22x y =,则x y =C .同角的余角相等D .两直线平行,同旁内角相等 8.如图,若∠1=70°,∠2=110°,∠3=70°,则有( )A .a ∥bB .c ∥dC .a ⊥dD .b ⊥c9.平方根和立方根都是本身的数是( )A .0B .1C .±1D .0和±110.,A B 两地的铁路长210千米,动车的平均速度是原来火车的平均速度的1.8倍,这样从A 地到B 地的行驶时间缩短了1.5小时,设原来火车的平均速度为x 千米/时,则下列方程正确的是( )A .2102101.8 1.5x x += B .2102101.8 1.4x x -= C .2102101.5 1.8x x += D .2102101.5 1.8x x -= 二、填空题题 11.如图,将一张长方形纸条沿某条直线折叠,若∠1=118°,则∠2等于_____.12.如图,将一个长方形纸条折成如图所示的形状,若已知∠2=65°,则∠1=______.13.《孙子算经》是中国古代重要的数学著作,现在的传本共三卷,卷上叙述算筹记数的纵横相间制度和筹算乘除法;卷中举例说明筹算分数算法和筹算开平方法;卷下记录算题,不但提供了答案,而且还给出了解法,其中记载:“今有木、不知长短,引绳度之,余绳四尺五寸,屈绳量之,不足一尺,木长几何?”译文:“用一根绳子量一根长木,绳子还剩余4.5尺,将绳子对折再量长木,长木还到余1尺,问木长多少尺?”设绳长x 尺,木长y 尺.可列方程组为__________.14.当2225x kx ++是一个完全平方式,则k 的值是______.15.已知57x y =⎧⎨=⎩是二元一次方程 kx -2y -1=0 的一组解,则 k = . 16.如图,△DEF 是由△ABC 通过平移得到,且点B ,E ,C ,F 在同一条直线上.若BF=14,EC=1.则BE 的长度是 .17.如果22(1)25x m x +-+是一个完全平方式,那么m 的值为________.三、解答题18.如图(1),AD ,BC 交于O 点,根据“三角形内角和是180°”,不难得出两个三角形中的角存在以下关系:①∠DOC =∠AOB ;②∠D+∠C =∠A+∠B .(提出问题)分别作出∠BAD 和∠BCD 的平分线,两条角平分线交于点E ,如图(2),∠E 与∠D 、∠B 之间是否存在某种数量关系呢?(解决问题)为了解决上面的问题,我们先从几个特殊情况开始探究.已知∠BAD 的平分线与∠BCD 的平分线交于点E .(1)如图(3),若AB ∥CD ,∠D =30°,∠B =10°,则∠E = .(2)如图(1),若AB 不平行CD ,∠D =30°,∠B =50°,则∠E 的度数是多少呢?小明是这样思考的,请你帮他完成推理过程:易证∠D+∠1=∠E+∠3,∠B+∠1=∠E+∠2,∴∠D+∠1+∠B+∠1= ,∵CE 、AE 分别是∠BCD 、∠BAD 的平分线,∴∠1=∠2,∠3=∠1.∴2∠E = ,又∵∠D =30°,∠B =50°,∴∠E = 度.(3)在总结前两问的基础上,借助图(2),直接写出∠E 与∠D 、∠B 之间的数量关系是: . (类比应用)如图(5),∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E .已知:∠D =m °、∠B =n °,(m <n )求:∠E 的度数.19.(6分)在解方程组2628mx yx ny+=⎧⎨+=⎩时,由于粗心,小军看错了方程组中的n,得解为7323xy⎧=⎪⎪⎨⎪=⎪⎩,小红看错了方程组中的m,得解为24xy=-⎧⎨=⎩.(1)则m,n的值分别是多少?(2)正确的解应该是怎样的?20.(6分)如图,在等边三角形ABC中,D E,分别是边AB AC、上的点,将ADE沿DE折叠,点A 恰好落在BC边上的点F处,若2,FC BF=+问:FEC比DFB△的周长大多少?21.(6分)综合与探究数学课上,老师让同学们利用三角形纸片进行操作活动,探究有关线段之间的关系.问题情境:如图1,三角形纸片ABC中,∠ACB=90°,AC=BC.将点C放在直线l上,点A,B位于直线l的同侧,过点A作AD⊥l于点D.初步探究:(1)在图1的直线l上取点E,使BE=BC,得到图2.猜想线段CE与AD的数量关系,并说明理由;变式拓展:(2)小颖又拿了一张三角形纸片MPN继续进行拼图操作,其中∠MPN=90°,MP=NP.小颖在图1 的基础上,将三角形纸片MPN的顶点P放在直线l上,点M与点B重合,过点N作NH⊥l于点H.请从下面A,B 两题中任选一题作答,我选择_____题.A.如图3,当点N与点M在直线l的异侧时,探究此时线段CP,AD,NH之间的数量关系,并说明理由.B.如图4,当点N与点M在直线l的同侧,且点P在线段CD的中点时,探究此时线段CD,AD,NH之间的数量关系,并说明理由.22.(8分)如图,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在BC边上,且点E在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.23.(8分)计算:(x+3)(x﹣1)﹣(x﹣4)1.24.(10分)学校提倡练字,小冬和小红一起去文具店买钢笔和字帖,小冬在文具店买1支钢笔和3本字帖共花了38元,小红买了2支钢笔和4本字帖共花了64元.(1)每支钢笔与每本字帖分别多少元?(2)帅帅在六一节当天去买,正巧碰到文具店搞促销,促销方案有两种形式:①所购商品均打九折②买一支钢笔赠送一本字帖帅帅要买5支钢笔和15本字帖,他有三种选择方案:(Ⅰ)一次买5支钢笔和15本字帖,然后按九折付费;(Ⅱ)一次买5支钢笔和10本字帖,文具店再赠送5本字帖;(Ⅲ)分两次购买,第一次买5支钢笔,文具店会赠送5本字帖,第二次再去买10本字帖,可以按九折付费;问帅帅最少要付多少钱?25.(10分)雅美服装厂有A种布料70m,B种布料52米.现计划用这两种布料生产M、N两种型号的时装共80套,已知做一套M型号的时装共需A种布料0.6m,B种布料0.9m;做一套N型号的时装需要A种布料1.1m,B种布料0.4m.(1)设生产x套M型号的时装,写出x应满足的不等式组;(2)有哪几种符合题意的生产方案?请你帮助设计出来.参考答案一、选择题(每题只有一个答案正确)1.C【解析】【分析】先根据平角的定义求出∠EFC,根据平行线的性质求出∠DEF,根据折叠求出∠D′EF,即可求出答案.【详解】解:∵∠EFB=66°,∴∠EFC=180°-66°=114°,∵四边形ABCD是长方形,∴AD∥BC,∴∠DEF=180°-∠EFC=180°-114°=66°,∵沿EF折叠D和D′重合,∴∠D′EF=∠DEF=66°,∴∠AED′=180°-66°-66°=48°.故选C.【点睛】本题考查了折叠性质,矩形性质,平行线的性质的应用,解题时注意:两直线平行,同旁内角互补.2.C【解析】【分析】设打了x折,用售价×折扣﹣进价得出利润,根据利润率不低于20%,列不等式求解.【详解】。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省巴中市南江县七年级下学期期末考试数学试卷一选择题(每小题3分,共30分)1.(3分)在方程:3x﹣y=2,+=0,=1,3x2=2x+6中,一元一次方程的个数为()A.1个B.2个C.3个D.4个【专题】常规题型;一次方程(组)及应用.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程.它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:所列方程中一元一次方程为=1故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.2.(3分)下列各对等式,是根据等式的性质进行变形的,其中错误的是()A.4x﹣1=5x+2→x=﹣3B.﹣=1→2(x+5)﹣3(x﹣3)=6C.+=0.23→x+=23D.﹣=23→﹣=230【专题】常规题型.【分析】根据等式的基本性质逐个判断即可.【解答】解:A、4x-1=5x+2,4x-5x=2+1,-x=3,x=-3,故本选项不符合题意;【点评】本题考查了等式的基本型性质,能熟记等式的性质的内容是解此题的关键.3.(3分)在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个【专题】多边形与平行四边形.【分析】根据n边形的外角和为360°得到外角为钝角的个数最多为3个.【解答】解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.【点评】本题主要考查了多边形的外角和等于360°的性质,外角和与边数无关,任意多边形的外角和都是360°.4.(3分)如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD 的周长为()A.14 B.12 C.10 D.8【分析】根据平移的性质可得DF=AC,CF=AD,然后求出四边形ABFD的周长=△ABC的周长+AD+CF,然后代入数据计算即可得解.【解答】解:∵△ABC沿BC方向平移1个单位得到△DFE,∴DF=AC,CF=AD=1,∴四边形ABFD的周长=AB+BC+CF+DF+AD,=ABBC+AC+AD+CF,=△ABC的周长+AD+CF,=10+1+1,=12.故选:B.【点评】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.5.(3分)若a<b<0,则下列式子:①a+1<b+2;②>1;③a+b<ab;④<中,正确的有()A.1个B.2个C.3个D.4个分析】由a<b<0得a+1<b+1<b+2判断①,不等式a<b两边都除以b判断②,由a<b<0得a-1<b-1<-1,进而得(a-1)(b-1)>1即可判断③,a<b两边都除以ab可判断④.【解答】解:∵a<b<0,∴a+1<b+1<b+2,故①正确;ab>1,故②正确;由a<b<0知,a-1<b-1<-1,∴(a-1)(b-1)>1,即ab-a-b+1>1,∴a+b<ab,故③正确;∵ab>0,故选:C.【点评】本题主要考查不等式的基本性质,应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.6.(3分)如图所示,一个正方形水池的四周恰好被4个正n边形地板砖铺满,则n等于()A.4 B.6 C.8 D.10【专题】综合题.【分析】根据平面镶嵌的条件,先求出正n边形的一个内角的度数,再根据内角和公式求出n的值.【解答】解:正n边形的一个内角=(360°-90°)÷2=135°,则135°n=(n-2)180°,解得n=8.故选:C.【点评】本题考查学生对平面镶嵌知识的掌握情况,体现了学数学用数学的思想,同时考查了多边形的内角和公式.7.(3分)《九章算术》是我国东汉初年编订的一部数学经典著作.在它的“方程”一章里,一次方程组是由算筹布置而成的.《九章算术》中的算筹图是竖排的,现在我们把它改为横排,如图1、图2.图中各行从左到右列出的算筹数分别表示未知数x,y的系数与相应的常数项.把图1所示的算筹图用我们现在所熟悉的方程组形式表述出来,就是,类似地,图2所示的算筹图我们可以表述为()A.B.C.D.【分析】由图1可得1个竖直的算筹数算1,一个横的算筹数算10,每一横行是一个方程,第一个数是x的系数,第二个数是y的系数,第三个数是相加的结果:前面的表示十位,后面的表示个位,由此可得图2的表达式.【解答】解:第一个方程x的系数为2,y的系数为1,相加的结果为11;第二个方程x的系数为4,y的系数为3,相加的结果为27,所以可列方程组为:【点评】此题主要考查了由实际问题列二元一次方程组;关键是读懂图意,得到所给未知数的系数及相加结果.8.(3分)满足下列条件的三条线段a、b、c能构成三角形的是()A.a:b:c=1:2:3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a:b:c=1:1:2【分析】根据三角形中任意两边之和大于第三边,任意两边之差小于第三边进行判断即可.【解答】解:A、设a,b,c分别为1x,2x,3x,则有a+b=c,不符合三角形任意两边大于第三边,故错误;B、当a+b=4时,c=5,4<5,不符合三角形任意两边大于第三边,故该选项错误;C、当a=3,b=4,c=5时,3+4>5,故该选项正确;D、设a,b,c分别为x,x,2x,则有a+b=c,不符合三角形任意两边大于第三边,故错误.故选:C.【点评】本题主要考查了三角形的三边关系,当三条线段成比例时可以设适当的参数来辅助求解.在运用三角形三边关系判定三条线段能否构成三角形时并,不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可.9.(3分)南江县出租车收费标准为:起步价3元(即行驶距离小于或等于3千米时都需要付费3元),超过3千米以后每千米加收1.5元(不足1千米按1千米计),在南江,冉丽一次乘出租车出行时付费9元,那么冉丽所乘路程最多是()千米.A.6 B.7 C.8 D.9【专题】应用题.【分析】设冉丽所乘路程最多为xkm,根据条件的等量关系建立不等式求出其解即可.【解答】解:设冉丽所乘路程最多为xkm,根据题意可得:3+1.5(x-3)≤9,解得:x≤7,故选:B.【点评】本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.10.(3分)如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6 B.7 C.8 D.9【专题】应用题;压轴题.【分析】先根据多边形的内角和公式(n-2)•180°求出正五边形的每一个内角的度数,再延长五边形的两边相交于一点,并根据四边形的内角和求出这个角的度数,然后根据周角等于360°求出完成这一圆环需要的正五边形的个数,然后减去3即可得解.【解答】解:五边形的内角和为(5-2)•180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°-108°×3=360°-324°=36°,360°÷36°=10,∵已经有3个五边形,∴10-3=7,即完成这一圆环还需7个五边形.故选:B.【点评】本题考查了多边形的内角和公式,延长正五边形的两边相交于一点,并求出这个角的度数是解题的关键,注意需要减去已有的3个正五边形.二、填空题(每小题3分,共30分)11.(3分)将方程4x+3y=6变形成用x的代数式表示y,则y=.【专题】计算题;一次方程(组)及应用.【分析】把x看做已知数求出y即可.【解答】解:方程4x+3y=6,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.12.(3分)若x+2y=10,4x+3y=15,则x+y的值是.【专题】计算题.【分析】联立组成方程组,利用加减消元法求出方程组的解得到x与y的值,即可确定出x+y的值.【解答】①×4-②得:5y=25,即y=5,将y=5代入①得:x=0,则x+y=0+5=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.13.(3分)已知方程(m+1)x|m|+3=0是关于x的一元一次方程,则m的值是.【专题】计算题.【分析】若一个整式方程经过化简变形后,只含有一个未知数,并且未知数的次数都是1,系数不为0,则这个方程是一元一次方程.据此可根据未知数的系数及未知数的指数列出关于m的方程,继而求出m的值.【解答】解得m=1.故填1.【点评】解题的关键是根据一元一次方程的未知数x的次数是1这个条件,此类题目应严格按照定义解答.14.(3分)已知是二元一次方程组的解,则m+3n=.【分析】利用二元一次方程组的解先求出m,n的值,再求m+3n的值.【点评】本题主要考查了二元一次方程组的解,解题的关键是正确求解方程组.15.(3分)若a>b,且c为有理数,则ac2bc2.【分析】根据c2为非负数,利用不等式的基本性质求得ac2≥bc2.【解答】解:∵c2为≥0,由不等式的基本性质3,不等式a>b两边乘以c2得ac2≥bc2.【点评】不等式两边都乘以0,不等式变成等式;不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.16.(3分)若一个多边形的每个外角都等于30°,则这个多边形的边数为.【专题】常规题型.【分析】根据已知和多边形的外角和求出边数即可.【解答】解:∵一个多边形的每个外角都等于30°,又∵多边形的外角和等于360°,故答案为:12.【点评】本题考查了多边形的内角和外角,能熟记多边形的外角和等于360°是解此题的关键.17.(3分)如图,∠MON内有一点P,P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=40°,则∠GOH=.【分析】连接OP,根据轴对称的性质可得∠GOM=∠MOP,∠PON=∠NOH,然后求出∠GOH=2∠MON,代入数据计算即可得解.【解答】解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=40°,∴∠GOH=2×40°=80°.故答案为:80°.【点评】本题考查了轴对称的性质,熟记性质并确定出相等的角是解题的关键.18.(3分)如图,P是等边△ABC内的一点,若将△PAC绕点A逆时针旋转到△P′AB,则∠PAP′的度数为度.【分析】此题只需根据旋转前后的两个图形全等的性质,进行分析即可.【解答】解:连接PP′.根据旋转的性质,得:∠P′AB=∠PAC.则∠P′AB+∠BAP=∠PAC+∠BAP=∠BAC=60°,即∠PAP′=60°.故答案为:60.【点评】此题主要考查了图形旋转的性质,难度不大.19.(3分)将一个长方形纸条按图折叠一下,若∠1=140°,则∠2=.【分析】根据两直线平行,同旁内角互补求出∠1的同旁内角,再根据翻折的性质以及平角等于180°列式进行计算即可得解.【解答】解:∵纸条的宽度相等,∠1=140°,∴∠3=180°-∠1=180°-140°=40°,则∠2=180°-∠4=180°-70°=110°.故答案为:110°.【点评】本题考查了平行线的性质,翻折问题,熟记性质是解题的关键.20.(3分)如图,∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM 上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,从左起第1个等边三角形的边长记为a1,第2个等边三角形的边长记为a2,以此类推.若OA1=1,则a2019=.【专题】三角形.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及a2=2a1,得出a3=4a1=4,a4=8a1=8,a5=16a1=16,进而得出答案.【解答】解:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴a2=2a1,a3=4a1=4,a4=8a1=8,a5=16a1=16,以此类推:a2019=22018.故答案为:22018.【点评】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出a3=4a1=4,a4=8a1=8,a5=16…进而发现规律是解题关键.三、解答题(共90分)21.(20分)按要求解方程(组)、不等式(组)(1)+1=x﹣(2)(3)解不等式:﹣1,并把解集表示在数轴上.(4)解不等式组:,并写出整数解.【专题】计算题;一元一次不等式(组)及应用.【分析】(1)根据解一元一次方程的步骤依次计算可得;(2)利用加减消元法求解可得;(3)根据解一元一次不等式的步骤依次计算可得;(4)先分别解两个不等式得到x≤1和x>-2,再根据大于小的小于大的取中间确定不等式组的解集,即可得出答案.【解答】解:(1)2(x+1)+6=6x-3(x-1),2x+2+6=6x-3x+3,2x-6x+3x=3-2-6,-x=-5,x=5;(2)①×5-②×2,得:11x=11,解得:x=1,将x=1代入①,得:3+2y=5,解得:y=1,则方程组的解为(3)4(2x-1)≤3(3x+2)-12,8x-4≤9x+6-12,8x-9x≤6-12+4,-x≤-2,x≥2,将不等式的解集表示在数轴上如下:(4)解不等式①,得:x≤1,解不等式②,得:x>-2,则不等式组的解集为-2<x≤1,所以不等式组的整数解为-1、0、1.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.22.(6分)在图的正方形网格中有一个三角形OAB,请你在网格中分别按下列要求画出图形①画出△OAB向左平移3个单位后的三角形;②画出△OAB绕点O旋转180°后的三角形;③画出△OAB沿y轴翻折后的图形.【分析】①利用图形平移的性质得出对应点位置得出即可;②利用旋转的性质得出对应点位置得出即可;③利用轴对称图形的性质得出对应点位置得出即可.【解答】解:①如图所示:△A′B′O′即为所求;②如图所示:△A″B″O即为所求;③如图所示:△A″B″′O即为所求.【点评】此题主要考查了图形的平移和旋转以及轴对称图形的性质等知识,根据题意找出对应点是解题关键.23.(10分)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.【解答】解:∵∠CAB=50°,∠C=60°∴∠ABC=180°-50°-60°=70°,又∵AD是高,∴∠ADC=90°,∴∠DAC=180°-90°-∠C=30°,∵AE、BF是角平分线,∴∠CBF=∠ABF=35°,∠EAF=25°,∴∠DAE=∠DAC-∠EAF=5°,∠AFB=∠C+∠CBF=60°+35°=95°,∴∠BOA=∠EAF+∠AFB=25°+95°=120°,∴∠DAC=30°,∠BOA=120°.故∠DAE=5°,∠BOA=120°.【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.24.(10分)如图所示,求∠A+∠B+∠C+∠D+∠E+∠F.【专题】常规题型;多边形与平行四边形.【分析】连接AD,由三角形内角和外角的关系可知∠E+∠F=∠FAD+∠EDA,由四边形内角和是360°,即可求∠A+∠B+∠C+∠D+∠E+∠F=360°.【解答】解:如图,连接AD.∵∠1=∠E+∠F,∠1=∠FAD+∠EDA,∴∠E+∠F=∠FAD+∠EDA,∴∠A+∠B+∠C+∠D+∠E+∠F=∠BAD+∠ADC+∠B+∠C.又∵∠BAD+∠ADC+∠B+∠C=360°,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点评】本题考查的是三角形内角与外角的关系,涉及到四边形及三角形内角和定理,比较简单.25.(10分)已知关于x的不等式组有三个整数解,求实数a的取值范围.【分析】先求出不等式组的解集,根据已知和不等式组的解集得出答案即可.∵原不等式组有三个整数解:-2,-1,0,∴0≤4+a<1,∴-4≤a<-3.【点评】本题考查了解一元一次不等式组,不等式组的整数解等知识点,能根据不等式组的解集和已知得出关于a的不等式组是解此题的关键.26.(10分)甲、乙两人共同解方程组由于甲看错了方程①中的a,得到方程组的解为,乙看错了方程②中的b,得到方程组的解为,试计算a2018+(﹣0.1b)2019的值.【专题】计算题;一次方程(组)及应用.【分析】将代入方程组的第二个方程,x=5,y=4代入方程组的第一个方程,联立求出a 与b的值,即可求出所求式子的值.【解答】解:将代入方程组中的4x-by=-2得:-12+b=-2,即b=10;将x=5,y=4代入方程组中的ax+5y=15得:5a+20=15,即a=-1,则a2018+(-0.1b)2019=1-1=0.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.27.(10分)四川光雾山国际红叶节的门票分两种:A种门票600元/张,B种门票120元/张,青年旅行社要为一个旅行团代购门票,在购票费用不超过5000元的情况下,购买A、B两种门票共15张,要求A种门票的数量不少于B种门票的数量的一半若设购买A种门票x张,请解答下列问题:(1)共有几种符合题意的购票方案?写出解答过程.(2)根据计算判断哪种购票方案更省钱.【专题】方程与不等式.【分析】(1)根据题意可以列出相应的不等式组,从而可以解答本题;(2)根据(1)中的结果可以计算出各种方案的花费,然后比较大小即可解答本题.【解答】解:(1)共有两种购票方案,理由:由题意可得,,得5≤x≤,∵x为整数,∴x=5或x=6,∴当x=5时,15﹣x=10;当x=6时,15﹣x=9;∴共有两种购票方案;(2)方案一:购买A种门票5张,B种门票10张,花费为:600×5+120×10=4200(元),方案二:购买A种门票6张,B种门票9张,花费为:600×6+120×9=4680(元),∵4200<4680,∴方案一购买A种门票5张,B种门票10张更省钱.【点评】本题考查一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用不等式的性质解答.28.(14分)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交与点D.①若∠BAO=60°,则∠D=°.②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)若∠ABC=∠ABN,∠BAD=∠BAO,则∠D=°.(3)若将“∠MON=90°”改为“∠MON=α(0°<α<180°)”,∠ABC=∠ABN,∠BAD=∠BAO,其余条件不变,则∠D=°(用含α、n的代数式表示)【分析】(1)①先求出∠ABN=150°,再根据角平分线得出∠CBA=∠ABN=75°、∠BAD= ∠BAO=30°,最后由外角性质可得∠D度数;②设∠BAD=α,利用外角性质和角平分线性质求得∠ABC=45°+α,利用∠D=∠ABC-∠BAD可得答案;(2)设∠BAD=α,得∠BAO=3α,继而求得∠ABN=90°+3α、∠ABC=30°+α,根据∠D=∠ABC-∠BAD可得答案;(3)设∠BAD=β,分别求得∠BAO=nβ、∠ABN=∠AOB+∠BAO=α+nβ解:(1)①∵∠BAO=60°、∠MON=90°,∴∠ABN=150°,∵BC平分∠ABN、AD平分∠BAO,∴∠CBA=∠ABN=75°,∠BAD=∠BAO=30°,∴∠D=∠CBA﹣∠BAD=45°,故答案为:45;②∠D的度数不变.理由是:设∠BAD=α,∵AD平分∠BAO,∴∠BAO=2α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+2α,∵BC平分∠ABN,∴∠ABC=45°+α,∴∠D=∠ABC﹣∠BAD=45°+α﹣α=45°;(2)设∠BAD=α,∵∠BAD=∠BAO,∴∠BAO=3α,∵∠AOB=90°,∴∠ABN=∠AOB+∠BAO=90°+3α,∵∠ABC=∠ABN,∴∠ABC=30°+α,∴∠D=∠ABC﹣∠BAD=30°+α﹣α=30°,故答案为:30;(3)设∠BAD=β,∵∠BAD=∠BAO,∴∠BAO=nβ,∵∠AOB=α°,∴∠ABN=∠AOB+∠BAO=α+nβ,∵∠ABC=∠ABN,∴∠ABC=+β,∴∠D=∠ABC﹣∠BAD=+β﹣β=,故答案为:.【点评】本题主要考查角平分线和外角的性质,熟练掌握三角形的外角性质和角平分线的性质是解题的关键.。