高中数学必修4全套教案

合集下载

新课标-人教A版-高中数学必修4教案精选

新课标-人教A版-高中数学必修4教案精选
o

那么有( D A.
) . B. C. ( ) D.
例 2 用集合表示: (1)各象限的角组成的集合.
o
(2)终边落在
o o
轴右侧的角的集合.
解:(1) 第一象限角: {α|k360 π<α<k360 +90 ,k∈ Z} o o o o 第二象限角: {α|k360 +90 <α<k360 +180 ,k∈ Z} o o o o 第三象限角: {α|k360 +180 <α<k360 +270 ,k∈ Z} o o o 第四象限角:{α|k360 +270o<α<k360 +360 ,k∈Z} (2)在 ~ 中, 轴右侧的角可记为 ,同样把该范围“旋转” 后,得
1
1.定义中说:角的始边与 x 轴的非负半轴重合,如果改为与 x 轴的正半轴重合行不行,为什么? 2.定义中有个小括号,内容是:除端点外,请问课本为什么要加这四个字? 3.是不是任意角都可以归结为是象限角,为什么? 处理:学生思考片刻后回答,教师适时予以纠正。 答:1.不行,始边包括端点(原点) ; 2.端点在原点上; 3.不是,一些特殊角终边可能落在坐标轴上;如果角的终边落在坐标轴上,就认为这个角不属于任一象限。 师:同学们一定要学会看数学书,特别是一些重要的概念、定理、性质要斟字酌句,每个字都要弄清楚,这样的 预习才是有效果的。 0 0 0 0 0 师生讨论:好,按照象限角定义,图中的 30 ,390 ,-330 角,都是第一象限角;300 ,-60 角,都是第四象限 0 角;585 角是第三象限角。 师:很好,不过老师还有几事不明,要请教大家: (1)锐角是第一象限角吗?第一象限角是锐角吗?为什么? 生:锐角是第一象限角,第一象限角不一定是锐角; 0 师: (2)锐角就是小于 90 的角吗? 0 生:小于 90 的角可能是零角或负角,故它不一定是锐角; 0 0 师: (3)锐角就是 0 ~90 的角吗? 0 0 0 0 0 0 生:锐角:{θ|0 <θ<90 };0 ~90 的角:{θ|0 ≤θ<90 }. 学生练习(口答) 已知角的顶点与坐标系原点重合,始边落在 x 轴的非负半轴上,作出下列各角,并指出 它们是哪个象限的角? 0 0 0 0 (1)420 ; (2)-75 ; (3)855 ; (4)-510 . 答: (1)第一象限角; (2)第四象限角; (3)第二象限角; (4)第三象限角. 5.终边相同的角的表示法 师:观察下列角你有什么发现? 390 330 30 1470 1770 生:终边重合. 0 师:请同学们思考为什么?能否再举三个与 30 角同终边的角? 0 0 0 0 0 0 0 0 0 0 0 生:图中发现 390 ,-330 与 30 相差 360 的整数倍,例如,390 =360 +30 ,-330 =-360 +30 ;与 30 角同终边的 0 0 角还有 750 ,-690 等。 0 0 0 0 师:好!这位同学发现了两个同终边角的特征,即:终边相同的角相差 360 的整数倍。例如:750 =2×360 +30 ; 0 0 0 0 -690 =-2×360 +30 。那么除了这些角之外,与 30 角终边相同的角还有: 0 0 0 0 3×360 +30 -3×360 +30 0 0 0 0 4×360 +30 -4×360 +30 ……, ……, 0 0 0 由此,我们可以用 S={β|β=k×360 +30 ,k∈Z}来表示所有与 30 角终边相同的角的集合。 师:那好,对于任意一个角α,与它终边相同的角的集合应如何表示? 0 生:S={β|β=α+k×360 ,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和。 6.例题讲评 例 1 设 E {小于90 的角} F {锐角},G={第一象限的角} ,

人教版新课标高中数学必修4-全册教案【最新】

人教版新课标高中数学必修4-全册教案【最新】

1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点 任意角概念的理解;区间角的集合的书写. 教学难点终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类:④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角.正角:按逆时针方向旋转形零角:射线没有任何旋转形⑵B 1 y⑴O x45° B 2O x B 3y30°60o负角:按顺时针方向旋转形成的角 始边 终边顶点A O B3.探究:教材P3面终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={ β | β = α + k ·360° ,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意: ⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720°与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角.⑴-120°;⑵640°;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}. 例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来. 4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:①阅读教材P 2-P 5; ②教材P 5练习第1-5题; ③教材P.9习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:αΘ角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z) 即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 当k 为奇数时,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角因此2α属于第二或第四象限角.1.1.2弧度制(一)教学目标(四) 知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(五) 过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (六) 情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美. 教学重点弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点“角度制”与“弧度制”的区别与联系. 教学过程一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引 入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定 义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:2360p =?;180p =?;1801()57.305718rad p¢=盎??;180( )nn p =?.5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度角度 0° 30° 45° 60° 9°120° 135° 150° 180° 270° 36° 弧度0 6π 4π 3π 2π 32π 43π 65π π23ππ2 7.弧长公式ll r r a a =??弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把67°30'化成弧度. 例2.把rad 53π化成度. 例3.计算:4sin)1(π;5.1tan )2(.例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 而67π是第三象限的角,193p\是第三象限角.(2) 315316,666p p pp -=-+\-Q 是第二象限角. .,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1rad 的扇形面积为221R ππ,又扇形弧长为l,半径为R,∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=. 证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制与角度制下的扇形面积公式可以互化,而弧度制下的扇形面积公式显然要简洁得多.O R l22121:R lR S α==扇形面积公式7.课堂小结①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别. 8.课后作业:①阅读教材P 6 –P 8;②教材P 9练习第1、2、3、6题; ③教材P10面7、8题及B2、3题.4-1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

高中数学必修4《二倍角的正弦、余弦、正切公式》教案

课题: 二倍角的正弦、余弦、正切公式教材:人教A版高中数学必修4§3.1.3第一课时一、教学目标1.知识目标:以两角和的正弦、余弦、正切公式为基础,推导二倍角的正弦、余弦、正切公式,掌握二倍角公式,运用二倍角公式解决有关问题。

2.能力目标:灵活运用二倍角公式,培养学生观察分析问题的能力,寻找数学规律的能力,同时注意渗透由一般到特殊的化归的数学思想及问题转化的数学思想,提高学生分析问题、解决问题的能力。

3.德育目标:激发学生的学习兴趣,培养学生认真参与、积极交流的主体意识,培养学生的发散性思维、创新意识,提高数学素养。

二、教学重点与难点重点:掌握二倍角公式,灵活运用二倍角公式解决有关问题。

难点:二倍角公式的灵活运用,培养学生的转化、化归的数学思想。

三、教学方法与手段教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学并通过多媒体辅助教学。

四、教学过程二倍角的正弦、余弦、正切公式教案说明在教学中,我遵循以学生为主体,教师为主导的教学原则,采用启发式教学,逐步设疑、诱导、解疑,指导学生去“发现”。

整个教学过程的设计主要体现以下五点:第一、提出问题,纠正学生常犯直觉性错误,激发学生新的求知欲。

引导学生自主探究二倍角公式,让学生亲身经历公式的“发现”过程。

这样设计突出学生的主体地位,能够让学生明白知识的来龙去脉,加深对知识的理解,培养学生的探究意识和丰富的联想能力。

第二、在学生推导出二倍角公式后,立即让学生做些简单练习,目的是为了使学生更好的理解、运用和记忆二倍角公式,以及让学生感到找出C公式变形的必要性。

2第三、在解题教学过程中,启发学生先分析条件与求解目标之间的差异,然后选择适当的公式,明确解题思路,最后严格规范解答过程,培养逻辑思维能力。

通过一题多解训练学生发散性思维,培养学生创新意识,提高学生的数学素养。

第四、为巩固所学知识,本设计通过设置多重练习,让学生能更深刻的认识公式特点,感受公式的各种形式运用,提高灵活运用公式的能力。

统编通用版高考数学全套电子教案之必修四高中数学(2.2.3向量数乘运算及其几何意义)教案新人教A版必修4

统编通用版高考数学全套电子教案之必修四高中数学(2.2.3向量数乘运算及其几何意义)教案新人教A版必修4

,与
这两个向量的长度无关 . 在没有指明非零向量的情况下 , 共线向量可能有以下几种情况 :(1)
有一个为零向量 ;(2) 两个都为零向量 ;(3) 同向且模相等 ;(4) 同向且模不等 ;(5) 反向且模相
等;(6) 反向且模不等 .
讨论结果 : ①数与向量的积仍是一个向量 , 向量的方向由实数的正负及原向量的方向确定
图1
PN = PQ QM MN =(- a)+(- a)+(- a),
即 (- a)+(- a)+(- a)=3(- a). 显然 3(- a) 的方向与 a 的方向相反 ,3(- a) 的长度是 a 的长度
的 3 倍 , 这样 ,3(- a)=-3 a.
对问题② , 上述过程推广后即为实数与向量的积 .
(1)(- 3) ×4a;
(2)3( a+b)-2( a- b)- a;
(3)(2 a+3b- c)-(3 a-2 b+c).
活动 : 本例是数乘运算的简单应用 , 可让学生自己完成 , 要求学生熟练运用向量数乘运算
的运算律 . 课程中 , 点拨学生不能将本题看作字母的代数运算 , 可以让他们在代数运算的同时
2
22
点评 : 结合向量加法和减法的平行四边形法则和三角形法则Leabharlann , 将两个向量的和或差表示
出来 , 这是解决这类几何题的关键 .
思路 2
例 1 凸四边形 ABCD的边 AD、BC的中点分别为 E、 F, 求证 : EF = 1 ( AB + DC ). 2
活动 : 教师引导学生探究 , 能否构造三角形 , 使 EF 作为三角形中位线 , 借助于三角形中位
由学生自己完成 . 另外 , 本题是一个很好的与信息技术整合的题材 , 课程中可以通过计算机作

本册综合-人教B版高中数学必修第四册(2019版)教案

本册综合-人教B版高中数学必修第四册(2019版)教案

本册综合-人教B版高中数学必修第四册(2019版)教案教材概述本册教材是人教版B高中数学必修课程的第四册,共分为三个模块,包括导数与导数应用、不等式与线性规划和三角函数与三角恒等式三个章节。

本教材突出了“立足现实,强化应用”的教学特点,注重培养学生独立思考能力和解决实际问题的能力。

全书内容丰富、知识点明确,具有循序渐进、易于消化和吸收的特点。

教学目标知识目标1.熟悉导数和导数应用的相关概念和公式,能够运用导数计算函数的极值、最值和函数图像的变化趋势;2.掌握各种类型不等式的解法和基本不等式的应用,了解约束条件和目标函数的概念,能够运用线性规划模型解决实际问题;3.熟悉三角函数的定义、性质和恒等式,能够解决三角函数的基本问题。

能力目标1.培养独立思考能力和解决实际问题的能力;2.培养抽象思维能力和推理能力;3.培养算法设计能力和计算能力。

情感目标1.培养学习数学的兴趣和热情;2.培养对数学知识的探究精神和求知欲;3.培养团队协作精神和阳光心态。

教学重点与难点教学重点1.导数与导数应用;2.不等式与线性规划;3.三角函数与三角恒等式。

教学难点1.函数导数的概念及其计算;2.不等式的综合运用;3.三角函数的函数值计算和同角恒等式的应用。

教学过程模块一:导数与导数应用学习目标•理解函数极值和最值的概念;•理解导数的概念和计算方法;•掌握利用导数计算函数的极值和最值。

学习重点1.函数极值和最值的概念;2.导数的概念和计算方法;3.利用导数计算函数的极值和最值。

教学过程1.导入新知识。

学生体验一下讨论某一事件的极端情况,引导学生体会“极值”这一概念的本质意义。

2.引入导数的概念。

通过图像、表格和实例等形式引出导数的概念,让学生理解导数的本质概念。

3.导数的计算方法。

讲解导数的定义和计算方法,并通过例题帮助学生掌握导数的计算方法。

4.应用导数计算函数的极值和最值。

通过例题帮助学生掌握应用导数计算函数的极值和最值的方法。

高中数学人教新课标必修四B版教案高中数学必修4全部教案

高中数学人教新课标必修四B版教案高中数学必修4全部教案

人教B版数学必修4 第一章基本初等函数(Ⅱ)教学设计一、教材分析1、本单元教学内容的范围1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角本章知识结构如下:2、本单元教学内容在模块内容体系中的地位和作用(1)三角函数是一类十分重要的初等函数,它与本模块第三章“三角恒等变换”构成了高中“三角”知识的主体,是中学数学的重要内容之一,也是学习后继内容和高等数学的基础。

(2)三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。

(3)三角函数作为描述周期现象的重要数学模型,与其它学科如天文学、物理学等联系非常紧密。

因此三角函数的学习可以培养学生的数学应用能力。

(4)三角函数的基础知识,主要是平面几何中的相似形和圆。

研究三角函数的方法,主要是在必修1中建立的研究初等函数的方法。

因此,通过对三角函数的学习,可以初步地把“数”与“形”联系起来。

(5)通过对三角函数的学习,不仅能使学生获得新的知识和技能,而且可以培养学生的辨证唯物主义观点,提高分析问题和解决问题的能力。

3、本单元教学内容总体教学目标 (1)任意角的概念、弧度制了解任意角的概念.了解弧度制的概念,能进行弧度与角度的互化. (2)任意角的三角函数理解任意角的正弦、余弦、正切的定义;了解任意角的余切、正割、余割的定义;并会利用单位圆中的有向线段表示正弦、余弦和正切,并理解其原理。

理解同角三角函数的基本关系式: 22sin cos 1x x +=,sin tan cos xx x=;借助单位圆的直观性探索正弦、余弦、正切的诱导公式,能进行同角三角函数之间的变换,会求任意角的三角函数值,并记住某些特殊角的三角函数值。

高中数学必修四详细教案

高中数学必修四详细教案

高中数学必修四详细教案教学主题:平面向量的基本概念和运算教学目标:1. 掌握平面向量的基本概念和表示方法;2. 熟练掌握平面向量的加减法和数量积的运算方法;3. 能够运用平面向量进行简单的几何问题求解。

教学重点:1. 平面向量的基本概念;2. 平面向量的加减法;3. 平面向量的数量积。

教学难点:1. 理解平面向量的概念和表示方法;2. 掌握平面向量的加减法和数量积的运算方法。

教学准备:1. 教材《高中数学必修四》;2. 手写板或投影仪;3. 练习题册。

教学步骤:一、导入(5分钟)1. 引入平面向量的概念,引出本节课的主题;2. 复习前几节课内容,为本节课的学习做铺垫。

二、讲解(30分钟)1. 讲解平面向量的定义和表示方法;2. 分别介绍平面向量的加法、减法和数量积的定义和运算规则;3. 通过实例演示不同类型的向量运算,让学生理解运算方法。

三、练习(15分钟)1. 给学生分发练习题册,让他们进行练习;2. 在学生练习的同时,巡视课堂,帮助学生解决问题。

四、讲评(10分钟)1. 收集学生的练习题,讲解解题方法;2. 解答学生提出的问题,澄清疑惑。

五、拓展(10分钟)1. 给学生提供更复杂的问题,让他们尝试运用向量解决几何问题;2. 鼓励学生进行探索和讨论,提高他们的解决问题的能力。

六、总结(5分钟)1. 总结本节课的学习内容,强调重点难点;2. 鼓励学生在课后多加练习,加深对平面向量的理解。

七、作业布置1. 布置练习题册相关内容的作业,要求学生在下节课前完成。

教学反思:通过本节课的教学,学生对平面向量及其运算方法有了初步的了解和掌握,但在实际运用中还存在一定困难。

在未来的教学中,需要更多的实例演练和综合应用,让学生更好地掌握知识。

山东省临清市高中数学全套教案必修4:1.4.3 正切函数的图像与性质

山东省临清市高中数学全套教案必修4:1.4.3 正切函数的图像与性质

§1.4.3正切函数的图像与性质【教材分析】正切函数的图象和性质》 它前承正、余弦函数,后启必修五中的直线斜率问题。

研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升,同时又为后续的学习奠定了基石。

教材单刀直入,直接进入画图工作,没有给出任何提示。

正切函数与正弦函数在研究方法上类似,我采用以类比的方式,让学生回忆正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。

教材上直接圈定了区间(2,2ππ-),这样限制了学生的思维,我把空间留给学生,采用让学生自己选择周期,设计一个得到正切曲线的方法。

这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力,而且,在此过程中,学生会注意到画正切曲线的细节。

在得到图象后,单调性是一个难点,我设计了几个判断题帮助学生理解该性质,并用比大小的题型启发学生从代数和几何两种角度看问题。

【教学目标】正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。

本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标:1.会用单位圆内的正切线画正切曲线,并根据正切函数图象掌握正切函数的性质,用数形结合的思想理解和处理问题。

2.首先学生自主绘图,通过投影仪纠正图像,投影完整的正确图象,然后再让学生观察,类比正弦,探索知识。

3.在得到正切函数图像的过程中,学会一类周期性函数的研究方式,通过自己动手得到图像让学生亲身经历数学研究的过程,体验探索的乐趣,增强学习数学的兴趣。

【教学重点难点】教学重点:正切函数的图象及其主要性质。

教学难点:利用正切线画出函数y =tan x 的图象,对直线x =2ππ+k ,Z k ∈是y =tan x 的渐近线的理解,对单调性这个性质的理解。

高中数学必修4全套教案

高中数学必修4全套教案

高中数学必修4全套教案一、教案总体设计教学目标:1.掌握基本的数学概念和数学方法;2.建立具体的数学思想和数学思维;3.发展数学思维能力和创新意识;4.提高解决实际问题的能力。

教学重点:1.数学思维的培养和发展;2.数学概念的理解和掌握;3.数学方法的灵活运用。

教学难点:1.数学概念的深入理解;2.数学方法的灵活运用。

二、教案详细设计授课时数:40课时第一课时:引入和概述教学内容:1.数学的定义和基本概念;2.数学方法的分类和应用;3.数学的发展历程和重要作用。

教学目标:1.理解数学的定义和基本概念;2.了解数学方法的分类和应用;3.掌握数学的发展历程和重要作用。

教学步骤:1.引入:通过举例和提问导入数学的定义和基本概念。

2.概述:对数学方法的分类和应用进行简要介绍。

3.总结:归纳数学的发展历程和重要作用。

第二课时:集合与映射教学内容:1.集合的定义和表示方法;2.集合的运算和性质;3.映射的定义和性质。

教学目标:1.掌握集合的定义和表示方法;2.熟练运用集合的运算和性质;3.理解映射的定义和性质。

1.引入:通过实例讲解集合的定义和表示方法。

2.讲解:详细介绍集合的运算和性质。

3.演练:通过练习题巩固集合的运算和性质。

4.总结:总结集合的概念和运算规则。

第三课时:函数与方程教学内容:1.函数的定义和性质;2.方程的定义和解法;教学目标:1.理解函数的定义和性质;2.掌握方程的定义和解法;3.熟练应用函数与方程进行问题求解。

教学步骤:1.引入:通过例题引入函数的定义和性质。

2.讲解:详细介绍方程的定义和解法。

3.演练:通过例题和练习题巩固方程的解法。

...第四十课时:总结与回顾1.回顾全套教案的重点和难点;2.总结学过的数学知识和方法;3.展望数学在实际生活和科学研究中的应用。

教学目标:1.温习并巩固学过的数学知识和方法;2.总结数学在实际生活和科学研究中的应用。

教学步骤:1.回顾:复习全套教案的重点和难点。

高中数学必修4教案6篇

高中数学必修4教案6篇

高中数学必修4教案6篇教学目标1、把握平面对量的数量积及其几何意义;2、把握平面对量数量积的重要性质及运算律;3、了解用平面对量的数量积可以处理有关长度、角度和垂直的问题;4、把握向量垂直的条件。

教学重难点教学重点:平面对量的数量积定义教学难点:平面对量数量积的定义及运算律的理解和平面对量数量积的应用教学工具投影仪教学过程一、复习引入:1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ五,课堂小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、课后作业P107习题2.4A组2、7题课后小结(1)请学生回忆本节课所学过的学问内容有哪些?所涉及到的主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向教师提出。

(3)你在这节课中的表现怎样?你的体会是什么?课后习题作业P107习题2.4A组2、7题高中数学必修4优秀教案篇二教学预备教学目标一、学问与技能(1)理解并把握弧度制的定义;(2)领悟弧度制定义的合理性;(3)把握并运用弧度制表示的弧长公式、扇形面积公式;(4)娴熟地进展角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系。

(6) 使学生通过弧度制的学习,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并把握弧度制的定义,领悟定义的合理性。

依据弧度制的定义推导并运用弧长公式和扇形面积公式。

以详细的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值通过本节的学习,使同学们把握另一种度量角的单位制---弧度制,理解并熟悉到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

高中数学必修4《平面向量的线性运算》教案

高中数学必修4《平面向量的线性运算》教案

高中数学必修4《平面向量的线性运算》教案一、教学目标1.理解向量的加、减、数乘运算及其物理意义。

2.掌握平面向量的线性运算方法。

3.能够应用向量的线性运算解决实际问题。

二、教学重点平面向量的线性运算。

三、教学难点向量线性运算一个实际问题的解决。

四、教学方法讲授法,示范法,练习法,问题解决法。

五、教学工具黑板、多媒体投影仪等。

六、教学过程1.引入教师引导学生回忆已学过的向量概念以及向量的模、方向和共面等概念。

2.新课讲解(1)向量加法。

如果 $\vec {AB}$ 和 $\vec {BC}$ 表示两个向量,那么它们的和为 $\vec {AB} + \vec {BC} = \vec {AC}$,如图所示:向量和的性质:①结合律:$(\vec a+\vec b)+\vec c=\vec a+(\vec b+\vec c)$②交换律:$\vec a+\vec b=\vec b+\vec a$③零向量的性质:$\vec a+\vec 0=\vec a$(2)向量减法。

如果 $\vec {AB}$ 和 $\vec {AC}$ 表示两个向量,那么它们的差为 $\vec {AB}-\vec {AC} = \vec {CB}$,如图所示:向量差的性质:$\vec{a}-\vec{b}=\vec{a}+(-\vec{b})$(3)向量数乘。

如果 $\vec a$ 表示一个向量,$\lambda$ 表示一个标量,那么$\vec a$ 与 $\lambda$ 的积为 $\lambda \vec a$,如图所示:向量数乘的性质:①交换律:$\lambda \vec a=\vec a \lambda$②系数倍数的分配律:$(k+l)\vec a=k\vec a+l\vec a$③数乘的分配律:$k(\vec a+\vec b)=k\vec a+k\vec b$(4)向量共线和平行。

向量 $\vec a$ 和 $\vec b$ 共线的充要条件是 $\vec a = \lambda \vec b (\lambda \in R)$;向量 $\vec a$ 和 $\vec b$ 平行的充要条件是 $\vec a \times \vec b =\vec 0$(叉乘得到的是一个向量,如果结果为 $\vec 0$ 说明它们是平行的),或者 $\vec a\cdot\vec b=|\vec a|\cdot|\vec b|$。

高中数学必修4教案pdf

高中数学必修4教案pdf

高中数学必修4教案pdf 第一课:函数的概念与性质
一、教学目标:
1. 理解函数的定义和基本性质;
2. 掌握函数的表示方法和性质;
3. 能够解决函数相关的问题。

二、教学重点:
1. 理解函数的概念;
2. 掌握函数的性质;
3. 解决函数相关的问题。

三、教学内容:
1. 函数的定义;
2. 函数的图像;
3. 函数的性质;
4. 函数的应用。

四、教学过程:
1. 引入:通过实际例子引入函数的概念;
2. 教学重点:讲解函数的定义和性质;
3. 练习:做一些相关练习,巩固所学知识;
4. 拓展:引导学生思考函数的应用;
5. 总结:总结本节课的重点内容。

五、教学反馈:
1. 检查学生的作业情况;
2. 解答学生提出的问题;
3. 提出下节课的预习内容。

六、教学资源:
1. PowerPoint课件;
2. 教科书;
3. 作业练习册。

七、教学评价:
1. 学生课堂表现;
2. 学生作业完成情况;
3. 学生对函数的理解程度。

以上为本课教案,希望能够帮助学生更好地理解函数的概念和性质。

愿我们共同努力,取得更好的成绩!。

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇

高一数学必修四教案优秀10篇高一数学必修四教案篇一教学准备教学目标o了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会区分平行向量、相等向量和共线向量·o通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别·o通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力· 教学重难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量·教学难点:平行向量、相等向量和共线向量的区别和联系·教学过程(一)向量的概念:我们把既有大小又有方向的量叫向量。

(二)(教材P74面的四个图制作成幻灯片)请同学阅读课本后回答:(7个问题一次出现)1、数量与向量有何区别?(数量没有方向而向量有方向)2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是不是平行向量?这时各向量的终点之间有什么关系?课后小结1、描述向量的两个指标:模和方向·2、平面向量的概念和向量的几何表示;3、向量的模、零向量、单位向量、平行向量等概念。

反思教学方式及能力培养篇二为了强调学生的主体性,把时间还给学生,有的教师上课便叫学生自己看书,教师指导性差、没有提示和具体要求,看得如何没有检查也没有反馈等等。

一些课堂上教师片面追求小组合作这一学习形式,对小组合作学习的目的、时机及过程没有进行认真设计。

这些学习方式,学生表面上获得了自主的权利,可实际上并没有做到真正的自主。

课堂教学是开展反思性学习的主渠道。

在课堂教学中要有意识的引导学生从多方位、多角度进行反思性的学习;要引导学生自然地合理地提出问题、自然地合理地解决问题、自然地合理地拓展问题,从而提高逻辑思维能力和解决问题的能力。

高中数学必修4教资教案

高中数学必修4教资教案

高中数学必修4教资教案
课程名称:高中数学必修4
课时安排:共40课时,每周3课时,共13周完成
教学目标:通过本教材的教学,使学生能够有效掌握高中数学必修4的相关知识和技能,提高学生的数学素养和解决问题的能力。

第一课时:集合与常用逻辑符号
教学内容:
1. 了解集合的概念和性质。

2. 掌握集合的表示方法和常用符号。

3. 学习常用的逻辑符号及其意义。

教学重点:理解集合的概念和常用逻辑符号的含义。

教学难点:如何用常用逻辑符号表示命题、复合命题的判断。

教学方法:示例分析法、讨论交流法
教学过程:
1. 引入集合的概念,讲解集合的定义和性质。

2. 介绍集合的表示方法和常用符号,并通过例题进行讲解。

3. 学习常用的逻辑符号及其含义,讲解逻辑符号的运用。

4. 练习题目,巩固学生对集合和逻辑符号的理解。

作业:完成课后习题,熟练掌握集合和逻辑符号的用法。

课后反思:本节课主要是介绍集合的概念和常用逻辑符号,学生在掌握这些基本知识的基础上,可以更好地理解后续内容。

备注:本教案为高中数学必修4教材第一章的教学内容,旨在帮助学生建立良好的数学基础,为以后更深入的学习打下坚实的基础。

高中必修四数学教案

高中必修四数学教案

高中必修四数学教案
教学内容:高中必修四数学课程
目标:帮助学生掌握高中必修四数学的基本知识和技能,提高数学思维能力和解题能力
教学重点:数学基本知识和技能的掌握
教学难点:数学理解和运用的能力提升
教学方法:综合应用教学法、问题解决教学法
教学步骤:
一、引入(5分钟)
1.和学生一起回顾上节课的内容,引出本节课的主题
2.介绍本节课要学习的知识点和目标
二、讲解(30分钟)
1.讲解高中必修四数学课程中的基本知识和概念,包括整数、有理数、无理数、代数运算等内容
2.通过案例分析和实例演练,让学生掌握数学运算规则和方法
三、练习(20分钟)
1.布置练习题让学生巩固所学知识并提高解题能力
2.辅导和指导学生解决问题,解答疑惑和困惑
4.让学生互相讨论交流,提高合作学习能力
四、总结(5分钟)
1.和学生一起总结本节课的重点和难点,复习本节课的内容
2.鼓励学生勤勉学习,提高数学思维和解题能力
教学反思:根据学生实际情况调整教学策略,及时反馈学生学习情况,帮助学生解决问题和提高能力。

2019人教版高中数学必修4全套教案(80页)

2019人教版高中数学必修4全套教案(80页)

角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.
②角的名称: ③角的分类:
B 终边
始边
O 顶点
A
正角:按逆时针方向旋转形成的角
零角:射线没有任何旋转形成的角
负角:按顺时针方向旋转形成的角
④注意: ⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念: ①定义:若将角顶点与原点重合,角的始边与 x 轴的非负半轴重合,那么角的终边(端点除外) 在第几象限,我们就说这个角是第几象限角. 例 1.如图⑴⑵中的角分别属于第几象限角?
人教版高中数学必修精品教学资料
1.1.1 任意角
教学目标
知识与技能目标
理解任意角的概念(包括正角、负角、零角) 与区间角的概念. 过程与能力目标
会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合 的书写.
情感与态度目标
提高学生的推理能力; 2.培养学生应用意识.
教学重点
例 5.写出终边在 y x 上的角的集合 S,并把 S 中适合不等式-360°≤β<720°的元素β
写出来. 4.课堂小结 ①角的定义; ②角的分类:
正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角 负角:按顺时针方向旋转形成的角
③象限角; ④终边相同的角的表示法. 5.课后作业: ①阅读教材 P2-P5; ②教材 P5 练习第 1-5 题;
(Ⅳ)
由四个图看出:
当角 的终边不在坐标轴上时,有向线段 OM x, MP y ,于是有
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1,2课时1.1.1 任意角教学目标(一) 知识与技能目标理解任意角的概念(包括正角、负角、零角) 与区间角的概念. (二) 过程与能力目标会建立直角坐标系讨论任意角,能判断象限角,会书写终边相同角的集合;掌握区间角的集合的书写.(三) 情感与态度目标1. 提高学生的推理能力; 2.培养学生应用意识. 教学重点:任意角概念的理解;区间角的集合的书写.教学难点:终边相同角的集合的表示;区间角的集合的书写. 教学过程 一、引入:1.回顾角的定义①角的第一种定义是有公共端点的两条射线组成的图形叫做角.②角的第二种定义是角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. 二、新课:1.角的有关概念: ①角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形. ②角的名称:③角的分类: ④注意:⑴在不引起混淆的情况下,“角α ”或“∠α ”可以简化成“α ”; ⑵零角的终边与始边重合,如果α是零角α =0°; ⑶角的概念经过推广后,已包括正角、负角和零角. ⑤练习:请说出角α、β、γ各是多少度? 2.象限角的概念:①定义:若将角顶点与原点重合,角的始边与x 轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角. 例1.如图⑴⑵中的角分别属于第几象限角?正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角 始边 终边顶点AO B负角:按顺时针方向旋转形成的角例2.在直角坐标系中,作出下列各角,并指出它们是第几象限的角.⑴ 60°; ⑵ 120°; ⑶ 240°; ⑷ 300°; ⑸ 420°; ⑹ 480°;答:分别为1、2、3、4、1、2象限角. 3.探究:终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和. 注意:⑴ k ∈Z⑵ α是任一角;⑶ 终边相同的角不一定相等,但相等的角终边一定相同.终边相同的角有无限个,它们相差360°的整数倍;⑷ 角α + k ·720 °与角α终边相同,但不能表示与角α终边相同的所有角.例3.在0°到360°范围内,找出与下列各角终边相等的角,并判断它们是第几象限角. ⑴-120°;⑵640 °;⑶-950°12'.答:⑴240°,第三象限角;⑵280°,第四象限角;⑶129°48',第二象限角; 例4.写出终边在y 轴上的角的集合(用0°到360°的角表示) . 解:{α | α = 90°+ n ·180°,n ∈Z}.例5.写出终边在x y =上的角的集合S,并把S 中适合不等式-360°≤β<720°的元素β写出来.4.课堂小结 ①角的定义; ②角的分类:③象限角;④终边相同的角的表示法. 5.课后作业:练习第1-5题; 习题1.1第1、2、3题 思考题:已知α角是第三象限角,则2α,2α各是第几象限角? 解:α 角属于第三象限,∴ k ·360°+180°<α<k ·360°+270°(k ∈Z)因此,2k ·360°+360°<2α<2k ·360°+540°(k ∈Z)正角:按逆时针方向旋转形成的角 零角:射线没有任何旋转形成的角负角:按顺时针方向旋转形成的角即(2k +1)360°<2α<(2k +1)360°+180°(k ∈Z)故2α是第一、二象限或终边在y 轴的非负半轴上的角. 又k ·180°+90°<2α<k ·180°+135°(k ∈Z) . 当k 为偶数时,令k=2n(n ∈Z),则n ·360°+90°<2α<n ·360°+135°(n ∈Z) , 此时,2α属于第二象限角 k 为奇数,令k=2n+1 (n ∈Z),则n ·360°+270°<2α<n ·360°+315°(n ∈Z) , 此时,2α属于第四象限角 因此2α属于第二或第四象限角.第3课时1.1.2弧度制(一)教学目标(一)知识与技能目标理解弧度的意义;了解角的集合与实数集R 之间的可建立起一一对应的关系;熟记特殊角的弧度数.(二)过程与能力目标能正确地进行弧度与角度之间的换算,能推导弧度制下的弧长公式及扇形的面积公式,并能运用公式解决一些实际问题 (三)情感与态度目标通过新的度量角的单位制(弧度制)的引进,培养学生求异创新的精神;通过对弧度制与角度制下弧长公式、扇形面积公式的对比,让学生感受弧长及扇形面积公式在弧度制下的简洁美.教学重点:弧度的概念.弧长公式及扇形的面积公式的推导与证明. 教学难点:“角度制”与“弧度制”的区别与联系. 教学过程:一、复习角度制:初中所学的角度制是怎样规定角的度量的? 规定把周角的3601作为1度的角,用度做单位来度量角的制度叫做角度制. 二、新课: 1.引入:由角度制的定义我们知道,角度是用来度量角的, 角度制的度量是60进制的,运用起来不太方便.在数学和其他许多科学研究中还要经常用到另一种度量角的制度—弧度制,它是如何定义呢? 2.定义我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位制叫做弧度制.在弧度制下, 1弧度记做1rad .在实际运算中,常常将rad 单位省略. 3.思考:(1)一定大小的圆心角α所对应的弧长与半径的比值是否是确定的?与圆的半径大小有关吗?(2)引导学生完成P6的探究并归纳: 弧度制的性质: ①半圆所对的圆心角为;ππ=rr②整圆所对的圆心角为.22ππ=rr③正角的弧度数是一个正数. ④负角的弧度数是一个负数. ⑤零角的弧度数是零. ⑥角α的弧度数的绝对值|α|=. rl 4.角度与弧度之间的转换: ①将角度化为弧度:π2360=︒; π=︒180;rad 01745.01801≈=︒π;rad n n 180π=︒. ②将弧度化为角度:3.571801≈⎪⎭⎫ ⎝⎛=π5.常规写法:① 用弧度数表示角时,常常把弧度数写成多少π 的形式, 不必写成小数. ② 弧度与角度不能混用. 6.特殊角的弧度r l α=弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积. 例1.把150°化成弧度;把rad 53π化成度 例2.计算:4sin)1(π;.6cos)2(π例4.将下列各角化成0到2π的角加上2k π(k ∈Z )的形式:319)1(π;︒-315)2(. 例5.将下列各角化成2k π + α(k ∈Z,0≤α<2π)的形式,并确定其所在的象限.319)1(π;631)2(π-. 解: (1),672319πππ+= 67π是第三象限的角,所以它是第三象限角.631)2(π-是第二象限角..,,216. 是圆的半径是扇形弧长其中积公式利用弧度制证明扇形面例R l lR S =证法一:∵圆的面积为2R π,∴圆心角为1的扇形面积为221R ππ,又扇形弧长为l,半径为R, ∴扇形的圆心角大小为R l rad, ∴扇形面积lR R R l S 21212=⋅=.证法二:设圆心角的度数为n ,则在角度制下的扇形面积公式为3602R n S π⋅=,又此时弧长180R n l π=,∴R l R R n S ⋅=⋅⋅=2118021π. 可看出弧度制下的扇形面积公式显然要简洁得多.22121:R lR S α==扇形面积公式 7.课堂小结ORl①什么叫1弧度角? ②任意角的弧度的定义③“角度制”与“弧度制”的联系与区别.8.课后作业:①教材P9练习第1、2、3、6题②教材P10面7、8题及B2、3题.第4课时1.2.1任意角的三角函数(三)教学目的:知识目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式; 2.利用三角函数线表示正弦、余弦、正切的三角函数值;3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。

能力目标:掌握用单位圆中的线段表示三角函数值,从而使学生对三角函数的定义域、值域有更深的理解。

德育目标:学习转化的思想,培养学生严谨治学、一丝不苟的科学精神; 教学重点:正弦、余弦、正切线的概念。

教学难点:正弦、余弦、正切线的利用。

教学过程: 一、复习引入: 1. 三角函数的定义 2. 诱导公式)Z (tan )2tan()Z (cos )2cos()Z (sin )2sin(∈=+∈=+∈=+k k k k k k ααπααπααπ 练习1..____________tan600o的值是 D 3.D 3.C 33.B 33.A --练习2. .________,0cos sin 在则若θθθ> B第二、四象限 第一、四象限第一、三象限第一、二象限.D .C .B .A练习3. ____0sin20cos 的终边在则若 θθ<>θ,且 C第二象限 第四象限 第三象限 第一象限.D .C .B .A二、讲解新课:当角的终边上一点(,)P x y1=时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。

1.有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。

规定:与坐标轴方向一致时为正,与坐标方向相反时为负。

有向线段:带有方向的线段。

2.三角函数线的定义:设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与点P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向延长线交与点T .由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, cos 1x x x OM r α====,tan y MP AT AT x OM OAα====我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。

说明:(1)三条有向线段的位置:正弦线为α的终边与单位圆的交点到x 轴的垂直线段;余弦线在x 轴上;正切线在过单位圆与x 轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。

相关文档
最新文档