数学分析(华东师大版)上第十章10-1
数学分析教案_(华东师大版)上册全集_1-10章
第一章实数集与函数导言数学分析课程简介( 2 学时)一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算sin、实数定义等问题引入.322.极限( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
华东师范大学数学系编数学分析第三版上册教案
《数学分析》概述授课章节:《数学分析》概述教学目的:1.通过教学使学生对《数学分析》这门课有总体的了解,明确研究对象及主要内容; 2.通过教学使学生明确《数学分析》课在所学专业中的地位和主要作用,以引起重视; 3.通过教学使学生明确《数学分析》的课程安排、考核及成绩的评定标准;4.通过教学使学生懂得参考书的使用及作业的要求.教学重点:数学分析的研究对象、主要内容.教学难点:主要内容的介绍.教学方法:讲座形式.教学程序:讲座提纲1.《数学分析》这门课到底要研究什么(即研究对象)?2.《数学分析》的主要内容;3.《数学分析》与后继课程的关系;4.《数学分析》课程安排及考核;5.《数学分析》学习中应该注意的一些问题;6.《数学分析》的参考书目;7.作业要求.一、研究对象变量间的关系及变化过程,具体表现为函数及其性质.函数及其性质:单调性、有界性、奇偶性、最大(小)值、极大(小)值、周期性、图象、……需要指明的是:中学也研究函数的这些性质,但主要采用“静止”、“孤立”的方法去研究函数.而在《数学分析》中主要采用“运动”、“联系”、“变化”的过程把握变化的结果.因而《数学分析》中的方法具“运动性”、“变化性”.如何研究函数?通过什么方式、角度去研究呢?或用什么样的工具去研究函数呢?这些构成《数学分析》的主要内容.二、主要内容1.极限的方法(极限论).(2、3、4、16章) 例如,从极限的观点看函数1y x=. 一般函数的极限如何定义?其性质如何?—----极限论.2.微分(学).(5、6、17、18章)研究函数的增量相对于自变量的增量的变化率问题.例如:设()y f x =是一函数,令0,x x x =- 0()().y f x x f x ∆=+- 要问y ∆随x ∆的变化趋势如何?特别地,y x∆∆的变化趋势如何? 3.积分学:(8、9、10、11、19、20、21、22章)4.级数论:(12、13、14、15章) 研究无穷多个函数的可和性问题.例如211(||1)1n x x x x x-+++++=<- .综上,《数学分析》这门课主要由四大块内容组成:极限论、微分论、积分学和级数论.这四大块不是孤立的,而是存在着密切的联系.其中“极限论”是“基础”,其它是“上层建筑”.但这里需要提出的是,作为“基础”的“极限理论”的完善远远晚于其它几个方面的应用,因而引起许多争议.对此感兴趣的同学可读一读教材的附录中281-288页的“微积简史”部分,会对此有所了解.三、与后继课程的关系《数学分析》课程是数学系数学教育专业的专业基础核心课程,它的学习时间长(三个学期,234学时),学习内容多,学分最多(13学分),是从初等数学到高等数学过渡的桥梁,是学生学习数学教育专业其它后继课程(如:大学物理、微分方程、概率论与数理统计、微分几何、复变函数、计算机数值方法、实变函数与泛函分析等)的重要基础.这些课都以《数学分析》为先修课程,如果不开《数学分析》或晚开《数学分析》,将直接影响到这些课程的开设.同时还为培养学生分析问题和解决问题的能力提供必要的训练,从而提高学生的实践能力和创新能力.掌握这门课程的基本理论和基本方法,对于学习本专业基础课和专业课以及进一步学习、研究和应用都是至关重要.四、课程安排、考核及成绩评定方法1、学时分配:三个学期,总学时234,总学分13第一学期:每周5学时(上课内容从“第一章实数集与函数”到“第八章不定积分”,上课时间18周,学时90,学分5);第二学期:每周4学时(上课内容从“第九章定积分”到“第十五章傅里叶级数”,上课时间18周,学时72,学分4);第三学期:每周4学时(上课内容从“第十六章多元函数的极限与连续”到“第二十二章曲面积分”,上课时间18周,学时72,学分4).2、考核方式:闭卷考试(期中测验,期未期终考试).3、成绩评定:采用百分制平时成绩:30分(其中:1)作业占10%;2)听课率、课堂提问回答等占10%;3)期中测验占10%);期未考试:70分.五、学习体会从高中到大学,显然是衔接的,但毕竟是不同的阶段.主要表现在;中学数学 大学数学在教材方面 内容少,较直观、具体、理论性不强,研究的常量数学、固定的图形 内容多、较抽象、理论性强,研究的变量、图形的变化在听课方面 听 课前预习;课中认真听课和记笔记;课后及时复习在复习方面 整理笔记,及时复习在习题方面 主要是计算,验证少、理论性弱 概念、论证多、理论性强、数学语言表达准确,通过作业巩固学习内容六、参考书1.吴良森、毛羽辉等编《数学分析学习指导书》(上、下册),高等教育出版社,2004.8.2.刘玉琏、傅沛仁编《数学分析讲义》第三版(上、下册),高等教育出版社,1992.7.3.吉米多维奇著《数学分析习题集》,李荣冻译,人民教育出版社,1958.6.4.菲赫金哥尔茨著《微积分学教程》(修订本),叶彦谦等译,人民教育出版社,1959.8.七、作业要求作业整洁;字迹工整,书写清晰;解题格式要完整;勿抄作业,习题答案只能作为参考.。
数学分析课本(华师大三版)-习题及答案第十章
数学分析课本(华师大三版)-习题及答案第十章第十章 定积分的应用一、 填空题 1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A =2. 曲线xxe y e y -==,及1=x 所围面积A =3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S =5. 曲线⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t t y tt x ,弧长4=S ,则其重心坐标是 7. 曲线0,0),0(==≤=y x x ey x所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是 10.设有一内壁形状为抛物面22y xz +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h =11.由曲线,2,1=+=x x x y 及2=y 所围图形的面积S = 曲线xx xy 223++-=与x 轴所围成的图形的面积A =二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰baxdxln ln ln (B )⎰bae ex dxe (C)⎰b ay dye ln ln(D )⎰b a e e xdxln2.曲线x y x y ==,1,2=x 所围成的图形面积为A ,则A =( ) (A )dx x x)1(21-⎰(B )dx x x )1(21-⎰ (C )⎰⎰-+-2121)2()12(dyy dy y(D )⎰⎰-+-2121)2()12(dxx dx x3.曲线xe y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( )(A )dxex ex)(10-⎰(B )dy y y y e )ln (ln 1-⎰(C )dxxe e ex x )(1⎰-(D )dy y y y )ln (ln 10-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( ) (A)()θθπd a 220cos 221⎰(B )θθππd a ⎰-2cos 221(C)()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A)⎰πθθ02221d e a(B )⎰πθθ20222d e a (C)⎰-ππθθd e a 22(D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+46262cos sin 2πππθθθθd d (C )()()⎰⎰+462602cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln x y -=上210≤≤x 一段弧长S =( ) (A)dx x ⎰⎪⎭⎫ ⎝⎛-+2102111(B )⎰-+212211dx x x(C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dxx ⎰-+21022])1[ln(18.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( ) (A )()⎰-ππ2022cos 1dt t a(B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a(D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y t a x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdtt t a t(B )⎰-⋅022)sin (cos3sec 4πdtt t a t (C )⎰-⋅π02)sin (cos 3sec 2dtt t a t (D )⎰-⋅02)sin (cos 3sec 2πdtt t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积 =V ( ) (A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V=( )(A )⎰-adxx a 022)(4 (B )⎰-adx x a 022)(8(C )⎰-a dxx a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰h ahdh 0(B )⎰a ahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+h dy y h H S 0)( (B )⎰-+H dy y h H S 0)((C )⎰-h dy y H S 0)( (D )⎰+-+H h dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰hdy y dh d2π (B )⎰--h dy a y a dhd 022])([π(C )⎰h dy y dh d b2π (D )⎰-h dy y ay dhd b02)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( )(A )⎰-+-b adx x g x f x g x f m )]()()][()(2[π(B )⎰---b adx x g x f x g x f m )]()()][()(2[π(C )⎰-+-b adx x g x f x g x f m )]()()][()([π(D )⎰---b adx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。
华东师范大学数学系《数学分析》(上)笔记和课后习题(含真题)详解(定积分的应用)
第10章 定积分的应用10.1 复习笔记一、平面图形的面积由连续曲线()(0)y f x =≥,以及直线,()x a x b a b ==<和x 轴所围曲边梯形的面积为()b baaA f x dx ydx ==⎰⎰如果()f x 在[,]a b 上不都是非负的,则所围图形的面积为()b baaA f x dx y dx ==⎰⎰一般地,由上、下两条连续曲线2()y f x =与1()y f x =以及两条直线,()x a x b a b ==<所围的平面图形(图l0-1),它的面积计算公式为21[()()]baA f x f x dx =⎰-图10-1二、由平行截面面积求体积 1.立体体积的一般计算公式 设为三维空间中的一立体,它夹在垂直于x 轴的两平面x =a 与x =b 之间(a <b ),称为位于[a,b]上的立体,若在任意一点x∈[a,b]处作垂直于x轴的平面,它截得的截面面积是关于x的函数,记为A(x),并称之为的截面面积函数(见图10-2),设A(x)是连续函数.图10-2 图10-3对[a,b]作分割过各个分点作垂直于x轴的平面x=xi,i=1,2,…,n,它们把分割成n个薄片,i=1,2,…,n任取那么每一薄片的体积(见图10-3)于是由定积分的定义和连续函数的可积性,当时,上式右边的极限存在,即为函数A (x)在[a,b]上的定积分,于是立体的体积定义为2.旋转体的体积a b上的连续函数,Ω是由平面图形设f是[,]≤≤≤≤0|||f(x)|,ay x b绕x轴旋转一周所得的旋转体,那么易知截面面积函数为2()[()],[,]A x f x x a b π=∈得到旋转体Ω的体积公式为2=[()]baV f x dxπ⎰三、平面曲线的弧长与曲率 1.平面曲线的弧长 (1)定义①如果存在有限极限ss T T =→0||||lim即任给0ε>,恒存在0δ>,使得对C 的任意分割T ,只要||||T δ<,就有|s |T s ε-<则称曲线C 是可求长的,并把极限s 定义为曲线C 的弧长.②设曲线AB 是一条没有自交点的闭的平面曲线.在AB 上任取点P ,将AB 分成两段非闭曲线,如果AP 和PB 都是可求长的,则称AB 是可求长的,并把AP 的弧长和PB 的弧长的和定义为AB 的弧长.③设曲线C 由参数方程(),(),[,]x x t y y t t αβ==∈给出.如果(t)x 与()y t 在[,]αβ上连续可微,且'()x t 与'()y t 不同时为零,即''()()0x t y t +≠,],[βα∈t ,则称C 为一条光滑曲线.(2)定理设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程(),(),[,]x x t y y t t αβ==∈ (10-1)给出.若()x t 与()y t 在[,]αβ上连续可微,则C 是可求长的,且弧长为'2'2[()][()]s x t y t dt βα=+⎰ (10-2)(3)性质设AB 是一条没有自交点的非闭的可求长的平面曲线.如果D 是AB 上一点,则和AD 和DB 也是可求长的,并且AB 的弧长等于AD 的弧长与DB 的弧长的和.2.曲率 (1)定义如图10-4,设()t α表示曲线在点((),())P x t y t 处切线的倾角,==()()t t t ααα∆+∆-表示动点由P 沿曲线移至))(),((t t y x t x Q ∆+∆+时切线倾角的增量,若PQ 之长为s ∆,则称||K sα-∆=∆为弧段PQ 的平均曲率.如果存在有限极限|||lim ||lim |00dsd s s K s t ααα=∆∆=∆∆=→∆→∆则称此极限K 为曲线C 在点P 处的曲率.图10-4(2)计算公式设曲线C 是一条光滑的平面曲线,由参数方程(10-1)给出,则曲率的计算公式为2322)(||''''''''y x y x y x K +-=若曲线由()y f x =表示,则相应的曲率公式为2''3'2||(1+y )y K =四、旋转曲面的面积1.设平面光滑曲线C 的方程为(),[,]y f x x a b =∈(不妨设()0f x ≥),这段曲线绕x 轴旋转一周得到旋转曲面的面积为2(baS f x π=⎰2.如果光滑曲线C 由参数方程(),(),[,]x x ty y t t αβ==∈给出,且()0y t ≥,那么由弧微分知识推知曲线C 绕x 轴旋转所得旋转曲面的面积为2(S y t βαπ=⎰五、定积分的近似计算 1.梯形法公式121()(...)22bn n ay y b a f x dx y y y n --=+++++⎰2.抛物线法公式(辛普森Simpsom 公式)021*******()[4(...y )2(...)]6bn n n ab af x dx y y y y y y y n---≈+++++++++⎰10.2 课后习题详解§1 平面图形的面积1.求由抛物线y =x 2与y =2-x 2所围图形的面积.解:该平面图形如图10-1所示.两条曲线的交点为(-1,1)和(1,1),所围图形的面积为图10-12.求由曲线与直线所围图形的面积.解:该平面图形如图10-2所示.所围图形的面积为。
华东师范大学数学分析第10章
(5)r a sin3 3 (a 0,0
3 );
(6)r a ( a 0),0
2.
解
(1)s
b 1
y '2 ( x)dx
a
s
4 1
0
9 4
xdx
8 27
(10
10
1)
(2) x cos4 (t ), y sin4 t
s 2 x 't2 y '2t dt 0
2 4sin t cost cos4 t sin4 tdt 0
a 64
2
3
(3)
'( y)
[a
1
] y2
b2
a b
(1
) y2
1 2
b2
y,
[ '( y)]2
[
b a
(1
) y 2
b2
y]2
(1 a2
b2
y2 b2 )
1
y2
a2 b2
b2 y2 ( b ,
b
S2
( y) 1
b
'2 ( y)dy 2
b
y2
a1 b
b2
a2 y2 1 b2 y2 dx
5 10
x
1 2
x
从而它的面积为
1 2
x
1 2
x
xOz平面上椭圆方程为
1 4
x2
x2 10
z2 42
1
则 PQR 面积为 25 1
Z2 42
于是所求体积
V
4 2 25 1
0
dz z2
42
2 | 25z 100 z2 4
16
30
【精品】数学分析教案_(华东师大版)上册全集_1-10章
数学分析教案_(华东师大版)上册全集_1-10章第一章实数集与函数导言数学分析课程简介( 2 学时 )一、数学分析(mathematical analysis)简介:1.背景: 从切线、面积、计算 32sin、实数定义等问题引入.2.极限 ( limit ) ——变量数学的基本运算:3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论.微积运算是高等数学的基本运算.数学分析与微积分(calculus)的区别.二、数学分析的形成过程:1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想.2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期.3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期.4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:三、数学分析课的特点:逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务.有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯.四、课堂讲授方法:1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材:[1]华东师范大学数学系编,数学分析,高等教育出版社,2001;[2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992;[3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;[4]马振民,数学分析的方法与技巧选讲,兰州大学出版社,1999;[5]林源渠,方企勤数学分析解题指南,北京大学出版社,2003.2.本课程按[1]的逻辑顺序并在其中取材.本课程为适应教学改革的要求,只介绍数学分析最基本的内容,并加强实践环节,注重学生的创新能力的培养。
数学分析课件华东师大版
数学分析课件华东师大版
汇报人:
目录
• 引言 • 数学分析基础 • 导数与微分 • 积分学 • 无穷级数 • 多元函数微积分
01
引言
课程简介
01
数学分析是数学专业的一门基础 课程,主要研究实数、函数、极 限、连续性、可微性和积分等概 念及其性质。
02
通过学习数学分析,学生可以掌 握数学的基本原理和方法,培养 逻辑思维能力、抽象思维能力和 解决问题的能力。
总结词
理解无穷级数的定义和性质是掌握无穷级数的基础。
详细描述
无穷级数是数学分析中的一个重要概念,它是由无穷多个数按照一定的规则排列组成的数列。无穷级数具有一些 重要的性质,如线性性质、可加性、可乘性和收敛性等。这些性质在无穷级数的运算和证明中有着广泛的应用。
无穷级数的收敛性判别法
总结词
掌握无穷级数的收敛性判别法是判断无穷级数收敛性的关键。
定积分的计算
牛顿-莱布尼兹公式
分部积分法
牛顿-莱布尼兹公式是计算定积分的常 用方法,它通过求不定积分的原函数 (即不定积分),然后利用原函数计 算定积分。
分部积分法是另一种计算定积分的方 法,通过将两个函数的乘积进行求导 ,将定积分转化为容易计算的积分。
换元法
换元法是一种常用的计算定积分的方 法,通过改变定积分的积分变量或积 分区间,将复杂的积分转化为容易计 算的积分。
极限的性质
极限具有唯一性、局部有界 性、局部保序性、迫近性等 性质。
连续函数的性质
连续函数具有局部有界性、 局部保序性、迫近性等性质 。
偏导数与全微分
偏导数的定义
如果一个函数在某个点的某个 自变量的偏导数存在,则称该 函数在该点关于该自变量可偏
华东师大数学分析答案完整版
华东师大数学分析答案完整版一、填空题1. 极限的定义是当自变量趋近于某个值时,函数的值趋近于另一个确定的值。
2. 函数在某一点连续的充分必要条件是左极限、右极限和函数值在该点相等。
3. 无穷小量与无穷大量的关系是无穷小量的倒数是无穷大量,无穷大量的倒数是无穷小量。
4. 函数的导数表示函数在某一点的瞬时变化率。
5. 微分表示函数在某一点的微小变化量。
6. 函数的积分表示函数在某个区间上的累积变化量。
7. 变限积分的导数是原函数的导数。
8. 无穷级数的收敛性可以通过比较判别法、比值判别法等方法进行判断。
9. 函数的泰勒级数表示函数在某一点的幂级数展开。
10. 傅里叶级数表示周期函数的三角级数展开。
二、选择题1. 下列函数中,连续的是(A)。
A. f(x) = x^2B. f(x) = 1/xC. f(x) = sin(x)D. f(x) = |x|2. 下列极限中,存在的是(B)。
A. lim(x→0) 1/xB. lim(x→∞) x^2C. lim(x→0) sin(x)/xD. lim(x→∞) e^(x)3. 下列函数中,可导的是(A)。
A. f(x) = x^3B. f(x) = |x|C. f(x) = sin(1/x)D. f(x) = x^(1/3)4. 下列积分中,收敛的是(C)。
A. ∫(1/x) dxB. ∫(1/x^2) dxC. ∫(e^(x)) dxD. ∫(1/x^3) dx5. 下列级数中,收敛的是(B)。
A. ∑(1/n)B. ∑(1/n^2)C. ∑(1/n^3)D. ∑(1/n^4)三、解答题1. 求函数 f(x) = x^3 3x + 2 在 x = 1 处的导数。
解答:f'(x) = 3x^2 3,代入 x = 1,得 f'(1) = 0。
2. 求不定积分∫(e^x) dx。
解答:∫(e^x) dx = e^x + C,其中 C 为任意常数。
华东师大数学分析答案完整版
又
是’
的
最
小
上
界
!
这 两种定义是等价的!!$$中的!(#相当于!!$中的"!在上述定义中可以限定#%###其中
## 为充分小的正数!定义!$$在某些证明题中使用起来更方便些 !
*" 确界原理)设 ’ 是非空数集#若 ’ 有上界#则 ’ 必有上确界*若 ’ 有下界#则 ’ 必有下确界!
确界原理是实数系完备性的几个等价定理中的一个!
3" 单调性
设 -%,!$$#$#.#若 对 ,$! #$$ #.#$! %$$ #有
!!$,!$!$$,!$$$#则称 , 在. 上是递增函数! !$$,!$!$%,!$$$#则称 , 在. 上是严格递增函数!
类似可定义递减函数与严格递减函数!
4" 奇偶性
设 . 是对称于原点的数集#-%,!$$#$#.! !!$若,$#.#都有 ,!($$%,!$$#则称,!$$是偶函数! !$$若 ,$#.#都 有 ,!($$% (,!$$#则 称 ,!$$是 奇 函 数 !
分析 !本题主要考察函数 的 有 界 性#要 充 分 利 用 已 知 条 件 给 出 的 不 等 式 #积 极 构 造 出 类 似 的 不 等
%$ %
第一章!实数集与函数
式 #以 证 出 结 论 !
证 明 ! , (%#;’.:#,$# !%#;$#则 存 在’# !##!$#使 $%%&’!;(%$
再
取
中
点%!&;! $
#又
可
得
区
间
(%$
#;$’#使
,!$$在
其
上
无
界
#这
样
继
华东师大第四版数学分析上册课件
数学分析的发展历程
总结词
数学分析的发展经历了初创期、经典时期和现代发展阶段。
详细描述
数学分析的初创期可以追溯到17世纪,当时的数学家开始系统地研究微积分。经典时期则是在18世纪 和19世纪,数学分析得到了全面的发展和完善,产生了许多重要的定理和公式。进入20世纪后,数学 分析继续发展并逐渐与其他数学分支相互融合,形成了现代数学分析的体系。
换元积分法的应用
主要用于处理被积函数为复合函数或具有特定形式的情况,通过换元将问题转化为更易 于处理的形式。
06
定积分
Chapter
定积分的定义与性质
定积分的定义
定积分是积分的一种,是函数在某个区间上的积分和的 极限。
定积分的性质
定积分具有线性性质、可加性、区间可加性、积分中值 定理等性质。
定积分的计算方法
华东师大第四版数学分析上册课件
目录
• 绪论 • 极限论 • 连续性 • 导数与微分 • 不定积分 • 定积分
01
绪论
Chapter
数学分析的起源和定义
总结词
数学分析起源于古希腊,是研究实数、极限、连续性和可微 性的科学。
详细描述
数学分析的起源可以追溯到公元前7世纪古希腊的数学家,他 们开始研究连续性和无穷小的问题。经过几个世纪的探索和 发展,数学分析逐渐形成了以实数、极限、连续性和可微性 为核心的理论体系。
数学分析的特性与重要性
总结词
数学分析具有严密性、连续性和广泛应用性的特点,是数学和自然科学的重要基础。
详细描述
数学分析的特性表现在其严密的逻辑推理和证明上,它强调对概念和定理的精确表述。此外,数学分析还具有连 续性的特点,它研究的是实数域上的连续函数。最后,由于数学分析是许多学科的基础,如物理、工程、经济等 ,它具有广泛的应用价值。
数学分析(华东师大版)上10-1名师公开课获奖课件百校联赛一等奖课件
•(4, 2)
A
x y2
O
4x
• (1, 1)
若把 A 看作 x 型区域, 则
f1( x)
x
x 2
,0 ,1
x x
1, 4
f2x x ,0 x 4.
前页 后页 返回
由于 f1 分段定义, A 分为二图形 A1 和 A2 ,
1
S( A1 ) 0
x ( x ) dx 4 x3 2 1 4 . 3 03
前页 后页 返回
x 型区域 A
y
y f2(x)
A
O a y f1( x)
bx
经过上移
y
y f2(x) M
A
y f1( x) M 0
Oa
bx
前页 后页 返回
由定积分旳几何意义,可知 A 旳面积为
b
b
S( A) a ( f2( x) M )dx a ( f1( x) M )dx
b
S( A) a y dx y(t) x(t)dt
y(t)x(t)dt.
所以,不论 x(t)递增或递减,
S( A)
yt xt dt.
若上述曲线C 是封闭旳,即
x( ) x( ), y( ) y( ),
前页 后页 返回
则由C 所围旳平面图形 A 旳面积一样是
S( A)
yt xt dt.
sin 2
2
4 0
1 4
sin 2
2
2 π
4
1 4
π 4
1 2
1 4
π 4
1 2
π 8
1. 4
注 也可利用对称性.
前页 后页 返回
又是 y型区域.
数学分析课本(华师大三版)-习题及答案第十章
第十章 定积分的应用一、填空题1. 求曲线8,2222=+=y x x y 所围成图形面积A (上半平面部分),则A = 2. 曲线x x e y e y -==,及1=x 所围面积A = 3. 曲线θθcos 1,cos 3+==r r 所围面积A = 4. 曲线)0(>=λλθae r 从0=θ到αθ=一段弧长S = 5. 曲线 ⎩⎨⎧-=+=)cos (sin )sin (cos t t t a y t t t a x 从0=t 到π=t 一段弧长S =6. 均匀摆线)0(cos 1sin π≤≤⎩⎨⎧-=-=t ty tt x ,弧长4=S ,则其重心坐标是7. 曲线0,0),0(==≤=y x x e y x 所围图形绕Ox 轴旋转所得旋转体的体积为 ;而绕Oy 轴旋转所得旋转体的体积为 8. 抛物线)(a x x y -=与直线x y =所围图形的面积为9. 在抛物线24x y =上有一点P ,已知该点的法线与抛物线所围成的弓形面积为最小,则P 点的坐标是10.设有一内壁形状为抛物面22y x z +=的容器,原来盛有)(83cm π的水,后来又入注)(643cm π的水,设此时水面比原来提高了hcm ,则h = 11.由曲线,2,1=+=x xx y 及2=y 所围图形的面积S = 曲线x x x y 223++-=与x 轴所围成的图形的面积A = 二、选择填空题1. 曲线)0(ln ,ln b a a y x y <<==与y 轴所围成图形的面积为A ,则A =( ) (A )⎰ba xdx ln ln ln (B )⎰ba e ex dx e(C )⎰baydy e ln ln (D )⎰ba e exdx ln2.曲线x y xy ==,1,2=x 所围成的图形面积为A ,则A =( )(A )dx x x )1(21-⎰(B )dx xx )1(21-⎰(C )⎰⎰-+-2121)2()12(dy y dy y(D )⎰⎰-+-2121)2()12(dx x dx x3.曲线x e y =下方与该曲线过原点的切线左方及y 轴右方所围成的图形面积A =( ) (A )dx ex e x )(10-⎰ (B )dy y y y e)ln (ln 1-⎰(C )dx xe e exx )(1⎰- (D )dy y y y )ln (ln 1-⎰4.曲线)0(cos 2>=a a r θ所围图形面积A =( )(A )()θθπd a 220cos 221⎰ (B )θθππd a ⎰-2cos 221 (C )()θθπd a 220cos 221⎰(D )()θθπd a 220cos 2212⎰ 5.曲线πθπθθ=-==,,ae r 所围图形面积A =( )(A )⎰πθθ02221d e a (B )⎰πθθ20222d e a (C )⎰-ππθθd ea 22 (D )⎰-ππθθd e a 2226.曲线θθ2cos ,sin 22==r r 所围图形面积A =( )(A )()()⎰⎰+-222121212cos 2sin 2θθθθd d(B )()()⎰⎰+462602cos sin 2πππθθθθd d(C )()()⎰⎰+46262cos 21sin 221πππθθθθd d(D )()()⎰⎰+462602cos sin 22πππθθθθd d7.曲线()21ln xy -=上210≤≤x 一段弧长S =( )(A )dx x ⎰⎪⎭⎫⎝⎛-+212111 (B )⎰-+2102211dx x x (C )dx x x ⎰⎪⎭⎫ ⎝⎛--+2102121 (D )dx x ⎰-+21022])1[ln(1 8.摆线)0()cos 1()sin (>⎩⎨⎧-=-=a t a y t t a x 一拱与x 轴所围图形绕x 轴旋转,所得旋转体的体积=V ( )(A )()⎰-ππ2022cos 1dt t a (B )())]sin ([cos 12202t t a d t a a--⎰ππ(C )()⎰--ππ2022)]sin ([cos 1t t a d t a (D )()⎰-adt t a ππ2022cos 19.星形线⎪⎩⎪⎨⎧==ta y ta x 33sin cos 的全长S =( )(A )⎰-⋅202)sin (cos 3sec 4πdt t t a t(B )⎰-⋅022)sin (cos 3sec 4πdt t t a t(C )⎰-⋅π02)sin (cos 3sec 2dt t t a t(D )⎰-⋅02)sin (cos 3sec 2πdt t t a t10.心形线)cos 1(4θ+=r 与直线2,0πθθ==围成图形绕极轴旋转的旋转体体积=V ( )(A )⎰+202)cos 1(16πθθπd(B )⎰+2022sin )cos 1(16πθθθπd(C )⎰++2022]cos )cos 1(4[sin )cos 1(16πθθθθπd(D )⎰++0222]cos )cos 1(4[sin )cos 1(16πθθθθπd11.两个半径为a 的直交圆柱体所围的体积为V =( )(A )⎰-adx x a 022)(4(B )⎰-adx x a 022)(8(C )⎰-adx x a 022)(16 (D )⎰-adx x a 022)(212.矩形闸门宽a 米,高h 米,垂直放在水中,上沿与水面齐,则闸门压力p =( ) (A )⎰hahdh 0 (B )⎰aahdh 0(C )⎰hahdh 021(D )⎰h ahdh 0213.横截面为S ,深为h 的水池装满水,把水全部抽到高为H 的水塔上,所作功=W ( )(A )⎰-+hdy y h H S 0)( (B )⎰-+Hdy y h H S 0)((C )⎰-hdy y H S 0)( (D )⎰+-+Hh dy y h H S 0)(14.半径为a 的半球形容器,每秒灌水b ,水深)0(a h h <<,则水面上升速度是( )(A )⎰h dy y dh d 02π (B )⎰--h dy a y a dh d 022])([π (C )⎰hdy y dh db2π (D )⎰-hdy y ay dh d b2)2(15.设)(),(x g x f 在区间[]b a ,上连续,且m x g x f <<)()((m 为常数),则曲线b x a x x f y x g y ====,),(),(所围平面图形绕直线m y =旋转而成的旋转体体积为( ) (A )⎰-+-badx x g x f x g x f m )]()()][()(2[π(B )⎰---badx x g x f x g x f m )]()()][()(2[π(C )⎰-+-badx x g x f x g x f m )]()()][()([π(D )⎰---badx x g x f x g x f m )]()()][()([π三、计算题1.求抛物线2x y =与2x 2y -=所围图形的面积。
数学分析教案(华东师大版)第十章定积分应用
第十章定积分的应用教课要求:1.理解微元法的思想,并可以应用微元法或定积分定义将某些几何、物理等实质问题化成定积分;2.娴熟地应用本章给出的公式,计算平面地区的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等。
教课要点:娴熟地应用本章给出的公式,计算平面地区的面积、平面曲线的弧长,用截面面积计算体积、旋转体的体积和它的侧面积、变力作功等教课时数: 10 学时§1平面图形的面积(2时)教课要求:1.理解微元法的思想,并可以应用微元法或定积分定义将某些几何、物理等实质问题化成定积分;2.娴熟地应用本章给出的公式,计算平面地区的面积。
教课要点:娴熟地应用本章给出的公式,计算平面地区的面积一、组织教课:二、讲解新课:(一)直角坐标系下平面图形的面积:1. 简单图形:型和型平面图形.2. 简单图形的面积:给出型和型平面图形的面积公式.对由曲线和围成的所谓“两线型”图形 ,介绍面积计算步骤 .注意利用图形的几何特点简化计算.例 1求由曲线例 2求由抛物线与直线围成的平面图形的面积 .所围平面图形的面积 .(二)参数方程下曲边梯形的面积公式:梯形的曲边由方程又设,就有↗↗ ,于是存在反函数式方程.设区间上的曲边给出 ..由此得曲边的显,亦即.详细计算经常利用图形的几何特点.例 3求由摆线的一拱与轴所围平面图形的面积 .例4极坐标下平面图形的面积:推导由曲线和射线所围“曲边扇形”的面积公式.( 简介微元法,并用微元法推导公式.半径为,顶角为的扇形面积为. )例 5求由双纽线所围平面图形的面积.解或. (可见图形夹在过极点,倾角为的两条直线之间) .以代方程不变,图形对于轴对称;以代,方程不变,图形对于轴对称.参阅P242图10-6所以.三、小结:§ 2由平行截面面积求体积(2时)教课要求:娴熟地应用本章给出的公式,用截面面积计算体积。
教课要点:娴熟地应用本章给出的公式,用截面面积计算体积(一)已知截面面积的立体的体积:建立体之截面面积为.推导出该立体之体积.祖暅原理 :夫幂势即同,则积不容异.( 祖暅系祖冲之之子齐梁时人 ,大概在五世纪下半叶到六世纪初)例 1求由两个圆柱面和所围立体体积.P244例1()例 2计算由椭球面所围立体(椭球)的体积.[1]P244例2()(二)旋转体的体积 :定义旋转体并推导出体积公式..例 3推导高为 ,底面半径为的正圆锥体体积公式 .例 4求由曲线和所围平面图形绕轴旋转所得立体体积 .例 5求由圆绕轴一周所得旋转体体积 .( 1000 )例 6轴正半轴 . 绕轴旋转 . 求所得旋转体体积 .§3曲线的弧长(1时)教课要求:娴熟地应用本章给出的公式,计算平面曲线的弧长。
10数学分析教案-(华东师大版)第十章定积分的应用平面曲线的弧长与曲率)
§3 平面曲线的弧长与曲率一 平面曲线的弧长先建立平面曲线弧长的概念,设C=AB 是一条没有自交点的非闭的平面曲线,在C 上从A 到B 依次取分点A=P 0,P 1,P 2,…,P n =B,它们成为对曲线C 的一个分割,记为T ,然后用线段连接T 中每相邻两点,得到C 的n 条弦1(1,2,...,)i i P P i n -=,这n 条弦又成为C 的一条内接折线,记||T||=max|P i-1P i |,11||nT i ii s PP -==∑分别表示最长弦的长度和折线的总长度。
定义1 如果存在有限极限||||0lim s T T s →=,即任给ε>0,恒存在δ>0,使得对于C 的任何分割T ,只要||T||<δ,就有|s T -s|<ε,曲线C 是可求长的,并把s 定义为曲线C 的弧长。
定理10.1 设曲线C 是一条没有自交点的非闭的平面曲线,由参数方程x=x(t),y=y(t),t ∈[α,β]给出,若x(t)、y(t)在[α,β]上连续可微,则C 是可求长的,且弧长为s βα=⎰。
证明 对C 作任一分割T={ P 0,P 1,P 2,…,P n },并设P0与Pn 分别对应t=α和t=β,且P i (x i ,y i )=(x(t i ),y(t i )),i=1,2,…,n -1,于是与T 对应得到区间[α,β]的一个分割T':α=t 0,t 1,t 2,…,t n =β。
现在用反证法先证明||||0lim ||||0T T →'=.假设||||0lim ||||0T T →'≠,则存在ε0>0,对于任何δ>0,都可以找到一个分割T 使得||T||<δ而同时||T'||>ε0,从而可以找到C 上两点Q'和Q'',使得|Q''Q'|<δ,而它们对应的参量t'和t''满足|t't''|≥ε0,依次取δ=1/n,n=1,2,…,则得到两个点列{Q'n }和{Q''n }和它们对应的参量数列{t'n }和{t''n },它们满足|Q n ''Q n '|<1/n, |t'n t''n |≥ε0,由致密性定理,存在子列{}{}k kn n t t '''及,和t*和t**∈[α,β],使得lim *,lim **k knn k k t t t t →∞→∞'''==,显然|t*-t**|≥ε0,即t*≠t**。
数学分析教案华东师大版
数学分析教案华东师大版一、教学目标通过本课程的学习,学生应该能够:1.熟悉数学分析的基本概念和基本原理;2.掌握数学分析中的常用方法和技巧;3.培养数学分析的思维方式和解决问题的能力;4.培养学生的数学思维和创造性思维。
二、教学内容本教案主要包括以下内容:1.函数、极限与连续性–函数的定义和性质–极限的定义和性质–连续函数的定义和性质–极限存在的判定方法–无穷小量与无穷大量2.一元函数的微分学–导数的定义和性质–导数的几何意义和物理意义–某类函数的导数–高阶导数与导数的运算法则–隐函数与参数方程的求导公式3.一元函数的积分学–积分的定义和性质–函数的原函数与不定积分–定积分的定义和性质–定积分的计算方法–积分中值定理4.多元函数的微分学–多元函数的定义和性质–多元函数的极限和连续性–偏导数和全微分–隐函数与参数方程的求导公式–多元函数的极值与最值问题5.多元函数的积分学–重积分的定义和性质–二重积分的计算方法–三重积分的计算方法–曲线与曲面的面积与弧长–应用于物理和几何的多重积分三、教学方法1.讲授法:通过讲解基本概念和原理,逐步引导学生掌握数学分析的基本知识;2.示例法:通过实际例子和问题,帮助学生理解和应用数学分析的方法和技巧;3.探究法:引导学生通过自主思考和探索,培养解决问题的能力和创造性思维;4.实践法:通过实际应用和实验,帮助学生将数学分析知识应用到实际问题中。
四、教学工具在教学过程中,我们将使用以下工具:1.教材:华东师大版《数学分析》教材;2.黑板和白板:用于讲解和演示数学分析的概念和方法;3.计算器:用于计算和验证数学分析中的计算步骤;4.电脑和投影仪:用于展示教材、图片和视频资料;5.实验器材:用于进行一些实际应用和实验。
五、教学评价为了评价学生的学习效果和掌握程度,我们将采用以下方式进行评价:1.平时成绩:包括作业完成情况、课堂参与度等;2.期中考试:对学生的理论知识和基本应用进行考核;3.期末考试:对学生的综合应用和解决问题能力进行考核;4.实验报告和小组项目:对学生的实践能力和团队合作能力进行考核;5.学习笔记和讨论记录:对学生的学习态度和思维能力进行考核。
(完整版)数学分析全套课件(华东师大)
证明
由于x
<
y, 故存在非负整数n,使得x n
< yn.令r
1 2
(xn
yn
)
则r为有理数,且有x xn < r < yn y,即得x < r < y.
例2 设a,b R,证明: 若对任何正数e有a < b e ,则a b.
证明 用反证法.假若结论不成立 ,则根据实数的有序性
有a > b.令e a - b,则e为正数且a b e , 这与假设 a < b e矛盾.从而必有a b.
§3 函数概念
1.函数概念
❖定义
设数集DR, 则称映射f : D R为定义在D上的函数, 通常简记为
yf(x), xD, 其中x称为自变量, y称为因变量, D称为定义域, 记作Df, 即DfD.
说明:
记为函号了数f叙的和述记f(x方号)的便是区可, 常别以用:任前记意者号选表“取示f(的x自), 变除x量了Dx用”和或f因“外变y, 还量f(可xy)之,用x间“D的g””对来 应表、法示“则 定F”义,、而在“后D者”上表等的示,函此与数时自, 函这变数时量就应x对记理应作解的y为函g由(数x它)、值所.y确F定(x的)、函y数f(x.)
的集合, RR常记作R2.
3.实数集 ❖两个实数的大小关系
• 定义1
给定两个非负实数
x a0.a1a2 Lan L, y b0 .b1b2 Lbn L,其中a0 ,b0为非负整数, ak ,bk (k 1,2,L)为整数,0 ak 9,0 bk 9. 若有ak bk , k 1,2,L,则称x与y相等,记为x y;
称有理数xn a0.a1a2 Lan为实数x的n 位不足近似,
(完整版)10数学分析教案-(华东师大版)第十章定积分的应用平面图形的面积
第十章 定积分的应用§1 平面图形的面积在上一章开头讨论过由连续曲线y =f (x )(≥0),以及直线x =a ,x =b (a 〈b )和x 轴所围曲边梯形的面积为()b ba a A f x dx ydx ==⎰⎰,如果f (x )在[a ,b ]上不都是非负的,则所围图形的面积为|()|||b ba a A f x dx y dx ==⎰⎰,一般地,由上下两条连续曲线y =f 2(x )和y =f 1(x )以及两条直线x =a , x =b (a 〈b )所围的平面图形,它的面积计算公式为21[()()]ba A f x f x dx =-⎰ 例1 求由抛物线y ²=x 与直线x -2y -3=0所围平面图形的面积.解 该平面图形如图所示。
先求出抛物线与直线的交点坐标(1,-1)、(9,3),用x =1把图形分成左右两部分,应用公式得111004[()]23A x x dx xdx =--==⎰⎰,921328[]23x A x dx -=-=⎰,所以A=A 1+A 2=32/3. 本题还可以把抛物线方程和直线方程改成x =y ²,x =2y +3,y∈[1,3],改取积分变量为y ,便得32132[23]3A y y dy -=--=⎰。
设曲线C 由参数方程x=x(t),y=y (t ),t ∈[,]给出,在[a ,b ]上y(t)连续,x=x(t )连续可微且x ’(t )≠0(对x(t )连续,y=y(t )连续可微且y'(t)≠0的情形可类似讨论),记a=x(),b=x ()(a 〈b 或a>b),则由曲线C 及直线x =a 、x =b 和x 轴所围的图形,其面积计算公式为|()()|A y t x t dt βα'=⎰ 例2 求由摆线x=a(t-sint),y=a (1-cost )(a>0)的一拱与 x 轴所围平面图形的面积.解 摆线的一拱可取t ∈[0,2π],所求面积为2222200(1cos )[(sin )](1cos )3A a t a t t dt a t dt a πππ'=--=-=⎰⎰ 如果由参数方程表示的曲线x=x(t),y=y (t ),t ∈[,]是封闭的,既有x ()=x(),y()=y (),且在(,)上曲线自身不再相交,那么由曲线自身所围成的图形面积为|()()|A y t x t dt βα'=⎰(或|()()|A x t y t dt βα'=⎰),此公式可由前面推出,绝对值内的积分,其正负由曲线x=x(t),y=y (t ),t ∈[a ,b ]的旋转方向所确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y
由图形的对称性,
1 S ( A) 4 a 2 cos 2 d 2
a 2 sin 2
π 4 0
π 4 0
O
a/2
a x
a2 .
前页 后页 返回
例6 求由 r sin , r cos 所围图形 A 的面积. π π 解 S ( A) 1 4 sin 2 d 1 π2 cos 2 d 2 0 2 4
x 型区域: A ( x , y ) | f1 ( x ) y f 2 ( x ), x [a , b] ,
其中 f1 ( x ), f 2 ( x )是定义在[a, b] 上的连续函数.
y 型区域: B ( x , y ) | g1 ( y ) x g2 ( y ), y [c , d ] ,
r r
i i i 1
n
i
1
A
0
作分割 T: 0 1 n , 射线 i i 1,
2, , n 把扇形 A 分割成 n 个小扇形
前页 后页 返回
O
x
1 n 2 1 n 1 2 2 lim mi Δ i lim M i Δ i r ( )d , T 0 2 T 0 2 2 i 1 i 1
前页 后页 返回
因此
1 2 S ( A) r ( )d . 2
y
r a (1 cos )
其中 g1 ( y ), g2 ( y ) 是定义在[c, d ] 上的连续函数.
前页 后页 返回
x 型区域 A
y
y f2 ( x )
通过上移
y
y f2 ( x ) M
A
O
A
y f1 ( x ) M 0
a
y f1 ( x )
b x
O
a
b x
前页 后页 返回
由定积分的几何意义,可知 A 的面积为
x ,0 x 1 f1 ( x ) , x 2 ,1 x 4
f 2 x x , 0 x 4.
前页 后页 返回
由于 f1 分段定义, A 分为二图形 A1 和 A2 ,
S ( A1 )
1 0
4
4 32 4 x ( x ) dx x . 3 3 0
2 2
解
y2 x x1 0 的解为 , 2 y1 0 x 8 y
x2 4 . y2 2
前页 后页 返回
图形 A 既是 x 型区域 又是 y 型区域. 把 A 看作 x 型区域,则
2
y
2
y x
2
(4, 2)
A
x2 8 y
x
x O 4 f1 ( x ) , f2 ( x) x , 8 于是 3 2 4 x 2 2 1 34 S A x dx x x 0 0 8 3 24
2 例2 求由 y x 和 x y 2 围成的图形 A 的面积.
解 y 2 x 和 x y 2 的交点为 (1, 1) 和 (4, 2). 图形
A 如下图.
前页 后页 返回
y
2
y x
2
(4, 2)
A
O
(1, 1)
x y2
4
x
若把 A 看作 x 型区域, 则
§1 平面图形的面积
本节介绍用定积分计算平面图形在 各种表示形式下的面积. 一、直角坐标方程表示的平面图形的
面积
二、参数方程表示的平面图形的面积 三、极坐标表示的平面图形的面积
前页 后页 返回
一、直角坐标方程表示的 平面图形的面积
用定积分求由直角坐标方程表示的平面图形的面
积,通常把它化为 x 型和 y 型区域上的积分来计算.
a
b
y( t ) x( t )dt .
因此,不论 x(t)递增或递减,
S ( A) y t x t dt .
若上述曲线C 是封闭的,即
x( ) x( ), y( ) y( ),
前页 后页 返回
则由C 所围的平面图形 A 的面积同样是
S ( A) y t x t d t.
或 S ( A)
x t y t d t .
前页 后页 返回
x a( t sin t ) 例3 求由摆线 , t [0, 2 ] 与 x 轴 y a(1 cos t )
所围图形的面积.
g1 ( y ) y 2 ( 1 y 2), g2 ( y ) y 2 ( 1 y 2).
S ( A) [( y 2) y 2 ]dy
1
2
1 3 2 9 1 2 y 2y y . 3 1 2 2
显然,由于 g1(y), g2(y) 不是分段定义的函数,比较 容易计算.
例4 求心脏线 r a(1 cos ) 所围平面图形的面积.
解
1 2π S ( A) [a (1 cos )]2d 2 0
a
a
2
0 (1 cos ) d
2
π
O
2a x
3 2 πa . 2
前页 后页 返回
例5 求双纽线 r 2 a 2 cos 2 所围平面图形的面积. 解 因为 r 2 0, 所以 的取值
S ( A) ( f 2 ( x ) M )dx ( f1 ( x ) M )dx
a a
b
b
[ f 2 ( x ) f1 ( x )]dx .
a
b
同理, y型区域 B 的面积为
S ( B ) [ g2 ( y ) g1 ( y )]dy .
c
d
例1 8 . 3 24 3
前页 后页 返回
把 A 看作为 y 型区域, 则 g1 ( y ) y , g2 ( y ) 8 y ,
2
于是
3 3 2 2 2 y 2 S ( A) 8 y y dy 8 y 0 0 3 3 2 8 8 8 8 . 3 3 3 2
O
x
A1 , A2 , , An .
设
mi inf r ( ) | [ i 1 , i ] , M i sup r ( ) | [ i 1 , i ] ,
i 1,2,, n.
1 2 1 2 则 mi Δ i S ( Ai ) M i Δ i , 从而 2 2 n 1 n 2 1 n 2 m Δ S ( A ) M i i i i Δ i . 2 i 1 2 i 1 i 1 由于
由曲线 C 及直线 x a , x b 和 x 轴所围图形的面
积为
S ( A) y dx y( t ) x( t )dt .
a
b
前页 后页 返回
若 x( ) a , x( ) b , x( t ) 在 [ , ] 上单调减时,
S ( A) y dx y( t ) x( t )dt
1
S ( A2 )
1
x ( x 2) dx
2 4
2 32 x 14 3 x 2x . 2 3 1 3 2
则
4 14 3 9 S ( A) S ( A1 ) S ( A2 ) . 3 3 2 2
前页 后页 返回
若把 A 看作为 y 型区域,则
y
π 1 π 1 cos 2 1 1 cos 2 4 2 d π d . 2 0 2 2 4 2
A
O
x
1 sin 2 4 2
π 4
0
1 sin 2 4 2
π 2 π 4
1 π 1 1 π 1 π 1 . 4 4 2 4 4 2 8 4
前页 后页 返回
二、参数方程表示的 平面图形的面积
x x( t ) 设曲线C 由参数方程 , t [ , ] 表示, y y( t ) 其中 y( t ) 连续, x( t ) 连续可微.
若 x( ) a , x( ) b , x( t ) 在 [ , ] 上单调增,则
y
2a
a
O
A
2 a
2 0
x
解 S ( A)
a(1 cos t )[a( t sin t )]dt
2 0
a
2
(1 cos t ) dt 3 a .
2 2
前页 后页 返回
三、极坐标表示的平面图形的面积
设曲线C 的极坐标方程为 r r ( ), [ , ]. 图形 A 由曲线 C 和两条射线 = 与 = 围成.
注 也可利用对称性.
前页 后页 返回