六、 动力学问题的有限元法

合集下载

有限元分析-动力学分析PPT课件

有限元分析-动力学分析PPT课件
有限元分析-动力学分析ppt课件
目录
• 引言 • 有限元分析基础 • 动力学分析基础 • 有限元分析在动力学中的应用 • 案例分析 • 结论与展望
01 引言
目的和背景
01
介绍有限元分析在动力学分析中 的应用和重要性。
02
阐述本课件的目标和内容,帮助 读者了解有限元分析在动力学分 析中的基本概念、方法和应用。
随着工程复杂性和精确度要求的提高,有限元分析在动力学分析中的 应用将更加重要和必要。
02
未来需要进一步研究有限元分析算法的改进和优化,以提高计算效率 和精度。
03
未来需要加强有限元分析与其他数值计算方法的结合,如有限差分、 有限体积等,以实现更复杂的动力学模拟和分析。
04
未来需要加强有限元分析在多物理场耦合和多尺度模拟中的应用,以 更好地解决工程实际问题。
有限元分析的优点和局限性
• 精确性:对于某些问题,可以得到相当精确的结 果。
有限元分析的优点和局限性
数值误差
由于离散化的近似性,结果存在一定的数值误 差。
计算成本
对于大规模问题,计算成本可能较高。
对模型简化的依赖
结果的准确性很大程度上依赖于模型的简化程度。
03 动力学分析基础
动力学简介
动力学是研究物体运 动过程中力与运动关 系的科学。
THANKS FOR WATCHING
感谢您的观看
ห้องสมุดไป่ตู้
求解等。
02 有限元分析基础
有限元方法概述
01
有限元方法是一种数值分析方法,通过将复杂的物理系统离散化为有 限个简单元(或称为元素)的组合,来模拟和分析系统的行为。
02
它广泛应用于工程领域,如结构分析、流体动力学、热传 导等领域。

有限元 第9讲 动力学问题有限单元法

有限元 第9讲 动力学问题有限单元法

有限元第9讲动力学问题有限单元法动力学问题是指研究物体在运动中的受力和受力作用下的运动状态,常见的应用是结构工程学中的振动分析。

有限单元法是解决结构工程学中动力学问题的常用方法之一。

本文将介绍动力学问题和有限单元法的基本概念,并介绍其应用。

动力学问题的定义动力学是研究质点或刚体运动情况的分支学科,在结构工程学中是指结构在做振动时所受的力和运动状态。

动力学问题可以分为两种类型:稳态动力学问题和非稳态动力学问题。

稳态动力学问题是指结构在振动状态下所受的恒定力,而非稳态动力学问题则是指结构所受的变化的力,例如冲击力或地震力。

动力学问题的求解包括两个方面:一是确定受力情况;二是求解结构的运动状态。

确定受力情况通常需要通过实验或计算确定,求解结构运动状态则可以通过有限单元法来解决。

在结构工程学中,动力学问题的应用非常广泛。

例如,建筑物抗震设计需要对建筑物在地震作用下的反应进行分析,桥梁工程需要对桥梁在行车作用或风力作用下的振动响应进行分析。

有限单元法的基本概念有限单元法是一种将结构离散成若干小单元的数值分析方法,将结构分割成细小的单元,每个单元内部假设为均匀且连续的,通过对单元本身的运动状态进行求解,进而推知整个结构的运动状态。

有限元法用于解决的问题包括静力学问题、动力学问题、热力学问题和流体问题等。

有限单元法求解动力学问题的步骤主要包括如下几个步骤:1.离散化:将连续结构离散化成有限的小单元,每个单元内部运动状态通过定义一定数量的节点来确定。

2.建立单元的动力学方程:根据单元的形状和材料性质,建立单元的动力学方程,并计算单元的振动特性,例如频率和模态。

3.组装单元的方程:将单个单元的方程组装成整个结构的方程。

4.边界条件的处理:利用结构的边界条件(例如支撑、铰支等),将结构自由度减少到实际问题所需要的自由度。

5.求解结构的运动状态:通过求解整个结构的方程,得到结构的运动状态。

6.后处理:根据求解结果,进行结果的可视化和分析。

结构动力学问题的有限元法

结构动力学问题的有限元法

K Q
K Q
对于结构动力学问题,节点载荷阵还包括惯性力和阻尼力。
e e e K Q (M C ) e e 1 m


或改写为:
C K M Q

代入:
dV Q N u
T T T
M N N dV
dV N N
e T
e
e dV Q N u
e T T
N N dV C
其中:
M M C C
e
e
质量阵和阻尼阵的叠加方法与刚度阵的叠加方法相同,也 是对称稀疏阵。
三、动力方程的简化
M e N T N dV
称为一致质量矩阵,是稀疏带状阵。
如果将单元质量阵近似作为对角阵,则方程变成彼此独立,避免 联立,称为集中质量阵或团聚质量阵。 解耦 例如长度为L,截面积为A,密度为ρ的梁单元。 i
A,ρ
L
j
x
1 A L 0 集中质量阵: m 2 0 0
0 0 0 0
0 0 1 0
0 0 0 0
156 22L 22L 2 一致质量阵: 4 L AL m 13L 420 54 2 13 L 3 L
54 13L 13L 3L2 156 22L 2 22L 4 L
ˆ P K P K
T
在变换[K]和[M]的过程中,有时使用一次雅克比变换将一个 非对角线元素化为零以后,它在另一次变换中会重新变为非零 元素,但在素质上有所减小。这说明需要反复使用雅克比变换, 最终非对角线元素将趋于零。 在实际求解过程中,不必严格地把矩阵[K]和[M]所有的非对 角线元素变换为零,通常在完成一次变换后进行判断是否达到预 l 1 (l ) 设的精度:

有限单元法的几个专题

有限单元法的几个专题
6.1.5 直接积分法:
直接积分是指在积分运动方程之前不进行方程形式的变换,而直接进行 逐步数值积分。
通常的直接积分法是基于两个概念:
一、将在求解域0<t<T内的任何时刻t 都应满足运动方程的要求,代之以 仅在一定条件下近似地满足运动方程,例如可以仅在相隔Ot的离散的时 间点满足运动方程。
二、在一定数目的Δt区域内,假设位移、速度、加速度的函数形式。
6.1.2 有限元法求解动力问题的基本步骤:
1、连续区域的离散化
在动力分析中引入了时间坐标。在有限元分析中一般采用部分离散的 方法,即只对空间域进行离散,这样一来,此步骤和静力分析相同。
2、构造插值函数
u[N]ae
此时,结点位移是时间的函数。
ae a(t)e
.
6.1 动力学问题的有限元法
6.1.2 有限元法求解动力问题的基本步骤:
3、形成系统的求解方程
平衡方程及力的边界条件的等效积分形式为:
u(ij,jXiui,t t μiu,)tdV (σijni Ti)dS0
V
分部积分,并代入物理方程,
S
再将离散后的位移代入上式,注意到结点位移变分的任意性
最终得到系统的求解方程:
M a tC a tKt aQ t [ M ]a t { } [ C ]a t { } [ K ] { a t} { Q t}
6.1 动力学问题的有限元法
6.1.5 直接积分法:
(略,祥见结构动力学)
B、NEWMARK法: C、WILSON-θ法:
.
6.1 动力学问题的有限元法
6.1.6 振型叠加法:
(略,祥见振动力学和结构动力学)
1、求解系统的固有频率和固有振型 不考虑阻尼影响的系统自由振动方程是 M a ()t K (t)a Q (t) 它的解可以假设为以下形式

六、-动力学问题的有限元法

六、-动力学问题的有限元法
❖ 至于哪些问题可作准静态来处理,需要综合考虑分析目 的与精度要求,构件的尺度和动态特性(固有振动周 期),载荷的特性(上升前沿和作用时间),计算机资 源情况等。
2) 结构动力学问题
❖ 该领域研究下列问题:弹性结构(系统)的自由振动 特性(频率和振型)分析;瞬态响应分析;频率响应 分析;响应谱分析等。
力学问题。对等效系统应用虚功原理:
V T dV V uT ( f u u)dV S uT T dS
• 将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离 散系统控制方程——结构有限元动力学方程:
M a(t) C a(t) K a(t) Q(t)
❖ 就结构的瞬态响应分析而言,典型的有结构在冲击载 荷下的响应问题。结构动力学中这类问题的特点是, 载荷作用前沿时间与构件的自振基频周期相近,远大 于应力波在构件中的传播时间。或者构件上长时间作 用随时间剧烈变化的载荷。
❖ 结构动力学问题在工程中具有普遍性。
3) 弹塑性动力学问题
❖ 这是连续介质变形体动力学问题的另一个重要领域。 涉及许多科学和工程领域,如高速碰撞,爆炸冲击, 人工地震勘探,无损探伤等。
❖ 大多数显式方法是条件稳定的:当时间步长大于结构 最小周期的一定比例时,计算得到的位移和速度将发 散或得到不正确的结果;
❖ 隐式方法往往是无条件稳定的,步长取决于精度,而 不是稳定性方面的考虑。
❖ 典型的显式方法是所谓的“中心差分法”,其基本思 想如下。
• 中心差分法 ❖ 将某时刻的加速度和速度用中心差分表示:
• 对于3节点三角形单元,按上述公式计算得到的一致质量 矩阵为:
• 该单元的集中质量矩阵为:
• 实际应用中,两种质量矩阵都有应用,得到的计算结果 相差不多。采用集中质量矩阵可以使计算得到简化,提 高计算效率,由此得到的自振频率常低于精确解。

有限元法PPT课件

有限元法PPT课件
和时间。
如何克服局限性
改进模型
通过更精确地描述实际 结构,减少模型简化带
来的误差。
优化网格生成
采用先进的网格生成技 术,提高网格质量,降
低计算误差。
采用高效算法
采用并行计算、稀疏矩 阵技术等高效算法,提
高计算效率。
误差分析和验证
对有限元法的结果进行误 差分析和验证,确保结果
的准确性和可靠性。
05 有限元法的应用实例
有限元法ppt课件
目 录
• 引言 • 有限元法的基本原理 • 有限元法的实现过程 • 有限元法的优势与局限性 • 有限元法的应用实例 • 有限元法的前沿技术与发展趋势 • 结论
01 引言
有限元法的定义
01
有限元法是一种数值分析方法, 通过将复杂的结构或系统离散化 为有限个简单元(或称为元素) 的组合,来模拟和分析其行为。
有限元法在流体动力学分析中能够处理复杂的流体流动和 压力分布。
详细描述
通过将流体域离散化为有限个小的单元,有限元法能够模 拟流体的流动、压力、速度等状态,广泛应用于航空、航 天、船舶等领域。
实例
分析飞机机翼在不同飞行状态下的气动性能,优化机翼设 计。
热传导分析
总结词
有限元法在热传导分析中能够处理复杂的热传递过程。
实例
分析复杂电磁设备的电磁干扰问题,优化设备性能。
06 有限元法的前沿技术与发 展趋势
多物理场耦合的有限元法
总结词
多物理场耦合的有限元法是当前有限元法的重要发展方向, 它能够模拟多个物理场之间的相互作用,为复杂工程问题提 供更精确的解决方案。
详细描述
多物理场耦合的有限元法涉及到流体力学、热力学、电磁学 等多个物理场的耦合,通过建立统一的数学模型,能够更准 确地模拟多物理场之间的相互作用。这种方法在航空航天、 能源、环境等领域具有广泛的应用前景。

刚体动力学 有限元

刚体动力学 有限元

刚体动力学是研究刚体运动的力学学科。

刚体是指形状和大小在运动过程中保持不变的物体,刚体动力学研究刚体在受力作用下的运动规律和动力学特性。

刚体动力学主要包括以下几个方面:
运动学:研究刚体的位移、速度和加速度等与时间的关系,描述刚体的运动状态。

动力学方程:根据牛顿第二定律,建立刚体的动力学方程,描述刚体受到的力和加速度之间的关系。

转动运动:研究刚体绕固定轴进行转动的规律,包括转动惯量、角速度、角加速度等的计算和分析。

能量与动量守恒:研究刚体运动过程中的能量守恒和动量守恒定律,用于分析刚体的碰撞、旋转和平移等情况。

有限元方法(Finite Element Method,简称FEM)是一种数值计算方法,广泛应用于工程和科学领域,包括力学、结构分析、流体力学等。

有限元方法将连续的物体或结构分割成有限数量的小单元,通过求解这些小单元的力学方程,得到整个物体或结构的力学行为。

在刚体动力学中,有限元方法可以用于建立刚体的数学模型,通过将刚体分割成有限数量的单元,利用数值计算方法求解刚体的运动和力学响应。

这种方法可以有效地模拟复杂的刚体运动和受力情况,帮助分析和优化刚体系统的设计和性能。

有限元方法在刚体动力学中的应用包括刚体结构的动力学分析、碰撞和撞击的模拟、机械系统的优化等。

它提供了一种灵活、高效的数值计算工具,用于解决刚体动力学问题和工程实践中的设计和分析任务。

结构动力学有限元法

结构动力学有限元法

100%
动力响应分析
研究车辆、风、地震等外部激励 下桥梁的动力响应,评估其安全 性能。
80%
稳定性分析
分析桥梁在极端载荷下的稳定性 ,确保其正常工作。
建筑结构的抗震分析
地震作用下的结构响应
通过有限元法模拟地震对建筑 结构的作用,计算结构的位移 、加速度等响应。
结构抗震性能评估
根据计算结果评估建筑结构的 抗震性能,优化设计以提高其 抗震能力。
局限性
由于结构动力学有限元法需要进行大量的数值计算和存储,因此 对于大规模复杂结构的分析可能会面临计算效率和精度方面的问 题。此外,对于一些特殊结构和复杂工况,可能需要采用特殊的 建模和分析方法。
04
结构动力学有限元法的应用实例
桥梁结构的动力学分析
80%
桥梁结构的模态分析
通过有限元法计算桥梁的固有频 率和振型,了解其自振特性。
结构减震设计
利用有限元法进行减震设计, 如设置隔震支座、阻尼器等, 降低地震对结构的影响。
机械设备的动态特性分析
01
设备模态分析
02
设备振动分析
03
设备优化设计
通过有限元法分析机械设备的固 有频率和振型,了解其动态特性。
研究机械设备在工作过程中的振 动情况,分析其振动原因和影响。
根据动态特性分析结果,优化机 械设备的设计,降低振动和噪声。
用于分析电磁场的分布和变化规律,如电机、变 压器、天线等。
流体动力学
用于模拟流体在各种条件下的流动特性,如航空 、航海、管道流动等。
热传导分析
用于分析温度场的变化和热量传递规律,如热力 管道、电子设备等。
有限元法的研究意义
提高工程设计的可靠性和安全性

有限元分析-动力学分析

有限元分析-动力学分析

1.为何傅里叶变换要换成正弦函数余弦函数这样的三角级数? 2. 谐振运动的特征是什么?谐振运动有阻尼存在吗?
梁结构瞬态动力学分析实例
A steel beam of length and geometric properties shown in Problem Specifications is supporting a concentrated mass, m. The beam is subjected to a dynamic load F(t) with a rise time tr and a maximum value F1. If the weight of the beam is considered to be negligible, determine the time of maximum displacement response tmax and the response ymax. Also determine the maximum bending stress σbend in the beam.
谱分析
谱分析是一种将模态分析结果与已知的谱分析联系起来的 计算位移和应力的分析技术。它主要用于时间历程分析,以 便确定结构在任意时间变化载荷下的动力学响应,简单而言 就是载荷的谱不再是简谐运动。
简支梁的两端作垂直运动,也就是地震时的作用,确定其 响应频率。
梁对地基地震时的谱分析
A simply supported beam of length , mass per unit length m, and section properties shown in Problem Specifications, is subjected to a vertical motion of both supports. The motion is defined in terms of a seismic displacement response spectrum. Determine the nodal displacements, reactions forces, and the element solutions.

力学中的数值模拟方法

力学中的数值模拟方法

力学中的数值模拟方法力学是自然科学中研究物体运动和相互作用的学科。

力学的研究对象包括刚体、弹性体、流体等物质,而这些物质的运动和相互作用往往是非常复杂的。

为了更深入地了解这些现象,研究者们常常采用数值模拟方法。

本文将介绍在力学中常用的数值模拟方法和其应用。

1. 有限元法有限元法是解决力学问题的一种常用数值方法。

它将复杂的物体划分成有限个小元素,在每个小元素上进行基本方程的数值求解。

这些小元素可以是输入自然或几何区域的任意形状和大小。

通过将整个物体分解为由许多这样的小元素组成的形式,有限元法可以轻松处理具有复杂边界和几何形状的问题。

有限元法的一个重要优点是可以模拟多种不同的问题,例如,静力学问题,热力学问题和流体力学问题。

在建筑和航空航天科学中有限元法广泛应用,设计和优化桥梁、飞机机翼和汽车车身。

2. 边界元法边界元法是另一种广泛用于力学课题研究的数值模拟方法。

与有限元法相比,它的计算成本和计算时间更低。

其基本思想是借助几何中的经典定理——格林公式,将原方程转换为涉及单独表面积分的一组方程。

这些方程的求解是通过构造矩阵并进行数值求解得到的。

边界元法在流体动力学中的应用非常广泛,例如模拟液体流动和超声波传播等。

3. 分子动力学模拟分子动力学模拟是一种基于牛顿力学构建计算统计物理学的方法。

它通过建模粒子之间的相互作用来模拟分子系统的力学行为。

由于该方法可以与巨分子水平的化学反应联系起来,这使得它可以在化学和材料科学中应用得非常广泛。

通过使用物理特征的数值模拟,研究者们可以了解更多基于分子层面的成分内部运作和物理过程。

4. 自适应Mesh网格算法有些力学问题中变量可能有非常高的梯度,为解决这种问题,自适应Mesh算法应运而生。

自适应Mesh网格将整个求解域划分成相互交叉的奇下网格或三角形网格。

然后,当解的精度要求在较高的局部变化时,通过极小化给定误差级别来改变不同的小视窗大小,以便能够应对快速变化的解。

结构动力学问题的有限元法

结构动力学问题的有限元法
5 动态分析有限元法
01
工程中受动载荷的产品:受道路载荷的汽车;受风载的雷达;
02
受海浪冲击的海洋平台;受偏心离心力作用的旋转机械等。
03
动态分析的必要性:当产品受到随时间变化的动载荷时,需
04
要进行动态分析,以了解产品动态特性。
动载荷(又称动力分析)
固有特性分析
响应分析






位 移 响 应
量 0 矩2阵0取决1 于0 单1 元的类型和形函
m
e c
tA
12
数 10 的10形02式。02
1 0
0
1
1 0 1 0 2 0
0 1 0 1 0 2
2. 集中质量矩阵
集中质量矩阵将单元的分布质量按等效原则分配 在各个节点上,等效原则
就是要求不改变原单元的质量中心,这样形成的 质量矩阵称为集中质量矩
M qK q0
添加标题qejt 添加标题
由于固有特性与外载荷 无关,且阻尼对固有频 率和振型影响不大,因 此可通过无阻尼自由振 动方程计算固有特性。
式中,ω为简谐振动圆 频率;{Φ}为节点振幅 列向量。
添加标题
由于自由振动可分解为 一系列简谐振动的叠加, 因此上式的解可设为
单 击 此 处 K2M 振型{ Φ0 i}是结构按频率ωi振动时各自由度方向振幅间的相对比
i(i=1,2,…..,n)就是结构
的i阶模态振型。
固 要
有特性k1分1
有K d
析实际
k22




解广
M d
义m特11
征值
m22

有限元第六讲 动力学分析

有限元第六讲 动力学分析
ANSYS产品家族的模态分析是线性分析,任何非线性特性,如塑性和 接触(间隙)单元,即使定义也将被忽略。可选的模态提取方法有6种,即 Block Lanczos( 默 认 ) 、 Subspace 、 Power-Dynamics 、 Reduced 、 Unsymmetric、Damped及QR damped,后两种方法允许结构中包含阻 尼。
5.1.2谐响应分析
谐响应分析是用于确定线性结构在承受随时间按正弦(简谐) 规律变化的载荷时的稳态响应的一种技术。分析的目的是计 算结构在几种频率下的响应并得到一些响应值(通常是位移) 对频率的曲线,从这些曲线上可找到“峰值”响应并进一步 查看峰值频率对应的应力。
这种分析技术只计算结构的稳态受追振动,发生在激励开 始时的瞬态振动不在谐响应分析中考虑。作为一种线性分析, 该分析忽略任何即使己定义的非线性特性,如塑性和接触 (间隙)单元。但可以包含非对称矩阵,如分析在流体一结构 相互作用问题。谐响应分析也可用于分析有预应力的结构, 如小提琴的弦(假定简谐应力比预加的拉伸应力小得多)
MassMatrix Formulation[LLIMPMIL]:使用该选项可以选 定采用默认的质量矩阵形成方式(和单元类型有关)或集中质 量阵近似方式,建议在大多数情况下应采用默认形成方式。
PrestressEffectsca/culation[PSTRES]:选用该选项可以计 算有预应力结构的模态。默认的分析过程不包括预应力,即 结构是处于无应力状态的。
求解结构的前几阶模态,以了解结构如何响应的情形。该方法采用集中 质量阵(LUMPM,ON); Reduced(Householder)method:使用减缩的系统矩阵求解,速度快。但 由于减缩质量矩阵识近似矩阵,所以相应精度较低; Unsymmetric method:用于系统矩阵为非对称矩阵的问题,例如流体一 结构相同作用; Damped method:用于阻尼不可忽略的问题; QR Damped method:采用减缩的阻尼阵计算复杂阻尼问题,所以比 Damped method方法有更快的计算速度和更好的计算效率。

有限元第六章 动力问题的有限元法

有限元第六章  动力问题的有限元法

第六章 动力问题的有限元法6.1 概述前面几章所研究的问题都属于静力问题,其特点是施加到结构上的外载荷不会使结构产生加速度,且外载荷的大小和方向不随时间变化,因而结构所产生的位移和应力也不随时间变化。

本章将要研究结构分析中另一类重要问题的有限元解法,即动力问题的有限元解法。

动力学问题的特点是,载荷是随时间变化的,因而结构所产生的位移和应力是时间的函数,结构会产生速度和加速度。

由于结构本身的弹性和惯性,结构在动力载荷的作用下,往往呈现出振动的运动形态。

结构振动是工程中一个很普遍很重要的问题。

有些振动对我们有利,例如,振动打桩,振动选料,有些振动对我们有害,例如,机床的振动,仪器与仪表的振动,桥梁、水坝及高层建筑在地震作用下的振动等。

因此,我们必须对振动体本身的振动特性以及它对外部激振力的响应有一个明确的认识,才能更好地利用它有利的一面,而避免它有害的一面,设计出更好的机械和结构。

振动问题主要解决两方面的问题。

1. 寻求结构的固有频率和主振型,从而了解结构的固有振动特性,以便更好地利用或减少振动。

2. 分析结构的动力响应特性,以计算结构振动时动应力和动位移的大小及其变化规律。

6.2 结构的振动方程结构的振动方程可用多种方法建立,这里我们使用达朗伯原理(动静法),仿照前几章建立静力有限元方程的方法,来建立动力问题的有限元方程。

在静力问题中用有限元法建立的平衡方程是}{}]{[F K =δ在振动问题中,对结构的各节点应用达郎伯原理所建立的振动方程仍然具有与上式相同的形式,只不过节点位移是动位移,节点载荷是动载荷,它们都是时间的函数。

上面的方程成为)}({)}(]{[t Q t K =δ (6.1)上式中{})(t δ为节点的动位移,它是时间的函数,)}(]{[t K δ是t 时刻的节点位移产生的弹性恢复力,它与该时刻的节点外力{})(t Q 构成动态平衡。

在动态情况下,结构承受的载荷(集中载荷 ,分布载荷 )可随时间而变化,是时间的函数。

有限元-第9讲-动力学问题有限单元法

有限元-第9讲-动力学问题有限单元法

a1 ae a2
... an
ui(t) ai vi(t)
wi(t)
(i 1,2,...n,)
(3)形成系统的求解方程
••

M a(t)C a(t)K(ta )Q (t)
(1.8)
其中
••

a(t)和a(t)
分别是系统的结点加速度向量和结点速度向量,
M,C,K和Q(t)分别是系统的质量、阻尼、刚度和结点载荷向量。9

at
1 2t
att att
中心差分法的递推公式
(3.1) (3.2)
1 t2 M 2 1 tC a t t Q t K 2 t2 M a t 1 t2 M 2 1 tC a t t(3.3)
上式是求解各个离散时间点解的递推公式,这种数值积分方法又 称为逐步积分法。
动力分析的计算工作量很大,因此提高效率,节省计算工作量的 数值方案和方法是动力分析研究工作中的重要组成部分。目前两 种普遍应用的减缩自由度的方法是减缩法和动力子结构法。
11
第2节 质量矩阵和阻尼矩阵
一、协调质量矩阵和集中质量矩阵
单元质量矩阵
Me NTNdV称为协调质量矩阵。 Ve
集中质量矩阵假定单元的质量集中在结点上,这样得到的质量矩 阵是对角线矩阵。以下分实体单元和结构单元进行讨论。
16
第2节 质量矩阵和阻尼矩阵
按第二种方法计算,得到集中质量矩阵与第一种方法结果一样。
注:对于8结点矩形单元,两种方法得到的集中质量矩阵不同。
在实际分析中,更多的是推荐用第二种方法来计算集中质量矩阵。 2.结构单元
2结点经典梁单元、协调质量矩阵和集中质量矩阵如下所示: (1)协调质量矩阵
位移插值函数是 N N 1 N 2 N 3N 4(2.7)

有限元动力学问题有限单元法

有限元动力学问题有限单元法
物理领域
动力学问题在物理领域中也有着广泛的应用,如力学、电磁学、光学等。例如,力学中的弹性力学问题、电磁学中的 电磁场问题、光学中的光束传播问题等。
其他领域
动力学问题在其他领域中也有着广泛的应用,如生物学、化学、地球科学等。例如,生物学中的生物力 学问题、化学中的化学反应动力学问题、地球科学中的地震动力学问题等。
03
有限元方法在多个领域都有广泛的应用,如机械、建筑、 航空航天、电子等。通过对不同领域动力学问题的有限元 分析,可以为相关领域的研究和应用提供重要的参考和指 导。
研究限制与不足
有限元方法虽然具有广泛的应用前景,但仍存在一些 限制和不足之处。例如,对于一些复杂结构和多尺度 问题,有限元方法的计算量和计算成本可能会较高, 需要进一步优化算法和计算流程。
有限元方法是一种有效的数值计算方法,可以精确地解决 结构动力学问题。通过对结构进行离散化,将连续的物理 问题转化为离散的数学问题,可以更方便地进行数值计算 和模拟。
02
有限元方法具有广泛的适用性,可以应用于各种材料和结 构的动力学问题。通过对不同材料和结构的有限元分析, 可以得到其动力学特性和响应规律,为工程设计和优化提 供依据。
02
有限元法基础
有限元法概述
有限元法是一种数值分析方法,用于 求解各种物理问题,如结构力学、流 体动力学、热传导等。它通过将连续 的求解域离散化为由有限个简单单元 组成的集合,从而将连续的偏微分方 程转化为离散的线性方程组,降低了 问题的复杂性和难度。
VS
有限元法在工程领域应用广泛,可以 用于分析复杂结构、设备和系统的动 力学行为,进行结构优化和设计等。
04
有限元法在动力学问 题中的应用
动力学问题的有限元法求解步骤

基于有限元方法的结构动力学分析

基于有限元方法的结构动力学分析

基于有限元方法的结构动力学分析随着现代科技的发展,结构动力学分析成为工程领域中不可或缺的重要环节。

结构动力学分析旨在研究结构在外界荷载作用下的动态响应,以评估其安全性和可靠性。

有限元方法作为一种常用的数值分析方法,在结构动力学分析中具有广泛的应用。

本文将深入探讨基于有限元方法的结构动力学分析的原理和应用。

一、有限元方法简介有限元方法是一种通过将复杂连续体分割成若干有限个简单元素,然后在每个单元上建立适当的数学模型,进而建立总体的数学模型和求解方法的数值分析方法。

有限元方法在数学模型中引入适当的近似,以求解真实问题的近似解。

其基本思想是将连续体离散化成若干个有限个形状简单、性质相同的基本单元,再根据相邻两个基本单元之间的相容条件,将基本单元联系在一起,组成复杂的结构体系。

二、结构动力学分析方法1. 模态分析方法模态分析是结构动力学中常用的分析方法之一。

它通过求解结构的特征值和特征向量,得到结构在固有频率下的振型和振动模态,从而揭示结构动力特性。

模态分析在设计中起到了重要的作用,能够帮助工程师判断结构的固有频率和振型是否满足要求。

2. 静力分析方法静力分析是结构动力学分析的基础,它用于求解结构在静力荷载作用下的应力和位移。

通过静力分析,可以评估结构的强度和稳定性,进而进行设计和优化。

3. 动力响应分析方法动力响应分析是结构动力学分析的核心内容,主要研究结构在外界动力荷载作用下的响应情况。

这种分析方法可以帮助工程师评估结构的动力性能,如位移、加速度和应力等。

三、有限元方法在结构动力学中的应用有限元方法在结构动力学分析中的应用广泛,可以模拟各种结构的动态响应。

例如,有限元方法可以用于分析建筑物在地震作用下的响应,以评估结构的抗震性能。

此外,有限元方法还可以用于模拟机械设备、桥梁和航天器等工程结构在振动荷载下的响应。

在使用有限元方法进行结构动力学分析时,需要注意选择适当的数学模型和边界条件,并合理选择有限元单元的类型和尺寸。

动力学问题的数值解法研究

动力学问题的数值解法研究

动力学问题的数值解法研究引言动力学是研究物体在不同力的作用下的运动规律和相互作用关系的学科,它在物理学、工程学和生物学等领域具有广泛的应用。

在传统的理论框架下,解析解方法在求解动力学问题中扮演重要角色,但是在复杂的现实问题中,往往难以以解析方法求得准确的解。

此时,数值方法成为研究动力学问题的重要工具。

本文将探讨一些常见的动力学问题的数值解法及其应用。

一、常微分方程数值解法1. Euler方法Euler方法是最简单的一种常微分方程数值解法,它基于欧拉公式,将微分方程转化为差分方程。

具体而言,从初始条件出发,用差分逼近微分,然后迭代更新求解。

然而,Euler方法的精度较低,在解决一些复杂动力学问题时,往往无法满足精确性的要求。

2. Runge-Kutta方法Runge-Kutta方法是一类常用的常微分方程数值解法,其通过使用多步骤的迭代算法,提高了解的精确度。

相较于Euler方法,Runge-Kutta方法的误差更小,因此在实际问题中更受欢迎。

常见的二阶和四阶Runge-Kutta方法在动力学问题的数值求解中具有重要的应用。

二、偏微分方程数值解法偏微分方程是描述动力学问题中时空变化的数学模型,其数值解法相较于常微分方程更为复杂。

在动力学问题中,常见的偏微分方程数值解法包括有限差分法、有限元法和谱方法等。

下面将简要介绍其中两种方法。

1. 有限差分法有限差分法是一种将微分方程离散化的方法,它将求解区域划分为有限的网格,在格点上构造离散的差分方程,从而逼近原微分方程。

该方法通过选取合适的差分格式和网格剖分,能够得到模拟区域内各点的数值解。

有限差分法在求解热传导方程、波动方程和扩散方程等动力学问题中被广泛使用。

2. 有限元法有限元法是一种将求解域分割为许多小的子域,并在子域上构建局部基函数的方法。

通过在子域上选取适当的基函数,将原偏微分方程化简为子域上的代数方程组,再通过解代数方程组得到整个区域上的数值解。

机械结构有限元分析---结构动力问题有限元法

机械结构有限元分析---结构动力问题有限元法
K V B DB dV
e T
单元阻尼矩阵
单元刚度矩阵 单元等效结点荷 载向量
F (t )e V N T FV dV S N T Fs T dS
07
制作:南昌航空大学————贺红林,2014
7.3 结构运动方程及其动力学矩阵
一、结构的运动方程 按照与静力有限元相同的方法,将所有单元的运动方程进 行集成,可得结构总体运动方程:
07
制作:南昌航空大学————贺红林,2014
7.1 动力学问题的基本概念
1、自由振动与受迫振动 自由振动——动荷载为零,由初始位移和初始速度引 起的结构振动。 受迫振动——由动荷载引起的结构振动。 2、动力问题的主要研究内容 结构的自振特性分析(无阻尼自由振动分析),寻求结构 的固有频率和主振型

结构的动力响应分析(受迫振动分析),寻求结构的 动内力、动位移的大小及其变化规律。

07
制作:南昌航空大学————贺红林,2014
3、动力有限元法的基本概念

结构离散
与静力问题相同,基本未知量仍为独立的结点位移 {δ},但{δ}是时间t的函数,同时是确定结构全部质量位置 的参数,故又称作动力自由度。 位移模式
07
制作:南昌航空大学————贺红林,2014
2、集中质量矩阵 将分布质量按某种原则换算成结点集中质量,按单元动 力自由度顺序放入相应位置形成的单元质量矩阵,称集中质 量矩阵。 当质量均匀分布时,常按照结点所分担的线段、面积和 体积确定该结点集中质量的大小。 因为假设集中质量集中成质点,故没有转动惯量,与转 动自由度相对应的质量为零。
0 sin t
代带入自由振动方程得
K M O

有限元法在结构力学分析中的应用

有限元法在结构力学分析中的应用

有限元法在结构力学分析中的应用有限元法是一种经典的结构力学分析方法。

在结构力学领域中,有限元法可以用来解决许多静力学和动力学问题。

本文将探讨有限元法在结构力学分析中的应用。

一、有限元法的基本原理有限元法是一种数值分析方法,可以用来解决大型结构的力学问题。

它的基本原理是将结构分割成一个个的单元,每个单元内的力学问题可以用简单的数学公式来描述。

然后将所有单元的力学问题集成到一起,形成一个大的数学模型。

通过数学计算,可以获得结构的应力、应变、变形等力学参数。

有限元法的优点在于它可以解决复杂结构的力学问题。

例如,有限元法可以用来分析汽车、航空器、建筑物等结构中的应力、应变、变形和振动等问题。

此外,有限元法具有高精度、高效率和高灵活性等特点,可以快速、准确地分析各种结构的力学性能。

二、有限元法在结构力学中的应用有限元法在结构力学中的应用非常广泛。

下面我们来具体看一下有限元法在结构力学分析中的应用案例。

1、建筑物结构的力学分析建筑物是大型结构中的一个重要领域。

有限元法可以用来分析各种建筑物的力学性能,例如建筑物的强度、振动、承载能力等。

通过有限元法可以模拟建筑物在地震、风力等环境下的响应,确定建筑物的结构安全性。

2、航空器的强度分析航空器飞行过程中面临各种力学环境,例如重力、空气阻力等。

有限元法可以用来分析航空器结构在高速、高空环境下的应力和变形情况。

从而确定航空器的强度和安全性。

3、机器设备的振动分析机器设备在运行过程中会产生振动,有可能对设备的安全和稳定性带来影响。

有限元法可以用来分析机器设备的振动情况,在设计过程中优化设备结构,避免发生振动破坏的危险。

总之,有限元法在结构力学分析中的应用非常广泛。

有限元法的基本原理简单,但是要想将其用于具体的问题需要进行复杂的计算。

因此,有限元法在结构力学分析中的应用需要具有一定的专业知识和技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上节导出的单元质量矩阵为: M •
e
e N NdV
T V
该矩阵称为协调质量矩阵或一致质量矩阵。因为它和刚 度矩阵依据同样的原理、过程和插值函数导出,还表示质量在单元上呈某种分布。
• 此外,有限元中还经常采用集中质量矩阵,它是一个对
角矩阵,由假定单元质量集中在节点上得到。

对于3节点三角形单元,按上述公式计算得到的一致质量

t+Δ t时刻的位移解 at t 从t时刻的运动方程建立:

将加速度和速度的差分格式代入上式,得到:

上式就是求离散时间点上位移解的递推公式。但该算法
有起步问题(见P449)。

中心差分法特点如下:
1)是显式算法,并且当质量阵和阻尼阵都是对角阵时,利
用该递推公式求解运动方程时不需要进行矩阵求逆,这个 特点在非线性问题中将更有意义。 2)是条件稳定算法。时间步长必须小于某个临界值:
t+Δ t 时刻位移的公式:

由于从上式求解 t+Δ t 时刻位移时需要对非对角的等效
刚度阵求逆,因此称为隐式算法。

当算法中的参数满足一定条件时,该算法是无条件稳定 的。此时,步长的选择取决于解的精度,可以根据对结 构响应有主要贡献的若干基本振型的周期来确定。通常
可取为所要考虑的基本振型周期中最小周期的二十分之


1) 准静态问题 指边界条件和/或体力变化缓慢,或者物体内加速度分
布均匀等类型的问题。这类变形体问题的平衡微分方程
中忽略了惯性项,但载荷是时间的函数。在某时刻t, 采用动静法将整体惯性力转化为体力,或者忽略惯性力。
对应此刻载荷的静力学解作为t时刻的解。工程上可取
随时间变化载荷的最大值的静力学解作为问题的准静态 解。 尽管这种静态情况在实际上并不存在,但作为一种基本 力学模型,在工程实践上具有重要意义。很多实际问题
a
i
ui ( t ) vi (t ) (i 1,2, , n ) w (t ) i

为建立有限元动力学响应控制方程,利用达朗倍尔原
理,在每个时刻 t,将连续介质中质点加上惯性力 u
和阻尼力 u ,则系统的动力学问题转化为等效静

当求解该微分方程组,得出节点位移响应后,其它计
算步骤与静力分析相同。
• 有限元动力学方程的求解虽然可以采用常规的常微分
方程组解法,但由于实际问题有限元模型的阶数往往
很高,用常规方法不经济,通常采用一些对有限元方 程有效的解法,主要分为两类:直接积分法和振型叠 加法。
第三节 质量矩阵和阻尼矩阵
1、协调质量矩阵和集中质量矩阵

对于上述后两类问题,描述质点平衡和运动的微分方程
相同,包含惯性力项和阻尼力项。其数值求解方法主要
是有限元法。
第二节 动力学问题的有限元方程
• 在连续介质的动力学问题中,描述力学参量的坐标是 四维:3个空间坐标和一个时间坐标。进行有限元法求
解时,只对空间区域进行离散化,得到离散多自由度 系统的动力学模型。
一。

对结构动力学问题,所关心的较低阶振型的周期比全系
• 其有限元法步骤与静力学问题相同。只是在单元上对
随时间变化的节点位移进行插值,得到单元内随时间 变化的假设位移场:
u
Na
e
u
u( x, y , z, t ) v ( x, y , z, t ) w( x, y , z, t )
a1 e a a 2 a n
力学问题。对等效系统应用虚功原理:


V

T

dV u (
T V
f
u u)dV u
S
T
T dS
将前面位移空间离散表达式和单元的几何方程、物理方 程代入上式虚功方程,并考虑到变分的任意性,得到离
散系统控制方程——结构有限元动力学方程:
M a(t ) C a(t ) K a(t ) Q(t )
• 研究结构自由振动特性。设阻尼和外力均为零,则结 构自由振动有限元运动方程为:
M(t ) Ka (t ) 0 a
设各自由度作简谐运动:
a sin (t t0 )
其中 是n阶向量,表示有限元离散结构所有自由度的 振幅,ω 是该向量振动的频率。将上式代入自由振动 方程得到:

上述两种阻尼矩阵称为比例阻尼或振型阻尼。其比例
系数一般依赖于频率,很难精确确定。
• 一个通行的方法是将结构的阻尼矩阵简化为结构刚度
阵和结构质量阵的线性组合:

其中α ,β 是不依赖于频率的常数。这种振型阻尼称 为Rayleigh阻尼。当α = 0时,较高阶振型受到的阻尼
较大;当β = 0 时,较低阶振型受到的阻尼大。
3) 弹塑性动力学问题 这是连续介质变形体动力学问题的另一个重要领域。
涉及许多科学和工程领域,如高速碰撞,爆炸冲击,
人工地震勘探,无损探伤等。 这类问题的研究要深入到介质中的弹塑性波的传播过
程以及考虑波动效应前提下介质中应力应变的响应。
这类问题中载荷的特点是构件上载荷作用前沿时间远 少于应力波在构件中的传播时间。该状态通常由构件 高速碰撞或爆炸载荷产生。
矩阵为:

该单元的集中质量矩阵为:

实际应用中,两种质量矩阵都有应用,得到的计算结果
相差不多。采用集中质量矩阵可以使计算得到简化,提
高计算效率,由此得到的自振频率常低于精确解。

在波传播问题和高速瞬态非线性分析中,通常采用显式 动力学求解方法配合使用线性位移单元和集中质量阵。
2、阻尼矩阵
单元阻尼矩阵:
第六单元 动力学问题的有限元法
第一节 变形体动力学问题概述
• 变形体动力学问题在工程和科学问题中非常普遍。该类 问题由随时间变化的载荷或边界条件产生。 这类动力学问题涉及的对象包括各种机械零部件、工程 结构、弹性介质。 根据问题的特点和载荷及受力体的动态特性,一般意 义上的变形体动力学问题按如下三个途径处理。
V
Ce e N T NdV
V V
Q e e N T fdV e N T TdS ——单元等效节点力向量

如果忽略阻尼,则结构动力学方程简化为:
M a(t ) K a(t ) Q(t )
• 上式动力学方程的右端项为零时就得到结构自由振动
方程。
• 从动力学方程导出过程可以看出,动力学问题的有限元 分析中,由于平衡方程中出现了惯性力和阻尼力,从而 引入了质量矩阵和阻尼矩阵,运动方程是耦合的二阶常 微分方程组,而不是代数方程组。该方程又称为有限元 半离散方程,因为对空间是有限元离散的,对时间是连 续的。
• 称为协调阻尼矩阵。这种阻尼是由阻尼力正比于质点 运动速度得到的,属于粘性阻尼。显然,这种阻尼阵 与质量矩阵成正比。 • 对结构而言,阻尼并非粘性的,而主要是由于材料内 部摩擦效应引起的能量耗散,但这种耗散机理尚未完
全清楚,更难以用数学模型表达,故通常假设这种情
况的阻尼力正比于应变速率,从而可导出比例于单元 刚度矩阵的单元阻尼阵,大多数情形下足够精确。
t tcr
Tn

Tn 是有限元系统的最小固有振动周期,通常用最小尺
寸单元的最小固有振动周期代替。因此,有限元网格中最 小单元尺寸将决定中心差分法时间步长的选择。有限元网 格划分时要考虑到这个因素,避免个别单元尺寸太小。
3)中心差分法适合用于考虑波传播效应的线性、非线性
响应分析。但是对于结构动力学问题中的瞬态响应分 析,不适合采用中心差分法,因为这类问题,重要的

大多数显式方法是条件稳定的:当时间步长大于结构 最小周期的一定比例时,计算得到的位移和速度将发 散或得到不正确的结果; 隐式方法往往是无条件稳定的,步长取决于精度,而

不是稳定性方面的考虑。

典型的显式方法是所谓的“中心差分法”,其基本思 想如下。
• 中心差分法

将某时刻的加速度和速度用中心差分表示:
振型即是指这种正则振型。

容易证明,固有振型具有对M和K的正交性:
• 定义:
它们分别称为固有振型矩阵和固有频率矩阵
• 利用固有振型矩阵和固有频率矩阵,结构固有振型的
正交性质可以表示成:

原来的特征值问题可以表示成:
• 固有频率和固有振型是一个结构自由振动的基本特性,
也是结构动态特性的基本要素。
•求解结构自由振动的广义特征值问题,由于系统自由度 很多,而研究系统动态响应和动态特性时,往往只需要
可近似归入准静态问题,而满足工程上的精度要求。
通过这种近似处理,可以避免大量的动力学模型解算,
而在有限的计算机资源下,可把实际问题的模型在准静
态假设前提下考虑得更细致、更实用。在许多情况下, 由此带来的对实际情况的逼近将大大抵消由于准静态假
设产生的误差。
至于哪些问题可作准静态来处理,需要综合考虑分析目
少数低阶特征值和特征向量。因此在有限元分析中发展
了许多针对上述特点的效率较高的算法。其中应用最广 泛的有Lanczos法、子空间迭代法、逆迭代法等。
第五节 瞬态响应分析
• 瞬态响应分析是计算动力强迫响应分析的最一般方法。其 目的是计算结构受随时间变化激励作用下的行为。瞬态激 励定义在时间域中,每个瞬时的大小已知。激励可以是作 用力和强迫运动。 • 根据结构和载荷的性质,可以用两种不同的数值方法进行 瞬态响应分析:直接积分法和振型叠加法。前者对全耦合 的有限元离散运动方程直接进行积分;后者利用主振型对 运动方程进行变换和解耦,结构的响应根据相应于各振型 的响应累加而成。
1、直接积分法
相关文档
最新文档