初三数学一元二次方程的解法公式法
初中数学必备 一元二次方程的解法—知识讲解
x2
−
7 10
x
+
49 400
−
49 400
−
4
=
−10
x
−
7 20
2
−
49
400
−
4
=
−10
x
−
7 20
2
+
49 40
−
4
=
−10
x
−
7 20
2
−
111 40
.
∵
−10
x
−
7 20
2
0
,∴
−10
x
+
7 4
2
=
25 16
,
直接开平方,得 x + 7 = 5 . 44
∴
x1
=
−
1 2
,
x2
=
−3
.
【总结升华】方程(1)的二次项系数是 1,方程(2)的二次项系数不是 1,必须先化成 1,才能配方,这是
关键
的一步.配方时,方程左右两边同时加上一次项系数一半的平方,目的是把方程化为
(mx + n)2 = P(P 0) 的形式,然后用直接开平方法求解.同时要注意一次项的符号决定了左
【典型例题】 类型一、用配方法解一元二次方程
1. 用配方法解方程: (1) x2 − 4x −1 = 0 ;
【答案与解析】 (1)移项,得 x2 − 4x = 1 .
(2) 2x2 + 7 x + 3 = 0 .
一元二次方程的解法公式法
一元二次方程的解法公式法
一元二次方程解法公式法:
(一)定义:
一元二次方程是由一个方程组成的形式,其中包含一个独立的变量以
及平方项和恒等于零的常数。
(二)解法:
1. 首先,我们要用一元二次方程解法公式法来求解一元二次方程问题。
公式为:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
2. 其次,我们把方程中的变量代入到公式中。
一般来说,方程的形式为:$$ax^2+bx+c=0$$
3. 最后,根据公式,可以得出$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
(三)特殊情况:
1. 一元二次方程的实数根有可能为两个相等的数,此时,解的形式会
变成$$x=\frac{-b}{2a}$$
2. 当$b^2-4ac=0$时,表示方程只有一个实数根,这时,解的形式可以
写作$$x=\frac{-b}{2a}$$
(四)应用:
1. 一元二次方程解法公式法可以用来求解各类一元或多元函数的极值。
例如,可以应用这一方法求解二次曲线的极值点、凸函数的极值点等。
2. 同时,一元二次方程解法公式法也可用于求解数学建模问题,包括
求解市场博弈问题、求解应用各类运筹学问题等等。
(五)益处:
1. 一元二次方程解法公式法比较简单明晰,容易理解,易于使用。
2. 可以让人们轻松地解决一元或多元函数求极值问题,以及市场博弈
问题和应用各类运筹学技术来解决复杂的数学问题。
3. 这种方法可以将复杂的数学问题转换为简单的方程,从而节省时间,提高工作效率。
九年级数学 怎样求解一元二次方程(四种)
怎样求解一元二次方程(四种)怎样求一元二次方程aX²+bX+c=0(a≠0)的在实数域上的解(即实根)?我提供四种方法一、公式法二、配方法三、直接开平方法四、因式分解法下面我一一讲解!•一元二次方程aX²+bX+c=0(a≠0)1.1先判断△=b²-4ac,若△<0原方程无实根;2. 2 若△=0,原方程有两个相同的解为:X=-b/(2a);3. 3 若△>0,原方程的解为:X=((-b)±√(△))/(2a)。
END1.1先把常数c移到方程右边得:aX²+bX=-c2. 2将二次项系数化为1得:X²+(b/a)X=- c/a3. 3方程两边分别加上(b/a)的一半的平方得:X²+(b/a)X +(b/(2a))²=- c/a +(b/(2a))²4. 4方程化为:(b+(2a))²=- c/a +(b/(2a))²5. 5①、若- c/a +(b/(2a))²<0,原方程无实根;②、若- c/a +(b/(2a))² =0,原方程有两个相同的解为X=-b/(2a);③、若- c/a +(b/(2a))²>0,原方程的解为X=(-b)±√((b²-4ac))/(2a)。
END1.1形如(X-m)²=n(n≥0)一元二次方程可以直接开平方法求得解为X=m±√nEND1.1将一元二次方程aX²+bX+c=0化为如(mX-n)(dX-e)=0的形式可以直接求得解为X=n/m,或X=e/d。
END•方法中“√”字样为开根号。
•公式法和配方法具有通用性,直接开平方法和因式分解法适用于特殊的一元二次方程。
一元二次方程详细的解法方法1:配方法(可解全部一元二次方程)如:解方程:x^2-4x+3=0 把常数项移项得:x^2-4x=-3 等式两边同时加1(构成完全平方式)得:x^2-4x+4=1 因式分解得:(x-2)^2=1 解得:x1=3,x2=1小口诀:二次系数化为一常数要往右边移一次系数一半方两边加上最相当方法2:公式法(可解全部一元二次方程)首先要通过Δ=b^2-4ac的根的判别式来判断一元二次方程有几个根 1.当Δ=b^2-4ac0时x有两个不相同的实数根当判断完成后,若方程有根可根属于第2、3两种情况方程有根则可根据公式:x={-b±√(b^2-4ac)}/2a 来求得方程的根3.因式分解法(可解部分一元二次方程)(因式分解法又分“提公因式法”、“公式法(又分“平方差公式”和“完全平方公式”两种)”和“十字相乘法”. 如:解方程:x^2+2x+1=0 利用完全平方公式因式分解得:(x+1﹚^2=0 解得:x1=x2=-14.直接开平方法5.代数法。
公式法解一元二次方程的公式步骤
公式法解一元二次方程的公式步骤在代数学中,一元二次方程是一个常见的方程类型。
解决这种方程可以使用不同的方法,其中一种常见的方法是通过使用公式法。
这个方法基于一元二次方程的通用解法,其基本步骤如下:1. 确定方程的形式首先,我们需要确定方程的标准形式为ax^2 + bx + c = 0,其中a、b和c是已知的常数,且a ≠ 0。
2. 计算判别式我们需要计算方程的判别式∆,其公式为∆ = b^2 - 4ac。
判别式描述了实数根的性质,可以帮助我们确定方程的解的类型。
3. 根据判别式确定解的类型根据计算得到的判别式∆,我们可以确定方程的解的类型: - 如果∆ > 0,则方程有两个不相等的实数解。
- 如果∆ = 0,则方程有两个相等的实数解。
- 如果∆< 0,则方程没有实数解,而是有两个共轭复数解。
4. 根据解的类型计算解根据前面确定的解的类型,我们可以使用以下公式计算方程的解: - 如果方程有两个不相等的实数解,则解可以通过以下公式计算:x = (-b ± √∆) / 2a。
-如果方程有两个相等的实数解,则解可以通过以下公式计算:x = -b / 2a。
- 如果方程没有实数解而是有两个共轭复数解,则解可以通过以下公式计算:x = (-b ± i√(-∆)) / 2a,其中i是虚数单位。
5. 求解实际问题理解了如何使用公式法解决一元二次方程后,我们可以应用这个方法来解决实际的问题。
对于给定的实际问题,我们可以将其转化为一元二次方程,然后使用公式法求解。
以下是一个示例:问题:设某物体从离地面100米高的位置自由下落,在空气阻力忽略不计的情况下,求物体落地所需要的时间。
解答: - 在这个问题中,我们可以使用以下公式来描述物体的高度h(单位: 米)与时间t(单位: 秒)之间的关系:h = 100 - 4.9t^2。
这是一个典型的二次方程。
- 我们希望知道物体落地时的高度h为零。
人教版初三数学公式法解一元二次方程
一元二次方程
ax2 bx c 0
a 0, b
的求根公式
2
4ac 0
x
b
b 2 4ac 2a
a 0
用这种方法解一元二次方程的 方法叫做公式法.
三、用公式法解一元二次方程
例1、解方程
解:
2 x 5x 3 0
2
a 2, b 5, c 3
二、公式的推导
ax 2 bx c 0
解:
a 0
b c x 0 a a
a
2
a 0
x2
移项得: x 2 b x c
a
2
b b c b 2 配方得: x x a 2 a a 2 a
即:
2 x b b 4ac a 4a 2 2
例2解方程 12 x 2 3x 2 0
解:
a 2, b 3, c 2
b 4ac 3 4 2 2
2
2
3 25 3 5 x 4 22
1 即:x1 2, x2 2
9 16 注意符号 25
2 x b b 4ac a 4a 2
2
4a 2 0
2 b b 4ac 2 当b 4ac 0时, x 2a 4a 2
b b 2 4ac 即: x 2a 2a
b2 4ac 2a
b b 2 4ac x 2a 2a b b 2 4ac 即: x 2a
x1 x2
b b 2 4ac b b 2 4ac 2a 2a
§2-3 公式法1 一元二次方程的解法
解:这里 a=1, b= -7, c= -18.
∵b2 - 4ac=(-7)2 - 4×1×(-18)=121﹥0,
7 121 7 11 x , 21 2
即:x1=9, x2= -2.
动脑筋
b b2 4αc x 2α
例 2 解方程:
x 3 2 3x
2
解:化简为一般式:x2
2. 用公式法解下列方程. 参考答案:
1). 2x2-4x-1=0; 2). 5+2=3x2 ; 3). (x-2)(3x-5) =1;
下课了!
结束寄语
•
•
配方法和公式法是解一元二次 方程重要方法,要作为一种基本 技能来掌握. 一元二次方程也是刻画现实世 界的有效数学模型.
回顾与复习 2
配方法
用配方法解一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项 系数); 2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的 平方; 4.变形:方程左分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解.
4 4
参考答案: 1.x1 2; x2 4. 2.x1 2 6; x2 2 6.
我最棒
,会用公式法解应用题!
一个直角三角形三边的长为三个连续偶数,求这个三角 形的三边长. 解 : 设这三个连续偶数中间的一个为x, 根据题意得
x 2 x 2 x 2 .
∵b2 - 4ac=(-7)2 - 4×3×8=49 - 96= - 47< 0,
∴原方程没有实数根.
我最棒
,用公式法解下列方程
公式法解一元二次方程和根与系数的关系知识点总结和重难点精析
公式法解一元二次方程和根与系数的关系知识点总结和重难点精析一、引言九年级数学中,一元二次方程是一个重要的知识点。
公式法解一元二次方程是求解一元二次方程的一种重要方法,而根与系数的关系也是这个知识点的重要组成部分。
掌握公式法解一元二次方程和根与系数的关系,对于提高学生解决数学问题的能力具有重要意义。
二、知识点总结1.一元二次方程的基本形式为ax²+bx+c=0(a≠0)。
它的解是x= [-b ±√(b²-4ac)] / 2a。
2.根与系数的关系是指一元二次方程的两个根x1和x2与方程的系数a、b、c之间的相互关系。
根据一元二次方程的求根公式,两个根的和为-b/a,两个根的积为c/a。
三、重难点精析1.应用公式法解一元二次方程时,首先需要将方程化为一般形式,并确定a、b、c的值。
难点在于如何找到a、b、c的值,需要根据题目中的条件进行转化。
2.根与系数的关系是难点之一,需要理解两根之和与两根之积的意义。
在解题中,通常利用根与系数的关系来求方程中字母系数的值或用字母代数式表示方程的两个根。
四、练习题1.用公式法解下列一元二次方程:(1)x²-6x+9=0;(2)3x²+4x-7=0;(3)y²+2y-1=0;(4)2x²-5x+3=0;2.已知方程x²-7x+12=0的两个根是x1和x2.求下列各式的值:(1)(x1+1)(x2+1);(2)(x1-1)(x2-1)3.根据下列各组中根与系数的关系,求下列各式的值:(1)已知x1、x2是方程x²-5x+6=0的两个根,求x1²+x2²的值;(2)已知x1、x2是方程x²-7x+12=0的两个根,求x1³-x2³的值。
五、总结本文总结了九年级数学中公式法解一元二次方程和根与系数的关系知识点,包括了一元二次方程的基本形式、解法以及根与系数的关系等重要内容。
初中数学一元二次方程解法总结
初中数学一元二次方程解法总结一元二次方程解法总结一、引言初中数学中,一元二次方程是一个重要的内容,它的解法涉及了解析几何、代数方程及应用问题的解答等多个领域。
本文将总结一元二次方程的解法,包括求根公式法、配方法、图像法、因式分解法等,以帮助初中学生更好地掌握这一知识点。
二、求根公式法求根公式法是一种通用而简洁的解法,适用于任意一元二次方程。
对于形如ax² + bx + c = 0(其中a≠0)的方程,可以使用求根公式来求解。
求根公式为:x₁ = (-b + √(b²-4ac))/(2a)x₂ = (-b - √(b²-4ac))/(2a)三、配方法配方法是一种常用的解法,适用于一些特殊形式的二次方程。
对于形如ax² +bx + c = 0,其中a≠0且b²-4ac不为完全平方数的方程,可以使用配方法来解决。
具体步骤如下:1. 将方程重新排列,以使得二次项系数为1。
2. 将方程两边加上一个适当的常数使其成为一个完全平方。
3. 通过完全平方公式求解新的二次方程。
4. 将求解得到的值代入原方程,验证是否为正确的解。
四、图像法图像法是一种直观且易于理解的解法,适用于通过图像来解决一元二次方程。
对于形如ax² + bx + c = 0的方程,可以通过作出二次函数的图像来求解。
具体步骤如下:1. 根据二次方程的系数a、b和c,确定二次函数的图像形状。
2. 在坐标系中画出二次函数的图像。
3. 根据图像与x轴的交点,求解方程的根。
五、因式分解法因式分解法是一种巧妙的解法,适用于一些特殊形式的二次方程。
对于形如ax² + bx + c = 0(其中a≠0)的方程,可以尝试通过因式分解来求解。
具体步骤如下:1. 将方程分解成二次因式的乘积形式。
2. 令每个因式等于零,求解得到方程的根。
3. 验证求得的根是否满足原方程。
六、实际应用一元二次方程在生活中有很多实际应用,比如求解质点运动问题、面积和体积最大最小问题等。
初三一元二次方程的解法—公式法
一元二次方程的解法——公式法复习回顾:配方的步骤:1.______________________________________________2.______________________________________________3._______________________________________________用配方法解一元二次方程: 2x2+4x+1=0探究新知:用配方法解一般形式的一元二次方程 ax2+bx+c=0 (a≠0)解:这里,我们把所求得的结果_______________________可以当做公式来运用,我们把这一公式称之为一元二次方程的求根公式.小试牛刀:用公式法解方程自我总结:用公式法解一元二次方程的一般步骤3x2+5x-2=0解:a= ,b= ,c = . 1. b2-4ac= = . 2. x= = . 3. 即 x1 = , x2 = . 4.练习巩固:1.用公式法解下列方程:(1) x2 +2x =5 (2)x2 +1 = 2 x (3)4x2-3x+2=0规律总结:一元二次方程根的情况当时,一元二次方程有两个相等的实数根。
当时,一元二次方程有两个相等的实数根。
当时,一元二次方程没有实数根。
大显身手:1、方程3 x2 +1=2x中, b2-4ac= .2、若关于x的方程x2-2nx+4=0有两个相等的实数根,则n=3、用公式法解下列方程:①x2 - 2x+2= 0. ②(x-2)(1-3x)=6 ③拓展提高m取什么值时,方程 x2+(2m+1)x+m2-4=0有两个相等的实数解?回味无穷:想一想:本节课你学会了哪些知识?121232=--xx用公式法解一元二次方程同步练习一、双基整合步步为营1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________.2.方程ax2+bx+c=0(a≠0)有两个相等的实数根,则有________,若有两个不相等的实数根,则有_________,若方程无解,则有__________.3.若方程3x2+bx+1=0无解,则b应满足的条件是________.4.关于x的一元二次方程x2+2x+c=0的两根为________.(c≤1)5.用公式法解方程x2=-8x-15,其中b2-4ac=_______,x1=_____,x2=________.6.已知一个矩形的长比宽多2cm,其面积为8cm2,则此长方形的周长为________.7.一元二次方程x2-2x-m=0可以用公式法解,则m=().A.0 B.1 C.-1 D.±18.用公式法解方程4y2=12y+3,得到()A.. C..9.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,•则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形10.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有()A.0个 B.1个 C.2个 D.3个11.解下列方程;(1)2x2-3x-5=0 (2)2t2+3=7t (3)x2+16x-13=0(4)x2x+1=0 (5)0.4x2-0.8x=1 (6)23y2+13y-2=0二、拓广探索:12.当x=_______时,代数式13x+与2214x x+-的值互为相反数.13.若方程x-4x+a=0的两根之差为0,则a的值为________.14.如图,是一个正方体的展开图,标注了字母A的面是正方体的正面,如果正方体的左面与右面所标注代数式的值相等,求x的值.三、智能升级:15.小明在一块长18m宽14m的空地上为班级建造一个花园,所建花园占空地面积的12,请你求出图中的x.16.要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.求鸡场的长与宽各是多少?答案:1.x=2b a-±,无实数根2.b 2-4ac=0,b 2-4ac>0,b 2-4ac<03.b 2<12 4.x=-1.4,-3,-5 6.12cm7.C 8.C 9.C 10.B 11.(1)x 1=52,x 2=-1;(2)t 1=3,t 2=12;(3)x 1=12,x 2=-23;(4)1;(5)(6)y 1=-2,y 2=3212.-1或1613.4 14.x 1=32,x 2=32-15.(14-x )(18-x )=12×18×14,x 1,x 2 16.设鸡场垂直于墙的宽度为x ,则x (35-2x )=150,解得x=7.5,x=10,若对墙的长度a 的面不作限制,则当x=7.5时,鸡场的宽为7.5m ,长为20m , 当x=10•时,•鸡场宽为10m 长为15m , .。
一元二次方程的解法公式法
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2 2
− b ± b − 4 ac − 1 ± 13 x= = 2a 2 − 1 + 13 − 1 − 13 ∴ x1 = , x2 = 2 2
2
辨 析
2、解方程:2 x + x − 2 = 0
2
2
当b − 4ac ≥ 0时,它有两个实数根:
+ bx + c = 0(a ≠ 0)
− b + b2 − 4ac − b − b2 − 4ac x1 = , x2 = 2a 2a
这就是一元二次方程 ax +bx+c = 0(a ≠ 0)
2
的求根公式.
在解一元二次方程时,只要把方程化为一般式
ax + bx + c = 0(a ≠ 0)
辨 析
小马虎在学完用公式法解一元二次方程 觉得非常简单,也非常高兴, 后,觉得非常简单,也非常高兴,很快就做好 了作业,可是他马虎的毛病到底改了没有呢? 了作业,可是他马虎的毛病到底改了没有呢? 1、解方程: x − x − 3 = 0
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2
b − 4ac = (−4) − 4 ×1× 4 = 0
2 2
− b ± b − 4ac 4 ± 0 x= = =2 2a 2 ∴x = 2
2
辨 析
2 4、解方程: x + x + 2 = 0
2
解:原方程中 a = 2, b = 1, c = 2 b − 4 ac = 1 − 4 × 2 × 2 = −15
【答题技巧】初三数学一元二次方程的解法
【答题技巧】初三数学一元二次方程的解法
只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
它的一般形式:ax^2+bx+c=0(a≠0),a为二次项系数,b为一次项系数,c为常数项。
其实这个概念很容易理解,只要记住三点就可以:①整式方程
②一个未知数③未知数的最高次数为2,当然这三点,是需要讲一元二次方程化为一般形式后来判断的。
公式法
Δ=b²-4ac,Δ<0时方程无解,Δ≥0时
x=【-b±根号下(b²-4ac)】÷2a(Δ=0时x只有一个)
配方法
可将方程化为[x-(-b/2a)]²=(b²-4ac)/4a²
可解出
x=【-b±根号下(b²-4ac)】÷2a(公式法就是由此得出的)直接开平方法与配方法相似因式分解法
核心当然是因式分解了看一下这个方程
(Ax+C)(Bx+D)=0,展开得ABx²+(AD+BC)+CD=0与一元二次方程ax^2+bx+c=0对比得
a=AB,b=AD+BC,c=CD。
所谓因式分解也只不过是找到A,B,C,D这四个数而已。
一般解一元二次方程,最常用的方法还是因式分解法,在应用因式分解法时,一般要先将方程写成一般形式,同时应使二次项系数化为正数。
直接开平方法是最基本的方法。
公式法和配方法是最重要的方法。
公式法适用于任何一元二次方程(有人称之为万能法),在使用公式法时,一定要把原方程化成一般形式,以便确定系数,而且在用公式前应先计算判别式的值,以便判断方程是否有解。
感谢您的阅读,祝您生活愉快。
9年级上册数学一元二次方程
九年级上册数学一元二次方程一、一元二次方程的基本概念一元二次方程是一个只含有一个未知数(通常表示为x),且未知数的最高次数为2的方程。
其标准形式为:ax^2 + bx + c = 0,其中a、b、c是常数,且a≠0。
二、一元二次方程的解法配方法:通过配方将方程转化为(x+b)^2=d的形式,然后直接开平方求解。
公式法:根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,方程有2个实根。
根为x=(-b±√Δ)/2a。
因式分解法:将方程左边化为两个因式的乘积,右边化为0,然后分别令每个因式等于0求解。
三、一元二次方程的根的判别式一元二次方程的根的判别式Δ=b^2-4ac。
根据判别式的不同取值,一元二次方程的根的情况分为以下三种:当Δ>0时,方程有两个不相等的实根。
当Δ=0时,方程有两个相等的实根(重根)。
当Δ<0时,方程没有实根(称为虚根),但有共轭复数根。
四、一元二次方程的根与系数的关根的和:x1+x2=-b/a。
根的积:x1*x2=c/a。
根的平方和:x1^2+x2^2=(x1+x2)^2-2x1*x2=(b^2-2ac)/a^2。
的立方:x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1*x2)=-b^3/a^3+c^3/a^3=(c^3-b^3)/a^3。
五、一元二次方程的应用一元二次方程在日常生活和生产实践中有着广泛的应用,如计算几何图形的面积、解决商品利润问题等。
解决这类问题时,需要将实际问题转化为数学模型,即建立一元二次方程,然后求解得到实际问题的答案六、配方法解一元二次方程将一元二次方程化为(x+b)^2=d的形式,然后直接开平方求解。
这种方法适用于所有形式的一元二次方程,但在使用时需要注意运算的准确性。
七、公式法解一元二次方程根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,使用公式法可以直接求解出方程的实根。
此方法简洁明了,但需要注意判别式的计算以及实根的存在性。
一元二次方程的6种解法
一元二次方程的6种解法
一元二次方程的6种解法如下:
1、因式分解法:将一元二次方程化成 ax^2+bx+c=0 的形式,先将两边同乘以a后,即a(x^2+ b/ax + c/a),然后将此形式拆解为(x+())(x+(/))的形式,得到两个一元一次方程,求出x的值,即可求出原方程的解。
2、公式法:用公式法求解一元二次方程,即通过求解公式:x=(-
b±√(b^2-4ac))/2a来求解,此公式中,b和c为方程的系数,a为系数前的系数。
3、图像法:使用图像法求解一元二次方程,即作出ax^2+bx+c=0方程图象,然后根据图象上的交点判断出方程的解。
4、判别式法:此法根据一元二次方程的判别式来求解,即当判别式b^2-4ac>0时,方程有两个不等实根;当判别式b^2-4ac=0时,方程有一个实根;当判别式b^2-4ac<0时,方程没有实根。
5、求根公式法:此法可以用来求解一元二次方程的实根,即用求根公式x1=(-b+ √(b2- 4ac))÷2a和x2=(-b-√(b2- 4ac))÷2a,其中,b 为系数前的系数,a和c分别为方程的系数。
6、特殊值法:此法适用于一元二次方程中特殊的系数或解。
如当
a=0,系数b和c任意时,可将该方程化为一元一次方程,求解即可;当a=b=0时,可直接算出方程的解。
一元二次方程的解法
一元二次方程的解法汇总1.直接开方法解一元二次方程(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:(点击图片可放大阅览)要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤:①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程(点击图片可放大阅览)【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:(点击图片可放大阅览)类型二、因式分解法解一元二次方程(点击图片可放大阅览)【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.(点击图片可放大阅览)【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。
新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法
新人教版九年级数学(上)一元二次方程的解法——配方法、求根公式法知识点一、配方法解一元二次方程()002≠=++a c bx ax 222442a ac b a b x -=??? ??+? ※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。
典型例题:例1、试用配方法说明322+-x x 的值恒大于0。
例2、已知x 、y 为实数,求代数式74222+-++y x y x 的最小值。
例3、已知,x、y y x y x 0136422=+-++为实数,求yx 的值。
例4、分解因式:31242++x x一元二次方程的解法(二)针对练习:★★1、试用配方法说明47102-+-x x 的值恒小于0。
★★2、已知041122=---+x x x x ,则=+x x 1 .★★★3、若912322-+--=x x t ,则t 的最大值为,最小值为。
★★★4、如果4122411-++-=--++b a c b a ,那么c b a 32-+的值为。
知识点二、根的判别式从配方法那里我们知道不是所有的一元二次方程都是有实数解的,原因在于配方得到的右边的项为2244a ac b - ;而当04422<-a ac b ,是不能开方的,所以方程无实数解。
而2244aac b -与0的大小关系又取决于ac b 42-;所以:当042>-ac b 时,方程有两个不相等的实数根;当042=-ac b 时,方程有两个相等的实数根;当042<-ac b 时,方程没有实数根。
由此可知ac b 42-的取值决定了一元二次方程根的情况,我们把ac b 42-称作根的判别式,用符号“Δ”表示;即:ac b 42-=? 根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。
典型例题:例1、若关于x 的方程0122=-+x k x 有两个不相等的实数根,则k 的取值范围是。
例2、关于x 的方程()0212=++-m mx x m 有实数根,则m 的取值范围是( ) A.10≠≥且m m B.0≥m C.1≠m D.1>m例3、已知关于x 的方程()0222=++-k x k x (1)求证:无论k 取何值时,方程总有实数根;(2)若等腰?ABC 的一边长为1,另两边长恰好是方程的两个根,求?ABC 的周长。
人教版初三数学上册用公公式法解一元二次方程
用公式法求解一元二次方程 一、公式法公式法:求根公式:一般地,对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac ≥0时,它的根是:2b x a-±=.上面这个式子称为一元二次方程的求根公式,用求根公式解一元二次方程的方法称为公式法.【知识拓展】(1)求根公式专指一元二次方程的求根公式,只有确定方程是一元二次方程时,才可以使用.(2)应用公式法解一元二次方程时,要先把方程化成一般形式,确定二次项系数、一次项系数、常数项,且要注意它们的符号.(3)b 2-4ac ≥0是公式使用的前提条件,是公式的重要组成部分.一元二次方程的求根公式的推导:一元二次方程的求根公式的推导过程就是用配方法解一般形式的一元二次方程ax 2+bx +c =0(a ≠0)的过程.∵a ≠0,∴方程的两边同除以a 得20b cx x a a++=.配方得22222b b c b x x a a a a ⎛⎫⎛⎫++=-+ ⎪ ⎪⎝⎭⎝⎭,222424b b ac x a a -⎛⎫+= ⎪⎝⎭, ∵a ≠0,∴a 2>0,∴4a 2>0.∴当b 2-4ac ≥时,2244b ac a-是一个非负数.此时两边开平方得22b x a a+=,∴2b x a-±=【知识拓展】(1)被开方数b2--4ac有意义.(2)由求根公式可知一元二次方程的根是由其系数a ,b ,c 决定的,只要确定了a ,b ,c 的值,就可以代入公式求一元二次方程的根.【新课导读·点拨】因为a =1,b =-1,c =-90,所以1192x ±==.故x 1=10,x 2=-9(不符合实际,舍去).所以全校有10个队参赛.【例1】解下列方程.(1)x 2-2x =0; (2)3x 2+4x =-1; (3)2x 2-4x +5=0. 分析:解:(1)x 2-2x -2=0,∵a =1,b =-2,c =-2,∴b 2-4ac =(-2)2-4X1×(-2)-12>0,∴2222x ±±==,∴11x =+,11x =- (2)原方程可化为3x 2+4x +1=0,∵a =3,b =4,c =1,∴b 2-4ac =42-4×3×1=4>0, (3)2x 2-4x +5=0,∵a =2,b =-4,c =5,∴b 2-4ac =(-4)2-4×2×5=-24<0, ∴该方程没有实数根.二、一元二次方程根的判别式定义:一元二次方程ax 2+bx +c =0(a ≠0)的根的情况可由b 2-4ac 来判定.我们把b 2-4ac 叫做一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式,通常用希腊字母“△”来表示,读作:“delta(德尔塔)”.对于一元二次方程ax 2+bx +c =0(a ≠0),当b 2-4ac >0时,方程有两个不相等的实数根; 当b 2-4ac =0时,方程有两个相等的实数根; 当b 2-4ac <0时,方程没有实数根. 反之亦成立.【知识拓展】(1)根的判别式是△=b 2-4ac ,而不是24b =-(2)根的判别式是在一元二次方程的一般形式下得出的,因此,必须把所给的方程化为一般形式再判别根的情况,要注意方程中各项系数的符号.(3)如果一元二次方程有实根,那么应当包括有两个不相等的实数根和有两个相等的实数根两种情况,此时b 2-4ac ≥0.探究交流已知关于x的一元二次方程x2+2x+m=0有实数根,当m取最大值时,求该一元二次方程的根.分析:根据根的判别式的意义可得△=4-4m≥0,解得m≤1,所以m的最大值为1,此时方程为x2+2x+1=0,然后运用公式法解方程.解:∵关于x的一元二次方程x2+2x+m=0有实数根,∴△=4-4m≥0,∴m≤1,∴m的最大值为1,当m=1时,一元二次方程变形为x2+2x+1=0,解得x1=x2=1.【例2】一元二次方程x2+x+3=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定分析:判断上述方程的根的情况,只要看根的判别式△=b2-4ac的值的符号就可以了.∵a=1,b=1,c=3,∴△=b2-4ac=12-4×1×3=-11<0,∴此方程没有实数根.故选C.##整理归纳##$$练习$$##题型##单选##题干##(2013·珠海中考)已知一元二次方程:①x2+2x+3=0,x2-2x--3=0.下列说法正确的是( )A.99帮有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解##答案##B##解析##方程①的判别式△=4-12=-8,则①没有实数解;②的判别式△=4+12=16,则②有实数解.故选B.$$更多练习$$##题型##主观填空题##题干##(2011·上海中考)如果关于x 的一元二次方程x 2-6x +c =0(c 是常数)没有实数根,那么c 的取值范围是______. ##答案## c >9##解析##∵关于xx 2-6x +c =0(c 是常数)没有实数根,∴△=(-6)2-4c <0,即36-4c <0,c >9##题型## 主观题 ##题干##(2012·珠海中考)已知关于x 的一元二次方程x 2+2x +m =0. (1)当m =3时,判断方程的根的情况; (2)当m =3时,求方程的根. ##答案##解:(1)当m =3时,△=b 2-4ac =22-4×3=-8<0,∴原方程无实数根. (2)当m =-3时,原方程变形为x 2+2x -3=0.∵b 2-4ac =4+12=16,2122x -±==-±,∴x 1=1,x 2=-3.##题型## 主观题 ##题干##(2013·乐山中考)已知关于x 的一元二次方程x 2-(2k +1)x +k 2+k =0. (1)求证方程有两个不相等的实数根;(2)若△ABC 的两边AB ,AC 的长是这个方程的两个实数根,第三边BC 的长为5,当△ABC 是等腰三角形时,求k 的值.##答案##(1)证明:∵△=(2k +1)2-4(k 2+k)=1>0,∴方程有两个不相等的实根.(2)解:一元二次方程x 2-(2k+1)x +k 2+k =0的解为212k x +±=,即x 1=k ,x 2=k+1,不妨设AB =k ,AC =k +1,当AB =BC 时,△ABC 是等腰三角形,则k =5;当AC =BC 时,△ABC 是等腰三角形,则k +1=5,解的k =4.所以k 的值为5或4.$$典型$$ ##典例精析##类型一 用公式法解一元二次方程 【例1】用公式法解下列方程. (1)x 2+2x -2=0;(2) 23x+=;(3)21028n n -+=分析:方程(1)(3)可直接确定a ,b ,c 的值,方程(2)需先化为一般形式,再确定a ,b ,c 的值.解:(1)∵a =1,b =2,c =-2,∴b 2-4ac =22-4×1×(-2)=12>0,∴212x -±==-±11x =-+,11x =--(2)将方程化为一般形式,得230x -+=.∵a =1,b =-,c =3,∴(224241340b a c -=-⨯⨯=-< ∴原方程没有实数根.(3)∵a =1,b =-,18c =,∴221441028b ac ⎛⎫-=--⨯⨯= ⎪⎝⎭,∴224n ±==,∴124n n ==.规律方法小结:(1)用公式法解一元二次方程时,一定要先将方程化为一般形式,再确定a ,b ,c 的值.(2)b 2-4ac ≥0是公式中的一个重要组成部分,b 2-4ac <0时,原方程没有实数根.(3)当b2-4ac =0时,应把方程的根写成122bx x a==-,的形式,用以说明一元二次方程有两个相等的根,而不是一个根.类型二不解方程判定根的情况【例2】不解方程,判断下列方程的根的情况.(1)x2-x-1=0;(2)2x2+3x=-2;(3)-2x2-3x+4=0.解:(1)∵a=1,b=-1,c=-1,∴△=b2-4ac=1+4=5>0,∴该方程有两个不相等的实数根.(2)原方程可变形为2x2+3x+2=0,∵a=2,b=3,c=2,∴△=b2-4ac=9-16=-7<0,∴原方程没有实数根.(3)原方程可变形为2x2+3x-4=0,∵a=2,b=3,c=-4,∴b2-4ac=32-4×2×(-4)=41>0,∴原方程有两个不相等的实数根.类型三几何图形中的方案设计问题【例3】(2012·湘潭中考)如图2所示,某中学准备在校园里利用围墙的一段,再砌三面墙,围成一个矩形花园ABCD(围墙MN最长可利用25 m),现在已备足可以砌50 m长的墙的材料,试设计一种砌法,使矩形花园的面积为300 m2.(所备材料全部用完)分析:设未知数,将矩形的长和宽表示出来,再根据矩形的面积公式列方程,解一元二次方程即可.解:设AB=x m,则BC=(50-2x)m.根据题意可得x(50-2x)=300,解得x1=10,x2=15.当x=10时,BC=50-2×10=30>25,不符合题意,舍去,当x=15时,BC=50-2×15=20<25,符合题意,故AB=15 m,BC=20 m.答:可以围成AB的长为15 m,BC的长为20 m的矩形.【解题策略】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列方程求解,注意围墙MN最长可利用25 m,舍掉不符合题意的数据.类型四用公式法解含字母系数的一元二次方程【例4】解关于x的方程x2-2mx+m2-2=0.解:∵a=1,b=-2m,c=m2-2,∴()222212mb mx ma--±-±±====±⨯∴1x m =+2x m =- 【解题策略】要熟练运用公式法求一元二次方程的解,准确确定a ,b ,c 的值是解题的关键.类型五 根据方程根的情况,确定待定系数的取值范围.【例5】k 取何值时,关于x 的一元二次方程kx 2-12x +9=0. (1)有两个不相等的实数根? (2)有两个相等的实数根? (3)没有实数根?分析:(1)当△=b 2-4ac >0时,方程有两个不相等的实数根;(2)当△=b 2-4ac =0时,方程有两个相等的实数根;(3)当△=b 2-4ac <0时,方程没有实数根.分别求出是的取值范围即可.解题时注意二次项系数k ≠0. 解:方程是一元二次方程,则k ≠0. (1)若方程有两个不相等的实数根,则△= b 2-4ac =144-36k >0,解得k <4.所以k <4且k ≠0. (2)若方程有两个相等的实数根,则△=b 2-4ac =144—36k =0,解得k =4. (3)若方程没有实数根,则△=b 2-4ac =144-36k <0,解得k >4.类型六 设计方案解决几何图形面积问题【例6】(2013·连云港中考)小林准备进行如下操作实验:把一根长为40 cm 的铁丝剪成两段,并把每一段各围成一个正方形.(1)要使这两个正方形的面积之和等于58 cm2,小林该怎么剪? (2)小峰对小林说:“这两个正方形的面积之和不可能等于48 cm 2.”他的说法对吗?请说明理由.分析:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于58 cm 2建立方程求出其解即可;(2)设剪成的较短的一段长优咖,则较长的一段长(40-m)cm ,这样就可以表示出这两个正方形的面积,根据两个正方形的面积之和等于48 cm 2建立方程,如果方程有解就说明小峰的说法错误,否则正确. 解:(1)设剪成的较短的一段长x cm ,则较长的一段长(40-x)cm , 由题意,得22405844x x -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,解得x 1=12,x 2=28.当x =12时,40-x =40-12=28,当x =28时,40-x =40-28=12<28(舍去). ∴较短的一段长12 cm ,较长的一段长28 cm.(2)设剪成的较短的一段长m cm ,则较长的一段长(40-m)cm ,由题意,得22404844m m -⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,整理,得m 2-40m +416=0,∵△=(-40)2-4×416=-64<0,∴原方程无解.∴小峰的说法正确,这两个正方形的面积之和不可能等于48 cm 2.类型七 分类讨论求方程的根【例7】解关于x 的方程(k -1)x 2+(k -2)x -2k =0.(23k >)分析:解含有字母系数的方程,往往要按字母的取值分类讨论.此题有两种情况,k =1和k ≠1,当且仅当k ≠1时,二次项系数不为零,才能用一元二次方程的求根公式来解.解:当k =1时,原方程为-x -2=0,∴x =-2. 当k ≠1时,∵a =k -1,b =k -2,c =-2k ,∴b 2-4ac =(k -2)2-4(k -1)(-2k)=9k 2-12k +4=(3k -2)2≥0, ∴x=11kx k =-,22x =-【解题策略】当二次项系数中含有参数时,要讨论;次项系数是否为零.类型八 应用根的判别式判断三角形的形状【例8】已知a ,b ,c 分别是伽c 的三边长,当m >0时,关于x 的一元二次方程()()220cx m b x m ++--=有两个相等的实数根,则△ABC 是什么形状的三角形?分析:由方程有两个相等的实数根可得根的判别式为0,得到与m 有关的等式,由m >0得a ,b ,c之间的关系,从而判定三角形的形状. 解:将方程化为一般形式()()20b c x c b m +-+-=.因为原方程有两个相等的实数根, 所以()()()240b c c b m ∆=--+-=,即4m(a 2+b 2-c 2)=0,又因为m >0,所以a 2+b 2-c 2=0,即a 2+b 2=c 2.根据勾股定理的逆定理知△ABC 是直角三角形.类型九 探索含字母系数的一元二次方程的根的情况【例9】已知关于z 的一元二次方程ax 2+bx +c =o(a ≠0).(1)当a ,c 异号时,试说明该方程必有两个不相等的实数根;(2)当a ,c 同号时,该方程要有实数根,还需要满足什么条件?请你写出一个a ,c 同号,且有实数根的一元二次方程,并解这个方程.分析:(1)只需说明b 2-4ac >0即可.(2)是一个开放性问题,写出的方程满足a ,c 同号,且b 2-4ac ≥0即可.解:(1)因为a ,c 异号,所以ac <O ,所以-4ac >0,所以b 2-4ac >0, 所以,当a ,c 异号时,该方程必有两个不相等的实数根.(2)当a ,c 同号时,该方程要有实数根,还需满足条件b 2-4ac ≥0. 例如方程x 2-4x +3=0,解得x 1=3,x 2=1.【解题策略】(2)中并不是任意的方程都可以,它满足的条件是a ,c 同号且b 2-4ac ≥0,而这样的方程有无数个,我们可以选取一些解答较方便的方程。
初三一元二次方程的解法
初三一元二次方程的解法一元二次方程是一个非常重要的数学概念,它是初中数学中的一个重要内容,也是数学学习的基础之一。
掌握一元二次方程的解法,对于理解更高层次的数学概念和解决更复杂的数学问题都有着非常重要的意义。
一、直接开平方法直接开平方法是解一元二次方程最基本的方法,它的理论依据是等式两边同时加上或减去同一个数,等式仍然成立。
例:解方程x^2 - 4x + 4 = 0解:将方程左边配方得:(x - 2)^2 = 0∴x1=x2=2二、因式分解法因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法。
例:解方程2x^2 - 8x + 8 = 0解:原方程可化为:(2x-4)^2 = 0 ∴x1=x2=2三、公式法公式法是解一元二次方程的一种简便方法,它的理论依据是用求根公式解方程。
例:解方程2x^2 - 8x + 8 = 0解:∵a=2,b=-8,c=8∴b^2-4ac=(-8)^2-4×2×8=0∴x=[(-b±√(b^2-4ac)]/2a=2±√(4-4×8)/4=±√(4-4×8)/4=(2±2√2)/2=±√2∴x1=√2,x2=-√2四、配方法配方法是一种通过配方来解一元二次方程的方法。
这种方法需要先对原方程进行配方,然后再进行求解。
例:解方程x^2 + 6x + 9 = 0解:将原方程配方得:(x+3)^2 = 0∴x1=x2=-3五、分解因式法与公式法的综合运用在解一元二次方程时,我们常常需要综合运用分解因式法和公式法。
通过将方程进行因式分解,我们可以找到方程的根,然后再利用公式法进行求解。
例:解方程5x^2 - 10x + 5 = 0解:将原方程分解因式得:(5x-5)^2 = 0∴x1=x2=1六、其他方法除了以上几种方法外,还有一些其他的方法可以用来解一元二次方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一元二次方程的解法
2.2.2公式法
【知识与技能】
1.经历推导求根公式的过程,加强推理技能的训练.
2.会用公式法解简单系数的一元二次方程.
【过程与方法】
通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.【情感态度】
让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.
【教学重点】
求根公式的推导和公式法的应用.
【教学难点】
理解求根公式的推导过程.
一、情景导入,初步认知
1.用配方法解方程:
(1)x2+3x+2=0;(2)2x2-3x+5=0.
2.由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a≠0)使用这些步骤,然后求出解x的公式?
【教学说明】这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果.
二、思考探究,获取新知
1.用配方法解方程:ax2+bx+c=0(a≠0)
分析:前面具体数字已做了很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:ax2+bx=-c
【归纳结论】由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac ≥0时,将a、b、c代入式子
就可求出方程的根.
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
【强调】用公式法解一元二次方程时,必须注意两点:(1)将a、b、c的值代入公式时,一定要注意符号不能出错.(2)式子b2-4ac≥0是公式的一部分.
【教学说明】让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0)能否用配方法求出它的解?通过解方程发现归纳一元二次方程的求根公式.
2.展示课本P36例5(1),(2),按课本方式引导学生用公式法解一元二次方程,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式,注意a,b,c的符号.
3.引导学生完成P37例6.
4.你能总结出用公式法解一元二次方程的一般步骤吗?
【归纳结论】首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解.
三、运用新知,深化理解
1.用公式法解下列方程.
2x2+3=7x
分析:用公式法解一元二次方程,需先确定a、b、c的值、再算出b2-4ac 的值、最后代入求根公式求解.
解:2x2-7x+3=0
a=2,b=-7,c=3
∵b2-4ac=(-7)2-4×2×3=25>0
2.某数学兴趣小组对关于x的方程(m+1)xm2+1+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元一次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
分析:(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足∶
解:(1)存在.根据题意,得:m2+1=2
m2=1m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x2-1-x=0
a=2,b=-1,c=-1
b2-4ac=(-1)2-4×2×(-1)=1+8=9
因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-12.
(2)存在.根据题意,得:①m2+1=1,m2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m2+1=0,m不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=-1/3
因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-1/3.
【教学说明】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.
四、师生互动、课堂小结
先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.
布置作业:教材“习题2.2”中第4题.。