初三数学一元二次方程的解法公式法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的解法

2.2.2公式法

【知识与技能】

1.经历推导求根公式的过程,加强推理技能的训练.

2.会用公式法解简单系数的一元二次方程.

【过程与方法】

通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想.【情感态度】

让学生体验到所有一元二次方程都能运用公式法去解,形成全面解决问题的积极情感,感受公式的对称美、简洁美,产生热爱数学的情感.

【教学重点】

求根公式的推导和公式法的应用.

【教学难点】

理解求根公式的推导过程.

一、情景导入,初步认知

1.用配方法解方程:

(1)x2+3x+2=0;(2)2x2-3x+5=0.

2.由用配方法解一元二次方程的基本步骤知:对于每个具体的一元二次方程,都使用了相同的一些计算步骤,这启发我们思考,能不能对一般形式的一元二次方程ax2+bx+c=0(a≠0)使用这些步骤,然后求出解x的公式?

【教学说明】这样做了以后,我们可以运用这个公式来求每一个具体的一元二次方程的解,取得一通百通的效果.

二、思考探究,获取新知

1.用配方法解方程:ax2+bx+c=0(a≠0)

分析:前面具体数字已做了很多,我们现在不妨把a、b、c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.

解:移项,得:ax2+bx=-c

【归纳结论】由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:

(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac ≥0时,将a、b、c代入式子

就可求出方程的根.

(2)这个式子叫做一元二次方程的求根公式.

(3)利用求根公式解一元二次方程的方法叫公式法.

【强调】用公式法解一元二次方程时,必须注意两点:(1)将a、b、c的值代入公式时,一定要注意符号不能出错.(2)式子b2-4ac≥0是公式的一部分.

【教学说明】让学生思考对于一般形式的一元二次方程ax2+bx+c=0(a≠0)能否用配方法求出它的解?通过解方程发现归纳一元二次方程的求根公式.

2.展示课本P36例5(1),(2),按课本方式引导学生用公式法解一元二次方程,并提醒学生在确定a,b,c的值时,先要将一元二次方程式化为一般形式,注意a,b,c的符号.

3.引导学生完成P37例6.

4.你能总结出用公式法解一元二次方程的一般步骤吗?

【归纳结论】首先要把原方程化为一般形式,从而正确地确定a,b,c的值;其次要计算b2-4ac的值,当b2-4ac≥0时,再用求根公式求解.

三、运用新知,深化理解

1.用公式法解下列方程.

2x2+3=7x

分析:用公式法解一元二次方程,需先确定a、b、c的值、再算出b2-4ac 的值、最后代入求根公式求解.

解:2x2-7x+3=0

a=2,b=-7,c=3

∵b2-4ac=(-7)2-4×2×3=25>0

2.某数学兴趣小组对关于x的方程(m+1)xm2+1+(m-2)x-1=0提出了下列问题.

(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.(2)若使方程为一元一次方程m是否存在?若存在,请求出.

你能解决这个问题吗?

分析:(1)要使它为一元二次方程,必须满足m2+1=2,同时还要满足(m+1)≠0.

(2)要使它为一元一次方程,必须满足∶

解:(1)存在.根据题意,得:m2+1=2

m2=1m=±1

当m=1时,m+1=1+1=2≠0

当m=-1时,m+1=-1+1=0(不合题意,舍去)

∴当m=1时,方程为2x2-1-x=0

a=2,b=-1,c=-1

b2-4ac=(-1)2-4×2×(-1)=1+8=9

因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-12.

(2)存在.根据题意,得:①m2+1=1,m2=0,m=0

因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0

所以m=0满足题意.

②当m2+1=0,m不存在.

③当m+1=0,即m=-1时,m-2=-3≠0

所以m=-1也满足题意.

当m=0时,一元一次方程是x-2x-1=0,

解得:x=-1

当m=-1时,一元一次方程是-3x-1=0

解得x=-1/3

因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;当m=-1时,其一元一次方程的根为x=-1/3.

【教学说明】主体探究、探究利用公式法解一元二次方程的一般方法,进一步理解求根公式.

四、师生互动、课堂小结

先小组内交流收获和感想而后以小组为单位派代表进行总结.教师作以补充.

布置作业:教材“习题2.2”中第4题.

相关文档
最新文档