人教版高中数学必修第一册1.1集合的概念公开课优秀课件.(新教材、经典)
合集下载
集合的含义【新教材】人教A版高中数学必修第一册优秀课件
必备知识·探新知
1集.1合的第含1课义时【集新合教的材含】义人-教【A新版教高材中】数人学教必A修版 第(一20册19 优)秀高p中p t数课学件必 修第一 册课件 (共33 张PPT)
1.1 第1课时集合的含义-【新教材】人教A版 (2019 )高中 数学必 修第一 册课件 (共33 张PPT)
第一章
集合与常用逻辑用语
1.1 集合的概念
• 【素养目标】 • 1.通过实例了解集合的含义,掌握集合元素的三个特性,初步运用集
合元素的特性解决简单问题.(数学抽象) • 2.体会元素与集合之间的属于关系,记住并会应用常用数集的表示符
号.(逻辑推理) • 3.掌握集合的两种表示方法(列举法和描述法).(直观想象) • 4.能够运用集合的两种表示方法表示一些简单集合.(直观想象)
基础知识
•知识点1 集合与元素的含义 • 一 ___般__地__,_叫我做们集把合研(究se对t)(象简统称称为为集_).____元__素_(element),把一些元素组成的
• 通常总用体大写拉丁字母A,B,C,…表示________,用小写拉丁字母a,b,
c,…表示集合中的________.
集合
1集.1合的第含1课义时【集新合教的材含】义人-教【A新版教高材中】数人学教必A修版 第(一20册19 优)秀高p中p t数课学件必 修第一 册课件 (共33 张PPT)
1集.1合的第含1课义时【集新合教的材含】义人-教【A新版教高材中】数人学教必A修版 第(一20册19 优)秀高p中p t数课学件必 修第一 册课件 (共33 张PPT)
客观地判断,因此“中国著名的数学家”不能组成集合,故选C.
2.已知 a∈R,且 a∉Q,则 a 可以为( A )
新教材人教版高中数学必修第一册 1.1 第1课时 集合的概念 教学课件
组成集合的元素所属对象是否有限制?集合中元素个数的多少是否有限制?
第五页,共二十六页。
一.元素与集合的相关概念
1.元素:一般地,把 研究对象统称为元素,常用小写的拉丁字母 a,b,c表…示.
2.集合:一些 元素组成的总体,简称集,常用大写拉丁字母
A,表B示,C.…
3.集合相等:指构成两个集合的元素是 一样的. 4.集合中元素的特性: 确定、性 互异和性 无.序性
第十五页,共二十六页。
题型三 集合中元素的特性 例 3 已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的值为________.
-1 解析:若 a=1,则 a2=1,此时集合 A 中两元素相同,与互异性矛盾,故 a≠1; 若 a2=1,则 a=-1 或 a=1(舍去),此时集合 A 中两元素为-1,1,故 a=-1. 综上所述 a=-1.
题型一 集合的概念
例 1 下列所给的对象能构成集合的是________. ①所有的正三角形;②比较接近 1 的数的全体;③某校高一年级所有 16 岁以下的学生; ④平面直角坐标系内到原点距离等于 1 的点的集合; ⑤所有参加 2018 年俄罗斯世界杯的年轻足球运动员; ⑥ 2的近似值的全体.
①③④ 解析:①能构成集合,其中的元素满足三条边相等;
a2=|a|= a,a>0,
所以一定与 a 或-a 中的一个一致.故组成的集合中有
-a,a<0,
两个元素.故选 B.
第二十二页,共二十六页。
5.给出下列关系:①1∈Z;② 3
5∈R;③|-5|∉ N+;
④|- 3|∈Q;⑤π∈R. 2
其中,正确的个数为________.
2 解析:由 Z,R,Q,N+的含义,可知②⑤正确,①③④不正确.故正 确的个数为 2.
第五页,共二十六页。
一.元素与集合的相关概念
1.元素:一般地,把 研究对象统称为元素,常用小写的拉丁字母 a,b,c表…示.
2.集合:一些 元素组成的总体,简称集,常用大写拉丁字母
A,表B示,C.…
3.集合相等:指构成两个集合的元素是 一样的. 4.集合中元素的特性: 确定、性 互异和性 无.序性
第十五页,共二十六页。
题型三 集合中元素的特性 例 3 已知集合 A 含有两个元素 a 和 a2,若 1∈A,则实数 a 的值为________.
-1 解析:若 a=1,则 a2=1,此时集合 A 中两元素相同,与互异性矛盾,故 a≠1; 若 a2=1,则 a=-1 或 a=1(舍去),此时集合 A 中两元素为-1,1,故 a=-1. 综上所述 a=-1.
题型一 集合的概念
例 1 下列所给的对象能构成集合的是________. ①所有的正三角形;②比较接近 1 的数的全体;③某校高一年级所有 16 岁以下的学生; ④平面直角坐标系内到原点距离等于 1 的点的集合; ⑤所有参加 2018 年俄罗斯世界杯的年轻足球运动员; ⑥ 2的近似值的全体.
①③④ 解析:①能构成集合,其中的元素满足三条边相等;
a2=|a|= a,a>0,
所以一定与 a 或-a 中的一个一致.故组成的集合中有
-a,a<0,
两个元素.故选 B.
第二十二页,共二十六页。
5.给出下列关系:①1∈Z;② 3
5∈R;③|-5|∉ N+;
④|- 3|∈Q;⑤π∈R. 2
其中,正确的个数为________.
2 解析:由 Z,R,Q,N+的含义,可知②⑤正确,①③④不正确.故正 确的个数为 2.
高中数学新教材《1.1 集合的概念》公开课优秀课件(好用)
①确定性:集合中的元素必须是确定的。即确定了一 个集合,任何一个元素是不是这个集合的 元素也就确定了。 (具有某种属性)
高一级所有的同学组成的集合记为A, a是高一(7)班 的同学,b是高二(7)班的同学,那么a与A,b与A之 间各自有什么关系?
四、集合的表示
立德树人 和谐发展
例1、用列举法表示下列集合: (1)小于10的所有自然数组成的集合; (2)方程 x2=x 的所有实数根组成的集合; (3)由1~20以内既能被2整除,又能被3整除的所有自 然数组成的集合.
(1)小于10的所有自然数组成的集合;
(2)方程 x2 x的所有实数根组成的集合;
(3)由1~10以内的所有质数组成的集合.
思考?
立德树人 和谐发展
(1)你能用自然语言描述集合{2,4,6,8}吗?
(2)你能用列举法表示不等式 x 7 3 的解集吗?
(2)描述法 用集合所含元素的共同特征表示集合的方法称为描述法. 例2 试分别用列举法和描述法表示下列集合:
四、集合的表示
立德树人 和谐发展
描述法
列举法
A={x R | x2 2=0 } B={x Z | 10<x<20 } C={x | x=2n,n N }
A { 2, 2}
B={11,12,13,14,15,16,17,18,19 }
有限集通常用列举法来表示 无限集通常用描述法来表示
六、小结归纳
(1)方程x2 2 0 的所有实数根组成的集合;
(2)由大于10小于20的所有2 0的实数根为 x ,并且满足条件
x2 2 0 ,因此,用描述法表示为
A x R | x2 2 0
方程 x2 2 0有两个实数根 2, 2,因此,用列举法表
人教版高中数学必修第一册第一章1.1集合的概念课时1集合的概念【课件】
集,能求两个集合的并集与交集和给定子集的补集.
知识要点及教学要求
4. 能使用Venn图表达集合的基本关系并进行集合的基本运算,
体会数形结合的数学思想.
5. 通过对典型数学命题的梳理,帮助学生理解必要条件、充分条
件、充要条件的意义,理解性质定理与必要条件的关系、判定定
理与充分条件的关系、数学定义与充要条件的关系.
(3) 所有等边三角形;
(4) 方程 = 的实数解;
(5) 不等式x+2>0的所有实数解.
思路点拨:判断一组对象能否构成集合,关键是看这组对象是否确定.
【解】“高一(1)班个子高的男生”无确定的标准,因此(1)不能构成
集合.(2)(3)(4)(5)的元素有点、图形、实数等,虽然不尽相同,但它
怎么表示一个集合和集合中的元素?
【问题3】结合问题1,你能说出集合中的元素应具
有怎样的特征吗?
【活动2】理解元素与集合的关系,熟悉常用数集的
表示方法
【问题4】某中学2021级高一年级的20个班构成一个集合,
则高一(1)班是这个集合中的元素吗?高二(2)班呢?
【问题5】结合问题4,你能说出集合与元素之间 具有怎
(3)(4)中的元素表示出来.
【问题9】从上面的例子看到,我们可以用自然语言描述一
个集合.除此之外,还可以用什么方式表示集合呢?
【问题10】什么是列举法?什么是描述法?怎样用列举法和
描述法表示集合?
典例精析
【例1】(教材改编题)下列元素的全体能否构成一个集合?
(1) 高一(1)班个子高的男生;
(2) 平面上到原点的距离等于1的所有点;
3. 在呈现方式上,以选择题、填空题为主.
学法指导
用观察、比较法研究典型的数学实例、回顾旧知,
知识要点及教学要求
4. 能使用Venn图表达集合的基本关系并进行集合的基本运算,
体会数形结合的数学思想.
5. 通过对典型数学命题的梳理,帮助学生理解必要条件、充分条
件、充要条件的意义,理解性质定理与必要条件的关系、判定定
理与充分条件的关系、数学定义与充要条件的关系.
(3) 所有等边三角形;
(4) 方程 = 的实数解;
(5) 不等式x+2>0的所有实数解.
思路点拨:判断一组对象能否构成集合,关键是看这组对象是否确定.
【解】“高一(1)班个子高的男生”无确定的标准,因此(1)不能构成
集合.(2)(3)(4)(5)的元素有点、图形、实数等,虽然不尽相同,但它
怎么表示一个集合和集合中的元素?
【问题3】结合问题1,你能说出集合中的元素应具
有怎样的特征吗?
【活动2】理解元素与集合的关系,熟悉常用数集的
表示方法
【问题4】某中学2021级高一年级的20个班构成一个集合,
则高一(1)班是这个集合中的元素吗?高二(2)班呢?
【问题5】结合问题4,你能说出集合与元素之间 具有怎
(3)(4)中的元素表示出来.
【问题9】从上面的例子看到,我们可以用自然语言描述一
个集合.除此之外,还可以用什么方式表示集合呢?
【问题10】什么是列举法?什么是描述法?怎样用列举法和
描述法表示集合?
典例精析
【例1】(教材改编题)下列元素的全体能否构成一个集合?
(1) 高一(1)班个子高的男生;
(2) 平面上到原点的距离等于1的所有点;
3. 在呈现方式上,以选择题、填空题为主.
学法指导
用观察、比较法研究典型的数学实例、回顾旧知,
人教A版高中数学必修第一册 1.1.1集合的概念公开课课件(最新、好用、值得收藏)
集合与元素
例1 下列语句能确定集合的是(__2_)_(__3_)_.(只填序号) (1)著名的数学家; (2)平面直角坐标系中第三象限的所有点; (3)2016年里约热内卢奥运会的所有比赛项目; (4)接近0的所有实数.
[解析](1)不能,“著名”没有明确的标准; (2)能,因为第三象限的点是确定的; (3)能,因为奥运会比赛项目是确定的; (4)不能,“接近”没有明确标准. 综上,能确定集合的是(2)和(3).
A.1
B.2
C.3
D.4
[解析] 显然①④可以构成集合.故选B.
练习2 已知集合A是方程x²+px+q=0的解组成的集合, 若-1∈A且2∈A,求p、q的值.
[解思法路二引:导由] 题判意断得一,个-1元,2素是是方某程个x²+集px合+q的=元0的素两的根条,件是什么? [由解韦]∵达A定是理方可程知x²+px-1++q2==的-p解,组成的集合,且-1∈A,2∈A, ∴-1,p2=是-1方,程x²+px+(-q1=)x02的=q两,根. 得 (q=--12). ²-p+q=0, p=-1 ∴∴p的2²值+2为p-+1q,=0q,的值得为-2.q=-2 ∴p的值为-1,q的值为-2. [想一想] 还有其他方法吗?
导入
看下面的例子: (1)1~10之间的所有偶数; (2)立德中学今年入学的全体高一学生; (3)所有的正方形; (4)到直线l的距离等于定长d的所有点; (5)方程x²-3x+2=0的所有实数根; 1,2 (6)地球上的四大洋;太平洋,大西洋,印度洋,北冰洋
例(1)中,我们把1~10之间的每一个偶数作为元素,这些元素的全 体就是一个集合;同样地,例(2)中,把立德中学今年入学的每一 位高一学生作为元素,这些元素的全体也是一个集合.
高中数学人教A版必修第一册课件集合的概念(课件共14张PPT)
(2){(x, y)y 2x 3, x, y N*} (2){(1,1)}
(3){rr (1)n, n Z}
(3){1,1}
12345 (4){ , , , , , }
23456 (5){ x N | 9 N }
9 x
(6){ 9 N | x N } 9 x
(4){ xx n , n N * } n1
(5){0, 6, 8}
(6){1, 3, 9}
三、例题讲授
例5、设集合P={0, 2, 5}, Q={1, 2, 6},试求集 合S={a+b|a∈P, b ∈Q}。
例6、已知集合 A x | ax2 2x 1 0, a R, x R
(1)若A中有且只有一个元素,求a值,并求出相 应集合A;
1.1.1 集合的表示
2024年11月9日星期六
1、集合的表示方法
(1)列举法:把集合的元素一一列举出来,并 用花括号“{ }”括起来
列举法的优点: 可以很清楚地看清其中的元素和元素的个数
使用列举法必须注意: ①元素间用“,”分隔. ②元素不能遗漏. ③适用范围:ⅰ.含有有限个元素且个数较少的集合. ⅱ.元素个数较多或无限个但构成集合的元素有明显规律. 例如:不超过100的正整数构成的集合可表示为 {1,2,3,…,100}
错误表示法:实数集不能表示成 {实数集}或{全体实数}
R R
(3)描述法二(代表元素描述法)用集合 中元素的特征来描述集合。 描述法的一般情势:{x∈A| P(x)} ,简记为{x| P(x)} .
含义:在集合A中满足条件P(x)的x的集合,其中x为集 合的代表元素, P(x)为元素的共同特征(限定条件).
例如 (1) 大于0小于10的实数可表示为 {x|0<x<10} (2)大于0小于10的整数可表示为 {x∈N|0<x<10}
高中数学人教A版必修第一册1.1集合的概念课件
变1.由实数, −||, 2 , ( 2 )2 , − 3 组成的集合中最多含有(
)个元素.
答案:4.由题意知, ≥ 0,所以, −||, 2 , ( 2 )2 , − 3 可分别化为
, − 2 , , 2 , − 3 .故有4个元素.
练习
题型二:元素与集合的关系
如果是集合的元素,就说属于集合,记作 ∈ ;如果不是集合的元素,就
说不属于集合,记作 ∉ .
探索新知
思考2:(1)1,3,5,7,9,…是“1~10之间的所有偶数”这一集合里面的元素吗?
(2)“较小的数”能组成一个集合吗?
不是,不能;因为集合的元素具有确定性.
思考3:集合 = {0,1,2}和集合 = {2,1,0}一样吗?
题型三:集合的表示法
例3.(1)用列举法表示下列集合:
①不大于10的非负偶数组成的集合A;
②小于8的质数组成的集合B;
③方程2 2 − −3 = 0的实数根组成的集合C;
④一次函数 = + 3与 = −2 + 6的图象的交点组成的集合D.
3
2
答案: = {0,2,4,6,8,10}; = {2,3,5,7}; = {−1, }; = {(1,4)}.
解:(1)设小于10的所有自然数组成的集合为A,
那么A={0,1,2,3,4,5,6,7,8,9,10}.
(2)设方程 2 = 的所有实数根组成的集合为B,
那么B={0,1}.
例析
例2.试分别用描述法和列举法表示下列集合:
(1)方程 2 − 2 = 0的所有实数根组成的集合A;
(2)由大于10且小于20的所有整数组成的集合B.
1.1 集合的概念
人教版高中数学必修第一册1.1集合的概念公开课优秀课件.(新教材、经典)
将集合中的元素一一列举出来,并用花括号{ } 括起来的方法叫做列举法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
• 例2用列举法表示下列集合: • (1)小于10的所有自然数组成的集合; • (2)方程x2=x 的所有实数根组成的集合; • (3)由1~20以内的所有质数组成的集合.
(A) 1 (B) 2 (C) 3 (D) 4
27
3.已知集合A= {x N 12 N} x-5
用列举法表示A=___{_6_,_7__,_8_,_9__,_1_1。, 17 } 4.用描述法表示集合
A={4,5,6,7,8,9,10}=__{_x___Z_|_3_<__x < 的,解题中可作为已知使用
5.元素与集合的关系
(1)属于(belong to):如果a是集合A 的元素,就说a属于A,记作a∈A
(2)不属于(not belong to):如果a不是集合
A的元素,就说a不属于A,记作 a A
13
练习:P5 2
6.集合的表示方法
1、自然语言:
这体现了集合中元素的确定性.
问题3:一个百货商店,第一批进货是帽子、皮鞋、衬
衣、闹钟共计4个品种,第二批进货是MP4、皮鞋、水杯、 衬衣、台灯共计5个品种,问一共进了多少个品种的货?
结论:7种.对于一个给定的集合,集合中的元素一定 是不同的(或说是互异的),相同的几个对象归于同 一个集合时只能算作一个元素.这体现了集合中元
所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z}
有理数集:
Q={x∈R|x=
q p
,
p,q∈Z,P
人教版(新教材)高中数学第一册(必修1)精品课件4:1.1 第1课时 集合的概念
名称 自然数集 正整数集 整数集 有理数集 实数集
符号 _N__ __N__+_或__N_*_ _Z__
_Q__
_R__
[题型探究] 题型一 集合的基本概念 例1 下列每组对象能否构成一个集合: (1)我们班的所有高个子同学; 解 “高个子”没有明确的标准,因此不能构成集合. (2)不超过20的非负数; 解 任给一个实数x,可以明确地判断是不是“不超过20的非负数”, 即“0≤x≤20”与“x>20或x<0”,两者必居其一,且仅居其一,故 “不超过20的非负数”能构成集合;
[预习导引]
1.元素与集合的概念 (1)集合:把一些能够 确定的不同的对象看成一个整体,就说这个 整体是由这些对象的全体 构成的集合(或集). (2)元素:构成集合的 每个对象 叫做这个集合的元素. (3)集合元素的特性: 确定性、 互异性 .
2.元素与集合的关系
关系
概念
记法
如果 a是集合A 的元素, 属于
[即时达标]
1.下列能构成集合的是( C ) A.中央电视台著名节目主持人 C.上海市所有的中学生
B.我市跑得快的汽车 D.香港的高楼
【解析】A、B、D中研究的对象不确定,因此不能构成集合.
2.已知1∈{a2,a},则a=__-_1___.
【解析】当a2=1时,a=±1,但a=1时,a2=a,由元素的互异性 知a=-1.
【解析】深圳不是省会城市,而广州是广东省的省会.
4.已知① 5∈R;②13∈Q;③0∈N;④π∈Q;⑤-3∉Z.
【解析】序号 Biblioteka 否构成集合理由(1)
能
其中的元素是“三条边相等的三角形”
“难题”的标准是模糊的、不确定的,所以
(2)
不能
新教材人教A版第一章1.1集合的概念课件(28张)
集合的3种表示方法之描述法
高中数学 必修第一册 RJ·A
集合的3种表示方法之描述法 问题:用描述法表示集合需要注意什么问题?
(2)竖线后面写清元素满足的条件,一般是方程或者不等式.
高中数学 必修第一册 RJ·A
典例剖析
高中数学 必修第一册 RJ·A
表示集合的三种方法各有什么特点?
自然语言是最基 本的语言形式,使用 范围广,但是具有多 义性,有时难于表达。
简介、抽象
符号语言
图形语言 (形象、直观)
图形语言
高中数学 必修第一册 RJ·A
题型训练 【①元素与集合关系的判断】
D
高中数学 必修第一册 RJ·A
题型训练 【②已知元素与集合的关系求参数】
高中数学 必修第一册 RJ·A
题型训练 【③由集合相等求参数】
高中数学 必修第一册 RJ·A
随堂小测
1.下列选项中能构成集合的是
集合中的“对象”所指的范围非常广泛,现实生活中我看 到的、听到的、想到的、触摸到的事物和抽象的符号等等, 都可以看做对象。比如数、点、图形、多项式、方程、函 数、人等等、
“总体”
集合是一个整体,已暗含“所有”“全部”“全体”的含 义,因此一些对象一旦组成集合,那么这个集合就是全体, 而非个别对象了。
无序性 集合中的元素排列没有顺序之分,只要某两个集合当中的元素相同, 那么它们就是相等的集合。{1,2,3}和{3,2,1}是同样的集合
高中数学 必修第一册 RJ·A
集合和元素怎么表示?它们之间有什么关系? 一般来说:
用大写拉丁字母A、B、C…等表示集合
元素与集合的关系:
比如,3∈自然数集;4∉奇数集
列举法直观地体 现了元素的个体,但 是有局限性,多适用 于元素个数较少的有 限集。
高中数学 必修第一册 RJ·A
集合的3种表示方法之描述法 问题:用描述法表示集合需要注意什么问题?
(2)竖线后面写清元素满足的条件,一般是方程或者不等式.
高中数学 必修第一册 RJ·A
典例剖析
高中数学 必修第一册 RJ·A
表示集合的三种方法各有什么特点?
自然语言是最基 本的语言形式,使用 范围广,但是具有多 义性,有时难于表达。
简介、抽象
符号语言
图形语言 (形象、直观)
图形语言
高中数学 必修第一册 RJ·A
题型训练 【①元素与集合关系的判断】
D
高中数学 必修第一册 RJ·A
题型训练 【②已知元素与集合的关系求参数】
高中数学 必修第一册 RJ·A
题型训练 【③由集合相等求参数】
高中数学 必修第一册 RJ·A
随堂小测
1.下列选项中能构成集合的是
集合中的“对象”所指的范围非常广泛,现实生活中我看 到的、听到的、想到的、触摸到的事物和抽象的符号等等, 都可以看做对象。比如数、点、图形、多项式、方程、函 数、人等等、
“总体”
集合是一个整体,已暗含“所有”“全部”“全体”的含 义,因此一些对象一旦组成集合,那么这个集合就是全体, 而非个别对象了。
无序性 集合中的元素排列没有顺序之分,只要某两个集合当中的元素相同, 那么它们就是相等的集合。{1,2,3}和{3,2,1}是同样的集合
高中数学 必修第一册 RJ·A
集合和元素怎么表示?它们之间有什么关系? 一般来说:
用大写拉丁字母A、B、C…等表示集合
元素与集合的关系:
比如,3∈自然数集;4∉奇数集
列举法直观地体 现了元素的个体,但 是有局限性,多适用 于元素个数较少的有 限集。
高中数学人教A版必修1课件:1.1.1集合的含义与表示(共22张PPT)
把“方程( x-1) ( x+2)=0的所有实数根”组成的 集合表示为:{1,-2}
14
例1 用列举法表示下列集合: (1)小于10的所有自然数组成的集合;
{0,1,2,3,4,5,6,7,8,9 } (2)方程x2=x的所有实数根组成的集合;
{0,1} (3)由1~20以内的所有素数组成的集合。
10
提升训练:
用符号“∈”或“∉”填空: (1) 2__∈__ {x︱x< 11 } 3__∉__ {x∈Z︱-5≤x≤2} (2) 0__∉__ {x︱x2-1=0} 1__∈__ {x︱x2-1=0} (3) (-1,1)___∉_{y︱y=x2} (-1,1)__∈__{(x,y)︱y=x2} (4) 4__∉__ {x︱x=n2+1,n∈Z} 5_∈___ {x︱x=n2+1,n∈Z}
解:因为-3∈A,分两种情况讨论:
① a-2=-3,解得a=-1,此时A={-3,-3,10},违反集
合元素的互异性,舍去;
②
2a2+5a=-3,解得a=
Байду номын сангаас
当a=
3 2
时,A={
7 2
3 2
或-1,
,-3,10},满足题意;
当a=-1时,舍去。
合有没有变化?
集合中的元素是无先后顺序的。(无序性)
只要构成两个集合的元素是一样的,我们就称这两个集合
是相等的 。
6
基础训练:
1、下列指定的对象,能构成一个集合的是( B )
①很小的数
②不超过 30的非负实数
③直角坐标平面内横坐标与纵坐标相等的点
④的近似值 ⑤高一年级优秀的学生
⑥所有无理数 ⑦大于2的整数
14
例1 用列举法表示下列集合: (1)小于10的所有自然数组成的集合;
{0,1,2,3,4,5,6,7,8,9 } (2)方程x2=x的所有实数根组成的集合;
{0,1} (3)由1~20以内的所有素数组成的集合。
10
提升训练:
用符号“∈”或“∉”填空: (1) 2__∈__ {x︱x< 11 } 3__∉__ {x∈Z︱-5≤x≤2} (2) 0__∉__ {x︱x2-1=0} 1__∈__ {x︱x2-1=0} (3) (-1,1)___∉_{y︱y=x2} (-1,1)__∈__{(x,y)︱y=x2} (4) 4__∉__ {x︱x=n2+1,n∈Z} 5_∈___ {x︱x=n2+1,n∈Z}
解:因为-3∈A,分两种情况讨论:
① a-2=-3,解得a=-1,此时A={-3,-3,10},违反集
合元素的互异性,舍去;
②
2a2+5a=-3,解得a=
Байду номын сангаас
当a=
3 2
时,A={
7 2
3 2
或-1,
,-3,10},满足题意;
当a=-1时,舍去。
合有没有变化?
集合中的元素是无先后顺序的。(无序性)
只要构成两个集合的元素是一样的,我们就称这两个集合
是相等的 。
6
基础训练:
1、下列指定的对象,能构成一个集合的是( B )
①很小的数
②不超过 30的非负实数
③直角坐标平面内横坐标与纵坐标相等的点
④的近似值 ⑤高一年级优秀的学生
⑥所有无理数 ⑦大于2的整数
数学人教A版必修第一册1.1集合的概念课件
方程x2-2=0有两个实数根为 2,,2因此,用列举法 表示为A={ 2, }2.
例2 、(教材P4例2)试分别用列举法和描述法表示下列集合. (1)方程x2-2=0的所有实数根组成的集合. (2)由大于10小于20的所有整数组成的集合.
(2)设大于10小于20的整数为x,它满足条件 x∈Z,且10<x<20,因此,用描述法表示为
B={x∈Z∣10<x<20}. 大于10小于20的整数有11,12,13,14,15,16,17, 18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
课堂检测
知识点四 集合的表示法
问题7 你能说出列举法和描述法的优缺点吗?
列举法 描述法
优点
缺点
直观、明了
知识点二 集合元素的特征
问题3 思考下面的例子,并回答下面问题
(3)由实数“3,1,5”构成的集合记为M,实数“1,5,3” 构成的集合记为N,这两个集合中元素相同吗?
结论:相同.这体现了集合中元素的无序性.
知识点二 集合元素的特征
追问3.1:通过以上的探究你能总结出集合中元素的特性吗?
(1)确定性: 对于给定的集合所包含的元素是确定的
(2)互异性: 一个集合中,任何两个元素都是不同的
(3)无序性: 一个集合之中,元素之间是无序的
追问3.2:类比实数相等,两个集合相等应满足什么条件?
两个集合中,元素完全一样,则称两集合相等.
知识点三 元素与集合的关系
问题4 阅读教材第2页倒数第4行“我们通常用大写拉丁字母……”
至第3页表格中的“数学中一些常用数集及其记法”,并回答:
第一章 集合与常用逻辑用语
例2 、(教材P4例2)试分别用列举法和描述法表示下列集合. (1)方程x2-2=0的所有实数根组成的集合. (2)由大于10小于20的所有整数组成的集合.
(2)设大于10小于20的整数为x,它满足条件 x∈Z,且10<x<20,因此,用描述法表示为
B={x∈Z∣10<x<20}. 大于10小于20的整数有11,12,13,14,15,16,17, 18,19,因此,用列举法表示为
B={11,12,13,14,15,16,17,18,19}.
课堂检测
知识点四 集合的表示法
问题7 你能说出列举法和描述法的优缺点吗?
列举法 描述法
优点
缺点
直观、明了
知识点二 集合元素的特征
问题3 思考下面的例子,并回答下面问题
(3)由实数“3,1,5”构成的集合记为M,实数“1,5,3” 构成的集合记为N,这两个集合中元素相同吗?
结论:相同.这体现了集合中元素的无序性.
知识点二 集合元素的特征
追问3.1:通过以上的探究你能总结出集合中元素的特性吗?
(1)确定性: 对于给定的集合所包含的元素是确定的
(2)互异性: 一个集合中,任何两个元素都是不同的
(3)无序性: 一个集合之中,元素之间是无序的
追问3.2:类比实数相等,两个集合相等应满足什么条件?
两个集合中,元素完全一样,则称两集合相等.
知识点三 元素与集合的关系
问题4 阅读教材第2页倒数第4行“我们通常用大写拉丁字母……”
至第3页表格中的“数学中一些常用数集及其记法”,并回答:
第一章 集合与常用逻辑用语
人教版高中数学新教材必修第一册课件:1.1 集合的含义与表示
是不同的对象,相同的对象归入一个集合时,仅算一个元
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
(3)x+ y∈A,xy∈A
课下作业
复习巩固 注意规范
小结课堂知识点
概念:符号:分类:表示法:
课本P5习题1.1 1 ,2(书上完成)
3, 4(作业本) (讲要求) P34 第1题和第2题,明天上课提问.
●集合理论是由德国数学家康托尔发现的,他创 造的集合论是近代许多数学分支的基础.
学习新知
2、集合中元素的特性
(1)确定性:对于一个给定的集合,任何一个元素是不
是这个集合的元素就确定了。
思考:“我国的小河流”、“比较大的数”、“高一所有胖的同 学”等能组成集合吗?
(2)互异性:对于一个给定的集合中,任何两个元素都
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
求实数 x 的值
0
学习新知
5、集合的常用表示方法:
(1)你能用自然语言描述集合{0,3,6,9}吗?
(2)不等式x-7<3的解集不能用列举法表示,想 想它的元素有怎样的特征?
素. 如:应把集合{1,2,2}改写成 {1,2}
(3)无序性:集合中的元素是平等的,没有先后顺序,因
此判定两个集合是否一样,仅需比较它们的元素是否一 样,不需考查排列顺序是否一样.
如:集合{1,2,3}和{1,3,2}表示同一集合。
注:集合的相等:构成两个集合的元素完全一样
(3)x+ y∈A,xy∈A
课下作业
复习巩固 注意规范
小结课堂知识点
概念:符号:分类:表示法:
课本P5习题1.1 1 ,2(书上完成)
3, 4(作业本) (讲要求) P34 第1题和第2题,明天上课提问.
●集合理论是由德国数学家康托尔发现的,他创 造的集合论是近代许多数学分支的基础.
学习新知
2、集合中元素的特性
(1)确定性:对于一个给定的集合,任何一个元素是不
是这个集合的元素就确定了。
思考:“我国的小河流”、“比较大的数”、“高一所有胖的同 学”等能组成集合吗?
(2)互异性:对于一个给定的集合中,任何两个元素都
集合的分类:(1)有限集 (2)无限集
当堂达标
练习巩固 提高能力
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2) Q
(3) 0 N+ (5) 2 3 Q
(4) (-2)0 N+ (6) 2 3 R
练习:课本P5第2题.
学习新知
5、集合的常用表示方法:
5、集合的常用表示方法:
求实数 x 的值
0
学习新知
5、集合的常用表示方法:
(1)你能用自然语言描述集合{0,3,6,9}吗?
(2)不等式x-7<3的解集不能用列举法表示,想 想它的元素有怎样的特征?
人教 高中数学必修第一册第一章《1.1集合的概念》课件(共17张ppt)
如:(1)小于5的答自案然:数{1组,成-的1}集合可表示为____. (2)方程x2-1=0的解集可表示为_{_x_∈__R_|_x_2-.1=0}
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
(4). Venn图
我们常常画一条封闭的曲线,用 它的内部表示一个集合.
例如,图1-1表示一个集合AA 图1-1
元素,称为空集,记为;
(4) 两个集合的元素若一样,则称它们相等。
4.几个常用数集:
(1) N: 自然数集(含0) 即非负整数集
(2) N+* : 正整数集(不含0) (3) Z:整数集 (4) Q:有理数集 (5) R:实数集
5.集合的几种表示法
(1).自然语言法
(2).列举法:适用对象:有限、有规律
取值范围.a≠-2 (互异性应用)
知识点2 元素与集合的关系
1. 用符号“∈”或“ ”填空
(1) 3.14 Q (2)
Q
(3) 0 N+ (4) (-2)0 N+ (5) 2 3 Q (6) 2 3 R
书本P5:1
温馨提示:分类讨论+检验
3.已知x2∈{1, 0,x},求实数x的值.
(3)无序性:集合中的元素是无
先后顺序的.
3.集合与元素的关系:
(1) 如果a是集合A的元素,就说a属于集 合A,记作a ∈ A;
如果a不是集合A的元素,就说a不属
于集合A,记作a A.
(2) 集合中的元素可以是数,点,式, 图,人,物……;
(3) 集合中的元素个数如果有限,称为有 限集;如果个数无限,称为无限集;如果没有
(5)小于10的所有自然数组成的集合; (6)1~20以内的所有素数组成的集合;
2、用描述法表示下列集合: (1)正偶数集; (2)被3除余2的正整数集合; (3)直角坐标平面内坐标轴上的点集.
高中数学集合的概念1.1.1课件人教版必修一(共25张PPT)
回顾交流
今天我们学习了哪些内容?
集合的含义 集合元素的性质:确定性,互异性,无序性
元素与集合的关系: ∊, ∉ 常用数集及其表示 集合的表示法:列举法、描述法
第11页 习题1.1 A组 第1、2、3、4题
集合的含义与表示
德国数学家,集合论的 创始者。1845年3月3 日生于圣彼得堡(今苏 联列宁格勒),1918 年1月6日病逝于哈雷。
初中学习了哪些集合的实例
数集 自然数的集合,有理数的集合,不等式x-7<3 的解的集合…
点集 圆(到一个定点的距离等于定长的点的集合) 线段的垂直平分线(到一条线段的两个端点的距离 相等的点的集合),等等.
“请我们班所有的女生起立!”,咱们班所有的 女生能不能构成一个集合?
“请我们班身高在1.70米的男生起立!”,他们 能不能构成一个集合?
判断以下元素的全体是否组成集合,并说明理由:
(1) 大于3小于11的偶数;
(2) 我国的小河流.
集合相等:只要构成这两个集合的元素 是一样的,则这个集合是相等的。
例:{两边相等的三角形}和{等腰三角形}
问题
如果用A表示高一(3)班学生组成的集合,a表示高 一(3)班的一位同学,b表示高一(4)班的一位同 学,那么a、b与集合A分别有什么关系?由此看出元 素与集合之间有什么关系?
他的著作有:《G.康托尔全集》1卷及《康托尔-戴德金通信集》等。
康托尔是德国数学家,集合论的创始者。1845年3月3日生于圣彼得堡,1918年1 月6日病逝于哈雷。
康托尔11岁时移居德国,在德国读中学。1862年17岁时入瑞士苏黎世大学,翌年 入柏林大学,主修数学,1866年曾去格丁根学习一学期。1867年以数论方面的论文获 博士学位。1869年在哈雷大学通过讲师资格考试,后在该大学任讲师,1872年任副教 授,1879年任教授。
人教版数学必修1 1.1.1 集合的含义与表示 (共17张PPT)
概念认识
知识点1:元素与集合的概念及关系 (3)元素与集合的关系
若a在集合A中,就说a属于集合A,记作a∈A;
若a不在集合A中,就说a不属于集合A,记作a A
.
讨论2对不等式的解集是怎么定义的? 含有未知数的不等式的所有解就组成了这个不等式 的解的集合,简称这个不等式的解集。
2.初中几何中对圆是如何定义的呢? 到一定点的距离等于定长的点的集合就构成了圆。
讨论3 1.你能举出一些集合的例子吗?
合作探究
知识点2:常用数集的意义及表示:
自然数
正整数
N
+
整数
有理数
实数
讨论3 1. 集合元素有什么性质特征?
练习
思考
1.“高个子的同学”、“我国的小河流”能构成集合吗?
【提示】“高个子”是一个含糊不清的概念,具有相对性, 多高才算高?同样地,“小河流”的“小”具体指什么, 是流量还是长度?它们都没有明确的标准,也就是说,它 们都是一些不能够确定的对象.因此,它们都不能构成集 合.
试分别用列举法和描述法 表示下列集合:
(1)方程 x2 -20 的所有实数根组成的集合;
(2)由大于10小于20的所有整数组成的集合.
知识点5:集合的分类 有限集:含有限个元素的集合 无限集:含无限个元素的集合 空集:不含有任何元素的集合
φ
1.集合与元素的概念及关系; 2.常用数集及有关符号: 3.集合元素的性质:确定性;互异性;无序性; 4.集合的表示方法: 5.集合的分类:
练习
例2 用描述法表示下列集合:
(1)小于10的所有有理数组成的集合; (2)所有偶数组成的集合.
解:(1)小于10的所有有理数组成的集合用描述法可 表示为 {xQx10}; (2)偶数是能被2整除的数,可以写成x=2n(n∈Z)的形 式,因此,偶数的集合用描述法可表示为
(新人教A版必修1)高中数学课件:1-1-1-1集合的含义(23张ppt)
2.元素与集合的表示 表示 元素:通常用小写拉丁字母a,b,c…表示集合中的元素; 集合:通常用大写拉丁字母A,B,C…表示集合.
3.元素与集合的关系
元素与 集合的 关系
关系
概念
记法
a是集合A
属于 如果的元素,就说a属于集合A
a∈A
a不是集合A
不属于 如果中的元素,就说a不属于集合A
aA
自学导引 1.元素与集合的概念 (1)元素:一般地,我们把研究对象 统称为元素. (2)集合:把一些元素组成的总体叫做集合(简称为 集 ). (3)集合相等:只要构成两个集合的 元素 是一样的,我们就 称这两个集合是相等的. (4)集合元素的特性: 确定性 、 互异性 、无序性.
想一想:试判断下列各组对象能否构成一个集合,并说明理由. ①中央电视台著名节目主持人; ②北京市内跑得快的汽车; ③上海市所有的高中生; ④爱好唱歌的人. 提示 紧扣集合定义,根据集合的元素的确定性判断即可. ①②④中没有明确的标准,不符合集合的定义,不能构成集合, 只有③能构成集合.
题型一 集合的基本概念 【例 1】 考查下列每组对象能否构成一个集合: (1)著名的数学家; (2)某校 2012 年在校的所有高个子同学; (3)不超过 20 的非负数; (4)2010 年度诺贝尔经济学奖获得者; (5)2010 年上海世博会的所有展馆. [思路探索] 紧扣集合的定义,根据集合的元素的确定性判断即可.
(2)集合含义中的“元素”所指的范围非常广泛,如某些学生、 某些方程的解、1~10 内的自然数等我们看到的,听到的,想 到的各种各样的事物或一些抽象的符号等,都可以看作“元 素”.
2.集合中元素的特性的理解 (1)确定性:是指集合中的元素是确定的,即任何一个对象都能 明确它是或不是某个集合的元素,两者必居其一,它是判断一 组对象是否形成集合的标准. 如:大于 3 小于 11 的偶数分别为 4,6,8,10,它们是确定的,可 构成集合,而“我国的小河流”,由于“小”这个标准不确定, 所以构不成集合.
人教版高中数学必修一1.1.1_集合的含义与表示ppt课件
a∉A.
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
A,记作属于 . A,记不作属于
高一(1)班的学生组成集合A,a是高一(1)班的学生,b不是高一(1)班的学生 a与A,b与A之间有何关系? 提示:a∈A b∉A
Hale Waihona Puke 3.几种常用的数集及记法N
N*或N+
Z
Q
用“∈”或“∉”填空. 2________N; 2________Q;12________R; -3________Z;0________N*;5________Z. 提示:∈ ∉ ∈ ∈ ∉ ∈
[解] ∵1∈A,∴a+2,(a+1)2,a2+3a+3都可能等于1. ①若a+2=1,则a=-1,此时A中的元素为1,0,1与集合中元素的互异性矛盾 故舍去; ②若(a+1)2=1,则a=0或a=-2, 当a=0时,A={2,1,3}适合题意, 当a=-2时,A中的元素为0,1,1与集合中元素的互异性矛盾,舍去, ③若a2+3a+3=1,则a=-1或a=-2,由①②知都不合题意,舍去. 综上所述,a=0.
的、 确定 的.互不相同
(1)“高一(2)班1.78米以上的同学”、“16岁的少年”、 “大于1的数”能构成一个集合吗? 提示:能构成集合.
(2)“高一(2)班的高个子同学”、“年轻人”、“帅哥”、 “接近0的数”能构成集合吗? 提示:不能构成集合.
2.元素与集合的关系 (1)如果a是集合A中的元素,就说a (2)如果a不是集合A中的元素,就说a
• 一、释疑难 • 对课堂上老师讲到的内容自己想不通卡壳的问题,应该在课堂上标出来,下课时,在老师还未离开教室的时候,要主动请老师讲解清楚。如果老师已
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思考题 结合此例,试比较用自然语言、列 举法和描述法表示集合时各自的特点和适 用的对象。
集合表示方法的选择: 对于有限集,在元素不太多的情况下,宜采用列举法; 若元素个数较多或有无限个且集合中的元素呈现一定 的规律,在不会产生误解的情况下也可以列举出几个 元素作为代表,其他元素用省略号表示. 对于无限集,一般采用描述法.
初中已接触过“集合”这一概念
1 数的分类:”正数的集合”、“负数的集合” 2 解不等式:解的集合 3 圆:到定点距离等于定长的点的集合 4 垂直平分线:到线段两端点的距离相等的点的集合
集合是什么?
观察下列问题: (1)1~10之间的所有偶数; (2)广信中学高一(5)班的全体学生; (3)所有的正方形; (4)到直线l的距离等于定长的所有点; (5)方程x2-3x+2=0的所有实数根; (6)地球上的四大洋.
3.元素、集合的表示
集合的表示:用大括号“{ }”表示集合,
也用A、B、C…表示集合.
元素的表示:用a,b,c…表示元素 如:集合A={a,b,c}
4.常见数集及其记法:
(1)自然数集(非负整数集):N){0,1,2,3,……} (2) 正整数集:(N+或N﹡ {1,2,3,……} (3) 整数集:Z:{……-3,-2,-1,0,1,2,3,……} (4) 有理数集:Q: 整数、分数 (5) 实数集:R 有理数、无理数
自然数集N.
若元素个数较多或有无限个且集合中的元素呈现一 定的规律,在不会产生误解的情况下也可以列举出 几个元素作为代表,其他元素用省略号表示.
1、你能用列举法表示不等式x-7<3的解集吗?
利用集合中元素所具有的共同特 征来描述
{x︱x<10}
不能
3、描述法:
将集合的所有元素都具有的性质(满足的条件) 表示出来,写成{x︱p(x)}的形式
(1)1~10之间的所有偶数; A={2,4,6,8,10} (2)广信中学高一(5)班的全体学生; (3)所有的正方形; (4)到直线l的距离等于定长的所有点; (5)方程x2-3x+2=0的所有实数根;A={1,2} (6)地球上的四大洋. A={太平洋,大西洋,印度洋,北冰洋}
2、列举法:
无序 互异
这体现了集合中元素的确定性.
问题3:一个百货商店,第一批进货是帽子、皮鞋、衬
衣、闹钟共计4个品种,第二批进货是MP4、皮鞋、水杯、 衬衣、台灯共计5个品种,问一共进了多少个品种的货?
结论:7种.对于一个给定的集合,集合中的元素一定 是不同的(或说是互异的),相同的几个对象归于同 一个集合时只能算作一个元素.这体现了集合中元
素的互异性.
问题4:我们这个班重新调整座次之后,是否
还是原来的班集体?
结论:因为班级的同学没有变化,只是每个人的位 置发生了变化,所以还是原来的班集体.这体现了
集合中元素的无序性.
集 合 相 等 : 只要构成两个集合的元素是一样的,
我们称这两个集合是相等的
1 确定性:给定一个集合,元素必须是确定的 2 互异性:即集合中的元素是互不相同的,不重复出现的. 3 无序性:一个给定集合,它的任何两个元素都可以交换位置
思考: 以下集合有什么区别? {(x,y)|y= x2+3x+2} {y|y= x2+3x+2} {x|y= x2+3x+2} 描述法表示集合应注意集合的代表元素
练习:P5 3
练习 1. 下列说话中正确的有几个( B)
(1) 某个村的年轻人组成一个集合。
(2) 所有的小正数组成的集合。
(3)
1、|
常用数集的意义是约定俗成的,解题中可作为已知使用
5.元素与集合的关系
(1)属于(belong to):如果a是集合A 的元素,就说a属于A,记作a∈A
(2)不属于(not belong to):如果a不是集合
A的元素,就说a不属于A,记作 a A
13
练习:P5 2
6.集合的表示方法
1、自然语言:
(1)A={0,1,2,3,4,5,6,7,8,9} (2)B={0,1} (3)C={2,3,5,7,9,11,13,17,19} 用列举法表示集合,可以清楚的看到集合中的 各个元素,明了,且无序。
列举法一般适用于所研究的集合中的元素个数为有限 个,而且个数比较少的情况。
只要不引起误解,集合的代表元素也可省略 例如:{自然数}= { 0,1,2,3,4,……} ,即代表
将集合中的元素一一列举出来,并用花括号{ } 括起来的方法叫做列举法
注意:1、元素间要用逗号隔开; 2、不管次序放在大括号内。
• 例2用列举法表示下列集合: • (1)小于10的所有自然数组成的集合; • (2)方程x2=x 的所有实数根组成的集合; • (3)由1~20以内的所有质数组成的集合.
-
1 2
|
、0.5
组成的集合有3个元素。
(4) 集合 {1,3,5,7} 与集合 {3,1,7,5} 表示同
思考:上述6个问题的共同特征是什么?
1.集合的概念: 元素---我们把研究的对象统称为元素
集合---把一些元素组成的总体叫做集合, 简称集. (某些指定对象集中在一起就成一个集合)
注:组成集合的元素可以是物,数,图,点等
集合的概念是数学中最原始的、不加定义的概念, 与点、直线等概念一样都是用描述性语言表述的.
所有偶数组成的集合:A={x∈R|x=2k, k∈Z}
所有奇数组成的集合:A={x∈R|x=2k+1, k∈Z}
有理数集:
Q={x∈R|x=
q p
,
p,q 2 列举法 3 描述法
教材(P4)例2.试分别用列举法和描述法表示下列集合: (1)方程x2-2=0的所有实数根组成的集合A (2)由大于10小于20的所有整数组成的集合B
问题1:你可以举一个关于集合的例子吗?
问题2:(1)我们班中高个子的同学;
(2)接近0的数; (3)咱们必修1教材中所有的难题;
能否分别组成一个集合?为什么?
结论:因为“高个子”“接近0”“难题”都没有具体 的标准,是模棱两可的、不确定的,不符合集合的概 念,所以上述的三个问题均不能组成集合.给定的集 合,它的元素必须是确定的.也就是说,给定一个集 合,那么任何一个元素在不在这个集合中就确定了.