高考物理之弹簧类问题

合集下载

高考物理弹簧专题,包含弹簧问题所有类型的经典例题

高考物理弹簧专题,包含弹簧问题所有类型的经典例题

A Bv 0 AB 1如下图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①弹簧的左端固定在左墙上;②弹簧的左端受大小也为F 的拉力作用;③弹簧的左端拴一小物块,物块在光滑的桌面上滑动;④弹簧左端拴一小物块,物块在有摩擦的桌面上滑动.若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )A .l 2 > l 1B .l 4 > l 3C .l 1 > l 3D .l 2 = l 42如图天花板上用细绳吊起两个用轻弹簧相连的两个质量相同的小球。

两小球均保持静止,突然剪断细绳时,上面小球A 与下面小球B 的加速度为A .a1=g a2=gB .a1=2g a2=gC .a1=2g a2=0D .a1=0 a2=g3两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态。

现缓慢向上提上面的木块,直到它刚离开上面弹簧,在这过程中下面木块移动的距离为()A 、m 1g/k 1B 、m 2g/k 1C 、m 1g/k 2D 、m 2g/k 24.两块质量分别为m 1和m 2的木块,用一根劲度系数为k 的轻弹簧连在一起,现在m 1上施加压力F ,.为了使撤去F 后m 1跳起时能带起m 2, 则所加压力F 应多大?g m m F )(21+>5一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图所示。

现让木板由静止开始以加速度a(a <g =匀加速向下移动。

求经过多长时间木板开始与物体分离。

解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx 和平板的支持力N 作用。

当N=0时,物体与平板分离6在足够大的光滑水平面上放有两物块A 和B ,已知m A >m B ,A 物块连接一个轻弹簧并处于静止状态,B 物体以初速度v 0向着A 物块运动。

弹簧类型题

弹簧类型题

弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。

弹簧问题专项复习及练习题(含详细解答)

弹簧问题专项复习及练习题(含详细解答)

高三物理第二轮专题复习(一)弹簧类问题轻弹簧是一理想模型,涉及它的知识点有①形变和弹力,胡克定律②弹性势能弹簧振子等。

问题类型:1、弹簧的瞬时问题弹簧的两端若有其他物体或力的约束,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

弹簧的弹力不能突变是由弹簧形变的改变要逐渐进行决定的。

2、弹簧的平衡问题这类题常以单一的问题出现,通常用胡克定律F=Kx和平衡条件来求解,列方程时注意研究对象的选取,注意整体法和隔离法的运用。

3、弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的合外力加速度速度动能和其它物理量发生变化的情况。

弹簧的弹力与形变量成正比例变化,而它引起的物体的加速度速度动量动能等变化不是简单的单调关系,往往有临界值或极值。

有些问题要结合简谐运动的特点求解。

4、弹力做功与动量能量的综合问题弹力是变力,求弹力的冲量和弹力做的功时,不能直接用冲量和功的定义式,一般要用动量定理和动能定理计算。

如果弹簧被作为系统内的一个物体时,弹簧的弹力对系统内物体做不做功都不影响系统的机械能。

在弹力做功的过程中弹力是个变力,并与动量能量联系,一般以综合题出现。

它有机地将动量守恒机械能守恒功能关系和能量转化结合在一起,以考察综合应用能力。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理动量定理和功能关系等知识解题。

规律:在弹簧-物体系统中,当弹簧处于自然长度时,系统具有最大动能;系统运动中弹簧从自然长度开始到再次恢复自然长度的过程相当于弹性碰撞过程。

当弹簧具有最大形变量时,两端物体具有相同的速度,系统具有最大的弹性势能。

系统运动中,从任意状态到弹簧形变量最大的状态的过程相当于完全非弹性碰撞的过程。

(实际上应为机械能守恒)典型试题1、如图所示,轻弹簧下端固定在水平地面上,弹簧位于竖直方向,另一端静止于B点。

在B点正上方A点处,有一质量为m的物块,物块从静止开始自由下落。

物块落在弹簧上,压缩弹簧,到达C点时,物块的速度为零。

物理高中弹簧类问题

物理高中弹簧类问题

物理高中弹簧类问题引言:介绍弹簧的基本概念和特性,以及在物理学中的重要性。

弹簧是一种具有弹性的物体,广泛应用于各个领域,例如机械工程、建筑、汽车工业等。

一、弹簧的类型和结构(200字)1. 弹簧的分类:按照材料分为金属弹簧和非金属弹簧,按照形状分为螺旋弹簧、压缩弹簧、拉伸弹簧等。

2. 螺旋弹簧的结构:由圆柱形线圈组成,两端分别固定于支架上。

3. 弹簧的特性:弹性恢复力、变形能力、弹性系数等。

二、劲度和胡克定律(200字)1. 弹簧的劲度:衡量弹簧的硬度和变形能力的物理量。

2. 胡克定律的定义:弹簧恢复力与变形量成正比,方向与变形方向相反。

3. 胡克定律的公式:F = -kx,其中F为恢复力,k为弹簧系数,x为弹簧的变形量。

三、弹簧振动(200字)1. 弹簧的自由振动:弹簧在无外力作用下自行振动的现象。

2. 弹簧的固有频率:弹簧自由振动的频率与弹簧本身的参数有关。

3. 弹簧振动的应用:在钟表、汽车悬挂系统等领域中广泛运用。

四、弹簧的应用(200字)1. 机械工程中的应用:弹簧作为减震器、缓冲器等,能够减小机械设备的震动和冲击。

2. 建筑领域中的应用:弹簧可用于地震减振系统,减少地震对建筑物的影响。

3. 汽车工业中的应用:弹簧在汽车的悬挂系统中发挥重要作用,提供车辆的平稳行驶和舒适性。

4. 物理学实验中的应用:弹簧用于测量质量、重力加速度等物理量,是物理学实验中不可或缺的工具。

五、阻尼和共振(200字)1. 弹簧振动中的阻尼:弹簧振动过程中的能量损失。

2. 共振现象:当外界周期性力与弹簧固有频率一致时,将产生共振现象。

3. 阻尼和共振的影响:阻尼减小共振,而共振会增加振幅,对系统稳定性有一定影响。

结论:总结弹簧的基本概念和特性,以及其在不同领域中的应用。

弹簧作为一种重要的物理器件,对于我们理解和应用物理学知识具有重要意义。

通过学习弹簧类问题,我们能够更好地理解力学原理和振动现象的规律。

高考物理含弹簧类机械能守恒问题

高考物理含弹簧类机械能守恒问题

高考物理含弹簧类机械能守恒问题1.如图1所示,半径R =0.4 m 的光滑圆弧轨道BC 固定在竖直平面内,轨道的上端点B 和圆心O 的连线与水平方向的夹角θ=30°,下端点C 为轨道的最低点且与粗糙水平面相切,一根轻质弹簧的右端固定在竖直挡板上.质量m =0.1 kg 的小物块(可视为质点)从空中A 点以v 0=2 m/s 的速度被水平抛出,恰好从B 点沿轨道切线方向进入轨道,经过C 点后沿水平面向右运动至D 点时,弹簧被压缩至最短,C 、D 两点间的水平距离L =1.2 m ,小物块与水平面间的动摩擦因数μ=0.5,g 取10 m/s2.求:图1(1)小物块经过圆弧轨道上B 点时速度v B 的大小;(2)小物块经过圆弧轨道上C 点时对轨道的压力大小;(3)弹簧的弹性势能的最大值E pm .答案 (1)4 m/s (2)8 N (3)0.8 J解析 (1)小物块恰好从B 点沿切线方向进入轨道,由几何关系有v B =v 0sin θ=4 m/s (2)小物块由B 点运动到C 点,由机械能守恒定律有mgR (1+sin θ)=12m v C 2-12m v B 2 在C 点处,由牛顿第二定律有F N -mg =m v 2C R,解得F N =8 N 根据牛顿第三定律,小物块经过圆弧轨道上C 点时对轨道的压力F N ′大小为8 N.(3)小物块从B 点运动到D 点,由能量守恒定律有E pm =12m v B 2+mgR (1+sin θ)-μmgL =0.8 J. 2.如图2所示,在同一竖直平面内,一轻质弹簧静止放于光滑斜面上,其一端固定,另一端恰好与水平线AB 平齐;长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,将细绳拉至水平,此时小球在位置C .现由静止释放小球,小球到达最低点D 时,细绳刚好被拉断,D 点与AB 相距h ;之后小球在运动过程中恰好与弹簧接触并沿斜面方向压缩弹簧,弹簧的最大压缩量为x .试求:图2(1)细绳所能承受的最大拉力F ;(2)斜面倾角θ的正切值;(3)弹簧所获得的最大弹性势能E p .答案 (1)3mg (2)h L (3)mg (x h h +L+h +L ) 解析 (1)小球由C 运动到D 的过程机械能守恒,则:mgL =12m v 12 解得:v 1=2gL在D 点由牛顿第二定律得:F -mg =m v 21L解得:F =3mg由牛顿第三定律知,细绳所能承受的最大拉力为3mg(2)小球由D 运动到A 的过程做平抛运动,则:v y 2=2gh 解得:v y =2gh tan θ=v y v 1=h L(3)小球到达A 点时,有:v A 2=v y 2+v 12=2g (h +L )小球在压缩弹簧的过程中,小球与弹簧组成的系统机械能守恒,则:E p =mgx sin θ+12m v A 2 解得:E p =mg (x h h +L+h +L ).。

高中物理弹簧问题考点大全及常见典型考题

高中物理弹簧问题考点大全及常见典型考题

常见弹簧类问题分析高考要求轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.S1和S2表示劲度系数分别为k1,和k2两根轻质弹簧,k1>k2;A和B表示质量分别为m A和m B的两个小物块,m A>m B,将弹簧与物块按图示方式悬挂起来.现要求两根弹簧的总长度最大则应使( ).A.S1在上,A在上B.S1在上,B在上C.S2在上,A在上D.S2在上,B在上参考答案:D3.一根大弹簧内套一根小弹簧,大弹簧比小弹簧长0.2m,它们的一端固定,另一端自由,如图所示,求这两根弹簧的劲度系数k1(大弹簧)和k2(小弹簧)分别为多少?(参考答案k1=100N/m k2=200N/m)4.(2001年上海高考)如图所示,一质量为m的物体系于长度分别为L1、L2的两根细线上,L1的一端悬挂在天花板上,与竖直方向夹角为θ,L2水平拉直,物体处于平衡状态.现将L2线剪断,求剪断瞬时物体的加速度.(1)下面是某同学对该题的一种解法:解设L1线上拉力为T l,L2线上拉力为T2,重力为mg,物体在三力作用下保持平衡T l cosθ=mg,T l sinθ=T2,T2=mgtanθ,剪断线的瞬间,T2突然消失,物体即在T2反方向获得加速度.因为mgtanθ=ma,所以加速度a=g tanθ,方向在T2反方向.你认为这个结果正确吗?清对该解法作出评价并说明理由.解答:错.因为L2被剪断的瞬间,L1上的张力大小发生了变化.此瞬间T2=mgcosθ, a=gsinθ(2)若将图中的细线L l改为长度相同、质量不计的轻弹簧,其他条件不变,求解的步骤和结果与(1)完全相同,即a=gtanθ,你认为这个结果正确吗?请说明理由.解答:对,因为L2被剪断的瞬间,弹簧L1的长度未及发生变化,T1大小和方向都不变.二、与动力学相关的弹簧问题5.如图所示,在重力场中,将一只轻质弹簧的上端悬挂在天花板上,下端连接一个质量为M的木板,木板下面再挂一个质量为m的物体.当剪掉m后发现:当木板的速率再次为零时,弹簧恰好能恢复到原长,(不考虑剪断后m、M间的相互作用)则M与m之间的关系必定为 ( )A.M>mB.M=mC.M<mD.不能确定参考答案:B6.如图所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是( ) 参考答案:CA.一直加速运动 B.匀加速运动C.先加速运动后减速运动 D.先减速运动后加速运动[解析] 物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原长时,二者分离.7.如图所示,一轻质弹簧竖直放在水平地面上,小球A由弹簧正上方某高度自由落下,与弹簧接触后,开始压缩弹簧,设此过程中弹簧始终服从胡克定律,那么在小球压缩弹簧的过程中,以下说法中正确的是()参考答案:CA.小球加速度方向始终向上B.小球加速度方向始终向下C.小球加速度方向先向下后向上D.小球加速度方向先向上后向下(试分析小球在最低点的加速度与重力加速度的大小关系)8.如图所示,一轻质弹簧一端系在墙上的O点,自由伸长到B点.今用一小物体m把弹簧压缩到A点,然后释放,小物体能运动到C点静止,物体与水平地面间的动摩擦因数恒定,试判断下列说法正确的是 ()A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B先加速后减速,从B一直减速运动D.物体在B点受到的合外力为零参考答案:C9.如图所示,一轻质弹簧一端与墙相连,另一端与一物体接触,当弹簧在O点位置时弹簧没有形变,现用力将物体压缩至A点,然后放手。

高考物理弹簧类问题变式典型试题(2页)

高考物理弹簧类问题变式典型试题(2页)

高考物理弹簧类问题变式典型试题
1. 质量为m的物体以初速度v0沿水平面向左开始运动,起始点A与一轻弹簧O端相距s,如图所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为()
A.mv02﹣μmg(s+x)B.mv02﹣μmgx
C.μmgs D.μmg(s+x)
2. 如图所示,光滑斜面的顶端固定一弹簧,一小球向右滑行,并冲上固定在地面上的斜面.设小球在斜面最低点A的速度为V,压缩弹簧至C点时弹簧最短,C点距地面高度为h,则从A到C的过程中弹簧弹性势能的增加量是()
A.mgh﹣mv2B.mv2﹣mgh C.﹣mgh D.﹣[mgh+mv2]
3. 已知光滑圆轨道的半径R=0.45m,水平轨道BC长为0.4m,其动摩擦因数μ=0.2,光滑斜面轨道上CD长为0.6m,g取10m/s2,求
(1)滑块第一次经过B点时的速度多大
(2)整个过程中弹簧具有的最大弹性势能;
(3)滑块最终距B点多远
4. 如图所示,装置的左边AB部分是长为L1=1m的水平面,一水平放置的轻质弹簧左端固定并处于原长状态;装置的中间BC部分是长为L2=2m的水平传送带,它与左右两边的台面等高,并能平滑对接,传送带始终以v=2m/s的速度顺时针转动;装置的右边是一光滑的曲面,质量m=1kg的小滑块从其上距水平台面h=1m的D处由静止释放,并把弹簧最大压缩到O点,OA间距x=0.1m,并且弹簧始终处在弹性限度内。

已知物块与传送带及左边水平面之间的摩擦因数μ=0.25,取g=10m/s2。

(1)滑块第一次到达B处的速度;(2)弹簧储存的最大弹性势能;
(3)滑块再次回到右边曲面部分所能到达的最大高度。

弹簧问题类型含答案

弹簧问题类型含答案

弹簧问题类型轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断vSaF变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。

(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。

(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。

(压缩——拉伸变化)参考点,F=kx指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。

抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零的特点求解。

注:如果a相同,先整体后隔离。

隔离法求内力,优先对受力少的物体进行隔离分析。

2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。

高考物理弹簧问题

高考物理弹簧问题

弹簧类问题难点分析
3.位移与形变问题 • 例3.如图所示,两木块质量分别为 m1 和 m2 ,两轻质弹簧的劲度系数分别为 k1 和 k2 ,上面的木块压在上面的弹簧上(但 不拴接),整个系统处于平衡状态,现缓慢上 提上面的木块,直到它刚离开上面弹簧,在 m 这个过程中,下面木块移动的距离为 k m1g/k1 A. B. m2g/k1 m m1g/k2 C. D. m2g/k2
Fmin=2ma Fmax=m(a+gsinθ)
思考: 1.如何求时间? (S=at2/2 s=x0-x) 2. 如何求x0和x? (开始时,整体平衡求x0,分离时求x.) 3. A B在弹簧恢复原长时分离吗?.(不是) 4. 整体受哪几个力?AB各受哪几个力? 请列出牛顿第二定律,并进行动态分析, 临界条件分析 5.开始时,A受合力为零,则F作用A瞬间,A 受合外力为F,对吗? (错)
弹簧类问题难点分析 “位移与形变”练习 题
例2中,若上面木块与弹簧拴接, 下面弹簧与地不拴接,缓慢上提 上面的木块,当下面弹簧刚要离 地时,两木块位移大小分别是 m 多少?
1
h2=x2=(m1+m2)g/k2 h1=h2+(x1+x1′)=(m1+m2)g(1/k1+1/k2)
k1 m2 k2
解:
弹簧类问题难点分析 位移与形变问题
• 本题是平衡问题,注意对象的选取 (隔离法与整体法) • 跟弹簧相连的物体的位移与弹簧的 形变有关,所以要确定弹簧初、末 状态的形变类型和形变大小,则位 移 h=︳x-x0︳ (或h=x+x0) • 上面物体的位移是多少?
h’=h+x1=m1g/k2+m1g/k1
t 2m( g a) ka

07-10高考中的弹簧类问题

07-10高考中的弹簧类问题

07——10高考试卷中的弹簧类试题弹簧类问题涉及到的知识点、考点:1、 对弹簧弹力的特点的认识。

如双向性、与形变量有关、与其他因素无关、变力等。

2、 有弹簧参入的物体平衡问题。

一般对弹簧的长度变化不容易标记,抓两个特殊位置——原长位置和平衡位置,并用笔标记出来。

3、 牛顿第二定律中的弹簧习题,一般考查瞬时加速度。

4、 简谐运动中的弹簧。

这类问题要熟记模型,如果弹簧连接体在竖直方向运动或水平方向有摩擦力参入,主要找准平衡位置。

另外注意对称性。

5、 当弹簧连接体有两个物体、且两个物体之间无粘连时,注意两个物体分离位置是弹簧的原长位置。

6、 弹簧连接体的动量问题。

这类题现在已退出高考的范围。

注意抓住不同的位置和不同的对象,以及条件。

7、 有弹簧参入的机械能守恒。

一是注意参入运动的对象是否发生变化,哪几个物体组成的 系统在哪个时间内守恒。

二是弹簧的弹性势能不用弹性势能的计算式计算,而是用机械能守恒定律计算。

三是在运算过程中要注意;弹性势能的大小只与形变量有关,与其他因素无关,与连接体的运动状态无关。

8、 弹簧连接体的机械能不守恒时,此类问题一般用能量守恒计算。

虽然用动能定理与用能量守恒定律等效,但用动能定理要涉及到弹簧弹力做功,而弹簧弹力做功是变力做功不能直接计算出来。

此类习题中除了重力做功、弹簧弹力做功外,还可以有电场力做功、滑动摩擦力做功、空气阻力做功、拉力做功等。

在新课教学中一般不涉及到弹簧弹力做功的问题,但在第一轮复习课中,要逐步单个地讨论每个力做功的特点。

9、 有些习题中,弹簧只在其中做点缀,其实并不考查大弹簧的问题。

如判断加速度方向等。

如图,水平地面上质量为m 的物体,与地面的动摩擦因数为μ,在劲度系数为k 的轻弹簧作用下沿地面做匀速直线运动,弹簧没有超出弹性限度,则A.弹簧的伸长量为k mgB. 弹簧的伸长量为kmgC.物体受到的支持力与地面的压力是一对平衡力D.弹簧的弹力与物体所受的摩擦力是一对作用力与反作用力如果是用手向右水平拉弹簧,拉力为F ,物体在水平地面上做匀速直线运动,则 A.手对弹簧的拉力就是弹簧的弹力 B.弹簧对手有水平向左的弹力C.弹簧对手的弹力与弹簧对物体的弹力是一对平衡力,D.拉力F 与物体受到的摩擦力是一对平衡力轻弹簧的左端固定在竖直墙壁上,开始时弹簧处于自然长度,一质量为0.5kg 的木块与弹簧右端相接触但不栓接。

动量之弹簧类问题

动量之弹簧类问题

动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。

1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。

求此过程中所加外力的最大和最小值。

图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。

一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。

图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。

今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。

图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。

现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。

高考必会专题之弹簧问题

高考必会专题之弹簧问题

高考弹簧类问题复习弹簧类问题含有力的非突变模型---弹簧模型,这类问题能很好地考查同学们对物理过程的分析、物理知识的综合、以及数学知识的灵活应运,所以这类问题在近年的高考中频频出现。

为了帮助同学们复习好这部分内容,现浅谈如下几点,供同学们参考一、知识点聚焦1、弹簧的瞬时问题弹簧发生弹性形变时,弹力与其形变量成正比,因此,弹力不同,形变量不同,形变量不同,对应的弹力也不同。

解决这一类问题时一定要弄清“时刻”及“位置”的含义。

2、弹簧的平衡问题这类问题涉及的知识有胡克定律、力的平衡条件,一般可用f=kx或△f=k•△x和∑F=0等公式来求解。

3、弹簧的非平衡问题这类问题主要是指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功、能和合外力等其他物理量发生变化的情况。

这类问题的解决,不但要涉及胡克定律、牛顿第二定律、还要涉及动能定理、能的转化和守恒定律等方面的内容。

4、弹簧弹力做功与动量、能量的综合问题在弹簧弹力做功的过程中弹力是个变力,所以这类问题一般与动量、能量联系,以综合题的形式出现。

这类问题有机地将动量守恒、机械能守恒、功能关系和能量转化等结合在一起,考查同学们的综合应用能力。

解决这类问题时,要细致分析弹簧的动态过程,综合利用动能定理和功能关系等知识解题。

二、典型例题分析(一)、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。

由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。

故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。

弹簧一端受力为F,另一端受力一定也为F。

若是弹簧秤,则弹簧秤示数为F。

例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧及挂钩质量不计,施加水平方向的力F1、F2,且F1>F2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m -=仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。

物理弹簧类问题解题技巧

物理弹簧类问题解题技巧

物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。

当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。

在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。

因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。

3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。

同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。

弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。

因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。

(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。

2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。

4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。

有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。

分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。

高中物理弹簧弹力问题(含答案)

高中物理弹簧弹力问题(含答案)

弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。

高中物理弹簧类问题试题及答案

高中物理弹簧类问题试题及答案

1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( D ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 42、如图所示,a 、b 、c 为三个物块,M ,N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于静止状态( AD )A.有可能N 处于拉伸状态而M 处于压缩状态B.有可能N 处于压缩状态而M 处于拉伸状态C.有可能N 处于不伸不缩状态而M 处于拉伸状态D.有可能N 处于拉伸状态而M 处于不伸不缩状态3、如图所示,在一直立的光滑管内放置一轻质弹簧,上端O 点与管口A 的距离为2x 0,一质量为m 的小球从管口由静止下落,将弹簧压缩至最低点B ,压缩量为x 0,不计空气阻力,则( AD ) A.小球运动的最大速度大于20gxB.小球运动中最大动能等于2mgx 0C.弹簧的劲度系数为mg/x 0D.弹簧的最大弹性势能为3mgx 04、如图所示,A 、B 质量均为m ,叠放在轻质弹簧上,当对A 施加一竖直向下的力,大小为F ,将弹簧压缩一段,而且突然撤去力F 的瞬间,关于A 的加速度及A 、B 间的相互作用力的下述说法正确的是( B )A 、加速度为0,作用力为mg 。

B 、加速度为m F 2,作用力为2Fmg +C 、速度为F/m ,作用力为mg+FD 、加速度为mF2,作用力为2mgF +5、如图所示,一根轻弹簧上端固定,下端挂一质量为m 1的箱子,箱中有一质量为m 2的物体.当箱静止时,弹簧伸长L 1,向下拉箱使弹簧再伸长L 2时放手,设弹簧处在弹性限度内,则放手瞬间箱对物体的支持力为:( A ) A..g m L L 212)1(+B..g m m L L))(1(2112++ C.g m L L 212 D.g m m L L)(2112+m 2k 1m 1k 26、如图所示,在一粗糙水平面上有两个质量分别为m 1和m 2的木块1和2,中间用一原长为L 、劲度系数为K 的轻弹簧连接起来,木块与地面间的滑动摩擦因数为μ。

力学中的弹簧类问题课件

力学中的弹簧类问题课件

控制与执行机构
弹簧在航空航天器的控制与执行机构 中起到关键作用,如起落架的缓冲和 收放系统。
减震装置
卫星姿态调整
弹簧在卫星姿态调整机构中发挥重要 作用,通过弹簧的伸缩实现卫星姿态 的微调。
为了减轻着陆时对航空器的冲击,弹 簧被用于减震装置的设计。
CHAPTER
05
弹簧类问题04
弹簧在工程问题中的应用
弹簧在车辆工程中的应用
01
02
03
悬挂系统
弹簧用于车辆悬挂系统中 ,以吸收和缓冲路面不平 整引起的振动,提高乘坐 舒适性。
减震器
弹簧在减震器中起到关键 作用,控制车辆在行驶过 程中产生的冲击和振动。
弹性支撑
弹簧用于支撑车辆重要部 件,如发动机和变速器, 起到减震和保护作用。
总结词
弹簧的振动频率与阻尼系数有关,影响 振动的持续时间。
VS
详细描述
当一个振动物体连接到一个弹簧上时,弹 簧的劲度系数和阻尼系数将影响振动的频 率和持续时间。根据振动理论,弹簧的振 动周期与劲度系数和阻尼系数有关。因此 ,通过调整弹簧的劲度系数和阻尼系数, 可以改变振动的频率和持续时间。
弹簧的振动频率与阻尼
CHAPTER
02
弹簧动力学问题
弹簧与力的平衡
总结词
弹簧在力的作用下会产生形变,从而影响力的平 衡。
总结词
弹簧的弹力与形变量的关系是线性关系,可以用 胡克定律表示。
详细描述
当弹簧受到外力作用时,会发生形变,形变的大 小与外力的大小成正比,同时弹簧的弹力与形变 量的大小成正比。因此,弹簧可以用于平衡外力 ,维持系统的稳定。
将采集到的数据整理成表格,绘制形变量与作用力之间的关系图。

高考物理复习:弹簧类问题

高考物理复习:弹簧类问题

弹簧类问题一、选择题1.如图,足够长光滑斜面倾角为30°,斜面底端有一挡板,其上有一小球从某一高度处由静止开始沿斜面滑下,小球上固定一个轻质弹簧,使得小球和弹簧在斜面上可以往复运动,运动过程中弹簧始终在弹性限度内,则以下说法正确的是( )A .小球不一定可以达到出发位置B .弹簧刚接触挡板时,小球速度最大C .弹簧的最大弹力一定大于重力D .小球向下运动过程中,加速运动时间可能等于减速运动时间2.如图甲所示轻弹簧竖直放置,下端固定在水平地面上,一质量为m 的小球从弹簧正上方某一高处由静止释放,落到弹簧上瞬间粘连(无能量损失)并压缩弹簧至最低处。

设弹簧一直在弹性限度内,空气阻力忽略不计,以地面为参考平面,小球的动能随高度变化的图像如图乙所示。

已知h 1 ~ h 4段图线为曲线,h 4 ~ h 5段为直线,下列说法正确的是( )A .小球从最低点反弹上升的距离小于h 5B .小球的高度为h 2和h 4时,弹簧的弹性势能相同C .弹簧的劲度系数为3mg hD .小球的高度为h 2时,动能为mg (h 5 - h 2)3.如图所示,滑块2套在光滑的竖直杆上并通过细绳绕过光滑定滑轮连接物块1,物块1又与一轻质弹簧连接在一起,轻质弹簧另一端固定在地面上。

开始时用手托住滑块2,使绳子刚好伸直处于水平位置但无张力,此时弹簧的压缩量为d 。

现将滑块2从A 处由静止释放,经过B 处时速度最大,到达C 处时速度为零,此时物块1还没有到达滑轮位置。

已知滑轮与杆的水平距离为3d ,AC 间距离为4d ,不计滑轮质量、大小及摩擦。

下列说法正确的是( )A .物块1和滑块2的质量相等B .滑块2的加速度先增大后减小,最后减为0C .滑块1、2组成的系统机械能先增大后减小D .除A 、C 两点外,滑块1的速度大小始终大于滑块2的速度大小4.如图所示,重力均为G 的两小球用等长的细绳a 、b 悬挂于O 点,两小球之间用一根轻弹簧连接,均处于静止状态,两细绳a 、b 与轻弹簧c 恰好构成正三角形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理之弹簧类问题由于弹簧与其相连接的物体构成的系统的运动状态具有很强的综合性和隐蔽性;由于弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律较多,因而多年来,弹簧试题深受高考命题专家们物理教师的青睐,在物理高考中弹簧问题频频出现已见怪不怪了。

弹簧问题不仅能考查学生分析物理过程,理清物理思路,建立物理图景的能力,而且对考查学生知识综合能力和知识迁移能力,培养学生物理思维品质和挖掘学生学习潜能也具有积极意义。

因此,弹簧问题也就成为高考命题专家每年命题的重点、难点和热点。

与弹簧相连接的物理问题表现的形式固然很多,但总是有规律可循,有方法可依,存在基于弹簧特性分析问题的突破口。

一、以弹簧遵循的胡克定律为分析问题的突破口弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即F=kx 或ΔF=kΔx。

显然,弹簧的长度发生变化的时候,胡克定律首先成了弹簧问题分析的突破口。

例1劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。

解析物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。

由匀变速直线运动公式及牛顿定律得:G-kx-N=ma①N=0②③解以上三式得:。

显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。

二、以弹簧的伸缩性质为分析问题的突破口弹簧能承受拉伸的力,也能承受压缩的力。

在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的突破口。

例2如图1所示,小圆环重G1固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。

弹簧与竖直方向的夹角。

解析以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。

若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。

因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。

根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。

所以N=mgF=2mgcosα另外,根据胡可定律:F=k(2Rcosα-L)解以上式得:即只有正确分析出弹簧处于伸长状态,因而判断出弹力的方向成了解决问题的突破口。

三、以弹簧隐藏的隐含条件为分析问题的突破口很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。

因此挖掘弹簧问题中的隐含条件成了弹簧问题分析的突破口。

例3已知弹簧劲度系数为k,物块重为m,弹簧立在水平桌面上,下端固定,上端固定一轻质盘,物块放于盘中,如图3所示。

现给物块一向下的压力F,当物块静止时,撤去外力。

在运动过程中,物块正好不离开盘,求:(1)给物块所受的向下的压力F。

(2)在运动过程中盘对物块的最大作用力。

解析(1)由于物块正好不离开盘,可知物块振动到最高点时,弹簧正好处在原长位置,所以有:α=g由对称性,物块在最低点时的加速度也为a,因为盘的质量不计,由牛顿第二定律得:Kx-mg=mα物块被压到最低点静止时有:F+mg=k由以上三式得:F=mg(2)在最低点时盘对物块的支持力最大,此时有:,解得。

显然,挖掘出“物块正好不离开盘”隐含的物理意义成了能否有效迅速解决问题的关键所在。

四、以弹簧特有的惰性特性为分析问题的突破口由于弹簧的特殊结构。

弹簧的弹力是渐变的,而不是突变的,弹力的变化需要一定的“时间”。

有时充分利用弹簧的这一“惰性”是解决问题的先决条件。

因此分析弹簧问题时利用弹簧的惰性自然成了分析弹簧问题的突破口。

例4质量为m的小球,在不可伸长的绳AC和轻质弹簧BC作用下静止,如图4所示。

且AC=BC,,求突然在球附近剪断弹簧或绳子时,小球的加速度分别是多少?解析刚剪断弹簧的瞬间,小球受重力mg和绳的拉力T,其速度为零,故小球沿绳的方向加速度为零,仅有切向加速度且为,绳的拉力由原来的突变为;而剪断绳的瞬间,由于弹簧的拉力不可突变,仍保持原来的大小和方向,故小球受到的合力与原来绳子的拉力大小相等,方向相反,加速度为,方向沿AC 向下。

五、以弹簧振子的对称性质为分析问题的突破口很多弹簧在运动时做简谐运动,而简谐运动是有对称性的。

弹簧振动的对称性也可以做为解决弹簧问题的突破口。

例5如图5所示,一质量为M的塑料球形容器,在A处与水平面接触。

它的内部有一直立的轻弹簧。

弹簧下端固定于容器内部底部,上端系一带正电、质量为m的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度。

在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压力。

解析因为弹簧正好在原长时,小球恰好速度最大所以有:qE=Mg小球在最高点时容器对桌面的压力最小,有:kx=Mg此时小球受力如图6所示,所受合力为由以上三式得小球的加速度。

显然,在最低点容器对桌面的压力最大,由振动的对称性可知小球在最低点和最高点有相同的加速度,所以。

解以上式子得:所以容器对桌面的压力对称性是解决物理问题的有效资源,要充分利用。

弹簧做简谐运动的时候具有对称性,而这种对称性往往成为解题的有效手段。

六、以弹簧的弹力做功为分析问题的突破口弹簧发生变形时,具有一定的弹性势能。

通过弹簧弹力做功,弹性势能要发生变化,它们的关系为,它成了解决有关弹簧问题的突破口。

例6如图7所示,密闭绝热容器内有一绝热的具有一定质的活塞,活塞的上部封闭着气体,下部为真空,活塞与器壁的摩擦忽略不计,置于真空中的轻弹簧的一端固定于容器的底部,另一端固定在活塞上,弹簧被压缩后用绳扎紧,此时弹簧的弹性势能为Ep(弹簧处于自然长度时的弹性势能为零),现绳突然断开,弹簧推动活塞向上运动,经过多次往复运动后活塞静止,气体过到平衡态,经过此过程。

A.Ep全部转换为气体的内能B.Ep一部分转换成活塞的重力势能,其余部分仍为弹簧的弹性势能C.Ep全部转换成活塞的重力势能和气体的内能D.Ep一部分村换成活塞的重力势能,一部分转换成气体的内能,其余部分仍为弹簧的弹性势能解析断开绳子,在弹力作用下活塞上下运动,最终静止后的位置高于初始位置。

通过弹簧弹力做功,弹性势能Ep,的能量转化有三种形式:活塞的重力势能、气体的内能及弹簧的弹性势能,故D项正确。

弹力做功和弹性势能的变化的关系是解决弹簧问题的重要线索,要引起重视。

追究弹性势能的去处往往是解决弹簧问题的思维的起点。

七、以弹簧存储的弹性势能为分析问题的突破口弹簧存储或释放的弹性势能要转化为其他形式的能,反过来其他形式的能也可转化为弹性势能。

追究弹性势能释放和存储过程成了解决弹簧问题的突破口。

例7在原子核物理中,研究核子与核子关系的最有效途径是“双电荷交换反应”这类反应的前半部分过程和下述力学模型类似:两个小球A和B用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。

在它们左边有一垂直于轨道的固定档板P,右边有一小球C沿轨道以速度V0射向B球,如图8所示,C与B发生碰撞并立即结成一个整体D。

在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。

然后,A球与档板P发生碰撞,碰后A、D静止不动,A与P接触而不粘连。

过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A、B、C三球的质量均为m。

(l)求弹簧长度刚被锁定后A球的速度。

(2)求在A球离开档板P之后的运动过程中,弹簧的最大弹性势能。

解析试题只是给出初始状态的示意图,而后的运动过程可分为五个阶段,分别如图9中(a)至(e)所示。

图(a)表示C、B发生碰撞结成D的瞬间;图(b)表示D、A向左运动,弹簧长度变为最短且被锁定;图(c)表示A球和挡板P碰撞后,A、D都不动;图(d)表示解除锁定后,弹簧恢复原长瞬间;图(e)表示,A球离开挡板P后,弹簧具有最大弹性势能瞬间。

(1)设C球与B球翻结成D时,D的速度为V2,由动量守恒得:设此速度为当弹簧压至最短时,D与A的速度相等,设此速度为V2由动量守恒定律得:联立①②得:。

此间也可以用动量守恒一次求出(从接触相对静止)。

(2)设弹簧长度被锁定后,贮存在弹簧中的势能为Ep,由能量守恒得:撞击P后,A与D的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,弹性势能全部转变成D的动能,设D的速度为V3,则有:以后弹簧伸长,A球离开挡板P,并获得速度,当A、D的速度相等时,弹簧伸至最长。

设此时的速度为V4,由动量守恒得:当弹簧伸到最长时,其弹性势能最大,设此势能为Ep,由能量守恒得:紧紧抓住弹性势能的存储和释放,领会题意、明察秋毫识破问题的“陷阱”,排除干扰,在头脑中建立起非常清晰的物理图景和过程,充分运用动量和动能两个守恒定律,解决问题。

总结总之,弹簧问题的表现形式是多种多样的,但是只要紧紧围绕弹簧与其他物理模型不同的特性、紧紧抓住弹簧与其组成的系统相连接的物理量,具体问题具体分析,就一定能找到解决弹簧问题的突破口。

通过弹簧与相连物体构成的系统所表现出来的运动状态的变化的分析,有利于考生运用物理概念和规律巧妙解决物理问题、拓展思维空间。

因此,弹簧试题也是高考物理中一类独具特色的考题。

相关文档
最新文档