高等数学电子教案

合集下载

高等数学教案word版

高等数学教案word版

高等数学教案word版篇一:高等数学上册教案篇二:《高等数学》教案《高等数学》授课教案第一讲高等数学学习介绍、函数了解新数学认识观,掌握基本初等函数的图像及性质;熟练复合函数的分解。

函数概念、性质(分段函数)—基本初等函数—初等函数—例子(定义域、函数的分解与复合、分段函数的图像)授课提要:前言:本讲首先是《高等数学》的学习介绍,其次是对中学学过的函数进行复习总结(函数本质上是指变量间相依关系的数学模型,是事物普遍联系的定量反映。

高等数学主要以函数作为研究对象,因此必须对函数的概念、图像及性质有深刻的理解)。

一、新教程序言1、为什么要重视数学学习(1)文化基础——数学是一种文化,它的准确性、严格性、应用广泛性,是现代社会文明的重要思维特征,是促进社会物质文明和精神文明的重要力量;(2)开发大脑——数学是思维训练的体操,对于训练和开发我们的大脑(左脑)有全面的作用;(3)知识技术——数学知识是学习自然科学和社会科学的基础,是我们生活和工作的一种能力和技术;(4)智慧开发——数学学习的目的是培养人的思维能力,这种能力为人的一生提供持续发展的动力。

2、对数学的新认识(1)新数学观——数学是一门特殊的科学,它为自然科学和社会科学提供思想和方法,是推动人类进步的重要力量;(2)新数学教育观——数学教育(学习)的目的:数学精神和数学思想方法,培养人的科学文化素质,包括发展人的思维能力和创新能力。

(3)新数学素质教育观——数学教育(学习)的意义:通过“数学素质”而培养人的“一般素质”。

[见教材“序言”]二、函数概念1、函数定义:变量间的一种对应关系(单值对应)。

(用变化的观点定义函数),记:y?f(x)(说明表达式的含义)(1)定义域:自变量的取值集合(D)。

(2)值域:函数值的集合,即{yy?f(x),x?D}。

例1、求函数y?ln(1?x2)的定义域?2、函数的图像:设函数y?f(x)的定义域为D,则点集{(x,y)y?f(x),x?D} 就构成函数的图像。

高等数学下电子教案

高等数学下电子教案

高等数学下电子教案一、引言1.1 课程介绍本课程是高等数学下的电子教案,主要面向大学本科生和研究生,涵盖高等数学的基本概念、理论和方法。

1.2 教学目标通过本课程的学习,使学生掌握高等数学的基本知识,培养学生的逻辑思维能力和解决实际问题的能力。

二、极限与连续2.1 极限的定义与性质2.1.1 极限的定义2.1.2 极限的性质2.1.3 极限的存在性定理2.2 无穷小与无穷大2.2.1 无穷小的概念2.2.2 无穷小的比较2.2.3 无穷大2.3 极限的运算法则2.3.1 极限的四则运算法则2.3.2 复合函数的极限2.4 极限的求解方法2.4.1 直接代入法2.4.2 因式分解法2.4.3 洛必达法则2.5 连续函数的性质2.5.1 连续函数的定义2.5.2 连续函数的性质2.5.3 连续函数的例子三、导数与微分3.1 导数的定义与性质3.1.1 导数的定义3.1.2 导数的性质3.1.3 导数的计算法则3.2 高阶导数3.2.1 二阶导数3.2.2 三阶导数及更高阶导数3.3 隐函数求导3.3.1 隐函数求导的基本方法3.3.2 隐函数求导的例子3.4 微分3.4.1 微分的定义3.4.2 微分的性质3.4.3 微分的计算四、微分中值定理与导数的应用4.1 微分中值定理4.1.1 罗尔定理4.1.2 拉格朗日中值定理4.1.3 柯西中值定理4.2 导数的应用4.2.1 函数的单调性4.2.2 函数的极值4.2.3 函数的凹凸性五、不定积分与定积分5.1 不定积分5.1.1 不定积分的概念5.1.2 不定积分的性质5.1.3 不定积分的计算方法5.2 定积分5.2.1 定积分的概念5.2.2 定积分的性质5.2.3 定积分的计算方法5.3 定积分的应用5.3.1 面积的计算5.3.2 弧长的计算5.3.3 质心、转动惯量的计算六、定积分的进一步应用6.1 定积分在几何中的应用6.1.1 计算平面区域的面积6.1.2 计算曲线围成的面积6.1.3 计算旋转体的体积6.2 定积分在物理中的应用6.2.1 计算物体的质量6.2.2 计算物体受到的力6.2.3 计算物体的动能和势能6.3 定积分在概率论中的应用6.3.1 概率密度函数的定义6.3.2 计算概率6.3.3 计算期望和方差七、微分方程7.1 微分方程的基本概念7.1.1 微分方程的定义7.1.2 微分方程的阶数7.1.3 微分方程的解7.2 一阶微分方程7.2.1 分离变量法7.2.2 积分因子法7.2.3 变量替换法7.3 高阶微分方程7.3.1 线性高阶微分方程7.3.2 非线性高阶微分方程7.3.3 常系数线性微分方程八、线性代数8.1 矩阵8.1.1 矩阵的定义8.1.2 矩阵的运算8.1.3 矩阵的性质8.2 线性方程组8.2.1 高斯消元法8.2.2 克莱姆法则8.2.3 矩阵的逆8.3 向量空间与线性变换8.3.1 向量空间的概念8.3.2 线性变换的概念8.3.3 特征值与特征向量九、概率论与数理统计9.1 概率论基本概念9.1.1 随机试验与样本空间9.1.2 事件与概率9.1.3 条件概率与独立性9.2 离散型随机变量9.2.1 离散型随机变量的定义9.2.2 离散型随机变量的分布律9.2.3 离散型随机变量的期望与方差9.3 连续型随机变量9.3.1 连续型随机变量的定义9.3.2 连续型随机变量的分布函数9.3.3 连续型随机变量的期望与方差9.4 数理统计的基本概念9.4.1 统计量与抽样分布9.4.2 估计理论9.4.3 假设检验十、复变函数10.1 复数的基本概念10.1.1 复数的定义10.1.2 复数的运算10.1.3 复数的性质10.2 复变函数的基本概念10.2.1 复变函数的定义10.2.2 复变函数的运算10.2.3 复变函数的性质10.3 复变函数的积分10.3.1 复变函数的积分公式10.3.2 复变函数的积分计算10.3.3 复变函数的line integral10.4 复变函数的应用10.4.1 复变函数在几何中的应用10.4.2 复变函数在物理中的应用10.4.3 复变函数在工程中的应用重点和难点解析一、极限与连续1.1 极限的定义与性质:理解极限的概念,特别是无穷小和无穷大的比较,以及极限的存在性定理。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》PPT课件第一章:函数与极限1.1 函数的概念与性质教学目标:理解函数的概念,掌握函数的性质,了解函数的图像。

教学内容:函数的定义,函数的性质,函数的图像。

1.2 极限的概念与性质教学目标:理解极限的概念,掌握极限的性质,学会求极限。

教学内容:极限的定义,极限的性质,极限的求法。

第二章:导数与微分2.1 导数的概念与性质教学目标:理解导数的概念,掌握导数的性质,学会求导数。

教学内容:导数的定义,导数的性质,求导数的方法。

2.2 微分的概念与性质教学目标:理解微分的概念,掌握微分的性质,学会求微分。

教学内容:微分的定义,微分的性质,求微分的方法。

第三章:积分与微分方程3.1 不定积分的概念与性质教学目标:理解不定积分的概念,掌握不定积分的性质,学会求不定积分。

教学内容:不定积分的定义,不定积分的性质,求不定积分的方法。

3.2 定积分的概念与性质教学目标:理解定积分的概念,掌握定积分的性质,学会求定积分。

教学内容:定积分的定义,定积分的性质,求定积分的方法。

第四章:向量与线性方程组4.1 向量的概念与性质教学目标:理解向量的概念,掌握向量的性质,学会求向量的运算。

教学内容:向量的定义,向量的性质,向量的运算。

4.2 线性方程组的概念与性质教学目标:理解线性方程组的概念,掌握线性方程组的性质,学会解线性方程组。

教学内容:线性方程组的定义,线性方程组的性质,解线性方程组的方法。

第五章:矩阵与行列式5.1 矩阵的概念与性质教学目标:理解矩阵的概念,掌握矩阵的性质,学会求矩阵的运算。

教学内容:矩阵的定义,矩阵的性质,矩阵的运算。

5.2 行列式的概念与性质教学目标:理解行列式的概念,掌握行列式的性质,学会求行列式的值。

教学内容:行列式的定义,行列式的性质,求行列式的方法。

第六章:级数与泰勒公式6.1 级数的概念与性质教学目标:理解级数的概念,掌握级数的性质,学会求级数的收敛性。

教学内容:级数的定义,级数的性质,求级数的收敛性。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种规则,将一个非空数集(定义域)中的每一个元素对应到另一个非空数集(值域)中的唯一元素。

函数的性质:单调性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个确定的值L,称f(x)当x趋近于a时的极限为L,记作:lim(x→a)f(x)=L。

极限的性质:保号性、传递性、夹逼性等。

1.3 极限的计算极限的基本计算方法:代数法、几何法、泰勒公式等。

极限的运算法则:加减法、乘除法、复合函数的极限等。

1.4 无穷小与无穷大无穷小的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于0,称f(x)为无穷小。

无穷大的概念:当自变量x趋近于某个值a时,如果函数f(x)趋近于正无穷或负无穷,称f(x)为无穷大。

第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在点x处的导数,记作f'(x)或df/dx,表示函数在该点的瞬时变化率。

导数的几何意义:函数图像在某点处的切线斜率。

2.2 导数的计算基本导数公式:常数函数、幂函数、指数函数、对数函数等的导数。

导数的运算法则:和差法、乘法法、链式法则等。

2.3 微分的概念与计算微分的定义:函数f(x)在点x处的微小变化量,记作df(x)。

微分的计算:微分的基本公式df(x)=f'(x)dx,以及微分的运算法则。

2.4 微分方程的概念与解法微分方程的定义:含有未知函数及其导数的方程。

微分方程的解法:分离变量法、积分因子法等。

第三章:积分与面积3.1 不定积分的概念与计算不定积分的定义:函数f(x)的不定积分,记作∫f(x)dx,表示f(x)与x轴之间区域的面积。

基本积分公式:幂函数、指数函数、对数函数等的不定积分。

3.2 定积分的概念与计算定积分的定义:函数f(x)在区间[a,b]上的定积分,记作∫[a,b]f(x)dx,表示f(x)在[a,b]区间上的累积面积。

2024年高等数学电子教案word

2024年高等数学电子教案word

2024年高等数学电子教案word一、教学内容本教案依据《高等数学》教材,涉及第三章“一元函数微分学”的3.1节至3.3节。

详细内容包括导数的定义、求导法则、高阶导数、隐函数求导、微分中值定理及导数的应用等。

二、教学目标1. 理解并掌握导数的定义,能熟练运用导数求解实际问题。

2. 掌握求导法则,能对常见函数求导。

3. 了解导数与函数图形的关系,能运用导数分析函数的性质。

三、教学难点与重点重点:导数的定义及求导法则,导数的应用。

难点:高阶导数的求法,隐函数求导,微分中值定理的理解与应用。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:教材、《高等数学》辅导书、笔记本、文具。

五、教学过程1. 实践情景引入(5分钟)通过展示实际生活中的优化问题,如最短路径、最大利润等,引导学生思考如何解决这类问题,从而引出导数的概念。

2. 理论讲解(10分钟)详细讲解导数的定义、几何意义、物理意义等,让学生对导数有一个全面的认识。

3. 例题讲解(15分钟)讲解例题,涵盖求导法则、高阶导数、隐函数求导等,让学生掌握求导方法。

4. 随堂练习(10分钟)设计针对性强的练习题,让学生及时巩固所学知识。

5. 课堂小结(5分钟)六、板书设计1. 黑板左侧:导数的定义、求导法则、高阶导数公式。

2. 黑板右侧:例题及解答,随堂练习。

七、作业设计1. 作业题目:(1)求下列函数的导数:y=x^3, y=sin(x), y=e^x。

(2)已知函数f(x)=x^2+3x+1,求f(x)在x=2时的导数。

(3)求隐函数y=x^2+2x^3的导数。

2. 答案:(1)y'=3x^2, y'=cos(x), y'=e^x。

(2)f'(x)=2x+3,所以f'(2)=7。

(3)y'=2x+6x^2。

八、课后反思及拓展延伸1. 反思:本节课学生对导数的定义和求导法则掌握较好,但在高阶导数和隐函数求导方面存在一定困难,需要在课后加强练习。

大学高数教案模板电子版

大学高数教案模板电子版

一、课程基本信息1. 课程名称:高等数学2. 学科类别:数学3. 教学班级:[班级名称]4. 教学时间:[教学周次]周5. 教学地点:[教室编号]6. 教学对象:[专业名称]专业学生7. 教材名称及版本:[教材名称] [版本号]8. 教师姓名:[教师姓名]9. 教学目标:- 知识目标:使学生掌握高等数学的基本概念、基本理论和方法。

- 能力目标:培养学生运用高等数学知识解决实际问题的能力。

- 素质目标:培养学生的逻辑思维能力、创新能力和团队协作精神。

二、教学内容1. 课题:[具体章节名称]2. 主要内容:- [具体知识点1]- [具体知识点2]- [具体知识点3]3. 教学重点:- [教学重点1]- [教学重点2]4. 教学难点:- [教学难点1]- [教学难点2]三、教学过程1. 导入新课- 通过回顾旧知识,引出本节课的主题。

- 提出问题,激发学生的学习兴趣。

2. 讲授新课- 按照教学重点和难点,详细讲解知识点。

- 结合实例,帮助学生理解和掌握知识。

3. 课堂练习- 设计基础练习题,巩固学生对知识点的掌握。

- 引导学生进行小组讨论,培养学生的团队协作能力。

4. 案例分析- 分析实际案例,让学生学会运用所学知识解决实际问题。

- 鼓励学生提出问题,培养学生的创新思维。

5. 总结与回顾- 总结本节课所学内容,帮助学生梳理知识体系。

- 提出课后思考题,引导学生进一步学习。

四、教学手段1. 多媒体课件2. 板书3. 实物教具4. 网络资源五、教学评价1. 课堂表现:学生的参与度、回答问题的情况。

2. 作业完成情况:学生对知识点的掌握程度。

3. 期中/期末考试:对教学效果的全面评估。

六、课后作业1. 完成课后习题,巩固所学知识。

2. 预习下一节课的内容,为下一节课的学习做好准备。

七、教学反思- 教师在教学过程中遇到的问题及解决方法。

- 学生对教学内容的反馈及改进措施。

- 教学效果的评估及后续教学计划。

---注意事项:- 教案应根据实际情况进行调整,以适应不同学生的学习需求。

高等数学电子教案

高等数学电子教案

高等数学电子教案第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个集合(定义域)中的每个元素对应到另一个集合(值域)中的一个元素。

函数的性质:单调性、连续性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋近于某个值a时,函数f(x)趋近于某个值L,称f(x)当x趋近于a时的极限为L,记作lim(x→a)f(x)=L。

极限的性质:保号性、保不等式性、夹逼定理等。

1.3 极限的计算极限的基本计算方法:代入法、因式分解法、有理化法等。

无穷小与无穷大的概念:无穷小是指绝对值趋近于0的量,无穷大是指绝对值趋近于无穷的量。

1.4 极限的应用函数的连续性:如果函数在某一点的极限值等于该点的函数值,称该函数在这一点连续。

导数的概念:函数在某一点的导数表示函数在该点的切线斜率。

第二章:微积分基本定理2.1 导数的定义与计算导数的定义:函数在某一点的导数表示函数在该点的切线斜率,记作f'(x)。

导数的计算:基本导数公式、导数的四则运算法则等。

2.2 微分的概念与计算微分的定义:微分表示函数在某一点的切线与x轴的交点横坐标的差值,记作df(x)。

微分的计算:微分的基本公式、微分的四则运算法则等。

2.3 积分的概念与计算积分的定义:积分表示函数图像与x轴之间区域的面积,记作∫f(x)dx。

积分的计算:基本积分公式、积分的换元法、分部积分法等。

2.4 微积分基本定理微积分基本定理的定义:微积分基本定理是微分与积分之间的关系,即导数的不定积分是原函数,积分的反函数是原函数的导数。

第三章:微分方程3.1 微分方程的定义与分类微分方程的定义:微分方程是含有未知函数及其导数的等式。

微分方程的分类:常微分方程、偏微分方程等。

3.2 常微分方程的解法常微分方程的解法:分离变量法、积分因子法、变量替换法等。

3.3 微分方程的应用微分方程在物理、工程等领域的应用,例如描述物体运动、电路方程等。

第四章:级数4.1 级数的概念与性质级数的定义:级数是由无穷多个数按照一定的规律相加的序列,记作∑an。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》课件一、第1章函数与极限1.1 函数的概念与性质定义域、值域、对应关系奇函数、偶函数、周期函数单调性、连续性、可导性1.2 极限的概念与性质极限的定义(洛必达法则)无穷小、无穷大、极限的存在性极限的运算法则、夹逼定理、单调有界定理二、第2章导数与微分2.1 导数的定义与计算导数的定义(极限比值法)基本导数公式、导数的运算法则高阶导数、隐函数求导、参数方程求导2.2 微分的作用与应用微分的定义、微分的运算法则微分在近似计算、物理应用等方面的作用微分方程的解法与应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算泰勒公式的定义、泰勒级数常见函数的泰勒展开式泰勒公式在近似计算中的应用3.2 不定积分的概念与计算不定积分的定义、基本积分公式换元积分、分部积分积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算定积分的定义、定积分的性质牛顿-莱布尼茨公式、定积分的换元法、分部积分法定积分在几何、物理等方面的应用4.2 反常积分的概念与计算反常积分的定义、无穷区间上的积分瑕点、解析延拓、魏尔斯特拉斯函数反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法微分方程的定义、微分方程的解常微分方程、线性微分方程、非线性微分方程分离变量法、积分因子法、变量替换法5.2 线性微分方程组的概念与解法线性微分方程组的定义、解的结构高阶线性微分方程、齐次线性微分方程特解法、待定系数法、常数变易法六、第6章级数6.1 数项级数的概念与判别法数项级数的定义、收敛性与发散性收敛级数的性质、级数的收敛准则(比较检验、比值检验、根值检验)绝对收敛与条件收敛6.2 幂级数的概念与性质幂级数的定义、收敛半径、收敛区间幂级数的运算、泰勒级数与麦克劳林级数幂级数在函数逼近与数值计算中的应用七、第7章多元函数的极限与连续7.1 多元函数的概念与性质多元函数的定义、偏导数、全微分多元函数的单调性、连续性、可微性方向导数与梯度7.2 多元函数的极限与连续多元函数的极限定义、极限的存在性多元函数的连续性、无穷远点多元函数极限与单变量函数极限的对比八、第8章多元函数的导数与微分8.1 多元函数的导数与微分多元函数的偏导数、全导数高阶偏导数、隐函数求导、参数方程求导微分的概念与性质、微分在多元函数中的应用8.2 多元函数的泰勒公式与不定积分多元函数的泰勒公式、泰勒级数不定积分的概念、多元函数的不定积分积分在多元函数中的应用九、第9章多元函数的定积分与反常积分9.1 多元函数的定积分多元函数定积分的定义、性质多元函数定积分的计算、换元法、分部积分法多元函数定积分在几何、物理等方面的应用9.2 多元函数的反常积分多元函数反常积分的定义、无穷区间上的积分多元函数瑕点、解析延拓、魏尔斯特拉斯函数多元函数反常积分在实际应用中的意义十、第10章向量分析与线性代数10.1 向量分析的概念与方法向量的定义、向量的运算空间解析几何、向量场的概念梯度、散度、旋度、格林公式10.2 线性代数的基本理论向量空间、线性变换、特征值与特征向量矩阵的运算、行列式、特征方程线性方程组、最小二乘法、正交投影重点和难点解析一、第1章函数与极限1.1 函数的概念与性质重点关注函数的奇偶性、周期性及单调性难点解析:奇偶性的判断、周期性的求解、单调性的证明1.2 极限的概念与性质重点关注极限的定义、性质及运算法则难点解析:极限的判断(洛必达法则)、无穷小与无穷大的比较、极限的夹逼定理与单调有界定理二、第2章导数与微分2.1 导数的定义与计算重点关注导数的定义、基本导数公式及导数的运算法则难点解析:导数的计算(隐函数求导、参数方程求导)、高阶导数的应用、导数在实际问题中的应用2.2 微分的作用与应用重点关注微分的定义及微分的运算法则难点解析:微分的应用(近似计算、物理应用)、微分方程的解法及应用三、第3章泰勒公式与不定积分3.1 泰勒公式的概念与计算重点关注泰勒公式的定义、常见函数的泰勒展开式难点解析:泰勒公式的应用(近似计算)、泰勒级数的收敛性判断3.2 不定积分的概念与计算重点关注不定积分的定义、基本积分公式及积分方法难点解析:不定积分的计算(换元积分、分部积分)、积分在几何、物理等方面的应用四、第4章定积分与反常积分4.1 定积分的概念与计算重点关注定积分的定义、性质及计算方法难点解析:定积分的计算(牛顿-莱布尼茨公式、换元法、分部积分法)、定积分在几何、物理等方面的应用4.2 反常积分的概念与计算重点关注反常积分的定义、性质及计算方法难点解析:反常积分的计算(瑕点、解析延拓、魏尔斯特拉斯函数)、反常积分在实际应用中的意义五、第5章微分方程与线性微分方程组5.1 微分方程的概念与解法重点关注微分方程的定义、解的结构及解法难点解析:微分方程的解法(分离变量法、积分因子法、变量替换法)、高阶线性微分方程的解法5.2 线性微分方程组的概念与解法重点关注线性微分方程组的定义、解的结构及解法难点解析:线性微分方程组的解法(特解法、待定系数法、常数变易法)、线性微分方程组的应用全文总结与概括:本文针对《高等数学电子教案》课件的十个章节进行了重点和难点的解析。

高等数学下电子教案

高等数学下电子教案

高等数学下电子教案一、引言1.1 课程简介本课程是高等数学下的电子教案,主要面向大学本科阶段的学生。

通过本课程的学习,学生将掌握高等数学的基本概念、方法和技巧,为后续专业课程的学习和科研工作打下坚实的基础。

1.2 教学目标(1)理解并掌握高等数学的基本概念和原理;(2)培养学生的逻辑思维能力和解决问题的能力;(3)提高学生的数学素养和科学研究的初步能力。

二、极限与连续2.1 极限的概念(1)极限的定义;(2)极限的性质;(3)极限的存在条件。

2.2 极限的计算(1)基础极限公式;(2)无穷小和无穷大的比较;(3)极限的运算法则。

2.3 连续性(1)连续性的定义;(2)连续函数的性质;(3)连续函数的判定定理。

三、导数与微分3.1 导数的概念(1)导数的定义;(2)导数的几何意义;(3)导数的物理意义。

3.2 导数的计算(1)基本导数公式;(2)导数的运算法则;(3)高阶导数。

3.3 微分(1)微分的定义;(2)微分的运算法则;(3)微分在近似计算中的应用。

四、积分与面积4.1 不定积分(1)不定积分的概念;(2)基本积分公式;(3)积分的换元法和分部法。

4.2 定积分(1)定积分的概念;(2)定积分的性质;4.3 面积计算(1)平面区域的面积计算;(2)曲线的面积计算;(3)旋转体的体积计算。

五、微分方程5.1 微分方程的基本概念(1)微分方程的定义;(2)微分方程的解法;(3)微分方程的应用。

5.2 线性微分方程(1)线性微分方程的定义;(2)线性微分方程的解法;(3)线性微分方程的解的存在性定理。

5.3 非线性微分方程(1)非线性微分方程的定义;(2)非线性微分方程的解法;(3)非线性微分方程的应用。

六、级数6.1 级数的基本概念(1)级数的定义;(2)级数的收敛性;6.2 幂级数(1)幂级数的概念;(2)幂级数的收敛半径;(3)幂级数的运算。

6.3 泰勒级数和麦克劳林级数(1)泰勒级数的概念;(2)泰勒级数的展开;(3)麦克劳林级数。

高等数学电子教案

高等数学电子教案

高等数学电子教案一、前言1.1 教案简介本教案主要针对高等数学课程,内容包括极限、导数、积分、级数、常微分方程等基本概念和运算方法,适合高等院校理工科专业学生使用。

1.2 教学目标通过本教案的学习,使学生掌握高等数学的基本概念、运算方法和应用技巧,培养学生分析问题和解决问题的能力。

二、极限2.1 极限的概念引入极限的概念,解释函数在一点邻域内的极限意义,举例说明极限的存在与不存在。

2.2 极限的运算讲解极限的基本性质和运算规则,引导学生掌握极限的求解方法。

三、导数3.1 导数的定义介绍导数的定义,解释导数表示函数在某一点的瞬时变化率,举例说明导数的计算。

3.2 导数的运算讲解导数的四则运算规则,引导学生掌握常见函数的导数公式。

四、积分4.1 积分概念引入积分的概念,解释积分表示函数图像与x轴所围成的面积,举例说明积分的计算。

4.2 积分的运算讲解积分的基本性质和运算规则,引导学生掌握常见函数的积分公式。

五、级数5.1 级数概念介绍级数的基本概念,解释级数表示函数的和,举例说明级数的前n项和与收敛性。

5.2 级数的收敛性讲解级数收敛性的判定方法,引导学生掌握常见级数的收敛性判断。

六、常微分方程6.1 微分方程的定义解释常微分方程的概念,即含有未知函数及其导数的等式。

引导学生理解微分方程描述的是函数的导数与函数本身之间的关系。

6.2 微分方程的解法介绍常微分方程的基本解法,包括分离变量法、积分因子法、变量替换法等。

通过实例演示各种方法的运用。

七、线性代数7.1 向量空间与线性方程组定义向量空间,解释线性方程组的解集及其性质。

介绍高斯消元法求解线性方程组。

7.2 矩阵与行列式讲解矩阵的基本运算,包括矩阵的加法、数乘、乘法。

介绍行列式的定义及其性质,演示行列式在解线性方程组中的应用。

八、概率论与数理统计8.1 随机事件与概率定义随机事件,解释概率的基本性质,包括加法原则和乘法原则。

通过实例让学生理解概率的意义。

高等数学电子教案(大专版)(2024)

高等数学电子教案(大专版)(2024)

02
函数与极限
2024/1/28
8
函数概念及性质
2024/1/28
函数定义
设$x$和$y$是两个变量,$D$是一个数集。如果存在一种对应法则$f$,使得对于$D$中 的每一个数$x$,按照某种对应法则$f$,在数集$M$中都有唯一确定的数$y$与之对应, 则称$f$为从$D$到$M$的一个函数,记作$y = f(x), x in D$。
向量的坐标表示法
详细讲解向量的坐标表示法,包括向量在空间直角 坐标系中的表示方法、向量的模和方向余弦的坐标 计算公式等。
向量的运算与坐标计算
介绍向量的加法、减法、数乘和点积、叉积 等运算在坐标计算中的实现方法,以及这些 运算的几何意义和性质。
2024/1/28
30
平面与直线方程
2024/1/28
平面的方程
导数的定义
导数描述了函数在某一点处的切线斜 率,反映了函数值随自变量变化的快 慢程度。
导数的几何意义
导数在几何上表示曲线在某一点处的 切线斜率,即函数图像在该点的倾斜 程度。
13
导数的计算法则
基本初等函数的导数公式
包括常数函数、幂函数、指数函数、对数函数 、三角函数等的基本导数公式。
导数的四则运算法则
2024/1/28
全微分的定义
如果函数$z=f(x,y)$在点$(x,y)$的全 增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o(rho)$,其 中$A$和$B$不依赖于$Delta x$和 $Delta y$而仅与$x$和$y$有关, $rho=(Delta x^2+Delta y^2)^{frac{1}{2}}$,则称函数 $z=f(x,y)$在点$(x,y)$处可微,而 $ADelta x+BDelta y$称为函数 $z=f(x,y)$在点$(x,y)$处的全微分。

《高等数学教案》

《高等数学教案》

《高等数学教案》word版第一章:函数与极限1.1 函数的概念与性质定义函数的概念讨论函数的性质(单调性、奇偶性、周期性等)1.2 极限的概念与性质引入极限的概念探讨极限的性质与运算1.3 无穷小与无穷大定义无穷小与无穷大的概念比较无穷小与无穷大的大小关系1.4 极限的运算法则极限的加减乘除法则极限的复合函数法则第二章:导数与微分2.1 导数的概念与性质引入导数的概念探讨导数的性质(单调性、极值等)2.2 导数的计算法则基本导数公式和、差、积、商的导数法则2.3 微分的方法与应用微分的概念与方法微分在近似计算与优化问题中的应用第三章:泰勒公式与微分中值定理3.1 泰勒公式的概念与性质引入泰勒公式的概念探讨泰勒公式的性质与应用3.2 微分中值定理的概念与证明罗尔定理、拉格朗日中值定理、柯西中值定理微分中值定理的应用(导数与函数的极值关系等)第四章:积分与微分方程4.1 积分的基本概念与方法引入积分的概念探讨积分的方法(牛顿-莱布尼茨公式、换元积分、分部积分等)4.2 微分方程的基本概念与方法引入微分方程的概念探讨微分方程的解法(常微分方程、线性微分方程等)第五章:线性代数基础5.1 向量的概念与运算定义向量的概念探讨向量的运算(加减、数乘、点积、叉积等)5.2 矩阵的概念与运算定义矩阵的概念探讨矩阵的运算(加减、数乘、转置、逆矩阵等)5.3 线性方程组的概念与解法引入线性方程组的概念探讨线性方程组的解法(高斯消元法、矩阵求逆法等)5.4 行列式的概念与性质定义行列式的概念探讨行列式的性质与计算方法第六章:概率论基础6.1 随机事件与概率定义随机事件与概率的概念探讨概率的计算(古典概率、条件概率、独立事件等)6.2 随机变量及其分布引入随机变量的概念探讨离散型随机变量与连续型随机变量的分布律6.3 期望与方差定义期望与方差的概念探讨期望与方差的计算及其性质第七章:线性代数进阶7.1 特征值与特征向量定义特征值与特征向量的概念探讨特征值与特征向量的计算及其应用7.2 二次型定义二次型的概念探讨二次型的标准型与判定定理7.3 线性空间与线性变换引入线性空间与线性变换的概念探讨线性变换的性质与计算第八章:常微分方程与应用8.1 常微分方程的基本概念定义常微分方程的概念探讨常微分方程的解法(分离变量法、积分因子法等)8.2 常微分方程的应用探讨常微分方程在物理、生物学等领域的应用8.3 线性微分方程组引入线性微分方程组的概念探讨线性微分方程组的解法与应用第九章:复变函数基础9.1 复数的基本概念与运算定义复数的概念探讨复数的运算(加减、乘除、共轭等)9.2 复变函数的概念与性质引入复变函数的概念探讨复变函数的性质(解析性、奇偶性等)9.3 复变函数的积分与级数探讨复变函数的积分(柯西积分定理、柯西积分公式等)探讨复变函数的级数(泰勒级数、洛朗级数等)第十章:实变函数与泛函分析初步10.1 实函数的基本概念与性质定义实函数的概念探讨实函数的性质(单调性、有界性等)10.2 泛函分析的基本概念引入泛函分析的概念探讨赋范线性空间与希尔伯特空间的基本概念10.3 赋范线性空间的基本定理探讨赋范线性空间中的基本定理(闭区间上的有界线性算子等)重点解析第一章:函数与极限重点:函数的概念与性质、极限的概念与性质、无穷小与无穷大、极限的运算法则。

《高等数学电子教案》课件

《高等数学电子教案》课件

《高等数学电子教案》PPT课件第一章:导数与微分1.1 导数的定义与性质引入导数的定义讲解导数的性质例题解析1.2 常见函数的导数基本初等函数的导数复合函数的导数例题解析1.3 微分及其应用微分的定义与性质微分的计算法则微分在实际问题中的应用例题解析第二章:积分与面积2.1 不定积分的概念与性质不定积分的定义不定积分的性质基本积分表2.2 定积分的定义与性质定积分的定义定积分的性质定积分的计算法则2.3 定积分的应用求解平面区域的面积求解物体的体积例题解析第三章:多元函数微分学3.1 多元函数的定义与性质多元函数的定义多元函数的性质多元函数的图形表示3.2 多元函数的偏导数偏导数的定义与性质偏导数的计算法则例题解析3.3 多元函数的极值及其判定多元函数的极值概念多元函数的极值判定方法例题解析第四章:重积分4.1 一元重积分的定义与性质一元重积分的定义一元重积分的性质一元重积分的计算法则4.2 二元重积分的定义与性质二元重积分的定义二元重积分的性质二元重积分的计算法则4.3 三元重积分的定义与性质三元重积分的定义三元重积分的性质三元重积分的计算法则第五章:向量代数与空间解析几何5.1 向量代数的基本概念向量的定义与表示向量的运算规则向量的图形表示5.2 空间解析几何的基本概念坐标系的定义与表示点、直线、平面的方程空间解析几何的图形表示5.3 向量代数与空间解析几何的应用向量的应用实例空间解析几何的应用实例例题解析第六章:常微分方程6.1 微分方程的基本概念微分方程的定义微分方程的分类微分方程的解法6.2 线性微分方程线性微分方程的定义线性微分方程的解法常系数线性微分方程的解法6.3 非线性微分方程非线性微分方程的定义非线性微分方程的解法例题解析第七章:概率论与数理统计7.1 随机事件与概率随机事件的定义与表示概率的基本性质条件概率与独立性7.2 离散型随机变量离散型随机变量的定义离散型随机变量的分布律离散型随机变量的期望与方差7.3 连续型随机变量连续型随机变量的定义连续型随机变量的分布函数连续型随机变量的期望与方差第八章:线性代数8.1 矩阵的基本概念矩阵的定义与表示矩阵的运算规则矩阵的逆8.2 线性方程组高斯消元法克莱姆法则线性方程组的解的结构8.3 特征值与特征向量特征值与特征向量的定义矩阵的特征值与特征向量的计算特征值与特征向量的应用第九章:级数9.1 数列的基本概念数列的定义与表示数列的极限数列的收敛性与发散性9.2 函数项级数函数项级数的定义函数项级数的收敛性判定函数项级数的应用9.3 幂级数幂级数的定义幂级数的收敛半径幂级数的展开与应用第十章:常微分方程数值解10.1 数值解的基本概念数值解的定义与意义数值解的方法与误差分析数值解的应用领域10.2 初值问题的数值解法欧拉法龙格-库塔法亚当斯法10.3 边界值问题的数值解法有限差分法有限元法谱方法重点和难点解析1. 第一章导数与微分中的导数定义与性质理解,特别是导数的极限概念。

高等数学电子教案

高等数学电子教案

高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,对于每一个自变量值,都有唯一确定的因变量值与之对应。

函数的性质:奇偶性、单调性、周期性等。

1.2 极限的概念极限的定义:当自变量趋向于某个值时,函数值趋向于某个确定的值,这个确定的值称为极限。

极限的性质:保号性、传递性等。

1.3 极限的计算基本极限:\(\lim_{x \to 0} \frac{sin x}{x} = 1\), \(\lim_{x \to \infty} e^x = \infty\) 等。

极限的运算法则:加减乘除、乘方等。

1.4 无穷小与无穷大无穷小的概念:当自变量趋向于某个值时,函数值趋向于0。

无穷大的概念:当自变量趋向于某个值时,函数值趋向于正无穷或负无穷。

第二章:导数与微分2.1 导数的定义导数的定义:函数在某一点的导数是其在该点的切线斜率。

导数的几何意义:函数图像在某一点的切线斜率。

2.2 导数的计算基本导数公式:\( (x^n)' = nx^{n-1} \), \( (sin x)' = cos x \), \( (cos x)' = -sin x \) 等。

导数的运算法则:和差、乘积、商、复合函数等。

2.3 微分微分的定义:微分是导数的一个线性近似。

微分的计算:对函数进行微分,即将自变量的增量转化为微分的形式。

2.4 应用求函数的极值:求导数,令导数为0,解出x值,再代入原函数求出极值。

求函数的单调区间:求导数,判断导数的正负,确定函数的单调性。

第三章:泰勒公式与导数的应用3.1 泰勒公式泰勒公式的定义:用函数在某一点的导数信息来近似表示函数本身。

泰勒公式的应用:求解函数在某一点的近似值。

3.2 洛必达法则洛必达法则的定义:当函数在某一点的导数为0时,可以用该点的其他导数信息来求解函数值。

洛必达法则的应用:求解函数在某一点的极限值。

3.3 泰勒展开泰勒展开的定义:将函数在某一点的泰勒公式展开,得到函数在该点的多项式近似。

高等数学电子教案word

高等数学电子教案word

高等数学电子教案word一、教学内容二、教学目标1. 理解微分方程的基本概念,掌握微分方程的定义及常见类型。

2. 学会解可分离变量的微分方程、齐次方程、一阶线性微分方程和伯努利方程。

3. 能够运用微分方程解决实际问题,提高数学素养。

三、教学难点与重点重点:微分方程的定义、常见类型的解法。

难点:一阶线性微分方程和伯努利方程的求解方法。

四、教具与学具准备1. 教具:黑板、粉笔、多媒体设备。

2. 学具:教材、《高等数学》学习指导书、笔记本、文具。

五、教学过程1. 导入:通过一个实践情景,如人口增长模型,引出微分方程的概念。

2. 知识讲解:(1)微分方程的基本概念及分类。

(2)可分离变量的微分方程的解法。

(3)齐次方程的解法。

(4)一阶线性微分方程的解法。

(5)伯努利方程的解法。

3. 例题讲解:(1)解可分离变量的微分方程:dy/dx = x/y。

(2)解齐次方程:dy/dx = (y/x)。

(3)解一阶线性微分方程:dy/dx + P(x)y = Q(x)。

(4)解伯努利方程:dy/dx + P(x)y = Q(x)y^n。

4. 随堂练习:(1)求解微分方程:dy/dx = sin(x)cos(y)。

(2)求解微分方程:dy/dx + 2y = x^2。

六、板书设计1. 微分方程的基本概念及分类。

2. 各类微分方程的解法。

3. 例题及解答。

4. 随堂练习。

七、作业设计1. 作业题目:(1)求解微分方程:dy/dx = 1/y。

(2)求解微分方程:dy/dx 3y = 2x。

(3)求解微分方程:dy/dx + 4y = 3x^2y^2。

2. 答案:(1)y = ln|x| + C。

(2)y = (1/3)x^3 x + C。

(3)y = 1/(x^3 + C)。

八、课后反思及拓展延伸1. 反思:本节课通过实践情景引入,让学生了解微分方程的实际应用,提高学习兴趣。

讲解过程中,注意引导学生掌握各类微分方程的解法,培养其解决问题的能力。

高等数学电子教案(最新版

高等数学电子教案(最新版

解决方案
理解向量的基本概念和运算规则,掌握向量的数量积、 向量积、混合积的计算方法;理解空间曲线和曲面的几 何性质,掌握空间曲线和曲面的参数方程和一般方程。
THANKS
感谢观看
高等数学的重要性与应用
总结词
高等数学在科学、工程、经济等领域有 着广泛的应用,是许多学科的基础工具 。
VS
详细描述
高等数学在科学研究、工程技术和经济发 展等领域中发挥着重要的作用。它是许多 学科的基础工具,如物理、化学、工程学 、经济学等都需要用到高等数学的知识。 通过学习高等数学,人们能够更好地理解 和分析各种复杂的现象和问题,为科学研 究和技术创新提供支持。
不定积分与定积分
不定积分的概念与性质
不定积分是微分学的逆运算,用于求函数的原函数。不定积分具有一些重要的性质,如线性性质、积 分常数性质等。
定积分的概念与性质
定积分是积分学的核心概念,用于计算平面图形面积和体积等。定积分具有一些重要的性质,如可加 性、区间可加性等。
级数与幂级数
级数的概念与性质
级数是无穷序列的和,分为收敛级数和发散 级数。级数具有一些重要的性质,如正项级 数、交错级数、几何级数等。
重积分与线积分
• 总结词:重积分与线积分是高等数学中的重要概念,它研究的是对积分区域进行积分的方法。 • 详细描述:重积分主要研究的是对二维或更高维度的区域进行积分的方法,而线积分主要研究的是对一维曲线
进行积分的方法。这些积分方法在解决实际问题中具有广泛的应用,如物理学中的质量分布问题、工程学中的 流体动力学问题等都可以用重积分与线积分来解决。 • 总结词:重积分与线积分在解决实际问题中具有广泛的应用,如物理学中的力学和热学等问题;工程学中的机 械设计和流体动力学等问题;经济学中的成本和收益等问题。 • 详细描述:在物理学中,重积分与线积分被广泛应用于描述物体的运动轨迹和质量分布

高等数学教育教案(电子版)

高等数学教育教案(电子版)

目录一、函数与极限 (2)1、集合的概念 (2)2、常量与变量 (3)2、函数 (4)3、函数的简单性态 (4)4、反函数 (5)5、复合函数 (6)6、初等函数 (6)7、双曲函数及反双曲函数 (7)8、数列的极限 (8)9、函数的极限 (9)10、函数极限的运算规则 (11)一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A、B、C、……表示集合,用小写拉丁字母a、b、c……表示集合中的元素。

如果a是集合A中的元素,就说a属于A,记作:a∈A,否则就说a不属于A,记作:a∉A。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N⑵、所有正整数组成的集合叫做正整数集。

记作N+或N+。

⑶、全体整数组成的集合叫做整数集。

记作Z。

⑷、全体有理数组成的集合叫做有理数集。

记作Q。

⑸、全体实数组成的集合叫做实数集。

记作R。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A、B,如果集合A中的任意一个元素都是集合B的元素,我们就说A、B有包含关系,称集合A为集合B的子集,记作A⊆B(或B⊇A)。

⑵相等:如何集合A是集合B的子集,且集合B是集合A的子集,此时集合A中的元素与集合B中的元素完全一样,因此集合A与集合B相等,记作A=B。

⑶、真子集:如何集合A是集合B的子集,但存在一个元素属于B但不属于A,我们称集合A是集合B的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作∅,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论:①、任何一个集合是它本身的子集。

高等数学电子教案

高等数学电子教案

高等数学电子教案(最新版)第一章:函数与极限1.1 函数的概念与性质定义:函数是一种关系,将一个非空数集A中的每一个元素在非空数集B中都有唯一确定的元素和它对应。

函数的性质:单调性、奇偶性、周期性等。

1.2 极限的概念极限的定义:当自变量x趋向于某一数值a时,函数f(x)趋向于某一数值L,我们称f(x)当x趋向于a时的极限为L,记作:lim(f(x),a)=L。

1.3 极限的运算极限的四则运算法则:1)lim(f(x)+g(x),a)=lim(f(x),a)+lim(g(x),a)2)lim(f(x)g(x),a)=lim(f(x),a)lim(g(x),a)3)lim(f(x)/g(x),a)=lim(f(x),a)/lim(g(x),a) (g(x)≠0)4)lim(cu(x),a)=lim(c,a)lim(u(x),a) (c为常数,u(x)可导)1.4 无穷小与无穷大无穷小的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|<M,则称f(x)为无穷小。

无穷大的定义:当自变量x趋向于某一数值a时,如果存在一个正数M,使得对于任意给定的正数ε,总存在正数δ,使得当0<|x-a|<δ时,都有|f(x)|>M,则称f(x)为无穷大。

第二章:导数与微分2.1 导数的定义导数的定义:函数f(x)在x处的导数定义为f'(x)=lim(f(x+Δx)-f(x),Δx)=lim(Δx,0)f'(x+Δx)。

2.2 导数的运算导数的四则运算法则:1)(f(x)+g(x))'=f'(x)+g'(x)2)(f(x)g(x))'=f(x)g'(x)+f'(x)g(x)3)(f(g(x)))'=f'(g(x))g'(x)4)(cu(x))'=c'u(x)+cu'(x) (c为常数,u(x)可导)2.3 微分微分的定义:函数f(x)在x处的微分定义为df(x)=f'(x)Δx。

高等数学电子教案word

高等数学电子教案word

高等数学电子教案word【篇一:同济第六版《高等数学》教案word版-第01章函数与极限】第一章函数与极限教学目的:1、理解函数的概念,掌握函数的表示方法,并会建立简单应用问题中的函数关系式。

2、了解函数的奇偶性、单调性、周期性和有界性。

3、理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4、掌握基本初等函数的性质及其图形。

5、理解极限的概念,理解函数左极限与右极限的概念,以及极限存在与左、右极限之间的关系。

6、掌握极限的性质及四则运算法则。

7、了解极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8、理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。

9、理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10、了解连续函数的性质和初等函数的连续性,了解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

教学重点:1、复合函数及分段函数的概念;2、基本初等函数的性质及其图形;3、极限的概念极限的性质及四则运算法则;4、两个重要极限;5、无穷小及无穷小的比较;6、函数连续性及初等函数的连续性;7、区间上连续函数的性质。

教学难点:1、分段函数的建立与性质;2、左极限与右极限概念及应用;3、极限存在的两个准则的应用;4、间断点及其分类;5、闭区间上连续函数性质的应用。

1. 1 映射与函数一、集合1. 集合概念集合(简称集): 集合是指具有某种特定性质的事物的总体. 用a, b, c….等表示.元素: 组成集合的事物称为集合的元素. a是集合m的元素表示为a m.集合的表示:列举法: 把集合的全体元素一一列举出来.例如a={a, b, c, d, e, f, g}.描述法: 若集合m是由元素具有某种性质p的元素x的全体所组成, 则m可表示为 a={a1, a2, ? ? ?, an},m={x | x具有性质p }.例如m={(x, y)| x, y为实数, x2+y2=1}.几个数集:n表示所有自然数构成的集合, 称为自然数集.n={0, 1, 2, ? ? ?, n, ? ? ?}. n+={1, 2, ? ? ?, n, ? ? ?}.r表示所有实数构成的集合, 称为实数集.z表示所有整数构成的集合, 称为整数集.z={? ? ?, -n, ? ? ?, -2, -1, 0, 1, 2, ? ? ?, n, ? ? ?}.q表示所有有理数构成的集合, 称为有理数集.p q={|p∈z,q∈n+且p与q互质} q子集: 若x∈a, 则必有x∈b, 则称a是b的子集, 记为a?b(读作a包含于b)或b?a .如果集合a与集合b互为子集, a?b且b?a, 则称集合a与集合b相等, 记作a=b.若a?b且a≠b, 则称a是b的真子集, 记作a?≠b . 例如, n?≠z?≠q?≠r.不含任何元素的集合称为空集, 记作?. 规定空集是任何集合的子集.2. 集合的运算设a、b是两个集合, 由所有属于a或者属于b的元素组成的集合称为a与b的并集(简称并), 记作a?b, 即a?b={x|x∈a或x∈b}.设a、b是两个集合, 由所有既属于a又属于b的元素组成的集合称为a与b的交集(简称交), 记作a?b, 即a?b={x|x∈a且x∈b}.设a、b是两个集合, 由所有属于a而不属于b的元素组成的集合称为a与b的差集(简称差), 记作a\b, 即a\b={x|x∈a且x?b}.如果我们研究某个问题限定在一个大的集合i中进行, 所研究的其他集合a都是i的子集. 此时, 我们称集合i为全集或基本集. 称i\a为a 的余集或补集, 记作ac.集合运算的法则:设a、b、c为任意三个集合, 则(1)交换律a?b=b?a, a?b=b?a;(2)结合律 (a?b)?c=a?(b?c), (a?b)?c=a?(b?c);(3)分配律 (a?b)?c=(a?c)?(b?c), (a?b)?c=(a?c)?(b?c);(4)对偶律 (a?b)c=ac ?bc, (a?b)c=ac ?bc.(a?b)c=ac ?bc的证明:x∈(a?b)c?x?a?b?x?a且x?b?x∈a c且x∈bc ?x∈ac ?bc, 所以(a?b)c=ac ?bc.直积(笛卡儿乘积):设a、b是任意两个集合, 在集合a中任意取一个元素x, 在集合b 中任意取一个元素y, 组成一个有序对(x, y), 把这样的有序对作为新元素, 它们全体组成的集合称为集合a与集合b的直积, 记为a?b, 即 a?b={(x, y)|x∈a且y∈b}.例如, r?r={(x, y)| x∈r且y∈r }即为xoy面上全体点的集合, r?r常记作r2.3. 区间和邻域有限区间:设ab, 称数集{x|axb}为开区间, 记为(a, b), 即(a, b)={x|axb}.类似地有[a, b] = {x | a ≤x≤b }称为闭区间,[a, b) = {x | a≤xb }、(a, b] = {x | ax≤b }称为半开区间.其中a和b称为区间(a, b)、[a, b]、[a, b)、(a, b]的端点, b-a称为区间的长度.无限区间:[a, +∞) = {x | a≤x }, (-∞, b] = {x | x b } , (-∞, +∞)={x | | x | +∞}.区间在数轴上的表示:邻域: 以点a为中心的任何开区间称为点a的邻域, 记作u(a).二、映射1. 映射的概念定义设x、y是两个非空集合, 如果存在一个法则f, 使得对x中每个元素x, 按法则f, 在y中有唯一确定的元素y与之对应, 则称f为从x 到y的映射, 记作f : x→y ,其中y称为元素x(在映射f下)的像, 并记作f(x), 即y=f(x),而元素x称为元素y(在映射f下)的一个原像; 集合x称为映射f的定义域, 记作d f, 即d f=x ;x中所有元素的像所组成的集合称为映射f的值域, 记为r f, 或f(x), 即r f=f(x)={f(x)|x∈x}.需要注意的问题:(1)构成一个映射必须具备以下三个要素: 集合x, 即定义域d f=x; 集合y, 即值域的范围: r f ?y; 对应法则f, 使对每个x∈x, 有唯一确定的y=f(x)与之对应.(2)对每个x∈x, 元素x的像y是唯一的; 而对每个y∈r f, 元素y的原像不一定是唯一的; 映射f的值域r f是y的一个子集, 即r f ?y, 不一定r f=y .例1设f : r→r, 对每个x∈r, f(x)=x2.显然, f是一个映射, f的定义域d f=r, 值域r f ={y|y≥0}, 它是r的一个真子集. 对于r f 中的元素y, 除y=0外, 它的原像不是唯一的. 如y=4的原像就有x=2和x=-2两个.例2设x={(x, y)|x2+y2=1}, y={(x, 0)||x|≤1}, f : x →y, 对每个(x, y)∈x, 有唯一确定的(x, 0)∈y与之对应.显然f是一个映射, f的定义域d f=x, 值域r f =y. 在几何上, 这个映射表示将平面上一个圆心在原点的单位圆周上的点投影到x轴的区间[-1, 1]上.(3) f :[-, ]→[-1, 1], 对每个x∈[-, ], f(x)=sin x . 2222f是一个映射, 定义域d f =[-, ], 值域r f =[-1, 1]. 22满射、单射和双射:设f是从集合x到集合y的映射, 若r f =y, 即y中任一元素y都是x 中某元素的像, 则称f为x到y上的映射或满射; 若对x中任意两个不同元素x 1≠x 2, 它们的像f(x 1)≠f(x 2), 则称f为x到y的单射; 若映射f既是单射, 又是满射, 则称f为一一映射(或双射).上述三例各是什么映射?2. 逆映射与复合映射设f是x到y的单射, 则由定义, 对每个y∈r f , 有唯一的x∈x, 适合f(x)=y, 于是, 我们可定义一个从r f 到x的新映射g, 即g : r f →x,对每个y∈r f , 规定g(y)=x, 这x满足f(x)=y. 这个映射g称为f的逆映射, 记作f -1, 其定义域df-1=r f , 值域rf-1=x .按上述定义, 只有单射才存在逆映射. 上述三例中哪个映射存在逆映射?设有两个映射g : x→y 1,f : y 2→z,其中y 1?y 2. 则由映射g和f可以定出一个从x到z的对应法则, 它将每个x∈x映射成f[g(x)]∈z . 显然, 这个对应法则确定了一个从x 到z的映射, 这个映射称为映射g和f构成的复合映射, 记作f o g, 即f o g: x →z,(f o g)(x)=f[g(x)], x∈x .应注意的问题:映射g和f构成复合映射的条件是: g的值域r g必须包含在f的定义域内, r g?d f . 否则, 不能构成复合映射. 由此可以知道, 映射g和f 的复合是有顺序的, f o g有意义并不表示g o f也有意义. 即使f o g 与g o f都有意义, 复映射f o g与g o f也未必相同.例4 设有映射g : r→[-1, 1], 对每个x∈r, g(x)=sin x,映射f : [-1, 1]→[0, 1], 对每个u∈[-1, 1], f(u)=-u2.则映射g和f构成复映射f o g: r→[0, 1], 对每个x∈r, 有(f g)(x)=f[g(x)]=f(sinx)=-sin2x=|cosx|.三、函数1. 函数概念定义设数集d?r, 则称映射f : d →r为定义在d上的函数, 通常简记为y=f(x), x∈d,其中x称为自变量, y称为因变量, d称为定义域, 记作d f, 即d f=d.应注意的问题:记号f和f(x)的含义是有区别的, 前者表示自变量x和因变量y之间的对应法则, 而后者表示与自变量x对应的函数值. 但为了叙述方便,习惯上常用记号“f(x), x∈d”或“y=f(x), x∈d”来表示定义在d上的函数, 这时应理解为由它所确定的函数f .函数符号: 函数y=f(x)中表示对应关系的记号f也可改用其它字母, 例如“f”, “?”等. 此时函数就记作y=? (x), y=f(x).函数的两要素:函数是从实数集到实数集的映射, 其值域总在r内, 因此构成函数的要素是定义域d f及对应法则f . 如果两个函数的定义域相同, 对应法则也相同, 那么这两个函数就是相同的, 否则就是不同的.函数的定义域:函数的定义域通常按以下两种情形来确定: 一种是对有实际背景的函数, 根据实际背景中变量的实际意义确定.求定义域举例:1 求函数y=-x2-4的定义域. x要使函数有意义, 必须x≠0, 且x2 - 4≥0.解不等式得| x |≥2.所以函数的定义域为d={x | | x |≥2}, 或d=(-∞, 2]?[2, +∞]).单值函数与多值函数:【篇二:同济第六版《高等数学》教案word版-第02章导数与微分】第二章导数与微分教学目的:1、理解导数和微分的概念与微分的关系和导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的的关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学电子教案【篇一:高等数学下册电子教案】第四章常微分方程4.1 基本概念和一阶微分方程甲内容要点一.基本概念1.常微分方程含有自变量、未知函数和未知函数的导数(或微分)的方程称为微分方程,若未知函数是一元函数则称为常微分方程,而未知函数是多元函数则称为偏微分方程,我们只讨论常微分方程,故简称为微分方程,有时还简称为方程。

2.微分方程的阶微分方程中未知函数的导数的最高阶数称为该微分方程的阶3.微分方程的解、通解和特解满足微分方程的函数称为微分方程的解;通解就是含有独立常数的个数与方程的阶数相同的解;通解有时也称为一般解但不一定是全部解;不含有任意常数或任意常数确定后的解称为特解。

4.微分方程的初始条件要求自变量取某定值时,对应函数与各阶导数取指定的值,这种条件称为初始条件,满足初始条件的解称为满足该初始条件的特解。

5.积分曲线和积分曲线族微分方程的特解在几何上是一条曲线称为该方程的一条积分曲线;而通解在几何上是一族曲线就称为该方程的积分曲线族。

6.线性微分方程如果未知函数和它的各阶导数都是一次项,而且它们的系数只是自变量的函数或常数,则称这种微分方程为线性微分方程。

不含未知函数和它的导数的项称为自由项,自由项为零的线性方程称为线性齐次方程;自由项不为零的方程为线性非齐次方程。

二.变量可分离方程及其推广1.变量可分离的方程(1)方程形式:dydydx=p(x)q(y)(q(y)≠0) 通解?p(x)dx+c ?q(y)=(注:在微分方程求解中,习惯地把不定积分只求出它的一个原函数,而任意常数另外再加)(2)方程形式:m1(x)n1(y)dx+m2(x)n2(y)dy=0通解?m1(x)m2(x)dx+?n2(y)n1(y)dy=c (m2(x)≠0,n1(y)≠0)2.变量可分离方程的推广形式(1)齐次方程yxdydxdy?y?=f ? dx?x? 令则=u, =u+xdudx=f(u)f(u)-udydxdu=?dxx+c=ln|x|+c (2)=f(ax+by+c)(a≠0,b≠0)令ax+by+c=u,则dudx=a+bf(u)a+bf(u)=dxdydu=x+c ?a1x+b1y+c1? ? =f (3) ?dx?a2x+b2y+c2?①当?=a1v?? a1+b1?a1u+b1v?u?属于齐次方程情形 ?=fv?a2u+b2v? ?a+b 2?2u??b1b2b1=0情形,令a2a1=令u=a1x+b1y,则du属于变量可分离方程情形。

三.一阶线性方程及其推广1.一阶线性齐次方程dydx+p(x)y=0-?p(x)dx 它也是变量可分离方程,通解公式y=ce2.一阶线性非齐次方程dydx+p(x)y=q(x) ,(c为任意常数)用常数变易法可求出通解公式令y=c(x)e-?p(x)dx代入方程求出c(x)则得y=e-?p(x)dx[?q(x)e?p(x)dxdx+c ]3.贝努利方程dy把原方程化为dz再按照一阶线性非齐次方程求解。

4.方程:dydx=1q(y)-p(y)x可化为dxdy+p(y)x=q(y)以y为自变量,x为未知函数再按照一阶线性非齐次方程求解。

四.全微分方程及其推广(数学一)1.全微分方程p(x,y)dx+q(x,y)dy=0,满足通解:u(x,y)=c,其中u(x,y)满足du(x,y)=p(x,y)dx+q(x,y)dy求u(x,y)的常用方法。

第一种:凑全微分法p(x,y)dx+q(x,y)dy= =du(x,y)把常见的一些二元函数的全微分公式要倒背如流,就很有帮助。

x2+y2;(1)xdx+ydy=d ?2??x2-y2;(2)xdx-ydy=d ?2q?x=?p?y(3)ydx+xdy=d(xy);(4)ydx+xdyxyxdx+ydyx+y22=d(lnxy);(5)?122?=d?lnx+y?;2()(6)xdx-ydyx-y22?122?=d?lnx-y?;2()(7)xdy-ydxx2?y?=d ?; ?x?(8)ydx-xdyy2?x?=d ??; y??x=d arctan ; y??y??=d arctan?; x?? (9)ydx-xdyx+y22 (10)xdy-ydxx+y22(11)ydx-xdyx-y22?1x-y??=d ln ?; x+y??21x+y=d ln ; 2x-y?? (12)xdy-ydxx+y22(13)xdx+ydy(x(x2+y2))2?1?1?; =d -2? 22x+y1?1?; =d -2? 22x-y??122=d arctanx+y; ?2? (14)xdx-ydy2-y22 (15)xdx+ydy1+x+y((22))2() (16)xdx-ydy1+x-y222?122?=d arctanx-y?; ?2?()第二种:特殊路径积分法(因为积分与路径无关)【篇二:高等数学电子教案8】第八章空间解析几何与向量代数教学目的:2、掌握向量的运算(线性运算、数量积、向量积、混合积),掌握两个向量垂直和平行的条件。

3、理解单位向量、方向数与方向余弦、向量的坐标表达式,熟练掌握用坐标表达式进行向量运算的方法。

4、掌握平面方程和直线方程及其求法。

5、会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。

6、会求点到直线以及点到平面的距离。

7、理解曲面方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。

8、了解空间曲线的参数方程和一般方程。

9、了解空间曲线在坐标平面上的投影,并会求其方程。

教学重点:1、向量的线性运算、数量积、向量积的概念、向量运算及坐标运算;2、两个向量垂直和平行的条件;3、平面方程和直线方程;4、平面与平面、平面与直线、直线与直线之间的相互位置关系的判定条件;5、点到直线以及点到平面的距离;6、常用二次曲面的方程及其图形;7、旋转曲面及母线平行于坐标轴的柱面方程;8、空间曲线的参数方程和一般方程。

教学难点:1、向量积的向量运算及坐标运算,数量积和向量积的运算;2、平面方程和直线方程及其求法;3、空间曲线在坐标面上的投影4、点到直线的距离;5、二次曲面图形;6、旋转曲面及柱面的方程。

主要外语词汇:vector, mold, direction cape, direction cosine, the quantity accumulate,the vector accumulate, curved face square distance, revolve curved face,pillar noodles, curves, equations, plane, straight line.辅助教学情况:多媒体课件第四版和第五版(修改)参考教材:同济大学《高等数学》第五版8 1 向量及其线性运算一、教学目的与要求:1.理解空间直角坐标系,理解向量的概念及其表示。

2.掌握向量的线性运算、掌握单位向量、方向余弦、两向量的夹角、向量的坐标表达式以及用坐标表达式进行向量运算的方法。

二、重点(难点):向量的运算三、主要外语词汇:vector,mold,direction cape ,direction cosine.一、向量概念向量:既有大小, 又有方向, 这一类量叫做向量.在数学上, 用一条有方向的线段(称为有向线段)来表示向量. 有向线段的长度表示向量的大小, 有向线段的方向表示向量的方向.向量的符号:以a为起点、b为终点的有向线段所表示的向量记作ab. 向量可用粗体字母表示, 也可用上加箭头书写体字母表示, 例如, a、r、v、f 或a、r、v、f.自由向量: 由于一切向量的共性是它们都有大小和方向, 所以在数学上我们只研究与起点无关的向量, 并称这种向量为自由向量, 简称向量. 因此, 如果向量a和b的大小相等, 且方向相同, 则说向量a和b 是相等的, 记为a = b. 相等的向量经过平移后可以完全重合.向量的模: 向量的大小叫做向量的模.向量a、a、ab的模分别记为|a|、|a|、|ab|.单位向量: 模等于1的向量叫做单位向量.零向量: 模等于0的向量叫做零向量, 记作0或0. 零向量的起点与终点重合, 它的方向可以看作是任意的.向量的平行: 两个非零向量如果它们的方向相同或相反, 就称这两个向量平行. 向量a与b平行, 记作a // b. 零向量认为是与任何向量都平行.当两个平行向量的起点放在同一点时, 它们的终点和公共的起点在一条直线上. 因此, 两向量平行又称两向量共线.类似还有共面的概念. 设有k(k≥3)个向量, 当把它们的起点放在同一点时, 如果k个终点和公共起点在一个平面上, 就称这k个向量共面.二、向量的线性运算1.向量的加法向量的加法: 设有两个向量a与b, 平移向量使b的起点与a的终点重合, 此时从a的起点到b的终点的向量c称为向量a与b的和, 记作a+b, 即c=a+b .三角形法则平行四边形法则:当向量a与b不平行时, 平移向量使a与b的起点重合, 以a、b为邻边作一平行四边形, 从公共起点到对角的向量等于向量a与b的和a+b.c ccba a →→→→→→→→→→bb(1)交换律a+b=b+a;(2)结合律(a+b)+c=a+(b+c).由于向量的加法符合交换律与结合律, 故n个向量a1, a2, ? ? ?, an(n ≥3)相加可写成a1+a2+ ? ? ?+an,并按向量相加的三角形法则, 可得n个向量相加的法则如下: 使前一向量的终点作为次一向量的起点, 相继作向量a1, a2, ? ? ?, an, 再以第一向量的起点为起点, 最后一向量的终点为终点作一向量, 这个向量即为所求的和.负向量: 设a为一向量, 与a的模相同而方向相反的向量叫做a的负向量, 记为-a.2.向量的减法:我们规定两个向量b与a的差为b-a=b+(-a).即把向量-a加到向量b上, 便得b与a的差b-a.特别地, 当b=a时, 有a-a=a+(-a)=0.a- b a b a b-a显然, 任给向量ab及点o, 有ab=ao+ob=ob-oa,因此, 若把向量a与b移到同一起点o, 则从a的终点a向b的终点b所引向量ab便是向量b与a的差b-a .三角不等式:由三角形两边之和大于第三边的原理, 有|a+b|≤|a|+|b|及|a-b|≤|a|+|b|,其中等号在b与a同向或反向时成立.3.向量与数的乘法向量与数的乘法的定义:1a=a, (-1)a=-a. →→→→→→→【篇三:高等数学电子教案4】教学目的:第四章不定积分1、理解原函数概念、不定积分的概念。

相关文档
最新文档