有理数的除法教学PPT课件
合集下载
有理数的除法ppt课件
=- .
故原式=- .
1
2
3
4
5
6
7
8
9
10
11
12
13
利用有理数的运算律进行巧算
11. [新考法·逆用运算律法]计算:
(1)
−
1
× +
2
3
4
−
5
6
× +
7
8
−
9
10
11
12
÷5+76 ÷5;
13
【解】原式=
−
−
× +
−
× +
× +76 ×
=[ −
+ −
+(-196 )+76 ]×
6
7
=(-20-120)×
=-140×
=-28.
1
2
3
4
5
8
9
10
11
12
13
(2)(-3.85)×(-13)+(-13)×(-6.15)+0.79×
×0.79.
【解】原式=(-13)×[(-3.85)+(-6.15)]+
如何抽取?最大值是多少?
【解】抽取写有-7和-5的卡片,
最大值是-7×(-5)=35.
1
2
3
4
5
《有理数的除法》有理数PPT课件全
D. –4×(2÷8)和 –4×2÷8
课堂检测
基 础 巩 固 题
2.计算:
(1)23×(–5)–(–3)÷
13
(2)–7×(–3)×(–0.5)+(–12)×(–2.6)
20.7
课堂检测
基 础 巩 固 题
3.计算: (1)2×(–3÷
)–4×(–3)+15;
(2)–8+(–3)×[–4÷(–
3
12
解 : (1)
(2)
12
(12) 3 4
3
45
15
(45) (12) 45 12
4
12
巩固练习
2. 化简:
72
(1) 9 = (–72)
30
(2) 45
0
75
(3)
÷ 9 = –8 .
=(–30)÷(–45)
0
= _____.
= 30÷45
4
2
4
1
3 3 4
解:原式= - = – 2
4 2 9
(2) (3) [(
2
1
) ( )]
5
4
2
5
15
解:原式= (3) ( 4) 3
8
8
5
巩固练习
连 接 中 考
1.(苏州中考)(–21)÷7的结果是( B )
A.3
B.–3
1
3
D. –
C.
2.(大连中考)计算:(–12)÷3= –4
有理数乘法的运算律简化运算.
定积的符号,最后求出结果(乘除混合运算按
从左到右的顺序进行计算).
课堂检测
基 础 巩 固 题
2.计算:
(1)23×(–5)–(–3)÷
13
(2)–7×(–3)×(–0.5)+(–12)×(–2.6)
20.7
课堂检测
基 础 巩 固 题
3.计算: (1)2×(–3÷
)–4×(–3)+15;
(2)–8+(–3)×[–4÷(–
3
12
解 : (1)
(2)
12
(12) 3 4
3
45
15
(45) (12) 45 12
4
12
巩固练习
2. 化简:
72
(1) 9 = (–72)
30
(2) 45
0
75
(3)
÷ 9 = –8 .
=(–30)÷(–45)
0
= _____.
= 30÷45
4
2
4
1
3 3 4
解:原式= - = – 2
4 2 9
(2) (3) [(
2
1
) ( )]
5
4
2
5
15
解:原式= (3) ( 4) 3
8
8
5
巩固练习
连 接 中 考
1.(苏州中考)(–21)÷7的结果是( B )
A.3
B.–3
1
3
D. –
C.
2.(大连中考)计算:(–12)÷3= –4
有理数乘法的运算律简化运算.
定积的符号,最后求出结果(乘除混合运算按
从左到右的顺序进行计算).
《有理数的除法》有理数PPT优秀课件
答案:(-1-3)÷(0.8)×100=(4)÷(0.8)×100=5×100=500米; 答:这个山峰高500米.
【讲解】 此题考查有理数的混合运算, 主要搞清规定上升为正,下降 为负.首先算出山脚与山顶的温 度差,再进一步算出下降了多 少个0.8℃,再乘100即可.
课后作业
1.计算8-(-3)×(-7)的值为( )
教学新知
例9 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月
盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月 亏损2.3万元.这个公司去年总的盈亏情况如何?
解:记盈利额为正数,亏损额为负数,这个公司去年全年亏盈额(单位: 万元)为:
−15 × 3 + 2 × 3 + 1.7 × 4 + −2.3 × 2 = −4.5 + 6 + 6.8 − 4.6 = 3.7 答:这个公司去年全年盈利3.7万元.
=
144 5
【剖析】错解受乘法分配律的影响,误认为除法也能用分配律,其实, 除法没有分配律.
课堂练习
1.计算:
11 1 1 3 5 1 5 × (3 − 2) × 11 ÷ 4
3 2 − 3 − [−5 + (1 − 0.2 × 5) ÷ −2 ]
2 = −(25)
11 = 2 25
75 3 3 (9 − 6 + 18) × 18 − 1.45 × 6 + 3.95 ×=6 17
知识梳理
知识点1:有理数的混合运算
【例】计算:
(1) (-3)×4-42÷(-7)
(2) 20-8÷(-4)×(-0.25)
1 61 (3) 2 4 × (− 7) ÷ (2 − 2)
【讲解】 此题考查有理数的混合运算, 主要搞清规定上升为正,下降 为负.首先算出山脚与山顶的温 度差,再进一步算出下降了多 少个0.8℃,再乘100即可.
课后作业
1.计算8-(-3)×(-7)的值为( )
教学新知
例9 某公司去年1~3月平均每月亏损1.5万元,4~6月平均每月
盈利2万元,7~10月平均每月盈利1.7万元,11~12月平均每月 亏损2.3万元.这个公司去年总的盈亏情况如何?
解:记盈利额为正数,亏损额为负数,这个公司去年全年亏盈额(单位: 万元)为:
−15 × 3 + 2 × 3 + 1.7 × 4 + −2.3 × 2 = −4.5 + 6 + 6.8 − 4.6 = 3.7 答:这个公司去年全年盈利3.7万元.
=
144 5
【剖析】错解受乘法分配律的影响,误认为除法也能用分配律,其实, 除法没有分配律.
课堂练习
1.计算:
11 1 1 3 5 1 5 × (3 − 2) × 11 ÷ 4
3 2 − 3 − [−5 + (1 − 0.2 × 5) ÷ −2 ]
2 = −(25)
11 = 2 25
75 3 3 (9 − 6 + 18) × 18 − 1.45 × 6 + 3.95 ×=6 17
知识梳理
知识点1:有理数的混合运算
【例】计算:
(1) (-3)×4-42÷(-7)
(2) 20-8÷(-4)×(-0.25)
1 61 (3) 2 4 × (− 7) ÷ (2 − 2)
有理数的除法_ppt_课件
第二章 有理数
有理数的除法
学习目标:
1.掌握并能运用有理数除法的运算法则; 2.能求一个数的倒数;
3.能熟练地进行乘、除混合运算;
回忆: (1)小学里学过的除法的意义是么? 已知两数的积及其中一个因数,求另 一个因数的运算. (2)除法与乘法有什么关系? 除法与乘法互为逆运算.
• 试一试 • 计算: (-6)÷2 思考:根据除法的意义,这个式子表示什么意思? 已知两数的积是-6及其中一个因数2,求另一个 数的运算.即: 要求一个数“?”使
3 3 5 2
3 3 解: 5 2 3 3 5 2 3 2 5 3 2 5
1 7 3 2 8 4
1 7 3 2 8 2 1 8 3 2 7 2 3 7
(两个整数相除时,如 -8÷2)
0除以任何一个不等于0的数都等于0
法则二: 除以一个非0的数,等于乘以这个数的倒数。
6 4 ( ) (两数相除时,至少有一个数是分数时.如 25 5 2、与倒数有关的内容:
乘积为1的两个数叫做互为倒数。
)
正数的倒数是正数.
负数的倒数是负数.
0没有倒数.
例: 计算下列各题
(?)×2=(﹣6)
因为 (﹣3)×2=(﹣6) 所以 (﹣6)÷2= (﹣3)
同样 3 2 6
∴(+6)÷(+3)=+2 (+6)÷(+2)=+3
3 2 6
∴(+6)÷ (-3 ) = -2 (+6)÷(-2)= -3 以上是根据除法是乘法的逆运算得到的.
观察并探究:
计算下列各式
有理数的除法
学习目标:
1.掌握并能运用有理数除法的运算法则; 2.能求一个数的倒数;
3.能熟练地进行乘、除混合运算;
回忆: (1)小学里学过的除法的意义是么? 已知两数的积及其中一个因数,求另 一个因数的运算. (2)除法与乘法有什么关系? 除法与乘法互为逆运算.
• 试一试 • 计算: (-6)÷2 思考:根据除法的意义,这个式子表示什么意思? 已知两数的积是-6及其中一个因数2,求另一个 数的运算.即: 要求一个数“?”使
3 3 5 2
3 3 解: 5 2 3 3 5 2 3 2 5 3 2 5
1 7 3 2 8 4
1 7 3 2 8 2 1 8 3 2 7 2 3 7
(两个整数相除时,如 -8÷2)
0除以任何一个不等于0的数都等于0
法则二: 除以一个非0的数,等于乘以这个数的倒数。
6 4 ( ) (两数相除时,至少有一个数是分数时.如 25 5 2、与倒数有关的内容:
乘积为1的两个数叫做互为倒数。
)
正数的倒数是正数.
负数的倒数是负数.
0没有倒数.
例: 计算下列各题
(?)×2=(﹣6)
因为 (﹣3)×2=(﹣6) 所以 (﹣6)÷2= (﹣3)
同样 3 2 6
∴(+6)÷(+3)=+2 (+6)÷(+2)=+3
3 2 6
∴(+6)÷ (-3 ) = -2 (+6)÷(-2)= -3 以上是根据除法是乘法的逆运算得到的.
观察并探究:
计算下列各式
《有理数除法》有理数PPT课件 (共10张PPT)
1 1 1 (3)能否用上述方法解决: 12 ( ) 6 2 3
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
挫折的名言 1、 我觉得坦途在前,人又何必因为一点小障碍而不走路呢?——鲁迅 2、 “不耻最后”。即使慢,弛而不息,纵会落后,纵会失败,但一定可以达到他所向的目标。——鲁迅 3、 故天将降大任于是人也,必先苦其心志,劳其筋骨,饿其体肤,空乏其身,行拂乱其所为,所以动心忍性,曾益其所不能。 战胜挫折的名言 1、卓越的人一大优点是:在不利与艰难的遭遇里百折不饶。——贝多芬 2、每一种挫折或不利的突变,是带着同样或较大的有利的种子。——爱默生 3、我以为挫折、磨难是锻炼意志、增强能力的好机会。——邹韬奋 4、斗争是掌握本领的学校,挫折是通向真理的桥梁。——歌德 激励自己的座右铭 1、 请记得,好朋友的定义是:你混的好,她打心眼里为你开心;你混的不好,她由衷的为你着急。 2、 要有梦想,即使遥远。 3、 努力爱一个人。付出,不一定会有收获;不付出,却一定不会有收获,不要奢望出现奇迹。 4、 承诺是一件美好的事情,但美好的东西往往不会变为现实。 工作座右铭 1、 不积跬步,无以至千里;不积小流,无以成江海。——《荀子劝学》 2、 反省不是去后悔,是为前进铺路。 3、 哭着流泪是怯懦的宣泄,笑着流泪是勇敢的宣言。 4、 路漫漫其修远兮,吾将上下而求索。——屈原《离骚》 5、 每一个成功者都有一个开始。勇于开始,才能找到成功的路。 国学经典名句 1、知我者,谓我心忧,不知我者,谓我何求。(诗经王风黍离) 2、人而无仪,不死何为。 (诗经风相鼠) 3、言者无罪,闻者足戒。 (诗经大序) 4、他山之石,可以攻玉。 (诗经小雅鹤鸣) 5、投我以桃,报之以李。 (诗经大雅抑) 6、天作孽,犹可违,自作孽,不可活。(尚书) 7、满招损,谦受益。 (尚书大禹谟) 青春座右铭 1、爱的力量大到可以使人忘记一切,却又小到连一粒嫉妒的沙石也不能容纳。 2、把手握紧,什么也没有;把手伸开,你就拥有了一切。 3、不在打击面前退缩,不在困难面前屈服,不在挫折面前低头,不在失败面前却步。勇敢前进! 4、当你能飞的时候就不要放弃飞。 5、当你能梦的时候就不要放弃梦。 激励向上人生格言 1、实现自己既定的目标,必须能耐得住寂寞单干。 2、世界会向那些有目标和远见的人让路。 3、为了不让生活留下遗憾和后悔,我们应该尽可能抓住一切改变生活的机会。 4、无论你觉得自己多么的不幸,永远有人比你更加不幸。 5、无论你觉得自己多么的了不起,也永远有人比你更强。 6、打击与挫败是成功的踏脚石,而不是绊脚石。 激励自己的名言 1、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 2、销售是从被别人拒绝开始的。 3、好咖啡要和朋友一起品尝,好机会也要和朋友一起分享。 4、生命之灯因热情而点燃,生命之舟因拼搏而前行。 5、拥有梦想只是一种智力,实现梦想才是一种能力。 6、有识有胆,有胆有识,知识与胆量是互相促进的。 7、体育锻炼可以(有时可以迅速)使人乐观(科学实验证明)。 8、勤奋,机会,乐观是成功的三要素。(注意:传统观念认为勤奋和机会是成功的要素,但是经过统计学和成功人士的分析得出,乐观是成功的第三要素) 9、自信是人格的核心。 10、获得的成功越大,就越令人高兴。
2.2.2有理数的除法法则(第1课时)(课件)七年级数学上册(人教版2024)
a b c
a b c
故 的值为
1或 3.
的值为±1或±3.
故
a b c
例8
一天, 果果与维维利用温差测量山峰的高度,果果在山顶测得温度是-
1℃,维维此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温
大约降低0.8℃, 这个山峰的高度为多少? (山脚海拔0米)
解: 依题意得
( 36 ) 9
解:原式=
= (36 9)
= 4
12 3
(2)
25 5
12 3
解:原式=
25 5
12 5
=
25 3
4
=
5
例2
(1) (-15) ÷ (-3) ;
(3) (-0.75) ÷0.25;
到右的顺序进行计算).
例5
2 1 1
计算
计算:
50 ( )
3 4 6
2
1
1
3
48 48 = 48 48 4 48 6 = 408;
3
4
6
2
8
3 2
3
(方法二)原式 = 48 ( ) = 48 = 192;
(法二)原式=
12 12 12
B.和为负
4.如果a÷b=0,那么(
A.a=0,b=0
B
D.无法确定
C
)
C.积为正
)
B.a=0,b≠0
C. a≠ 0,b=0
D.a=0
D.异号
5.计算(-12)÷4 的结果等于(
A.-3
B.3
6.下列运算错误的是(
a b c
故 的值为
1或 3.
的值为±1或±3.
故
a b c
例8
一天, 果果与维维利用温差测量山峰的高度,果果在山顶测得温度是-
1℃,维维此时在山脚测得温度是5℃.已知该地区高度每增加100米,气温
大约降低0.8℃, 这个山峰的高度为多少? (山脚海拔0米)
解: 依题意得
( 36 ) 9
解:原式=
= (36 9)
= 4
12 3
(2)
25 5
12 3
解:原式=
25 5
12 5
=
25 3
4
=
5
例2
(1) (-15) ÷ (-3) ;
(3) (-0.75) ÷0.25;
到右的顺序进行计算).
例5
2 1 1
计算
计算:
50 ( )
3 4 6
2
1
1
3
48 48 = 48 48 4 48 6 = 408;
3
4
6
2
8
3 2
3
(方法二)原式 = 48 ( ) = 48 = 192;
(法二)原式=
12 12 12
B.和为负
4.如果a÷b=0,那么(
A.a=0,b=0
B
D.无法确定
C
)
C.积为正
)
B.a=0,b≠0
C. a≠ 0,b=0
D.a=0
D.异号
5.计算(-12)÷4 的结果等于(
A.-3
B.3
6.下列运算错误的是(
有理数的除法(共20张PPT)
除以一个有理数等于乘以它的倒数
总结词
当一个数除以一个有理数时,结果等于这个数乘以这个有理数的倒数。
详细描述
这是有理数除法的基本运算规则。例如,如果要将10除以2,可以将其转化为 10乘以2的倒数(即1/2),结果仍然是10/2。
有理数除法运算的顺序
总结词
在进行多个有理数的除法运算时,应遵循从左到右的顺序进 行计算。
详细描述
在进行多个有理数的除法运算时,应按照从左到右的顺序进行 计算,以避免混淆和错误。例如,在计算表达式"a/b/c"时,应 先计算a除以b,然后再将结果除以c。
04
有理数除法的运算技巧
利用乘法分配律简化运算
总结词
乘法分配律是有理数除法中常用的简 化运算技巧,通过将除法转化为乘法 ,可以简化计算过程。
例子
如 $10 div 3 = 3frac{1}{3}$,表示 $10$ 除以 $3$ 的结果是 $3$ 余 $frac{1}{3}$。
有理数除法的性质
性质1
除法的结合律。即 $(a div b) div c = a div (b times c)$。
性质2
除法的倒数。如果 $a div b = c$,那么 $b = a div c$。
Байду номын сангаас
综合练习题
总结词
综合运用除法解决实际问题
详细描述
综合练习题着重于培养学生运用除法解决实 际问题的能力。题目设计更加贴近生活,涉 及各种实际情境中的除法问题,如购物计算 、时间计算等。通过解决这些实际问题,学 生能够更好地理解和掌握除法的实际应用,
提高解决实际问题的能力。
THANK YOU
感谢聆听
理解有理数除法在实际问题中的应用,提高解决实际 问题的能力。 通过练习和实例,加深对有理数除法的理解和掌握。
人教版初中七年级上册数学《有理数的除法》精品课件
强化练习 计算: ①(-18)÷6
-3 ④0÷(-8)
0
②(-63)÷(-7) 9
⑤(-6.5)÷0.13 -50
③1÷(-9)
1 9
⑥
6 5
2 5
3
随堂演练
1.已知(-2)×(-3)=6,则6÷(-2)= -3 , 6÷(-3)= -2 .
2.下列运算结果等于1的是( D )
A.(-3)+(-3)
推进新课
知识点1 有理数除法法则
知识回顾
你能很快地说出下列各数的倒数吗?
9
原数
-5
8
7
0
-1
1 2 3
倒数
1 5
8 9
1 7
-1
3 5
正数除以负数 负数除以负数 零除以负数
8÷(-4) =-2 (-8)÷(-4) =2 0÷(-4) =0
8 ( 1 ) =-2 4
(8) ( 1 ) =2
0
(
课后作业
1.从教材课后习题中选取; 2.从课时练中选取。
下课了!
B.(-3)-(-3)
C.(-3)×(-3)
D.(-3)÷(-3)
3.计算题.
(1) 91 13
7
(3) 0.25 3 8
2 3
(2)48 16
3
(4) 1
3
2
3
3
11
4.用“>”“<”或“=”填空. (1)如果a<0,b>0,那么ab < 0,a < 0; (2)如果a>0,b<0,那么ab < 0,ab < 0;
b (3)如果a<0,b<0,那么ab > 0,a > 0;
人教版初中数学七年级上册精品教学课件 第1章 有理数 1.4.2 第1课时 有理数的除法
大数的符号相同,a,b的绝对值无法比较大小,故a+b的正负不能确定.
4.下列各式的值等于 9 的是( D )
A.
|+63|
-7
-63
5.计算:
(1)(-36)÷(-12)=
3
|-63|
B. |-7|
3
(2)64 ÷ -3 8 =
C. -|-7|
;
3
-2
.
D.
-63
-7
快乐预习感知
6.化简:
-32
=
题可以利用除法法则直接除;第(2)小题不能整除,可以先确定符号,
利用小学学过的约分进行化简.
-18
=-18÷3=-6.
3
-24
24÷8
3
(2)-16 = 16÷8 = 2.
解:(1)
快乐预习感知
1
1.若=-4,则 x 的值是( C )
1
பைடு நூலகம்
A.4
B.4
1
C.-4
D.-4
2.下列运算错误的是( A )
-8
B. 4
-8
C.-4
8
D.-4
相除.0
互动课堂理解
1.有理数的除法法则的运用
【例 1】 计算:
(1)(-15)÷(-3);
1
(2)(-12)÷ - 4 ;
(3)(-0.75)÷0.25;
1
(4)(-12)÷ - ÷(-100).
12
分析第(1)(3)小题直接运用除法法则进行有理数的除法运算,首
4
-6
(2)-0.2=
9
(3)--72=
(1)
-8
;
30
4.下列各式的值等于 9 的是( D )
A.
|+63|
-7
-63
5.计算:
(1)(-36)÷(-12)=
3
|-63|
B. |-7|
3
(2)64 ÷ -3 8 =
C. -|-7|
;
3
-2
.
D.
-63
-7
快乐预习感知
6.化简:
-32
=
题可以利用除法法则直接除;第(2)小题不能整除,可以先确定符号,
利用小学学过的约分进行化简.
-18
=-18÷3=-6.
3
-24
24÷8
3
(2)-16 = 16÷8 = 2.
解:(1)
快乐预习感知
1
1.若=-4,则 x 的值是( C )
1
பைடு நூலகம்
A.4
B.4
1
C.-4
D.-4
2.下列运算错误的是( A )
-8
B. 4
-8
C.-4
8
D.-4
相除.0
互动课堂理解
1.有理数的除法法则的运用
【例 1】 计算:
(1)(-15)÷(-3);
1
(2)(-12)÷ - 4 ;
(3)(-0.75)÷0.25;
1
(4)(-12)÷ - ÷(-100).
12
分析第(1)(3)小题直接运用除法法则进行有理数的除法运算,首
4
-6
(2)-0.2=
9
(3)--72=
(1)
-8
;
30
有理数的除法(第1课时有理数除法法则)课件(共39张PPT) 七年级数学上册(人教版2024)
这两个法则分别在什么情况下使用?
如果两数相除,能够整除的就选择法则2,不能够整除的就选择用法则1.
总结归纳
思考:
到现在为止我们有了两个除法法则,那么两
个法则是不是都可以用于解决两数相除呢?
要点归纳:
1.两个法则都可以用来求两个有理数相除.
2.如果两数相除,能够整除的就选择法则二,
不能够整除的就选择用法则一.
(3)原式=1 8÷(-54)=- ;(4)原式=-[(-9)÷3 6 ]=-(- )= .
练一练
4.化简:
-
(1)
; 解:原式=-9;
-
(2)
;
-
56 7
原式=48=6;
-
(3)
; 原式=-30=-2;
45
3
-
(4) ;
.
原式=-30.
总结归纳
一般地,根据有理数的除法,形如 (p,q 是整数, q ≠0)的数都是
4/5
(-12/25)×(-5/3)=___
-8
-72×(1/9)=___
问题:上面各组数计算结果有什么关系?由此你能
得到有理数的除法法则吗?
观察下列两组式子,你能找到它们的共同点吗?
“÷”变“×”
(1)(+6)÷(+2)= +3
6
1
=
2
+3
互为倒数
“÷”变“×”
(2)(+6)÷(-2)= -3
分层练习-巩固
11. 下列四名同学的说法中,正确的是(
A
)
A. 墨墨:0除以任何一个不等于0的数都得0
1.有理数的除法课件(新人教版)
(5)(-6.5)÷0.13
解:原式=-(6.5÷0.13)=-50
(6)
6 5
2 5
解:原式=
6 2 65 3 5 5 52
例6 化简下列分数:(1) 12 ;(2) 45 .
3
12
知 识
解:(1) 12
3
=(-12)÷
3=
-4
.
点 二
(2) 45 (= -45)÷(-12) = 45÷12
第一章 有理数 第十五课时 1.4.2有理数的除法(1)
1、求下列各数的倒数.
(1)-4的倒数是____14___;
(2)
2 5
的倒数是____52___;
(3)1
3 7
的倒数是___1_70___.
2、引入负数后,如何进行有理数的除法呢?
1
理解除法的意义,掌握有理数
的除法法则;
2
能熟练进行有理数的除法运算;
这个法则可以用式子表示为:a b a 1 b 0 。
b
2、从有理数的除法法则,容易得出: (1)两数相除,同号 得正 ,异号 得负 ,并 把绝对值 相除 (2)0除以任何一个不为0的数,都得 0.
3、学习反思
_______________________________________________
解:原式==__1_12_25_5_75_15__5_75=___151_2_5_=_75_2_5__15_7 1___=_2_5_71_
(2)
2.5 5
8
1 4
解:原式= 5 8 1 =___1___.
254
温馨提示:乘除混合运算要先将除法
化为_乘__法__,然后确定积的_符__号______,
有理数的除法PPT课件
的续集是“bronze”(也就是“青铜”),至今已经出了十几本但还未结束,很多租书店里都有,有兴趣的话可以去弄来看看。其中有一些h的场面,另外比较血腥,
无法接受者请慎重考虑。(绝爱的vcd现在市面上也有卖,基本上忠於原著,值得一看。)
在“绝爱”出现的同时期也出现了许多温馨的耽美漫画,比较出名的有“美男子的亲密爱人”(叶芝真已),“微热纯爱少年样”(阿部美幸),“微忧青春曰
12
5
5
=
4
计算: (1) (-18) ÷6 (3) 1 ÷(-9)
(2) (-63) ÷(-7) (4)0÷(-8)
两数相除的符号法则:
两数相除,同号得 正 ,异号得 负 ,并 把绝对值相 除 ,0除以任何一个不等于0 的数,都得 0 .
例9 化简下列分数:
分数可以理解 为分子除以分
(1) 12 (2) 45 母.
雾夕)、“lovemode”(志水雪)、“暗黑末裔”(松下容子)等优秀作品。其中男作者的作品要算“快感方程式”(葵二叶红三叶)和“激爱”(小鹰和麻)最爲有名。这
些作品很多都是值得一看的精P品PT,模建板议下大载家:找w来w看w一.1下p。/moban/
行业PPT模板:/hangye/
因因因为为为 所所所以 以以
(0-2×2×)(×-(-4(4-)=)4=0)-=88
8 (4) 8 ( 1 ) 4
(8) (4) (8) ( 1)
8(0-÷÷8)((÷--44()-)==40)-=22
4
0 (4) 0 ( 1)
4
除以一个负数等于乘以这个负数的倒数。
而总是在不经意间让人发现一段感情的存在。
例如“圣传”中阿修罗王和帝释天这两人的感情纠葛,clamp在正传中始终没有明确地画明,而只是在番外篇中以隐晦的画面淡淡带过,但这样的简单有时
有理数的除法PPT授课课件
基础巩固练
3.我们生活在声音的世界里,声音无处不在。 下列声音: ①工厂车间机器刺耳的轰鸣声 ②山间小溪潺潺的流水声 ③清晨公园里小鸟的鸣叫声 ④装修房子时的电钻声 ⑤飞机起飞时的声音 其中属于噪声的是( C ) A.①③④ B.①②⑤ C.①④⑤ D.①②④⑤
基础巩固练
2.从环保角度看,以下不属于噪声的是( D ) A.阅览室内絮絮细语 B.上物理课时,听到隔壁教室音乐课传来的歌声 C.深夜,人们正要入睡,突然传来弹奏熟练的钢琴声 D.吸引人们的、雄辩有力的演讲声
B. 1 (-3)=3 (-3) 3
C.
(-2)
(-3)=(-2)
-
1 3
D.
2 3
-
4 9
=
2 3
-
9 4
知2-练
课堂小结
有理数及其运算
做有理数的除法运算要注意三点: (1)0不能作除数; (2)无论是直接除还是转化成乘法,都要先确定商
的符号; (3)被除数或除数中的小数一般需化成分数;带分
感悟新知
知识点 1 有理数的除法法则
知1-讲
想一想:
(-18) ÷6=___-__3_,
5
-
1 5
=
—25
(-27) ÷ (-9)=__3_____,0÷ (-2)=___0____,
观察上面的算式及计算结果,你有什么发现?换
一些算式再试一试.
感悟新知
知1-练
除法法则1: 两个有理数相除,同号得__正__,异号得__负__, 并把绝对值__相__乘__. 0除以任何非0的数都得___0___. 注意:0不能作除数.
感悟新知
总结
多个有理数连除的计算步骤: (1)确定符号并将带分数化成假分数; (2)转化为乘法运算; (3)进行乘法运算.