幂等矩阵的性质毕业论文

合集下载

幂等矩阵的性质及应用(定稿)

幂等矩阵的性质及应用(定稿)

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix院系理学院专业数学与应用数学姓名邱望华年级A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域dim V 线性空间V 的维数 1T - 线性变换T 的逆变换TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r =均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫ ⎪λ⎝⎭,由200001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭ ,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭- ⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪ ⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠. 因此,若A 是幂等矩阵,则A 的若尔当标准型如下:12000000n r J λλλ⎛⎫⎪ ⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式***[2]()AB B A=.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000rr r E E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭. 记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000rr E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌ 性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======. ▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵) 6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -=.10){}()()0N A N E A -=.11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2()()0()0E A Aa A A a -=⇒-=.由a 的任意性得 2A A =.1)⇔8)必要性: 由2A A =知 ()()N A R E A =-.于是有 dim ()dim ()N A R E A =-即有 rank rank()n A E A -=-亦即 rank rank()A E A n +-=.充分性: 由rank rank()A E A n +-= 易知:dim ()dim ()N A R E A =- (*) 又对()a N A ∀∈,有0Aa =则有()E A a a Aa a -=-=.由()()E A a R E A -∈-知()a R E A ∈-即有 ()()N A R E A ⊂-.据(*)式知()()N A R E A =-.再由6)得2A A =.8)⇔9)必要性: 由rank rank()A E A n +-=.即知:dim ()dim ()R A R E A n +-=.又对n a R ∀∈,有()a Aa E A a =+-,而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+---n =.故有dim[()()]0R A R E A -=. 于是, {}()()0R A R E A -=.充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+=.其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+==.即221212O ΛΛ+ΛΛ=. 因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有rank()rank()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=---.证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=---以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换. 由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==.2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知, 对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =. 据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s =.定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,ic u v s u v e a s c πλε-=∈≠=∈若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u =且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-.将它们相加得212AB B B u-=--.又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u =-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=- 121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v =-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-.又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u-=-. 结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v =--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v vλ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3ieπε=满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--.从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u =-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v =-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v=-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑴ A B -可逆.⑵ 12c A c B +及E AB -可逆. 证明:⑴⇒⑵对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑴⇐⑵对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑴ A B -可逆.⑵ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1 rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数, 所以111,0r r n λλλλ+======,故结论成立. ▌推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了. 定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥为Hermite 矩阵,且存在某个,i k N ∈使2ik ii A A =,又1mi i A E ==∑.则 11rank rank()mmi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

幂等矩阵的性质及应用

幂等矩阵的性质及应用

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix 院系理学院专业数学与应用数学姓名邱望华年级 A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵 C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵 A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域 dim V 线性空间V 的维数1T - 线性变换T 的逆变换 TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r = 均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫⎪λ⎝⎭ ,由20001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫ ⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫ ⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭-⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠.因此,若A 是幂等矩阵,则A 的若尔当标准型如下:1200000n r J λλλ⎛⎫⎪⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式 ***[2]()AB B A =.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为 000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000r r rE E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000r r E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======.▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2-=⇒-=.E A Aa A A a()()0()0由a的任意性得2A A=.1)⇔8)必要性: 由2A A=知()()=-.N A R E A于是有dim()dim()=-N A R E A即有rank rank()n A E A-=-亦即rank rank()+-=.A E A n充分性: 由rank rank()+-=易知:A E A ndim()dim()=- (*)N A R E A又对()∀∈,有a N AAa=则有-=-=.E A a a Aa a()由()()a R E A∈--∈-知()E A a R E A即有()()⊂-.N A R E A据(*)式知=-.N A R E A()()=.再由6)得2A A8)⇔9)必要性: 由rank rank()+-=.即知:A E A n+-=.dim()dim()R A R E A n又对n∀∈,有a R=+-,()a Aa E A a而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+--- n =.故有dim[()()]0R A R E A -= .于是, {}()()0R A R E A -= .充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+= . 其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+== .即221212O ΛΛ+ΛΛ=.因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有r a n k ()r a n k ()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=--- . 证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=--- 以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换.由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==. 2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知,对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =.据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s = .定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,i c u v s u v e a s c πλε-=∈≠=∈ 若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u=且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-. 将它们相加得212AB B B u-=--. 又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u=-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=-121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v=-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-. 又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u -=-.结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v=--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v v λ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3i eπε= 满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--. 从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u=-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v=-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v =-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++ 112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑪ A B -可逆.⑫ 12c A c B +及E AB -可逆. 证明:⑪⇒⑫对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑪⇐⑫对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+ 220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑪ A B -可逆.⑫ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数,所以111,0r r n λλλλ+====== ,故结论成立. ▌ 推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了.定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1m i i A E ==∑.则 11rank rank()m mi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

数学与应用数学毕业论文-关于斜幂等矩阵性质的探讨

数学与应用数学毕业论文-关于斜幂等矩阵性质的探讨

莆田学院毕业论文题目关于斜幂等矩阵性质的探讨学生姓名学号专业数学与应用数学班级数本054指导教师二00九年五月十日目录摘要·······································································(错误!未定义书签。

)0 引言·································································(错误!未定义书签。

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用

0引言幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。

在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。

但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。

因此本文对幂等矩阵的性质做出相关讨论。

本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。

1主要结果首先给出幂等矩阵的定义和基本性质。

定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。

下面给出关于幂等矩阵的一些简单的性质。

定理1:幂等矩阵A的特征值只能是0或者1。

证明:设A为任意一个幂等矩阵。

由A2=A,可得λ2=λ其中λ为A的特征值。

于是有λ=1或0,命题得证。

推论:可逆的幂等矩阵的特征值均为1。

证明:设A为一可逆的幂等矩阵。

由A2=A可得A2A-1=AA-1即A=E。

此时有λE-E=0即λ=1其中,λ为A的特征值。

命题得证。

定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得:P-1AP=Er0 00 (),其中r=R(A)。

证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=J10⋱0J s (),其中J i=λi1…0⋱┋⋱1 0λi ⎛⎝⎜⎜⎜⎜⎜⎜⎜⎜⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟。

由此可得J2=J。

于是有,J i2=J i。

此时,J i只能为数量矩阵λi E。

又因为A2=A,所以λi=0或1,且r=R(A)。

命题得证。

定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。

证明:(i)A为一n阶幂等矩阵。

α为其特征值1对应的特征向量。

则有,Aα=α。

由此可得α属于A的值域。

反之,对于任意一个A的值域中的向量α,总能找到一个向量β,使得Aβ=α,于是有Aα=A2β=β,即α=β。

综上可知,幂等矩阵的特征值为1的特征子空间与其值域等价。

(ii)A为一n阶幂等矩阵。

幂等矩阵的概念及性质

幂等矩阵的概念及性质
! 射影 !, 使得 !" ( "! , ! $( # ) ( "# ’
…, 则 !! , …, …, !# % " , !& , !" , ! #, !# % ! , !# % " , !& 就是 " 的一组基 ’ 显然 ! !! ( !! , $ !!" ( !" ,…, ! !# ( !# , !!# %! ( #, $ !!# %" ( #,…, ! !& ( # 即在基 !! , …, …, !" , !#, !# % ! , !# % " , ! & 下的矩阵为 , # ( %&’( ( !) # # 故存在一个可逆矩阵 *,使得 ! ( * $!
! # 概念与引理
# # 定义 !# 若方阵 ! 满足 !% " ! 时, 称 ! 为幂等 矩阵 # 定义 %# 若方阵 $ 满足 $% " % 时, 称 $ 为对合 矩阵 # 引理 !# 设 &! 、 &% 是线性空间 & 的子空间, 令’ " &! ( &% , 则 ’ " &! C &% 的充要条件为 ABC ( ’ ) " ABC ( &! )( ABC ( &% ) 证明: 因为维数公式为 ABC ( ’ ) ( ABC ( &! D &% ) " ABC ( &! ) ( ABC ( &% ) 由已知可得 ABC ( &! D &% ) " & , 即 &! D &% " { &} 而 &! ( &% 是直和的充要条件是 &! D &% " { &} , 所以 得证 # 引理 %# 如果 !、 $ 是 ) * ) 方阵且满足 !$ " &, 那么 DEFG ( !)( DEFG ($) ’ )# 证明: 设 $ 的列向量组为 !! , !% , … !) , 因为 !$ " ! (!! , !% , …! ) ) " ( !! ! , !!% , … !! ) ) " & 所以

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用
刘嘉仑;杨传胜
【期刊名称】《科技视界》
【年(卷),期】2012(000)031
【摘要】幂等矩阵是一类性质特殊的矩阵,在许多领域有极其广泛的应用.本文主要研究幂等矩阵的特征值、特征子空间和Jordan标准型的基本性质并给出其应用.【总页数】2页(P73,79)
【作者】刘嘉仑;杨传胜
【作者单位】浙江海洋学院数理与信息学院浙江舟山 316000;浙江海洋学院数理与信息学院浙江舟山 316000
【正文语种】中文
【相关文献】
1.幂等矩阵的性质及应用 [J], 徐宏武
2.n阶k次广义幂等矩阵的性质 [J], 高汝林;张绪绪
3.三幂等矩阵的一些性质 [J], 陆洪宇
4.幂幺和幂等矩阵的一个性质的推广 [J], 潘庆年; 姚文杰
5.幂等矩阵的性质及其推广 [J], 冯福存;常莉红
因版权原因,仅展示原文概要,查看原文内容请购买。

本科毕业论文--幂零矩阵的性质与应用

本科毕业论文--幂零矩阵的性质与应用

目录摘要 (1)Abstract (1)1 引言 (2)2 预备知识 (2)2.1 概念 (2)2.1 引理 (3)3 幂零矩阵的性质 (4)3.1幂零矩阵的特性 (4)3.2 矩阵是幂零矩阵的几个充分必要条件 (6)3.3幂零矩阵和若尔当块 (7)3.4幂零矩阵的其他性质 (8)4幂零矩阵的应用 (11)4.1幂零矩阵在矩阵求逆中的应用 (11)4.1.1 可求幂零矩阵与单位矩阵和的矩阵的逆 (11)4.1.2 求主对角线上元素完全相同的三角矩阵的逆 (13)4.2幂零矩阵在其他方面的应用 (14)结论 (16)参考文献 (16)致谢 (18)幂零矩阵的性质与应用摘要:在高等数学中,矩阵是研究和解决问题的重要工具,幂零矩阵又是一类特殊的矩阵,在矩阵理论中具有举足轻重的地位,实际应用方面也有重要的意义。

幂零矩阵具有很多好的性质,本文将深入挖掘这些性质,并且用不同的方法去分析论证这些性质。

同时本文还给出幂零矩阵自身特有的一些性质,讨论了矩阵是幂零矩阵的充分必要条件,并说明其在求矩阵的逆矩阵方面的优越性,并通过例子说明其在实际中的应用。

关键词:幂零矩阵;线性变换;逆矩阵;若尔当标准型;特征值;迹.Properties and Applications of Nilpotent MatricesAbstract: Matrix acts as a key role in studying and solving the questions in advanced mathematics. As special forms of matrix, nilpotent matrices play a key role not only in the theory of matrix but also in practical application. Nilpotent Matrices have many good properties. In the paper, we will find and prove with various methods these properties in profundity. The paper will give some unique properties of nilpotent matrices and discusses the necessary and sufficient condition of nilpotent matrices. Then the paper shows its superiority in solving inverse matrix, and explains its practical application by examples.Key words: Nilpotent matrix; Linear transformation; Inverse matrix; Jordan canonical form; Characteristic; Trace.1 引言随着科学技术的迅速发展,古典的线性代数知识已不能满足现代科技的需要,矩阵的理论和方法已成为现代科技领域必不可少的工具。

幂等矩阵及其性质

幂等矩阵及其性质

幂等矩阵及其性质
高枫
【期刊名称】《常州工学院学报》
【年(卷),期】2009(022)001
【摘要】幂等矩阵是代数学中的重要矩阵.文章研究了幂等矩阵性质,讨论了幂等矩阵的和、差、积仍为幂等矩阵的充分必要条件.
【总页数】3页(P67-68,73)
【作者】高枫
【作者单位】常州工学院理学院,江苏,常州,213002
【正文语种】中文
【中图分类】O151.21
【相关文献】
1.关于实幂等矩阵性质的一些探讨 [J], 韩凯凯
2.数量三幂等矩阵与广义二次矩阵的相关性质 [J], 吕洪斌;杨忠鹏;陈梅香;冯晓霞
3.n阶k次广义幂等矩阵的性质 [J], 高汝林;张绪绪
4.三幂等矩阵的一些性质 [J], 陆洪宇
5.幂等矩阵的性质及其推广 [J], 冯福存;常莉红
因版权原因,仅展示原文概要,查看原文内容请购买。

幂等变换和幂等矩阵的性质

幂等变换和幂等矩阵的性质

幂等变换和幂等矩阵的性质中文摘要:本文在已有文献资料的基础上,对幂等变换和幂等矩阵的性质作了归纳。

关键词:幂等变换,幂等矩阵,性质正文:(一)定义及说明定义1.设σ是数域P 上线性空间V 上的线性变换,且2σσ=,则称σ为V 上的幂等变换。

定义2.设A 是数域P 上的n 级方阵,若2A A =,则称A 为V 上的幂等矩阵。

因为数域P 上n 维线性空间V 的全部线性变换组成的集合()()n L V P 对于线性变换的加法和数量乘法构成的P 上的线性空间与数域P 上的n 级方阵构成的线性空间n n P ⨯同构,即()()n n n L V P P ⨯≅。

所以幂等变换σ对应于幂等矩阵A ,2A A =.(二)幂等变换的一个性质及其推广[1]定理1.设σ是数域P 上线性空间V 的线性变换,且2σσ=,则有(1)()Ker σ={}()|V ξσξξ-∈,Im()σ={}()|V ξσξξ=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是σττσ=将幂等变换的定义加以推广:设σ是数域P 上线性空间V 上的线性变换,且n σσ=,则称σ为V 上的幂等变换。

对于满足n σσ=的线性变换有类似性质定理2. 设σ是数域P 上线性空间V 的线性变换,且n σσ=(2n ≥),则有(1)()Ker σ={}1()|n V ξσξξ--∈,Im()σ={}1()|n V ξσξξ-=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是11n n σττσ--=证明:已知n σσ=(1):(),()0Ker ασσα∀∈=即122()(())(0)0n n n σσσσασ---⇒===1()n αααα-∴=-∈{}1()|n V ξσξξ--∈因此()Ker σ⊆{}1()|n V ξσξξ--∈反之,1()n ασα-∀-∈{}1()|n V ξσξξ--∈, 由1(())()()()()0n n σασασασασασα--=-=-=⇒1()n ασα--∈()Ker σ因此{}1()|n V ξσξξ--∈⊆()Ker σ从而()Ker σ={}1()|n V ξσξξ--∈Im(),,V ασβασβ∀∈∃∈=使得()11,()(())()()n n n n σσσασσβσβσβα--=∴====α∴∈{}1()|n V ξσξξ-=∈因此Im()σ⊆{}1()|n V ξσξξ-=∈反之,{}11()()|,n n V V ασαξσξξα--∀=∈=∈∈,有 2(())Im()n ασσασ-=∈因此{}1()|n V ξσξξ-=∈⊆Im()σ从而Im()σ={}1()|n V ξσξξ-=∈(2):由(1),,V ααασασα∀∈∈n-1n-1有=(-())+()()Ker σ+Im()σV ∴⊆()Ker σ+Im()σ从而V =()Ker σ+Im()σ又设β∀∈()Ker σIm()σ由β∈()Ker σ()0σβ⇒=又由β∈Im()σ={}1()|n V ξσξξ-=∈122()(())(0)0n n n βσβσσβσ---⇒====即()Ker σIm()σ={}0∴()Im()V Ker σσ=⊕(3):""⇒假设()Ker σ,Im()σ都在τ之下不变V α∀∈,由(2),存在唯一的β∈()Ker σ,唯一的γ∈Im()σ,使得αβγ=+ 则由假设,()τβ∈()Ker σ,()τγ∈Im()σ122()((()))(0)0n n n στβσστβσ---∴===,11()(())()n n στγστγτγ--==(由(1)) 111()()()0()()n n n σταστβστγτγτγ---⇒=+=+=又122()(())(0)0n n n σβσσβσ---===,1()n σγγ-=(由(1))1111()()(())(())n n n n τσατσβγτσβτσγ----⇒=+=+(0)()()ττγτγ=+=11()()n n στατσα--∴=由α的任意性,11n n σττσ--=""⇐若11n n σττσ--=,α∀∈()Ker σ即()0σα=,且由(1),V β∃∈使得1()n αβσβ-=- 1(())(())n σταστβσβ-⇒=- =11()()()()()()n n n στβστσβστβσστβστβστβ---=-=-=()()στβστβ-=0 ∴()τα∈()Ker σ即()Ker σ在τ之下保持不变Im()ασ∀∈,由(1),1()n ασα-= 11(())(())()n n στατσατα--∴==即1(())()n στατα-=由(1),Im()σ={}1()|n V ξσξξ-=∈ ∴()τα∈Im()σ即Im()σ也在τ之下保持不变 证毕定理1是定理2当n=2时的情形,当然也成立。

幂等变换和幂等矩阵的性质

幂等变换和幂等矩阵的性质

幂等变换和幂等矩阵的性质中文摘要:本文在已有文献资料的基础上,对幂等变换和幂等矩阵的性质作了归纳。

关键词:幂等变换,幂等矩阵,性质正文:(一)定义及说明定义1.设σ是数域P 上线性空间V 上的线性变换,且2σσ=,则称σ为V 上的幂等变换。

定义2.设A 是数域P 上的n 级方阵,若2A A =,则称A 为V 上的幂等矩阵。

因为数域P 上n 维线性空间V 的全部线性变换组成的集合()()n L V P 对于线性变换的加法和数量乘法构成的P 上的线性空间与数域P 上的n 级方阵构成的线性空间n n P ⨯同构,即()()n n n L V P P ⨯≅。

所以幂等变换σ对应于幂等矩阵A ,2A A =.(二)幂等变换的一个性质及其推广[1]定理1.设σ是数域P 上线性空间V 的线性变换,且2σσ=,则有(1)()Ker σ={}()|V ξσξξ-∈,Im()σ={}()|V ξσξξ=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是σττσ=将幂等变换的定义加以推广:设σ是数域P 上线性空间V 上的线性变换,且n σσ=,则称σ为V 上的幂等变换。

对于满足n σσ=的线性变换有类似性质定理2. 设σ是数域P 上线性空间V 的线性变换,且n σσ=(2n ≥),则有(1)()Ker σ={}1()|n V ξσξξ--∈,Im()σ={}1()|n V ξσξξ-=∈(2)()Im()V Ker σσ=⊕(3)若τ是V 的一个线性变换,则()Ker σ和Im()σ都在τ之下不变的充要条件是11n n σττσ--=证明:已知n σσ=(1):(),()0Ker ασσα∀∈=即122()(())(0)0n n n σσσσασ---⇒===1()n αααα-∴=-∈{}1()|n V ξσξξ--∈因此()Ker σ⊆{}1()|n V ξσξξ--∈反之,1()n ασα-∀-∈{}1()|n V ξσξξ--∈, 由1(())()()()()0n n σασασασασασα--=-=-=⇒1()n ασα--∈()Ker σ因此{}1()|n V ξσξξ--∈⊆()Ker σ从而()Ker σ={}1()|n V ξσξξ--∈Im(),,V ασβασβ∀∈∃∈=使得()11,()(())()()n n n n σσσασσβσβσβα--=∴====α∴∈{}1()|n V ξσξξ-=∈因此Im()σ⊆{}1()|n V ξσξξ-=∈反之,{}11()()|,n n V V ασαξσξξα--∀=∈=∈∈,有 2(())Im()n ασσασ-=∈因此{}1()|n V ξσξξ-=∈⊆Im()σ从而Im()σ={}1()|n V ξσξξ-=∈(2):由(1),,V ααασασα∀∈∈n-1n-1有=(-())+()()Ker σ+Im()σV ∴⊆()Ker σ+Im()σ从而V =()Ker σ+Im()σ又设β∀∈()Ker σIm()σ由β∈()Ker σ()0σβ⇒=又由β∈Im()σ={}1()|n V ξσξξ-=∈122()(())(0)0n n n βσβσσβσ---⇒====即()Ker σIm()σ={}0∴()Im()V Ker σσ=⊕(3):""⇒假设()Ker σ,Im()σ都在τ之下不变V α∀∈,由(2),存在唯一的β∈()Ker σ,唯一的γ∈Im()σ,使得αβγ=+ 则由假设,()τβ∈()Ker σ,()τγ∈Im()σ122()((()))(0)0n n n στβσστβσ---∴===,11()(())()n n στγστγτγ--==(由(1)) 111()()()0()()n n n σταστβστγτγτγ---⇒=+=+=又122()(())(0)0n n n σβσσβσ---===,1()n σγγ-=(由(1))1111()()(())(())n n n n τσατσβγτσβτσγ----⇒=+=+(0)()()ττγτγ=+=11()()n n στατσα--∴=由α的任意性,11n n σττσ--=""⇐若11n n σττσ--=,α∀∈()Ker σ即()0σα=,且由(1),V β∃∈使得1()n αβσβ-=- 1(())(())n σταστβσβ-⇒=- =11()()()()()()n n n στβστσβστβσστβστβστβ---=-=-=()()στβστβ-=0 ∴()τα∈()Ker σ即()Ker σ在τ之下保持不变Im()ασ∀∈,由(1),1()n ασα-= 11(())(())()n n στατσατα--∴==即1(())()n στατα-=由(1),Im()σ={}1()|n V ξσξξ-=∈ ∴()τα∈Im()σ即Im()σ也在τ之下保持不变 证毕定理1是定理2当n=2时的情形,当然也成立。

幂等矩阵的性质及其推广

幂等矩阵的性质及其推广

㊀[收稿日期]2019G05G21;㊀[修改日期]2019G10G15㊀[基金项目]国家自然科学基金项目(11701306);宁夏高等学校科学技术研究项目(N G Y 2018G109);宁夏师范学院本科教学项目(N J 201939)㊀[作者简介]冯福存(1977-),女,硕士,副教授,从事矩阵理论及其应用研究.E m a i l :n x f f c @163.c o m第36卷第1期大㊀学㊀数㊀学V o l .36,ɴ.12020年2月C O L L E G E MA T H E MA T I C S F e b .2020幂等矩阵的性质及其推广冯福存,㊀常莉红(宁夏师范学院数学与计算机科学学院,宁夏固原756000)㊀㊀[摘㊀要]首先对幂等矩阵的简单性质进行了归纳总结,接着论证了幂等矩阵的等价条件及其特征值的取值范围,并讨论了幂等矩阵与实对称矩阵的关系㊁幂等矩阵与其伴随矩阵的特征值和特征向量的对应关系及幂等矩阵在群逆中的一个性质.最后讨论了幂等矩阵的两种分解形式.[关键词]幂等矩阵;特征值;实对称矩阵;矩阵分解[中图分类号]O 151.21㊀㊀[文献标识码]C ㊀㊀[文章编号]1672G1454(2020)01G0090G051㊀引㊀㊀言幂等矩阵是一类常见的比较特殊的矩阵,在矩阵理论中具有重要的地位和作用,它的很多优良的性质,对解决矩阵问题大有益处.幂等矩阵及其相关性质具有鲜明的背景㊁丰富的理论,在概率统计㊁模糊数学及信息与计算科学等领域都有重要应用.由于幂等矩阵自身的特殊性,其相关性质和内容的讨论至今仍然是一个热点.但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的,因此,在前人已有的研究基础[1-3]上对幂等矩阵的性质做了一些有益的补充和推广.2㊀基本性质定义1[1]㊀设A 是n 阶矩阵,如果A 2=A ,则称A 为幂等矩阵.由定义1和文献[4]可知λ2-λ=0为幂等矩阵的一个零化多项式,从而幂等矩阵的最小多项式m λ=λ或m λ=λ-1或m λ=λ(λ-1),由最小多项式和特征值的关系可得:性质1[3]㊀幂等矩阵的特征值只能为0或1.由幂等矩阵的定义简单验证可得:性质2[3]㊀如果A 是幂等矩阵,则A T ,A k ,E -A 均为幂等矩阵.性质3㊀如果A 为可逆的幂等矩阵,则A -1也为可逆的幂等矩阵.证㊀由A 可逆,可得A ʂ0,A -1=1Aʂ0,即A -1也可逆.由幂等矩阵的定义得(A -1)2=(A2)-1=A -1.其实,不妨设A 的逆矩阵为A -1,对A 2=A 的两边同时左乘A -1,可得A =E .即可逆的幂等矩阵是单位矩阵.性质4㊀A 和B 是幂等矩阵的充要条件是T =A O O B æèççöø÷÷是幂等矩阵.证T 2=A O O B æèççöø÷÷A O O B æèççöø÷÷=A 2O O B 2æèççöø÷÷.则T 2=T 当且仅当A 2=A ,B 2=B .性质2和性质3从矩阵的运算出发推出幂等矩阵的一些简单性质.可以类似的推理,易证如果A ,B 是幂等矩阵,但λA (λʂ0,1),A +B ,A B 一般不再是幂等矩阵.幂等矩阵还具有那些重要性质和特征呢?幂等矩阵A 的伴随矩阵A ∗是否也是幂等矩阵?下文做一些推导.3㊀幂等矩阵性质的拓广幂等矩阵的特征值只能是0或1,不能由此认为特征值皆是0或1的矩阵是幂等矩阵,可见下例.例1A =111011000æèççççöø÷÷÷÷,求A 的特征值,并判断A 是否为幂等矩阵.解㊀λE -A =(λ-1)2λ,得A 的特征值为λ1=1,λ2=0,但是A 2=122011000æèççççöø÷÷÷÷ʂA .为了让特征值皆为0或1的矩阵是幂等矩阵,需加强条件,可得如下结论:定理1㊀特征值皆为0或1的矩阵A 是幂等矩阵的充分必要条件是A 可对角化.证㊀充分性.A 可对角化,则存在可逆矩阵P ,使得P -1A P =B ,其中B 为主对角线元素皆为0或1的对角阵,故B 2=B ,且A 2=(P B P -1)2=P B 2P -1=P B P -1=A .即A 是幂等矩阵.必要性.A 是幂等矩阵,则A 的特征多项式为f (λ)=λ(λ-1),又m λf (λ),说明A 的初等因子都是一次的,所以A 的J o r d a n 标准形为对角矩阵,从而A 可对角化.由定理1的证明可知幂等矩阵相似于对角矩阵,而相似矩阵有相同的秩和迹,又幂等矩阵特征值只能为0或1,则对角阵中1的个数就等于所有1的和.另外实对称矩阵一定能对角化,从而可进一步得如下结论:推论1㊀若A 是n 阶幂等矩阵,则r (A )=t r (A ).推论2㊀特征值皆为0或1的实对称矩阵是幂等矩阵.推论3㊀n 阶幂等矩阵按相似关系分类只需按其特征值1的个数r (0ɤr ɤn )分类.共有n +1类.注㊀由定理1及其推论,需要注意的是幂等矩阵不一定是对称矩阵.例如,不妨设a =a 1,a 2, ,a n ()T ,b =b 1,b 2, ,b n ()T ,则当b T a =1时,A =a b T 是幂等矩阵,这是因为A 2=(a b T )(a b T )=a (b T a )b T =a b T =A ,但是A T =(a b T )T =b a T ʂa b T =A .只有当a =b 时或a ,b 中有一个是零向量时A T =A 才成立.定理2㊀n 阶矩阵A 是幂等矩阵的充要条件是r (A )+r (E -A )=n .证㊀必要性.如果A 是幂等矩阵,则E -A 也是幂等矩阵,由推论1可知r (A )+r (E -A )=t r (A )+t r (E -A )=t r (A +E -A )=t r (E )=n .充分性.设A 有r 个非零特征值,由A 的J o r d a n 矩阵知r (A )ȡr .因为E -A 有n -r 个特征值为1和r 个其它特征值,故E -A 至少有n -r 个非零特征值,所以r (E -A )ȡn -r .又因为r (A )+r (E -A )=n ,19第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀冯福存,等:幂等矩阵的性质及其推广故有r (A )=r ,r (E -A )=n -r .设A 的J o r d a n 矩阵为T -1A T =J 1O O J 0æèççöø÷÷(1)其中J 1的主对角线元素恰好是A 的r 个非零特征值,J 0有n -r 个特征值为0.因为r (J 1)=r ,r (J 1)+r (J 0)=r (A )=r ,所以r (J 0)=0,因此J 0=O .由(1)式可得E -A 的J o r d a n 矩阵为T -1(E -A )T =E r -J 1O O E n -r -J 0æèççöø÷÷=E r -J 1O O E n -r æèççöø÷÷.因为r (E -A )=n -r ,所以r (E r -J 1)=0,因此J 1=E r .于是A (E -A )=T E r O O O æèççöø÷÷T -1T O O O E n -r æèççöø÷÷T -1=O .即A 2=A .定理3㊀设A 为n 阶幂等矩阵,则其伴随矩阵A ∗也是幂等矩阵.证㊀因为A ∗依据A 的秩,分3种情况讨论.(i )A 为n 阶可逆矩阵.由性质2可知A ∗=E ,显然为幂等矩阵.(i i )r (A )=n -1.此时A =0,㊀A A ∗=A ∗A =A E =O ,将A 按列分块,不妨设A =(α1,α2, ,αn ),则α1,α2, ,αn 是矩阵方程A ∗X =O 的解,不妨设αi 1,αi 2, ,αi n -1是α1,α2, ,αn 的极大线性无关组,则A ∗αi k =0αi k (k =1,2, .n -1),说明0是A ∗的n -1重特征根.又r (A ∗)=1,则A ∗存在一个非零特征值,不妨设为λ,设该特征值所对应的特征向量为β,即A ∗(β)=λβ,(2)又A ∗2(β)=A ∗(λβ)=λ2β,(3)(3)式减去(2)式,可得(A ∗2-A ∗)(β)=λ(λ-1)β,(4)将(4)式两边左乘A 得A (A ∗2-A ∗)(β)=0=0β.可知A ∗的特征值只能为0或1,故λ=1.则αi 1,αi 2, ,αi n -1,β线性无关,且是对应于特征值0和1的特征向量,令P =(αi 1,αi 2, ,αi n -1,β),则P -1A ∗P =O n -1001æèççöø÷÷.得A ∗=P O n -1001æèççöø÷÷P -1,易得A ∗2=A ∗,故A ∗是幂等矩阵.(Ⅲ)r (A )ɤn -2.由文献[5]可知此时A ∗=O ,显然为幂等矩阵.在定理3第(i i )部分证明的过程中,(2)式两边左乘A 可得λA β=0,因为λʂ0,所以A β=0=0β,说明β是A 的属于特征值0的特征向量.由此可得:推论4㊀若n 阶幂等矩阵A 的秩为n -1,则A 的属于特征值0的特征向量是其伴随矩阵A ∗的属于特征值1的特征向量;A 的属于特征值1的特征向量是其伴随矩阵A ∗的属于特征值0的特征向量.定义2[6]㊀设A ɪℂn ˑn ,若存在矩阵X ɪℂn ˑn ,使得A X A =A ,㊀X A X =X ,㊀A X =X A 成立,则称A 群可逆,X 为A 的群逆,记为A g .定理4[7]㊀方阵A 是群逆阵的充分必要条件是r (A 2)=r (A ).29大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第36卷定理5㊀幂等矩阵的群逆是存在的,并且等于它本身.证㊀设幂等矩阵为A ,则A 2=A ,由定理4可知A 的群逆存在.利用群逆定义A X =X A 和A X A =A 可得A X =A ,又X A X =X ,可得X A =X ,故X =A .4㊀幂等矩阵的分解矩阵的分解是矩阵理论中的一个重要课题,文[8]中总结了在向量组的正交化过程中,可得任意可逆的n 阶实矩阵M 都可以分解为一个正交矩阵Q 和一个上三角矩阵R 的乘积:M =Q R .文[9]中得出任意n 阶矩阵A 都可以分解成一个可逆阵与一个幂等矩阵的乘积.受此启发,给出了幂等矩阵的两种分解形式,进一步加强了幂等矩阵与实对称矩阵及满秩矩阵的联系,增强了幂等矩阵的应用背景.定理6㊀设A 是实幂等矩阵,则A 可分解为两个实对称矩阵的乘积.证㊀由性质1和定理1可知,存在可逆矩阵T ,使得T -1A T =E r O O O æèççöø÷÷,故A =T E r O O O æèççöø÷÷T -1=T E r O O O æèççöø÷÷T T (T T )-1T -1=S 1S 2,(5)其中S 1=T E r O O O æèççöø÷÷T T ,㊀S 2=(T T )-1T -1=(T -1)T T -1.显然,S 1和S 2都是实对称矩阵.如果将(5)式如下分解A =T E r O O O æèççöø÷÷T -1=T E r O æèççöø÷÷E r O ()T -1=B C .其中B =T E r O æèççöø÷÷,㊀C =E r O ()T -1.则可得幂等矩阵的满秩分解的结论:定理7㊀任一秩为r 的n 阶幂等矩阵A 可分解成A =B C ,其中B 为秩为r 的列满秩矩阵,C 为秩为r 的行满秩矩阵,且C B =E r .一般的,对秩为r 的n 阶低秩矩阵A 进行满秩分解A =H L ,可得L H 是满秩矩阵,当r 较小时,利用特征多项式的降阶公式[10]能给计算带来很大的方便.定理7告诉我们对与低秩的幂等矩阵A 进行满秩分解A =B C ,则C B =E r ,由降阶公式可得幂等矩阵的特征值只能为0或1.另外,结合定理1的推论2可得,对秩为r 的n 阶低秩矩阵A 进行满秩分解A =H L ,若L H =E r ,且A 为对称矩阵,则A 为幂等矩阵.5结㊀㊀论主要论证了幂等矩阵的等价条件及其特征值的取值范围,并讨论了幂等矩阵与实对称矩阵的关系,得到了秩为n -1的n 阶幂等矩阵与其伴随矩阵的特征值和特征向量的对应关系及幂等矩阵在群逆中的一个性质.最后给出了将幂等矩阵分解为两个对称矩阵的乘积及将幂等矩阵进行满秩分解的方法.[参㊀考㊀文㊀献][1]㊀龚和林,舒情.关于幂等矩阵秩的一个命题的证明和推广[J ].大学数学,2009,25(6):126-129.39第1期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀冯福存,等:幂等矩阵的性质及其推广49大㊀学㊀数㊀学㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀第36卷[2]㊀左可正.每个矩阵都能表成两个秩幂等矩阵之和[J].湖北师范学院学报(自然科学版),2008,28(4):19-21.[3]㊀张慧.对幂等矩阵的研究[J].陕西科技大学学报,2012,30(6):139-142.[4]㊀冯福存.矩阵的最小多项式的求解及其应用[J].宁夏师范学院学报,2017,38(6):28-32.[5]㊀北京大学数学系代数与几何教研室前代数小组.高等代数[M].3版.北京:高等教育出版社,2005:173-203.[6]㊀武玲玲.幂等矩阵线性组合群逆的研究[D].南宁:广西民族大学,2011:2-3.[7]㊀M e y e rC D.M a t r i xa n a l y s i sa n da p p l i e dl i n e a ra l g e b r a[M].P h i l a d e l p h i a:S o c i e t y f o rI n d u s t r i a la n d A p p l i e d M a t h e m a t i c s(S I AM)2000.[8]㊀董庆华,王成伟.幂等矩阵的相似标准型与分解形式[J].大庆师范学院学报,2010,30(6):43-45.[9]㊀刘小川,何美.幂等矩阵与秩幂等矩阵的充要条件[J].山西大同大学学报,2011,27(1):9-11.[10]㊀张跃辉.矩阵理论与应用[M].北京:科学出版社,2011:89-93.P r o p e r t i e s a n dG e n e r a l i z a t i o no f I d e m p o t e n tM a t r i xF E N GF uGc u n,㊀C HA N GL iGh o n g(S c h o o l o fM a t h e m a t i c s a n dC o m p u t e r S c i e n c e,N i n g x i aN o r m a lU n i v e r s i t y,G u y u a nN i n g x i a756000,C h i n a)A b s t r a c t:F i r s t l y,t h e s i m p l e p r o p e r t i e so f i d e m p o t e n tm a t r i c e sa r es u m m a r i z e d,t h e nt h ee q u i v a l e n c ec o n d i t i o n so f i d e m p o t e n tm a t r i c e s a n d t h e r a n g e o f t h e i r e i g e n v a l u e s a r e p r o v e d,a n d t h e r e l a t i o n s b e t w e e n i d e m p o t e n tm a t r i c e s a n d r e a l s y m m e t r i cm a t r i c e s,t h e c o r r e s p o n d i n g r e l a t i o n sb e t w e e n i d e m p o t e n tm a t r i c e s a n de i g e n v e c t o r so f t h e i r a d j o i n tm a t r i c e s, a n dt h e p r o p e r t i e s o fi d e m p o t e n t m a t r i c e si n g r o u p i n v e r s e s a r e d i s c u s s e d.F i n a l l y,t w o d e c o m p o s i t i o n f o r m s o f i d e m p o t e n tm a t r i c e s a r e d i s c u s s e d.K e y w o r d s:i d e m p o t e n tm a t r i x;e i g e n v a l u e s;r e a l s y m m e t r i cm a t r i x;m a t r i xd e c o m p o s i t i o n。

关于广义幂等矩阵的性质的探讨正文

关于广义幂等矩阵的性质的探讨正文

关于广义幂等矩阵的性质的探讨左航(导师:谢涛)(湖北师范学院 数学与统计学院 湖北 黄石 435002)1.引言在高等代数中,矩阵是代数学的一个重要研究对象,也是数学研究中不可缺少的工具。

我们把满足2A A =的矩阵A 叫做幂等矩阵,把满足2σσ=的线性变换σ叫做幂等变换。

文【1,2】已给出了幂等矩阵与幂等变换的性质和等价条件。

本文试图通过引入k 次幂等矩阵和k 次幂等变换的概念,来推广幂等矩阵和幂等变换,并讨论它们的性质。

同时由于可逆矩阵对处理矩阵问题的重要性,文中在可逆幂等矩阵的基础上给出可逆n 阶k 次幂等矩阵的定义,并总结出相关的一些性质。

而且在计量经济学中对于大多数经济现象进行比较静态分析的结果,都可以合理地归结为一个线性经济模型Ax=b ,其中的系数矩阵A 往往是一个幂等矩阵。

为此,也有必要对幂等矩阵展开理论方面的深入研究。

1.幂等矩阵定义1.1 任何一个满足幂等关系2A A =的矩阵A 称为幂等矩阵。

显然,n 阶零矩阵和单位矩阵都是幂等矩阵。

关于幂等矩阵,目前已有一些结论,我们选择其中一些性质列举如下:1.1.1幂等矩阵的特征值只取0和1两个数值;1.1.2所有的幂等矩阵(单位矩阵除外)都是奇异矩阵;1.1.3所有幂等矩阵的秩与迹相等,即()()Rank P Tr P =;1.1.4若P 为幂等矩阵,则'P 也为幂等矩阵;1.1.5若P 为幂等矩阵,则I P -也为幂等矩阵()()Rank I P n Rank P -=-所有对称的幂等矩阵(单位矩阵除外)都是半正定的;1.1.6令n ⨯n 幂等矩阵P 的秩为r,则P 有r 个特征1和n r -个特征值0;1.1.7所有的幂等矩阵P 都可对角化的:|000A r I U AU -⎛⎫= ⎪⎝⎭; 1.1.8一个对称的幂等矩阵P 可以表示为T P LL =,其中L 满足T LL I =;1.1.9设有全矩阵()n n I I ⨯=,则1C I n=是一个幂等矩阵; 1.1.10若方阵B 是幂等矩阵,则T B 和B E -也是幂等矩阵;1.1.11若n 阶方阵A 为幂等矩阵,则它的秩满足R(A)+R(E-A)=n 。

幂零矩阵的性质及应用

幂零矩阵的性质及应用

编号:xxxx学院2012届毕业生毕业论文(设计)题目:幂零矩阵的性质及应用完成人: xxx班级: 2008- 01学制: 4 年专业:数学与应用数学指导教师: xxxx完成日期: 2012-03-31目录摘要 (1)0引言 (1)1预备知识 (1)1.1幂零矩阵的相关概念 (1)1.2幂零矩阵的基本性质 (1)2 主要结论 (4)3 应用 (6)3.1幂零矩阵在矩阵运算中的应用 (6)3.2幂零矩阵与高等代数中其他知识相结合的应用 (8)3.2.1幂零矩阵与线性方程组相结合应用 (9)3.2.2幂零矩阵的若尔当标准形的应用 (10)3.2.3幂零矩阵与幂零线性变换相结合的应用 (11)参考文献 (13)Abstract (14)幂零矩阵的性质及应用作 者:xxxxx 指导老师:xxx摘要:本文从幂零矩阵的定义出发,总结了幂零矩阵的基本性质及一些主要结论,而且对其应用作进一步的讨论:用幂零矩阵性质求一些特殊矩阵的逆及在历年考研真题中对幂零矩阵的考查.关键词:幂零矩阵;幂零指数;若尔当形;特征根0 引言在高等代数中,矩阵是研究问题的很重要的工具,在讨论矩阵的 乘法运算时给出了幂零矩阵的定义,但对其性质研究很少.幂零矩阵作为特殊矩阵无论在矩阵的理论方面,还是在实际应用方面都有很重要的意义,而且在一些交叉学科如密码学中,都有广泛的应用.目前,国内很多学者对幂零矩阵的性质已有较深入的研究,本文在他们研究的基础上,进一步探讨幂零矩阵的性质.1 预备知识为了叙述的需要,我们首先引入幂零矩阵的有关概念. 1.1幂零矩阵的有关概念定义1 设A 是n 阶矩阵,若存在一个自然数k ,使0k A =,则A 为 幂零矩阵.定义2 设A 是幂零矩阵,满足0k A =的最小自然数k 称为A 的幂零指数.1.2幂零矩阵的基本性质在给出了幂零矩阵的相关概念之后,我们容易得到幂零矩阵的一些基本性质.性质1 若A 是幂零矩阵,则*,,,T mA A A A -都是幂零矩阵.性质2 A 为幂零矩阵的充要条件是A 的特征值全为0. 在此基础上,我们还可以得到幂零矩阵的另一个充要条件. 推论1 A 为幂零矩阵的充要条件是k Z +∀∈,0k trA =. 证明 必要性 因为A 为幂零矩阵,所以A 的特征值全为0, 即120n λλλ====,所以kA 的特征值为120n k k k λλλ====.从而有120n k k k ktrA λλλ=+=++.充分性 由已知,对k Z +∀∈,120nk k k k trA λλλ=+=++. ①令12,,,t λλλ为A 的不为零的特征值,且i λ互不相同,重数为i n (1,2,,i t =). 由①式,得方程组112121211222222333121200t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩ ② 由于方程组②的系数行列式为121212122221212111ttttt tt tt tttB λλλλλλλλλλλλλλλλλλ==()121t i j j i tλλλλλ≤<≤=∏-又()1,2,,i i t λ=互不相同且不为0,所以0B ≠,从而知方程②只有0解,即0i n =(1,2,,i t =).因此A 的特征值全为0,即A 为幂零矩阵.推论 2 若A 为幂零矩阵,则A 一定不可逆且有1,1A E E A +=-=. 证明 由于A 为幂零矩阵,所以存在k Z +∈,使得0k A =,因此有00kk A A A ==⇒=,所以A 一定不可逆.由性质2,得A 的特征值120n λλλ====,所以A E +,E A -的特征值分别是12'''011n λλλ=+====, 12"""101n λλλ=-====,且有12'''11n n A E λλλ+===,12"""11n n E A λλλ-===.即1,1A E E A +=-=.推论3 若A E +为幂零矩阵,则A 非退化. 证明 令12,,,n λλλ为A 的特征值.若A 退化,则有120n A λλλ==,所以至少存在00i λ=为A 的特征值,从而有0110i λ+=≠为A E +的一特征值,这与A E +为幂零矩阵相矛盾,得证A 为非退化.对于幂零指数相同的幂零矩阵,有一些比较重要的性质. 性质3 所有的n 阶1n -次幂零矩阵都相似.证明 令A 为n 阶1n -次幂零矩阵,即10n A-=,()001k k n A ≠≤<-,因此A 的最小多项式1()()n A n m d λλλ-==;又A 是幂零矩阵,所以A 的特征值全为0,因此A 的特征多项式为()()n n f E A D λλλλ=-==,又11()()()n n n n D d D λλλλ--==,所以1()n D λλ-=;又12()()()()()n n n f E A d d d D λλλλλλλ=-===,从而有1()n d λλ-=,221()()()1n d d d λλλ-====,所以所有n 阶1n -次幂零矩阵具有相同的不变因子为1,,,,,111n λλ-.所以所有n 阶1n -次幂零矩阵都相似. 利用此法也可以得到:推论4 所有n 阶n 次幂零矩阵都相似.注 但是当幂零矩阵的幂零指数2k n ≤-,相同幂零指数的幂零矩阵却不相似.性质4 设A 为非零幂零矩阵,且k 是A 的幂零指数,则E ,A ,2A ,,1k A-线性无关.证明 利用反证法.假设12,,,,k A E A A -线性相关,则一定存在一组不全为0的0c ,1c ,,1k c -,使2101210k k E A c c c c A A --++++=, ①两端右乘1k A -,得100k c A -=,而10k A -≠,因此00c =.再对①式两端右乘2k A-,可得10c =.同理可得2310k c c c -====.所以0110k c c c -====,得出矛盾,所以假设错误.即证得21,,,,k E A A A -线性无关.2 主要结论我们在幂零矩阵的定义以及基本性质的基础上,进一步探讨幂零 矩阵,得到一些重要结论,而且这些结论应用的也比较广泛.结论1 设A 为幂零矩阵,且k 是A 的幂零指数,则 (1)E A -可逆,且()121k E A E A A A ---=++++ . (2)()()11212311111k k kmE A E A A Am mm m---+-+=-++.(0)m ≠证明 (1) 由于A 为幂零矩阵,所以0k A =,从而k k k E E A E A =-=-()21()k E A E A A A -=-++++,即()121k E A E A A A ---=++++.(2)对任意0m ≠,121231111()()(1)k k kmE A E A A A m m mm--+-+++-121211111(1)k k k E A A A Am mmm---=-++++- 212121111(1)(1)k k k kk kAAA mmm-----+++--E =所以()1121231111()k k kE A mE A A Am m mm---=-+++-+ .结论2 若A 为幂零矩阵,则A 的若尔当标准形J 的若尔当块为 幂零若尔当块,且J 的主对角线上的元素为0.证明 A 为幂零矩阵,由性质2知,A 的特征值全为0; 又在复数域上,存在可逆矩阵T ,使得121S J J J T A TJ -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中11iiiiiJ nn λλ⨯=⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 1,2,,i t =,则(1,2,,)i i t λ=为J 的特征值;又A 与J 相似,所以A 与J 有相同的特 征值,所以0i λ= (1,2,,)i t =,即J 的主对角线上的元素全为0;所以有1010i J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则i J 为幂零矩阵,其幂零指数为i n (1,2,,)i t =,所以12,,,S J J J 为幂零矩阵.所以A 的若尔当标准形J 的若尔当块12,,,S J J J 为幂零若尔当块,且J 的主对角线上的元素为0. 由此结论可以得到:推论 5 n 阶幂零矩阵的幂零指数小于等于n ,且幂零指数等于其若尔当形矩阵中阶数最高的若尔当块的阶数.3 应用3.1 幂零矩阵在矩阵运算中的应用——求一些特殊矩阵的逆在矩阵的运算中,求矩阵的逆一般是比较麻烦的,对于一些特殊的矩阵可以利用幂零矩阵的性质来化简.引理1 任一n 阶方阵A 都可写成的A D N =+形式,其中D 是一个与对角阵相似的n 阶方阵,N 是一个幂零矩阵,而且DN ND =.证明 因为在复数域上,存在可逆矩阵T ,使得121S J J A T T J -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦① 其中11iiiiiJ n nλλ=⨯⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1,2,,i t =于是00101iii ii i J N D λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1,2,,)i t =. ②其中ii i D λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为对角阵,0101i N ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦为幂零矩阵. 因为n i O N =,将②式带入①式得111s s N D A T TN D -+⎡⎤⎢⎥=⎢⎥⎢⎥+⎣⎦1111s s N D T T T T N D --⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦D N =+ ③其中11s D D T T D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似于对角阵,且 1111nn n s s N N T T O N N T T N N --⎡⎤⎡⎤⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 即N 为幂零矩阵,于是111s s N D DN T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, ④ 类似的,有111s s N D ND T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. ⑤ 但()i i i i i i E N N N D λλ==, ()i i i i i i E N N N D λλ==.所以i i i i N N D D = ,(1,2,,)i s = ⑥由④⑤⑥,即证 DN ND =.由引理1,对于一些可表示为幂零矩阵与单位矩阵的和的矩阵,则可利用结论1来求它的逆;而主对角元素完全相同的三角矩阵可表示为数量矩阵与幂零矩阵的和,也可以借助结论1可求出它的逆;对于一些可表示为单位矩阵与若尔当矩阵幂的和的矩阵,借助结论1也可求出它的逆.下面通过例子来说明.例1 设11111011110011101A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1A -. 解 记n J 为n 阶若尔当矩阵,则0nn J =,而21n n n n A E J J J -=++++,由结论1有1121()n n n nn E E J A J J J ---==-++++1100001100000110001-⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦. 3.2 幂零矩阵与高等代数中其他知识相结合的应用在历年研究生入学考试中,对幂零矩阵的考查综合性较强,能力要求较高,是个难点.下面列举几道典型的对幂零矩阵的考查方法,以说明幂零矩阵和其他数学知识之间的灵活运用. 3.2.1幂零矩阵与线性方程组相结合应用下面看一下幂零矩阵与线性方程组相结合的考查方法. 例2 (中山大学) A ,B ,C 为n 阶方阵,且AC CA =,BC CB =,C AB BA =-,证:存在自然数k n ≤,使得0k C =.分析 本题即证C 为幂零矩阵,只需证C 的特征值全为0.而C AB BA =-,容易联想需要用C 的迹来解题,而采用反证法则恰到好处.证明 只需证C 的特征值12,,,n λλλ全为0即可. 事实上,()()0tr C tr AB BA =-=,即有10ni i λ==∑;又2()()()AB BA CAB CBA AC B B AC C C =-=-=-,所以()2210ni tr C i λ===∑;同理可得()3310nii trC λ===∑,()10nssi i tr C λ===∑;假设C 存在非0的特征值,不妨设合并各相同的非0特征值后,得11222221122112200s s s s s s s s s k k k k k k k k k λλλλλλλλλ=⎧+++⎪+=++⎪⎨⎪⎪+=++⎩,(12,,,s λλλ各不相同).方程组有非0解,故系数行列式:1222212120ss s s s sλλλλλλλλλ=(i λ各不相同),但是()1222212121120ss s i j j i ss s s sλλλλλλλλλλλλλλ≤<≤=≠∏-,得出矛盾,所以假设错误,即有C 不存在非零的特征值,C 的特征值全为0,所以存在自然数k n ≤,使得0k C =.此题利用幂零矩阵的性质构造齐次线性方程组,灵活运用数学知识进行解题,与推论1的证明有相似之处,体现了幂零矩阵在高等代数中的重要地位.3.2.2 幂零矩阵的若尔当标准形的应用幂零矩阵的若尔当标准形在历年真题中也较常用到.例3(上海交通大学) A ,B 为n 阶方阵,B 为幂零矩阵,AB BA =,则有A B A +=.分析 在复数域上,每个n 级矩阵都与一个若尔当形矩阵相似, 幂零矩阵的若尔当标准形的对角线上的元素为0,由此结论此题即得证.证明 由题有,在复数域上,存在可逆矩阵,T 使得121*n AT T λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,121*n BT T μμμ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 又B 为幂零矩阵,所以B 的特征值全为0,即100*0BT T -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, ()121111*n A B T AT BT T T T T T λλλ----⎡⎤⎢⎥⎢⎥+=+=⎢⎥⎢⎥⎣⎦, 所以()12111*nA B T A B T T T T T λλλ---+=+=.又因为T 可逆,所以0T ≠,1212*n nA B λλλλλλ+==,因为121*n AT Tλλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦因此12,,,n λλλ为A 的特征值,所以12n A λλλ=,从而得证21n A A B λλλ=+=.3.2.3 幂零矩阵与幂零线性变换相结合的应用幂零线性变换在任一组基下的矩阵为幂零矩阵,研究幂零矩阵的 特性对研究幂零线性变换是很有帮助的.例4(西南大学) 设V 为数域F 上的n 阶方阵构成的线性空间,A 为F 上一个固定的n 阶方阵,定义()TB AB BA =-,其中B 为V 中任一向量,证明(1)T 为线性变换;(2)若A 为幂零矩阵,则T 为幂零线性变换.分析 (1)利用线性变换的定义即可得证.(2) 由()T B AB BA =-,有下述结论:A 的特征值之差都是T 的特征值.以下要证此结论.证明 (1)任取,B C V ∈,k F ∀∈,则有:()()()()()T B C A B C B C A AB BA AC CA T B T C +=+-+=-+-=+,()()()()T kB A kB kB A kAB kBA kT B =-=-=,所以T 为线性变换.(2)先做如下断言:()T B AB BA =-⇒A 的特征值之差都是T 的特 征值.事实上,()n y F M ∀∈,取()n F M 的一组基ij E (,1,2,,i j n =),设A 的若尔当标准形为1*s J λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在可逆矩阵()n P F M ∈,使得11*s AP J P λλ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 所以1A PJ P -=.又P 可逆,所以1ij P E P -也是()n F M 的一组基. 又111()()()ij ij ij T A A PE P PE P PE P ---=- 1111()()()()ij ij PJ PJ P PE P PE P P ----=-1()ij ij J J P E E P -=-10*0i jP P λλ-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦1()()ij i j PE P λλ-=-所以T 在基11111111211,,,,,,,n n nn PE P PE P PE P PE P PE P -----下的矩阵为121212110*0nnn n n λλλλλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦------ 所以A 的特征值之差都是T 的特征值.断言成立.因为A 为幂零矩阵,所以A 的特征值0i λ= ,所以T 的特征值全为0,从而T 为幂零线性变换.参 考 文 献[1] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 杨子胥.高等代数习题解(下册)[M].济南:山东科技出版社,1982:836-866.[3] 邹本强.幂零矩阵的性质[J].science information,2007,(12):150-155.[4] 韩道兰,罗雁,黄宗文.幂零矩阵的性质及应用[J].玉林师范学院学报(自然科学)2003,24(4):1-3.[5] 江明星.幂零矩阵的若干性质[J].安徽机电学院学报,1999,14(2):77-79.[6] 姜海勤.幂零矩阵性质的一个应用[J].泰州职业技术学院学报,2004, 4(1): 54-57.[7] 樊正恩.幂零矩阵的若干注记[J].甘肃高师学报,2011,16(2):3-4.[8] 赵廷芳.幂零矩阵的性质[J].周口师专学报,1994,11(1):27-30.[9] 谷国梁.关于幂零矩阵性质的探讨[J].铜陵财经专科学校学报,2001,(4): 49-63.[10]吴险峰.n阶幂零矩阵的判别与构建[J].齐齐哈尔大学学报,2007,23(4): 72-75.The Properties and Applications of Nilpootent MatricesxxxxAbstract:This paper based on the definition of nilpotent matrix ,then summarizes the basic properties of nilpotent matrix and some main conclusion , and further debate its application: using the properties of nilpotent matrix for solving the inverse matrix of some special matrix ,and investigating the nilpotent matrix in the postgraduate entrance exam.Keywords: nilpootent matrices; nilpotent index; Jordan standard form;characteristic root。

幂等矩阵的性质及应用

幂等矩阵的性质及应用

JIU JIANG UNIVERSITY毕业论文(设计)题目幂等矩阵的性质及应用英文题目Properties and Applicationof Idempotent Matrix 院系理学院专业数学与应用数学姓名邱望华年级 A0411指导教师王侃民二零零八年五月幂等矩阵在数学领域以及其他许多领域应用都非常广泛,因此对幂等矩阵进行探讨具有很重要的意义。

本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

首先对幂等矩阵简单性质进行了归纳总结,接着谈到了实幂等矩阵的等价条件并推广到复矩阵以及高次幂等矩阵,然后研究了幂等变换、幂等矩阵线性组合的幂等性、幂等矩阵线性组合的可逆性、幂等矩阵秩有关的性质。

[关键词] 幂等矩阵,性质,幂等性,线性组合The idempotent matrix is widely applied in mathematics as well as other many places, so there is very vital significance to carry on the discussion to the idempotent matrix . This paper mainly carries on the induction summary some simple nature and the important conclusion of idempotent matrix and carries on the promotion to the related nature. Firstly, this article has carried on the induction summary to its simple nature, then talkes about the equivalence condition of the solid idempotent matrix and extends to the equivalence condition of the plural idempotent matrix and the higher mode idempotent matrix . Then the article studies the idempotent transformation、the idempotency of linear combinations of two idempotent matrices、the invertibility of linear combinations of two idempotent matrices.[Key Words] the idempotent, the nature, the idempotence,linear combination符号表R 实数域n R 实数域n 维列向量空间 n n R ⨯ 实数域上的n ×n 阶矩阵 C 复数域n C 复数域n 维列向量空间 n n C ⨯ 复数域上的n ×n 阶矩阵 A ' 矩阵A 的转置*A 矩阵A 的伴随1A - 矩阵A 的逆det()A 矩阵A 的行列式 rank()A 矩阵A 的秩()N A 矩阵A 的核空间,即}{()0,n N A x P Ax P =∈=是一个数域()R A 矩阵A 的值域,即}{(),n R A Ax x P P =∈是一个数域 dim V 线性空间V 的维数1T - 线性变换T 的逆变换 TV T 的值域,即TV ={}T V ξξ∈1(0)T - T 的核,即{}1(0)0,T T V ξξξ-==∈目录第一章预备知识 (1)1.1幂等矩阵的概念及刻划 (1)1.2幂等矩阵的一些简单性质 (3)第二章相关的重要结论 (7)2.1幂等矩阵的等价条件 (7)2.2幂等变换 (14)2.3幂等矩阵线性组合的幂等性 (17)2.4幂等矩阵线性组合的可逆性 (23)2.5幂等矩阵的秩方面的有关性质 (26)结束语 (29)参考文献 (30)第一章 预备知识1.1 幂等矩阵的概念及刻划定义1[1].对n 阶方阵A ,若2A A =,则称A 为幂等矩阵.为了对一般幂等矩阵作出刻划,下面先对二阶幂等矩阵讨论,再推广到一般幂等矩阵.命题1.若A 是幂等矩阵,则与A 相似的任意矩阵是幂等矩阵. 证明:若A 相似于B (记作~A B ),则有同阶可逆矩阵P ,使B =1p -A P [1],从而2B =1p -A P ·1p -A P =1p -2A P =1p -A P =B . ▌命题2.若A 是对角分块矩阵,设A =12r A A A ⎛⎫⎪⎪ ⎪ ⎪⎝⎭, 则A 是幂等矩阵⇔i A (1,2,,)i r = 均是幂等矩阵.由于每个n 级复数域矩阵A 都与一个若尔当矩阵相似[1],据命题1和命题2知, 我们只需要讨论若尔当块的幂等性.若A 是一个2阶复数域矩阵,则A 的若尔当标准型有两种可能的形式:第一种: 10λ⎛⎫ ⎪λ⎝⎭,但它不是幂等矩阵.否则有210λ⎛⎫ ⎪λ⎝⎭=10λ⎛⎫⎪λ⎝⎭,有,212λ=λλ=.矛盾.第二种: 0012λ⎛⎫⎪λ⎝⎭ ,由20001122λλ⎛⎫⎛⎫= ⎪ ⎪λλ⎝⎭⎝⎭,有221122,λ=λλ=λ,从而有01λ=或1,20λ=或 1.于是该情况有四种可能的形式:0000⎛⎫ ⎪⎝⎭,1000⎛⎫ ⎪⎝⎭ ,1001⎛⎫ ⎪⎝⎭ ,0001⎛⎫ ⎪⎝⎭(1)据命题1,于是得到:定理1[19]. A 是二阶幂等矩阵,则A 是零矩阵或单位矩阵或形如1ab c a ⎛⎫ ⎪-⎝⎭.证明: 由以上讨论知A 相似于(1)式中的四个矩阵之一1若A ~0000⎛⎫ ⎪⎝⎭ ,显然有 A =0000⎛⎫ ⎪⎝⎭02若A ~1001⎛⎫ ⎪⎝⎭ ,显然有 A =1001⎛⎫⎪⎝⎭3若A ~1000⎛⎫⎪⎝⎭ ,则有可逆矩阵P =1234λλλλ⎛⎫⎪⎝⎭,1423(,P )λλλλ≠因为可逆 使A =14121423142313423142314231000a b P P c d λλλλλλλλλλλλλλλλλλλλλλλλ-⎛⎫-⎪--⎛⎫⎛⎫⎪== ⎪ ⎪⎪⎝⎭⎝⎭-⎪--⎝⎭则有 1d a =- .即 A 1ab c a ⎛⎫= ⎪-⎝⎭ .对剩余的一种与此有同样的结果. ▌设112,1n n J λλλλ⎛⎫⎪⎪⎪≥= ⎪ ⎪⎪⎝⎭,由2n n J J = ,有2,21,λλλ==这是不可能的.于是有:命题3.当2n ≥时,n 阶若尔当块n J 不具有幂等性.即2n n J J ≠.因此,若A 是幂等矩阵,则A 的若尔当标准型如下:1200000n r J λλλ⎛⎫⎪⎪= ⎪⎪⎝⎭据命题1即有2n n J J =⇒2,1,2,,i i i r λλ== .于是0i λ= 或1.于是我们得到如下定理:定理2. A 是n 阶幂等矩阵,当且仅当存在n 阶可逆矩阵P ,使 得1A PJP -=.其中J 是主对角线上元素为0或1的对角矩阵. ▌1.2 幂等矩阵的一些简单性质性质1.方阵零矩阵和单位矩阵E 是幂等矩阵. 性质2.方阵A 是幂等矩阵,且A 可逆,则A E =. 因为2A A =,则121A A A A A E --===. ▌据此易知:可逆幂等矩阵的逆矩阵是幂等矩阵.即1A -(如果存在的话)是幂等 矩阵.因为1A E A E -=⇒=.性质3.若A 是实幂等矩阵,则*,,A E A A '-都是幂等矩阵. 证明: 对A ',22()()A A A '''==. 对E A -,有22()22E A E A A E A A E A -=-+=-+=-.对*A ,先证明对任意两个幂等矩阵,A B ,有关系式 ***[2]()AB B A =.由Cauchy binet -公式有:*(,)()A i j AB B i j =矩阵的第行第列代数余子式=(1)det()({1,,1,1,,},{1,,1,1,,})i j AB j j n i i n +--+-+=1(1){det()({1,,1,1,,},{1,,1,1,,})ni jk A j j n k k n +=--+-+∑det()({1,,1,1,,},{1,,1,1,,})}B k k n i i n ⋅-+-+=**({},{})11.nnjk ki ki jk i j k k A B B A B A ====∑∑于是,*2*****2()()()A A AA A A A ====. ▌性质4.若A 是复数域上的幂等矩阵,则,A E A '-也是幂等矩阵. 证明:222()()()()A A AA A A '''''====.22()22E A E A A E A A E A -=-+=-+=-. ▌ 性质5.若A 是幂等矩阵,则A 的特征值只能是1或0. 即知幂等矩阵是半正定矩阵.证明:由2A A = 知2λλ= (A λ是的特征值)01λ⇒=或. ▌ 由此易知:幂等矩阵是半正定矩阵.性质6.若A 是幂等矩阵,设()ϕλ是A 的最小多项式,则()ϕλ=1λλλλ-或或(-1)从而A 可对角化,且其若尔当标准型为 000rE ⎛⎫ ⎪⎝⎭. 其中r E 是r 阶单位矩阵, r 是A 的秩.证明:由于矩阵的最小多项式是该矩阵特征多项式的因式, 据性质5知()ϕλ=1λλλλ-或或(-1).又最小多项式是互素的一次因式的乘积,故可对角化. ▌性质7[17].若A 是幂等矩阵,则()()N A R E A =-,其中}{()0n N A x C Ax =∈=}{()(),n nR E A x C x E A y y C -=∈=-∈.证明:由2A A = 有()0A E A -=,立即知E A -的n 阶列向量都是0AX =的解故有()()R E A N A -⊂又对()a N A ∀∈,有0()()Aa a Aa E A a E A a =⇒=+-=-()a R E A ⇒∈-由a 的任意性知 ()()N A R E A ⊂-. 于是有 ()()N A R E A =- . ▌ 同样地,有结论 ()()N E A R A -=.性质8.若A 是幂等矩阵,对任意实数(0,1)a a ≠,则A aE +是可逆矩阵. 证明:由2A A =有2(1)(1)A A a a E a a E --+=-+()[(1)](1)A aE A a E a a E +-+=-+.又由0,1a ≠ 有1(){[(1)]}(1)A aE A a E E a a +-+=-+故A aE +可逆,且11()[(1)](1)A aE A a E a a -+=-+-+. ▌性质9.任一秩为r 的n n ⨯幂等矩阵A 可分解成A CB =,其中C 是秩为r 的n r ⨯矩阵,且r BC E = .(其中r E 是r 阶单位矩阵)证明:由性质6知, 存在n 阶可逆矩阵P 使1000rEP AP -⎛⎫= ⎪⎝⎭.则()100000r r rE E A P P P E P -⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.记(),00r r E C P B E ⎛⎫== ⎪⎝⎭.显然,B C 满足要求. ▌性质10.任一幂等矩阵可写成两个实对称矩阵之积.证明:因为1100()0000r r E E A P P P P --⎛⎫⎛⎫''=⋅ ⎪ ⎪⎝⎭⎝⎭.故结论成立 ▌性质11.若,A B 均为n n ⨯阶幂等矩阵,且AB BA =,则AB 与A B ''均为幂等矩阵.证明:据题意有:222()AB ABAB AABB A B AB ====.2222()[()]()()()()()A B BA BA BA BABA B A BA A B ''''''''''======.▌第二章 相关的重要结论本章按节来逐次讨论和探索幂等矩阵的多个等价条件、幂等变换、线性组合的幂等性、线性组合的可逆性、秩方面的有关性质等有关问题.2.1 幂等矩阵的等价条件经过参考多篇文献,并进行归纳和推理可以得出以下定理.定理1:设A 是n n ⨯的实矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n R R A R E A =⊕-.12)()()n R N A N E A =⊕-以上给出了实幂等矩阵的几个等价条件,经过研究和分析知:对复幂等矩阵也有平行的结论.定理2:设A 是n n ⨯的复矩阵,则下列命题是互相等价的:1)A 是幂等矩阵.2)A '是幂等矩阵.3)E A -是幂等矩阵.4)对任意的可逆矩阵P ,1P AP -是幂等矩阵.5)2B A E =-是对合矩阵.(满足2B E =的矩阵B 称为对合矩阵)6)()()N A R E A =-.7)()()R A N E A =-.8)rank rank()A E A n +-=.9){}()()0R A R E A -= .10){}()()0N A N E A -= .11)()()n C R A R E A =⊕-.12)()()n C N A N E A =⊕-证明:1)⇔2) 由2A A =知22()()A A A '''==.反过来,222[()][()]()A A A A A ''''''====.1)⇔3)必要性: 在1.2节性质3中已经给出了证明.充分性:2()()E A E A -=- ⇒222E A A E A A A -+=-⇒=.1)⇔4)由2A A = 知1211121()P AP P AP P AP P A P P AP -----=⋅==.反过来,12111121()P AP P AP P AP P AP P A P P AP ------=⇒⋅==⇒ 2A A =.1)⇔5)由2A A =,有2B =2(2)A E -=244A A E E -+=.反过来,22244B E A A E E A A =⇒-+=⇒=.1)⇔6)必要性: 在1.2节性质7中已经给出了详细证明.充分性: 对,n a R ∀∈有()()()E A a R E A N A -∈-=,故()()E A a N A -∈于是有2[()]0()0A E A a A A a -=⇒-=.由a 的任意性得2A A =.1)⇔7)必要性: 由2A A =知()Aa R A ∀∈,有()0()E A Aa Aa N E A -=⇒∈-()()R A N E A ⇒⊂-.又()a N E A ∀∈-,有()0E A a -=.于是()a Aa E A a =+-()()()Aa R A N E A R A =∈⇒-⊂故有()()R A N E A =-.充分性: 对n a R ∀∈,有()()()Aa R A N E A Aa N E A ∈=-⇒∈-于是有2-=⇒-=.E A Aa A A a()()0()0由a的任意性得2A A=.1)⇔8)必要性: 由2A A=知()()=-.N A R E A于是有dim()dim()=-N A R E A即有rank rank()n A E A-=-亦即rank rank()+-=.A E A n充分性: 由rank rank()+-=易知:A E A ndim()dim()=- (*)N A R E A又对()∀∈,有a N AAa=则有-=-=.E A a a Aa a()由()()a R E A∈--∈-知()E A a R E A即有()()⊂-.N A R E A据(*)式知=-.N A R E A()()=.再由6)得2A A8)⇔9)必要性: 由rank rank()+-=.即知:A E A n+-=.dim()dim()R A R E A n又对n∀∈,有a R=+-,()a Aa E A a而(),Aa R A ∈()()E A a R E A -∈-.故 ()()n C R A R E A =+-.又dim dim ()dim ()dim[()()]n C R A R E A R A R E A =+--- n =.故有dim[()()]0R A R E A -= .于是, {}()()0R A R E A -= .充分性: 由{}()()0R A R E A -= 有dim ()dim ()R A R E A n +-=.即有rank rank()A E A n +-=.9)⇔10)必要性: 由上面的证明知由9)有6)和7),再把6)和7)代入到9),立即得到10).充分性:同理可证.9)⇔11) 这是显然的[1].10)⇔12) 这是显然的[1]. ▌定理3.设A 是秩为r 的n n ⨯矩阵.则A 是幂等矩阵⇔存在n 阶可逆矩阵P ,使1000rE P AP -⎛⎫= ⎪⎝⎭. 证明: 必要性: 在1.2节性质6中已给出了证明.充分性: 由1000rE P AP -⎛⎫= ⎪⎝⎭,有 1000r E A P P -⎛⎫= ⎪⎝⎭. 则2111000000000rr r E E E A P P P P P P A ---⎛⎫⎛⎫⎛⎫=⋅== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ▌ 以上是对二次幂等矩阵进行了一定的讨论.下面来对高次幂等矩阵进行有关的讨论.定理4.设,A B 是三次幂等矩阵,即33,A A B B ==,且满足AB BA =,A B ≠, 记C A B =+.则3()0C C AB A B =⇔+=.证明:由矩阵,A B 是幂等可交换的,于是可同时对角化[6]. 即存在可逆矩阵 P ,使得1112,P AP P BP --Λ=Λ=均为对角矩阵,而且它们对角元素分别是,A B 的特征值.从而有1112,.A P P B P P --=Λ=Λ进而112()C P P -=Λ+Λ.于是3C C =可以等价为322333,1,2,,i i i i i i i i i n λλμλμμλμ+++=+= . 其中,i i λμ分别是12,ΛΛ的对角元.又由30,1,1x x x =⇒=-知,A B 的特征值只有0,-1,1.即333,,(1,2,,)i i i i i r λλμμ===于是3C C =等价为220,(1,2,,)i i i i i r λμλμ+== .即221212O ΛΛ+ΛΛ=.因此3C C =等价为()0AB A B +=. ▌注:当2A A =,立即有32A A A ==,同样地,对k ∀,(2k ≥为正整数) k A A = 即任意的二次幂等矩阵均为k 次幂等矩阵.因此可得以下推论.推论: 设,A B 是二次幂等矩阵,且满足AB BA =,A B ≠,记C A B =+.则 2()0C C AB A B =⇒+=. ▌引理1[1].对任意两个同阶矩阵,A B ,有rank()rank()rank()A B A B +≤+. 引理2[1].设,A B 为n n ⨯矩阵,满足AB O =,则有rank rank A B n +≤. 定理5.设矩阵A 满足3,A A =且A 可逆.则2A E =且rank rank()rank()2A A E A E n +++-=.证明: 由3,A A =A 可逆,有-13-12A A A A A E ⋅=⋅⇒=()()A E A E O ⇒+-=.于是据引理2有r a n k ()r a n k ()A E A E n ++-≤ (1)又2()()E E A E A =++-据引理1有rank(2)rank[()()]n E E A E A ==++-rank()rank()E A E A ≤++-rank()rank()A E A E =++-. (2)有(1)式和(2)式有rank()rank()A E A E n ++-=.由于A 可逆知rank A n =.因此有rank rank()rank()2A A E A E n +++-=. ▌定理6.设矩阵A 满足,(2)k A A k =≥.则*,,A A A ''都是k 此幂等矩阵.证明:对A ',()()k k A A A '''==.对*,A*****()()k k k A A A A A =⋅⋅==个. 对,A '()()()k k k A A A A ''''===. ▌定理7. 设矩阵A 满足,(2)k A A k =≥.则A 的特征值为0和22cossin ,(0,1,,2)11m m m i m k k k ππε=+=--- . 证明: 由k A A =,有 k λλ=,其中λ是矩阵A 的特征值.解方程k λλ=可得220cossin ,(0,1,,2)11m m i m k k k ππλ=+=--- 以及. ▌2.2 幂等变换数域F 上n 维线性空间V 的全部线性变换组成的集合()L V 对于线性变换的加法与数量乘法构成F 上的一个线性空间,与数域F 上n 阶方阵构成的线性空间n n F ⨯同构.特别地,与幂等矩阵对应的是幂等变换.因此为了讨论和探索幂等矩阵的性质时很有必要去探索幂等变换的相关性质.定义1.设T 是线性空间V 的一个线性变换,若2T T =,则称T 是幂等变换.由于矩阵与变换间存在一一对应的关系,因此前面所提到的性质和结论可以平 移到幂等变换上来.限于篇幅,下面只举几个例子.性质1.可逆的幂等变换是恒等变换.证明:恒等变换与单位矩阵相对应.因此该性质与“可逆的幂等矩阵为单位矩 阵”一致. ▌性质2.若T 是幂等变换,则T τ-也是幂等变换.(其中τ是恒等变换) 性质3.T 是幂等变换⇔2T τ-为对合变换. 其中线性变换T 满足2T τ=,则称T 是对合变换. 性质4.T 是线性空间V 上的幂等变换,则1(0)V TV T -=⊕.▌ 我们知道:对于一般的线性变换来说,虽然1dim dim (0)dim TV T V -+=,但未必 有1(0)V TV T -=⊕.这样的例子很多. 例如:在线性空间[]n P x 中令 (())()f x f x ϕ'=.则微分变换是一线性变换[1],其 值域为1[]n P x -,其核是子空间P .它们的维数分别是1,1n -.但显然1[]n P x -+P ≠[]n P x .性质5.设T 和U 是n 维线性空间V 上的线性变换,且22,T T U U ==. 如果2()T U T U +=+,则0TU UT ==. 证明:由2()T U T U +=+,可得0TU UT +=……………………………………①对①式左乘T 得0TU TUT +=…………………………………②对①式右乘T 得0TUT UT +=……………………………………③比较②和③得 TU UT =.代入到①式得到 20TU =.于是就有 0TU UT ==. ▌ 性质6.设T ,U 是n 维线性空间上的线性变换,且22,T T U U ==. 则 1) ,TV UV TU U UT T =⇔==. 2) 11(0)(0),T U TU T UT U --=⇔==.证明:1)""⇒ 对,a V ∀∈有Ua UV TV ∈=.故,V β∃∈使Ua T β=. 从而2TUa T T Ua ββ===.因此有TU U =.同样可证得UT T =.""⇐ 据,TU U UT T ==可知,对Ta TV V ∀∈⊂,有()Ta UTa U Ta UV ==∈,故TV UV ⊂.同样可证得UV TV ⊂.于是TV UV =. 2)""⇒ 对a V ∀∈,作向量a Ta -.据11(0)(0)T U --=,有()T a Ta -20Ta T a Ta Ta =-=-=.故11(0)(0)a Ta T U ---∈=.从而有()0U a Ta -=⇒Ua UTa =⇒UT U = 同理有TU T =.""⇐ 对1(0)a T -∀∈,有0Ta =.据,TU T UT U ==,有10(0)Ua UTa a U -==⇒∈.即有11(0)(0)T U --⊂.同理可得11(0)(0)U T --⊂. 故有11(0)(0)T U --=. ▌2.3 幂等矩阵线性组合的幂等性在本节中,我们将给出两个幂等矩阵线性组合12P c A c B =+仍是幂等矩阵的一 些充分条件.引理1[15].设2,,0,0n n l A B C A A B B ⨯∈=≠=≠,l 为2≥的整数,且AB BA =. 则存在{}12,0c c C ∈-,使12P c A c B =+为幂等矩阵的充要条件是:22111211(2),c c A E B B B c c c λλ--=-+=. 证明:221212()P P c A c B c A c B =⇔+=+22222111212()c B c B c c A c c AB c c BA ⇔-=-++(令121c c λ-=) 221112(2)c B B A AB A E B c c λλ⇔-+=-=-.▌ 据引理1,下面将给出12P c A c B =+是幂等矩阵的十组充分条件.为了简化过程,先令{}00,s = {}111,l s x x x C -==∈,{}21,,s x x y z y z s ==+∈, 012s s s s = .定理1[8].设2,,0,0(2,)n n l A B C A A B B l l Z ⨯∈=≠=≠≥∈,AB BA =,{}12,0,c c C ∈-13121,,,,,i c u v s u v e a s c πλε-=∈≠=∈ 若12(,)c c 及,A B 满足下列任意一个条件,则12P c A c B =+必为幂等矩阵.(Ⅰ) ,0s λλ∈=.①.121(,)(1,)c c u=且0,()0AB B uE B =-=.证明:由0,()0AB B uE B =-=易知12()AB B uE B u-=--,又由121(,)(1,)c c u=和0λ=知(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.②.121(,)(1,)c c u=-且()0,()0E A B B uE B -=-=.证明: 由()0,()0E A B B uE B -=-=易知2122,0AB B B B u-=-=-. 将它们相加得212AB B B u-=--. 又由121(,)(1,)c c u=-,0λ=可得22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.③.121(,)(1,)c c u=且()()0,()0E A B uE B AB uE B --=--=.证明: 由条件易知()(),()0B uE B AB uE B AB uE B -=--+=.将它们相加后,再乘以1u-可得212AB B B u-=-+. 又由121(,)(1,),0c c uλ==知22111(2)c A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅱ) ,1s λλ∈=.④.121(,)(,(1)),0,1c c a a a u=-≠且()0,()0E A B A uE B -=-=.证明: 由条件易知,B AB AB uA ==.从而有22,()()B uA B uA u uA uB ====.即2B uB =.故有1121(1)1(1)a u a u B B B uB B a a a a-----+=-+=-. 结合上式有(2)22A uE B uA AB AB AB AB B -=-=-=-=-121(1)(2)a u A uE B B B a a--⇒-=-+.从而可得(2)A E B λ-22111c B B c c =-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑤.121(,)(1,)u c c v v=-,且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知uA AB =,从而(2)2A uE B uA AB -=-2uA uA uA =-=-.即(2)A uE B uA -=-. 又由()()0E A B vE B --=可得2()()B vE B AB vE B vAB AB -=-=-.又因为22,()AB uA AB AB B uAB u A ====.代入上式可得:2()B vE B uvA u A -=-.即有2()B vE B A uv u -=-.结合(2)A uE B uA -=-有()(2)B vE B A uE B u v--=-.即有12111(2)11v A uE B B B uv uv----=-+--. 又由121(,)(1,)u c c v v=-知22111(2)c A E B B B c c λ-=-+, 满足引理1.故12P c A c B =+此时为幂等矩阵. ⑥. 121(,)(,)v c c u v u v=---且()0,()()0E A B A uE B vE B -=--=. 证明: 由()0E A B -=知AB B =,从而(2)22A uE B uA AB uA B -=-=-又由()()0A uE B vE B --=展开得2()0AB u v AB uvA -++=. 又22,()AB B AB AB B B ===,结合上式可得2()0B u v B uvA -++=.故2()u v B B A uv+-=.代入到(2)2A uE B uA B -=-得(2)A uE B -=2()2u v B B B v+--. 即21(2)u v A uE B B B v v --=-. 又由121(,)(,)v c c u v u v=--- 可得2211(2)A E B B B c c λ-=-+. 满足引理1.故12P c A c B =+此时为幂等矩阵.⑦. 121(,)(,),1u c c u v v v=-+=且()0,()()0A vE B E A B vE B -=--=.证明: 由()0A vE B -=知()AB u v A =+.从而(()2)A u v E B +-()2()u v A AB u v A =+-=-+.又先把()()0E A B vE B --=展开可得2()0B vE B vAB AB --+=.又将()AB u v A =+及22()()()AB AB B u v AB u v A ==+=+.代入到上式可得2()()()0B vE B v u v A u v A --+++=.即有()()B vE B A u v u-=-+.代入到(()2)A u v E B +-()u v A =-+,可得21(()2)v A u v E B B B u u+-=-. 从而由121(,)(,),u c c u v v v λ=-+=知22111(2)c A E B B B c c λ-=-+满足引理1故12P c A c B =+此时为幂等矩阵.⑧.12(,)(,)c c u εε=-,且2()()0,()()0.A uE B uE B E A B uE B εε--=--=证明: 由()()0A uE B uE B ε--=知 22(())0A u E u u B B εε-++=. 由2()()0E A B uE B ε--=知 222()()A uB B B uE B εε-=-. 将上面两式相加并乘以1u可得 22((1))()A uE B B uE B εεεε+--=-.又3i eπε= 满足22112,εεεε--=-=-,结合上式可得(2)A uE B ε-211B B uε=--. 从而由12(,)(,)c c uεε=-,u λε=知2211(2)A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅲ) 2,2s λλ∈=.⑨.1,21()(1,)c c u=-,且()0,()0A uE B B uE B -=-=.证明: 由()0,()0A uE B B uE B -=-=知1(22)0()A uE B B uE B u-==-, 即21(22)()A uE B B B u -=---从而由1,21()(1,)c c u=-,2u λ=知22111(2)c A E B B B c c λ-=-+ 满足引理1.故12P c A c B =+此时为幂等矩阵. (Ⅳ) 2,0,1,2.s λλ∈≠⑩.1,21()(,)u c c v v=-且()0,()()0A uE B E A B vE B -=--=.证明: 由()0A uE B -=知AB uA = 从而22AB uAB u A ==,(()2)A u v E B +-()2()u v A AB u v A =+-=--.又由()()0E A B vE B --=展开得()()B vE B AB vE B -=-. 据22AB uAB u A ==知22()()AB vE B vAB AB uv u A -=-=-.结合上式可得2()()uv u A B vE B -=-()()B vE B A u v u-⇒=--.代入到(()2)A u v E B +-()u v A =--可得2()1(()2)B vE B v A u v E B B B u u u-+-==-. 又由1,21()(,)u c c v v =-,u v λ=+知22111(2)c A E B B B c c λ-=-+满足引理1.故12P c A c B =+此时为幂等矩阵. ▌2.4 幂等矩阵线性组合的可逆性在本节中,我们将给出两个幂等矩阵的线性组合矩阵12c A c B +可逆的一些条件,并给出一些相关的结论.引理1[3].设矩阵A 是n n ⨯阶方阵,则A 可逆{}()0N A ⇔=. ▌定理1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若存在两个非零复数1,2k k , 且120k k +≠使得12k A k B +可逆,则对所有的复数1,2c c ,满足120c c +≠,则线性组合12c A c B +都是可逆的.证明:设1212,,0,0c c C c c ∈≠≠且120c c +≠. 对12()x N c A c B ∀∈+,有12()0c A c B x += 即有 12c Ax c Bx =- ……………① 将上式两边依次左乘,A B ,可得:12c Ax c ABx =-,12c BAx c Bx =-. ……②比较上面三个式子可得:,Bx ABx Ax BAx ==. …………………………③又由于22212112122()k A k B k A k k AB k k BA k B +=+++,故22212112122()k A k B x k Ax k k ABx k k BAx k Bx +=+++.将,Bx ABx Ax BAx ==代入上式可得212()k A k B x +22112122k Ax k k ABx k k BAx k Bx =+++ 112212()()k k k Ax k k k Bx =+++ 1212()()k k k A k B x =++.由于12k A k B +可逆,,将上式两边左乘112()k A k B -+得121212()()k k x k A k B k Ax k Bx +=+=+, …………………④再左乘A 得:1212k Ax k Bx k Ax k ABx +=+即有Ax ABx =.代入12c Ax c ABx =-可得12()00c c Ax Ax ABx +=⇒==.注意到③式有0Bx =,因此由④式可得12()0k k x +=但120k k +≠,所以0x =因此{}12()0N c A c B +=.由引理1知12c A c B +是可逆的. ▌在定理1中令121c c ==,立即有:推论1.设矩阵,A B 均是幂等矩阵,即22,A A B B ==.若A B +可逆,则 对所有的复数1,2c c ,满足120c c +≠,线性组合12c A c B +都是可逆的. ▌ 定理2[18].设矩阵,A B 均是幂等矩阵,对任意的复数1,2c c ,下列命题等价: ⑪ A B -可逆.⑫ 12c A c B +及E AB -可逆. 证明:⑪⇒⑫对12()x N c A c B ∀∈+,由定理1的证明过程知,Bx ABx Ax BAx ==. 故22222()()0A B x A AB BA B x A x ABx BAx B x -=--+=--+=.又由A B -可逆,故0x =.因此 {}12()0N c A c B +=.由引理1知 12c A c B +可逆. 同样地,对()()0x N E AB E AB x x ABx ∀∈-⇒-=⇒=.两边左乘A ,得Ax ABx x BAx Bx ==⇒=.所以 2()0A B x Ax ABx BAx Bx -=--+=. 又由A B -可逆知0x =. 所以{}()0N E AB -=. 由引理1知E AB -可逆. ⑪⇐⑫对()x N A B ∀∈-,有()0A B x -=Ax Bx ⇒= 则 ,Ax ABx BAx Bx ==. 所以121212()()()c A c B E AB x c A c B c AB c BAB x +-=+-+ 220c Bx c BAx =-=.0x ⇒=.由12c A c B +及E AB -可逆,知{}()0N A B -=. 由引理1知A B -可逆. ▌ 在定理2中令121c c ==,立即有:推论2.设矩阵,A B 均是幂等矩阵,下列命题等价: ⑪ A B -可逆.⑫ A B +及E AB -可逆.定理3[18]. 设矩阵,A B 均是幂等矩阵,1212,,0,0c c C c c ∈≠≠,满足120c c +≠. 则12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. 证明:由2212121212()()c A c B E A B c A c B c A c BA c AB c B +--=+----12()c AB c BA =-+.可见12c AB c BA +可逆12c A c B ⇔+及E A B --可逆. ▌2.5 幂等矩阵的秩方面的有关性质定理1[5]. 设,A B 是n n ⨯的复幂等矩阵,则1rank()rank rank rank rank 00A B B A A B B A B A ⎛⎫⎛⎫+=-=- ⎪ ⎪⎝⎭⎝⎭.2 rank()rank()rank A B A AB BA BAB B +=--++.3 rank()rank()rank A B B AB BA ABA A +=--++. ▌定理2.设n n A C ⨯∈为Hermite 矩阵,即A A '=.且对某个,k N ∈有2k A A =, 则 rank()()A tr A =.证明:设rank A r =,,x λ分别是矩阵A 的特征值和相应的特征向量. 则λ是实数[1].且2212k k k Ax x A x A x x λλλ-====. 从而有21(1)0k x λλ--=.又0x ≠.于是21(1)0k λλ--=.由λ是实数,所以111,0r r n λλλλ+====== ,故结论成立. ▌ 推论1. 设n n A C ⨯∈,且2A A =,则rank()()A tr A =. 其实,该结论在1.2节中已经很明朗了.定理2[10]. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.证明:由定理1可知rank()()i i A tr A =,11rank mmiii i AtrA===∑∑于是有1111rank()rank()mm mmiiiii i i i AtrA tr A A =======∑∑∑∑. ▌推论2. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论3. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为幂等矩阵,且1mi i A =∑为幂等矩阵.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.推论4. 设(1,2,,,2)n n i A C i m m ⨯∈=≥ 为Hermite 矩阵,且存在某个,i k N ∈ 使2ik ii A A =,又1m i i A E ==∑.则 11rank rank()m mi i i i A A n ====∑∑.推论5. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 为Hermite 矩阵,且1mi i A E ==∑.则 11rankrank()mmii i i AA n ====∑∑.定理3[10].设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为实数,且存在,i k N ∈使2ik ii A A =,又对某个正整数 t 有211tmmii i i A A ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑.定理4[20]. 设(1,2,,,2)n ni A Ci m m ⨯∈=≥ 及1mi i A =∑的特征值均为非负实数,且存在,(2)i i k N k ∈≥使ik i i A A =,又对某个正整数 t 有11t mmii i i AA ===∑∑.则 111rankrank()mmmii ii i i AA trA=====∑∑∑. ▌结束语本文主要是对幂等矩阵的一些性质和结论进行归纳总结并对相关性质进行推广。

幂零矩阵的性质及应用

幂零矩阵的性质及应用

编号:***********xxxx学院2012届毕业生毕业论文(设计)题目:幂零矩阵的性质及应用完成人:xxx班级:2008- 01学制: 4 年专业:数学与应用数学指导教师:xxxx完成日期:2012-03-31目录摘要 (1)0引言 (1)1预备知识 (1)1.1幂零矩阵的相关概念 (1)1.2幂零矩阵的基本性质 (1)2 主要结论 (4)3 应用 (6)3.1幂零矩阵在矩阵运算中的应用 (6)3.2幂零矩阵与高等代数中其他知识相结合的应用 (8)3.2.1幂零矩阵与线性方程组相结合应用 (9)3.2.2幂零矩阵的若尔当标准形的应用 (10)3.2.3幂零矩阵与幂零线性变换相结合的应用 (11)参考文献 (13)Abstract (14)幂零矩阵的性质及应用作者:xxxxx指导老师:xxx摘要:本文从幂零矩阵的定义出发,总结了幂零矩阵的基本性质及一些主要结论,而且对其应用作进一步的讨论:用幂零矩阵性质求一些特殊矩阵的逆及在历年考研真题中对幂零矩阵的考查.关键词:幂零矩阵;幂零指数;若尔当形;特征根0引言在高等代数中,矩阵是研究问题的很重要的工具,在讨论矩阵的乘法运算时给出了幂零矩阵的定义,但对其性质研究很少.幂零矩阵作为特殊矩阵无论在矩阵的理论方面,还是在实际应用方面都有很重要的意义,而且在一些交叉学科如密码学中,都有广泛的应用.目前,国内很多学者对幂零矩阵的性质已有较深入的研究,本文在他们研究的基础上,进一步探讨幂零矩阵的性质.1 预备知识为了叙述的需要,我们首先引入幂零矩阵的有关概念.1.1幂零矩阵的有关概念定义1设A是n阶矩阵,若存在一个自然数k,使0kA=,则A为幂零矩阵.定义2设A是幂零矩阵,满足0kA=的最小自然数k称为A的幂零指数.1.2幂零矩阵的基本性质在给出了幂零矩阵的相关概念之后,我们容易得到幂零矩阵的一些基本性质.第 1 页(共14页)第 2 页(共 14 页)性质1 若A 是幂零矩阵,则*,,,T mA A A A -都是幂零矩阵. 性质2 A 为幂零矩阵的充要条件是A 的特征值全为0. 在此基础上,我们还可以得到幂零矩阵的另一个充要条件. 推论1 A 为幂零矩阵的充要条件是k Z +∀∈,0k trA =. 证明 必要性 因为A 为幂零矩阵,所以A 的特征值全为0, 即120n λλλ====,所以kA 的特征值为120n k k k λλλ====.从而有120n k k k ktrA λλλ=+=++.充分性 由已知,对k Z +∀∈,120nk k k k trA λλλ=+=++. ①令12,,,t λλλ为A 的不为零的特征值,且i λ互不相同,重数为i n (1,2,,i t =). 由①式,得方程组112121211222222333121200t t t t t t t t t t t n n n n n n n n n n n n λλλλλλλλλλλλ+++=⎧⎪+++=⎪⎪+++=⎨⎪⎪⎪+++=⎩ ② 由于方程组②的系数行列式为121212122221212111ttttt tt tt tttB λλλλλλλλλλλλλλλλλλ==()121t i j j i tλλλλλ≤<≤=∏- 又()1,2,,i i t λ=互不相同且不为0,所以0B ≠,从而知方程②只有0解,即0i n =(1,2,,i t =).因此A 的特征值全为0,即A 为幂零矩阵.推论2 若A 为幂零矩阵,则A 一定不可逆且有1,1A E E A +=-=. 证明 由于A 为幂零矩阵,所以存在k Z +∈,使得0k A =,因此有00kk A A A ==⇒=,所以A 一定不可逆.第 3 页(共 14 页)由性质2,得A 的特征值120n λλλ====,所以A E +,E A -的特征值分别是12'''011n λλλ=+====, 12"""101n λλλ=-====,且有12'''11n n A E λλλ+===,12"""11n n E A λλλ-===.即1,1A E E A +=-=.推论3 若A E +为幂零矩阵,则A 非退化. 证明 令12,,,n λλλ为A 的特征值.若A 退化,则有120n A λλλ==,所以至少存在00i λ=为A 的特征值,从而有0110i λ+=≠为A E +的一特征值,这与A E +为幂零矩阵相矛盾,得证A 为非退化.对于幂零指数相同的幂零矩阵,有一些比较重要的性质. 性质3 所有的n 阶1n -次幂零矩阵都相似.证明 令A 为n 阶1n -次幂零矩阵,即10n A-=,()001k k n A ≠≤<-,因此A 的最小多项式1()()n A n m d λλλ-==;又A 是幂零矩阵,所以A 的特征值全为0,因此A 的特征多项式为()()n n f E A D λλλλ=-==,又11()()()n n n n D d D λλλλ--==, 所以1()n D λλ-=;又第 4 页(共 14 页)12()()()()()n n n f E A d d d D λλλλλλλ=-===,从而有1()n d λλ-=,221()()()1n d d d λλλ-====,所以所有n 阶1n -次幂零矩阵具有相同的不变因子为1,,,,,111n λλ-.所以所有n 阶1n -次幂零矩阵都相似. 利用此法也可以得到:推论4 所有n 阶n 次幂零矩阵都相似.注 但是当幂零矩阵的幂零指数2k n ≤-,相同幂零指数的幂零矩阵却不相似.性质4 设A 为非零幂零矩阵,且k 是A 的幂零指数,则E ,A ,2A ,,1k A-线性无关.证明 利用反证法.假设12,,,,k A E A A -线性相关,则一定存在一组不全为0的0c ,1c ,,1k c -,使2101210k k E A c c c c A A --++++=, ①两端右乘1k A -,得100k c A -=,而10k A -≠,因此00c =.再对①式两端右乘2k A-,可得10c =.同理可得2310k c c c -====.所以0110k c c c -====,得出矛盾,所以假设错误.即证得21,,,,k E A A A -线性无关.2 主要结论我们在幂零矩阵的定义以及基本性质的基础上,进一步探讨幂零 矩阵,得到一些重要结论,而且这些结论应用的也比较广泛.结论1 设A 为幂零矩阵,且k 是A 的幂零指数,则 (1)E A -可逆,且()121k E A E A A A ---=++++ . (2)()()11212311111k k kmE A E A A Am mm m---+-+=-++.(0)m ≠第 5 页(共 14 页)证明 (1) 由于A 为幂零矩阵,所以0k A =,从而k k k E E A E A =-=-()21()k E A E A A A -=-++++,即()121k E A E A A A ---=++++.(2)对任意0m ≠,121231111()()(1)k k kmE A E A A A m m mm--+-+++-121211111(1)k k k E A A A Am m m m---=-++++- 212121111(1)(1)k k k k k k AAA mmm-----+++--E =所以()1121231111()k k kE A mE A A Am m mm---=-+++-+ .结论2 若A 为幂零矩阵,则A 的若尔当标准形J 的若尔当块为 幂零若尔当块,且J 的主对角线上的元素为0.证明 A 为幂零矩阵,由性质2知,A 的特征值全为0; 又在复数域上,存在可逆矩阵T ,使得121S J J J T A TJ -⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎣⎦其中11iiiiiJ nn λλ⨯=⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦ 1,2,,i t =,第 6 页(共 14 页)则(1,2,,)i i t λ=为J 的特征值;又A 与J 相似,所以A 与J 有相同的特 征值,所以0i λ= (1,2,,)i t =,即J 的主对角线上的元素全为0;所以有01010i J ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,则i J 为幂零矩阵,其幂零指数为i n (1,2,,)i t =,所以12,,,S J J J 为幂零矩阵.所以A 的若尔当标准形J 的若尔当块12,,,S J J J 为幂零若尔当块,且J 的主对角线上的元素为0. 由此结论可以得到:推论5 n 阶幂零矩阵的幂零指数小于等于n ,且幂零指数等于其 若尔当形矩阵中阶数最高的若尔当块的阶数.3 应用3.1 幂零矩阵在矩阵运算中的应用——求一些特殊矩阵的逆在矩阵的运算中,求矩阵的逆一般是比较麻烦的,对于一些特殊的矩阵可以利用幂零矩阵的性质来化简.引理1 任一n 阶方阵A 都可写成的A D N =+形式,其中D 是一个与对角阵相似的n 阶方阵,N 是一个幂零矩阵,而且DN ND =.证明 因为在复数域上,存在可逆矩阵T ,使得121S J J A T T J -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦① 其中11iiiiiJ n nλλ=⨯⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦1,2,,i t =第 7 页(共 14 页)于是00101i ii i i i J N D λλλ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=+=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1,2,,)i t =. ②其中ii i D λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦为对角阵,0101i N ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦为幂零矩阵. 因为n i O N =,将②式带入①式得111s s N D A T TN D -+⎡⎤⎢⎥=⎢⎥⎢⎥+⎣⎦1111s s N D T T T T N D --⎡⎤⎡⎤⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦D N =+ ③其中11s D D T T D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦相似于对角阵,且 1111nn n s s N N T T O N N T T N N --⎡⎤⎡⎤⎢⎥⎢⎥=⇒==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 即N 为幂零矩阵,于是111s s N D DN T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, ④ 类似的,有第 8 页(共 14 页)111s s N D ND T T N D -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. ⑤ 但()i i i i i i E N N N D λλ==, ()i i i i i i E N N N D λλ==.所以i i i i N N D D = ,(1,2,,)i s = ⑥由④⑤⑥,即证 DN ND =.由引理1,对于一些可表示为幂零矩阵与单位矩阵的和的矩阵,则可利用结论1来求它的逆;而主对角元素完全相同的三角矩阵可表示为数量矩阵与幂零矩阵的和,也可以借助结论1可求出它的逆;对于一些可表示为单位矩阵与若尔当矩阵幂的和的矩阵,借助结论1也可求出它的逆.下面通过例子来说明.例1 设11111011110011101A ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦,求1A -. 解 记n J 为n 阶若尔当矩阵,则0nn J =,而21n n n n A E J J J -=++++,由结论1有1121()n n n nn E E J A J J J ---==-++++1100001100000110001-⎡⎤⎢⎥-⎢⎥⎢⎥=⎢⎥-⎢⎥⎢⎥⎣⎦. 3.2 幂零矩阵与高等代数中其他知识相结合的应用在历年研究生入学考试中,对幂零矩阵的考查综合性较强,能力要求较高,是个难点.下面列举几道典型的对幂零矩阵的考查方法,以说明幂零矩阵和其他数学知识之间的灵活运用.第 9 页(共 14 页)3.2.1幂零矩阵与线性方程组相结合应用下面看一下幂零矩阵与线性方程组相结合的考查方法. 例2 (中山大学) A ,B ,C 为n 阶方阵,且AC CA =,BC CB =,C AB BA =-,证:存在自然数k n ≤,使得0k C =.分析 本题即证C 为幂零矩阵,只需证C 的特征值全为0.而C AB BA =-,容易联想需要用C 的迹来解题,而采用反证法则恰到好处.证明 只需证C 的特征值12,,,n λλλ全为0即可. 事实上,()()0tr C tr AB BA =-=,即有10ni i λ==∑;又2()()()AB BA CAB CBA AC B B AC C C =-=-=-,所以()2210ni tr C i λ===∑;同理可得()3310nii trC λ===∑,()10nss ii trC λ===∑;假设C 存在非0的特征值,不妨设合并各相同的非0特征值后,得11222221122112200s s s s s s s s s k k k k k k k k k λλλλλλλλλ=⎧+++⎪+=++⎪⎨⎪⎪+=++⎩,(12,,,s λλλ各不相同).方程组有非0解,故系数行列式:第 10 页(共 14 页)1222212120ss s s s sλλλλλλλλλ=(i λ各不相同),但是()1222212121120sss i j j i ss s s sλλλλλλλλλλλλλλ≤<≤=≠∏-, 得出矛盾,所以假设错误,即有C 不存在非零的特征值,C 的特征值全为0,所以存在自然数k n ≤,使得0k C =.此题利用幂零矩阵的性质构造齐次线性方程组,灵活运用数学知识进行解题,与推论1的证明有相似之处,体现了幂零矩阵在高等代数中的重要地位.3.2.2 幂零矩阵的若尔当标准形的应用幂零矩阵的若尔当标准形在历年真题中也较常用到.例3(上海交通大学) A ,B 为n 阶方阵,B 为幂零矩阵,AB BA =,则有A B A +=.分析 在复数域上,每个n 级矩阵都与一个若尔当形矩阵相似, 幂零矩阵的若尔当标准形的对角线上的元素为0,由此结论此题即得证.证明 由题有,在复数域上,存在可逆矩阵,T 使得121*n AT T λλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,121*n BT T μμμ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦. 又B 为幂零矩阵,所以B 的特征值全为0,即100*0BT T -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,第 11 页(共 14 页)()121111*n A B T AT BT T T T T T λλλ----⎡⎤⎢⎥⎢⎥+=+=⎢⎥⎢⎥⎣⎦, 所以()12111*nA B TA B T T TT T λλλ---+=+=.又因为T 可逆,所以0T ≠,1212*n nA B λλλλλλ+==,因为121*n AT Tλλλ-⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦因此12,,,n λλλ为A 的特征值,所以12n A λλλ=,从而得证21n A A B λλλ=+=.3.2.3 幂零矩阵与幂零线性变换相结合的应用幂零线性变换在任一组基下的矩阵为幂零矩阵,研究幂零矩阵的 特性对研究幂零线性变换是很有帮助的.例4(西南大学) 设V 为数域F 上的n 阶方阵构成的线性空间,A 为F 上一个固定的n 阶方阵,定义()TB AB BA =-,其中B 为V 中任一向量,证明(1)T 为线性变换;(2)若A 为幂零矩阵,则T 为幂零线性变换.第 12 页(共 14 页)分析 (1)利用线性变换的定义即可得证.(2) 由()T B AB BA =-,有下述结论:A 的特征值之差都是T 的特征值.以下要证此结论.证明 (1)任取,B C V ∈,k F ∀∈,则有:()()()()()T B C A B C B C A AB BA AC CA T B T C +=+-+=-+-=+,()()()()T kB A kB kB A kAB kBA kT B =-=-=,所以T 为线性变换.(2)先做如下断言:()T B AB BA =-⇒A 的特征值之差都是T 的特 征值.事实上,()n y F M ∀∈,取()n F M 的一组基ij E (,1,2,,i j n =),设A 的若尔当标准形为1*s J λλ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 则存在可逆矩阵()n P F M ∈,使得11*s AP J P λλ-⎡⎤⎢⎥==⎢⎥⎢⎥⎣⎦, 所以1A PJ P -=.又P 可逆,所以1ij P E P -也是()n F M 的一组基. 又111()()()ij ij ij T A A PE P PE P PE P ---=- 1111()()()()ij ij PJ PJ P PE P PE P P ----=- 1()ij ij J J P E E P -=-10*0i jP P λλ-⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦1()()ij i j PE P λλ-=-第 13 页(共 14 页)所以T 在基11111111211,,,,,,,n n nn PE P PE P PE P PE P PE P -----下的矩阵为121212110*0nnn n n λλλλλλλλλλλλ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦------所以A 的特征值之差都是T 的特征值.断言成立.因为A 为幂零矩阵,所以A 的特征值0i λ= ,所以T 的特征值全为0,从而T 为幂零线性变换.参 考 文 献[1] 北京大学数学系几何与代数教研室前代数小组.高等代数[M].北京:高等教育出版社,2003.[2] 杨子胥.高等代数习题解(下册)[M].济南:山东科技出版社,1982:836-866. [3] 邹本强.幂零矩阵的性质[J].science information,2007,(12):150-155. [4] 韩道兰,罗雁,黄宗文.幂零矩阵的性质及应用[J].玉林师范学院学报(自然科学)2003,24(4):1-3.[5] 江明星.幂零矩阵的若干性质[J].安徽机电学院学报,1999,14(2):77-79. [6] 姜海勤.幂零矩阵性质的一个应用[J].泰州职业技术学院学报,2004, 4(1):54-57.[7] 樊正恩.幂零矩阵的若干注记[J].甘肃高师学报,2011,16(2):3-4. [8] 赵廷芳.幂零矩阵的性质[J].周口师专学报,1994,11(1):27-30.[9] 谷国梁.关于幂零矩阵性质的探讨[J].铜陵财经专科学校学报,2001,(4):49-63.[10]吴险峰.n 阶幂零矩阵的判别与构建[J].齐齐哈尔大学学报,2007,23(4):72-75.The Properties and Applications of Nilpootent MatricesxxxxAbstract:This paper based on the definition of nilpotent matrix ,then summarizes the basic properties of nilpotent matrix and some main conclusion , and further debate its application: using the properties of nilpotent matrix for solving the inverse matrix of some special matrix ,and investigating the nilpotent matrix in the postgraduate entrance exam.Keywords: nilpootent matrices; nilpotent index; Jordan standard form;characteristic root第14 页(共14页)。

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用

幂等矩阵的性质及其应用0 引言幂等矩阵是一类性质特殊的矩阵,不仅在高等代数中有着重要的应用,在其它课程中,如计量经济学、统计学课程中也有着重要应用。

在代数学中,线性变换的许多问题都可以转化为幂等矩阵来解决。

但是在通常的高等代数的教材中关于幂等矩阵的讨论是比较少的。

因此本文对幂等矩阵的性质做出相关讨论。

本文主要给出幂等矩阵特征值、特征子空间和Jordan标准型的基本性质,同时给出了一些相关的应用。

1 主要结果首先给出幂等矩阵的定义和基本性质。

定义1:若n阶方阵A满足A2=A,则称A为幂等矩阵。

下面给出关于幂等矩阵的一些简单的性质。

定理1:幂等矩阵A的特征值只能是0或者1。

证明:设A为任意一个幂等矩阵。

由A2=A,可得λ2=λ其中λ为A的特征值。

于是有λ=1或0,命题得证。

推论:可逆的幂等矩阵的特征值均为1。

证明:设A为一可逆的幂等矩阵。

由A2=A可得A2A-1=AA-1即A=E。

此时有λE-E=0即λ=1其中,λ为A的特征值。

命题得证。

定理2:任意的幂等矩阵A都相似于对角阵,即存在可逆阵P,使得:P-1AP=E■ 00 0,其中r=R(A)。

证明:A为任意幂等矩阵,J为其Jordan标准型,即存在可逆矩阵P,使得P-1AP=J=■,其中Ji=■。

由此可得J 2=J。

于是有,Ji 2=Ji。

此时,Ji只能为数量矩阵λ■E。

又因为A2=A,所以λ■=0或1,且r=R(A)。

命题得证。

定理3:幂等矩阵的特征值为1的特征子空间为其值域,特征值为0的特征子空间为其零(核)空间。

证明:(i)A为一n阶幂等矩阵。

?琢为其特征值1对应的特征向量。

则有,A?琢=?琢。

由此可得?琢属于A的值域。

反之,对于任意一个A的值域中的向量?琢,总能找到一个向量β,使得Aβ=?琢,于是有A?琢=A2β=β,即?琢=β。

综上可知,幂等矩阵的特征值为1的特征子空间与其值域等价。

(ii)A为一n阶幂等矩阵。

x为其特征值0对应的特征向量,则有Ax=0,即A特征值0对应的特征向量都属于A的核。

浅谈幂等矩阵的性质

浅谈幂等矩阵的性质

解系 η1,η2…ηn- r则此基础解系也为 A2x=0 的解,并且线性无关,而 R (A)2 =r,所以 η1,η2…ηn- r 也为 A2x=0 的基础解系,那么 Ax=0 与 A2x=0 同解
若 α 为 A2x=0 的解,则 A2α=0=>A3α=0, 则 α 为 A3E=0 的
解,反之,若 α 为 A3x=0 的解,则 A3α=0 即 A2Aα=0 ,说明向量
Aα=0 为方程组 A2x=0 的解,由 (1) 则 Aα 为 Ax=0 的解,则有 A2
α=0,即 α 也为 A2x=0 的解,所以 A2x=0 与 A3x=0 同解。因此,照
此方法类推,则必有 R (A)p )=R (A)。
性质 3 若 A为 n 阶方程,且 R (A) + (E- A) =n,则 A2=A
2009年7月上摘要幂等矩阵的种常规的正定性虽然在几何学物理学以及概率论等学科中都得到了重要的应用但随着数学本身以及应用矩阵的其他学科的发展越来越不能满足人们的需要现代经济数学等众多学科中的重要作用使矩阵的次正定性研究不仅在理论上而且在应用上都是有意义的
浅谈幂等矩阵的性质
侯君芳 黄丽莉
(郑州旅游职业学院,河南郑州 450009)
α∈V,α=Aα+ (α- Aα) ∈AV+ (E- A) V,则 V=AV+
(E- A) V
则 V=AV + (E- A) V。 下 证 A2=A , 其 实 α ∈V, 有
A2α- Aα=A (A- E) α∈AV∩ (E- A) α={0}。 因此 A2α =A,则
A2=A,从而 A2=A。
下面通过三个例题说明幂等矩阵的性质与应用
换句话说 A的特征值不是 1 就是 0,再由定理 7,存在正交阵 r 使
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂等矩阵的性质目录中文摘要 (1)英文摘要 (1)1 引言 (1)2 幂等矩阵的概念 (3)3 幂等矩阵的性质 (4)3. 1 幂等矩阵的主要性质 (4)3. 2 幂等矩阵的等价性命题 (7)3. 3 幂等矩阵的线性组合的相关性质 (11)4 幂等矩阵与其他矩阵的关系 (14)4. 1 幂等矩阵与对合矩阵 (14)4. 1. 1 对合矩阵 (14)4. 1. 2 幂等矩阵与对合矩阵的关系 (15)4. 2 幂等矩阵与投影矩阵 (16)4. 2. 1 投影矩阵 (16)4. 2. 2 幂等矩阵与投影矩阵的关系 (17)结束语 (19)参考文献 (20)致 (21)英文原文 (22)英文译文 (29)幂等矩阵的性质数学与应用数学专业2009级王素云摘要:本文对幂等矩阵的一些性质进行归纳总结及推广, 并将幂等矩阵与其他特殊矩阵进行了比较. 给出幂等矩阵的概念. 讨论幂等矩阵的主要性质, 并将其进行推广. 然后研究了幂等矩阵的等价性命题, 以及幂等矩阵的线性组合的相关性质. 再结合对合矩阵和投影矩阵更深入的研究幂等矩阵的性质, 分别讨论了幂等矩阵与对合矩阵, 幂等矩阵与投影矩阵的关系.关键字: 幂等矩阵; 性质; 对合矩阵; 投影矩阵; 广义逆矩阵PROPERTIES OF IDEMPOTENT MATRIXSuyun Wang, Grade 2009, Mathematics and Applied MathematicsAbstract In this paper, some properties of the idempotent matrix are summarized and extended, and idempotent matrices are compared with other special matrix. The concept of idempotent matrices are given. The main properties of the idempotent matrix are discussed and promoted . Then, the equivalent propositions of idempotent matrix and the nature of the linear combinations of idempotent matrices are studied. The involution matrix and the projection matrix are used to discuss the nature of the idempotent matrices much deeper. The relationship between the idempotent matrix and involution matrix, the idempotent matrix and the projection matrix are discussed.Key Words the idempotent; the nature; involution matrix; the projection matrix; generalized inverse matrix1 引言幂等矩阵是矩阵中非常特殊的一类矩阵,也是非常重要且非常常见的一类矩阵,很多其他特殊矩阵都与幂等矩阵有着密切的联系,如对合矩阵及投影矩阵。

幂等矩阵在数学领域及其他许多领域的应用都非常广泛,幂等矩阵更是矩阵论中的一个基础部分,幂等矩阵在可对角化矩阵的分解中具有重要作用。

近年来有关此问题的研究吸引了国外许多研究学者的关注,关于幂等矩阵的研究已经成为矩阵论中的活跃的研究领域。

幂等矩阵在研究广义逆矩阵中占有非常重要的地位,研究幂等矩阵的性质是研究其他特殊矩阵的基础。

广义逆的思想可追溯到1903年(E.)i.弗雷德霍姆的工作,他讨论了关于积分算子的一种广义逆(他称之为伪逆)。

1904年,D.希尔伯特在广义格林函数的讨论中,含蓄地提出了微分算子的广义逆。

而任意矩阵的广义逆定义最早是由E.H.穆尔在1920年提出的,他以抽象的形式发表在美国数学会会刊上。

当时人们对此似乎很少注意。

这一概念在以后30年中没有多大发展。

曾远荣在1933年,F.J.默里和J.·诺伊曼在1936年对希尔伯特空间中线性算子的广义逆作过讨论。

T.N.E.格雷维尔、C.R.拉奥和其他人也作出了重要的贡献。

1955年,罗斯证明了存在唯一的+X满足前述性质①~④,并以此作为+A的定义。

1956年,R.=A拉多证明了罗斯定义的广义逆与穆尔定义的广义逆是等价的,因此通称+A 为穆尔-罗斯广义逆矩阵。

幂等矩阵是国外学者都非常感兴趣的一类矩阵,如文[1]中研究了幂等矩阵的可对角化性质,证明了幂等矩阵是可对角化的;文[2]研究了幂等矩阵的伴随矩阵的幂等性等等。

本文在接下来的章节中,我们将先给出幂等矩阵的定义及几个简单命题,并证明之。

然后给出幂等矩阵的一系列性质,在前人的基础上进行总结以及推广,并进行证明。

再给出幂等矩阵的等价命题,并给出证明。

然后讨论幂等矩阵的线性组合的相关性质,再结合对合矩阵和投影矩阵及幂等矩阵分别于对合矩阵和投影矩阵的关系对幂等矩阵进行深入研究。

2 幂等矩阵的概念定义2.1]3[ 若n n C A ⨯∈有性质A A =2, 则称A 为幂等矩阵.为了更好地了解幂等矩阵, 现在来看以下几个命题:命题2.1 若n 阶方阵A 是幂等矩阵, 则与A 相似的任意n 阶方阵是幂等矩阵.证明 设A B ~(即矩阵B 与矩阵A 相似),则B AP P t s C P n n =∈∃-⨯1.,可逆,且 P A P AP P AP P B 21112---=⋅=, 又 A A =2,B AP P P A P B ===∴--1212. B ∴是幂等矩阵.命题2.1也可以表述为: 若A 是幂等矩阵, 则对于任意可逆阵T , AT T 1-也为幂等矩阵. 命题2.2 若n 阶方阵A 是幂等矩阵, 则A 的转置T A , A 的伴随矩阵*A 及A E -都是幂等矩阵.证明 ()()T TT A A A ==22, 即T A 为幂等矩阵; 对*A , 先证明对任意两个幂等矩阵B A 、, 有关系式()***A B AB=.由binet Cauchy -公式有:()()=j i AB ,*矩阵AB 的第i 行第j 列的代数余子式所以, ()()()2*****2*A A A AA A A ====; 对A E -, 有 ()A E A A E A A E A E -=+-=+-=-22222.命题2.3 若A 是幂等矩阵, A 的k 次幂仍是幂等矩阵.证明 可用数学归纳法证明. 当1=k 时, 显然成立.假设当n k =时, 命题成立, 现考虑1+n 情形:()1222221+++=⋅=⋅==n n n n n A A A A A A A .即当1+=n k 时命题仍成立, 由数学归纳法知, 对任意N k ∈命题都成立.3 幂等矩阵的性质3.1 幂等矩阵的主要性质性质3.1.1 0矩阵和单位矩阵E 都是幂等矩阵.由0和E 的定义可知命题成立.性质3.1.2 幂等矩阵A 满足: ()()0=-=-A A E A E A .证明 ()02=-=-=-A A A A A E A .()02=-=-=-A A A A A A E .性质3.1.3 若矩阵B A ,均为幂等矩阵, 且BA AB =, 则AB 与T T B A 也是幂等矩阵.证明 ()AB B A B AB A B BA A AB AB AB ==⋅⋅=⋅⋅=⋅=222.同理, T T B A 也是幂等矩阵.性质3.1.4 若幂等矩阵A 可逆, 则E A =.证明 E A A A A A A A =⋅=⋅=∴=--1212, .性质3.1.5 幂等矩阵的特征值只能为0或1.证明 设A 是幂等矩阵, 即A A =2, 再设A 的特征值为λ, 则λλ=2(由特征值的性质), 故10或=λ.由这个性质可以知道幂等矩阵是半正定矩阵.性质3.1.6 幂等矩阵可对角化.证明 设A 是幂等矩阵, λm 为A 的最小多项式, 由性质3.1.5知: λλ=m 或1-λ或()1-λλ, 最小多项式是互素的一次因式的乘积, 从而A 可对角化. 另]1[证明 当E A 或0=(即n r A 或0=)时, 显然成立.当n r A <<0时, A 的特征值全为0, 1. A 的属于1的特征子空间的维数等于齐次线性方程组()0=-x A E 的解空间的维数()A E r n --. 属于0的特征子空间的维数等于齐次线性方程组()0=--x A E 的解空间的维数A r n -.由幂等矩阵的性质有()[][]()n n n r r n r n r n A A E A A E =-=--=-+---22.故A 可对角化, 设t r A =, 则由幂等矩阵的性质得()r r n A E =--, 因此A 的相似标准型为⎥⎦⎤⎢⎣⎡000rE . 性质3.1.7 若A 是幂等矩阵, 则()1,0≠∈∀a R a , aE A +是可逆矩阵. 证明 A A =2 , ()()[]()()E a a E a a A A E a A aE A 1112+-=+--=+-+∴. 又1,0≠a , ()()()[]E E a A a a aE A =⎭⎬⎫⎩⎨⎧+-+-+∴111. 故aE A +可逆, 且()()()[]E a A a a aE A 1111+-+-=+-. 性质3.1.8 幂等矩阵的迹等于幂等矩阵的秩, 即()()A rank A tr =. 证明 设()X r A rank ,,λ=分别为A 的特征值及其相应的特征向量, 于是有: X AX X A AX X 22λλλ====, 从而有()01=-λλ. 由此可推得结果.性质3.1.9 若A 满足()n r r E A A =+-, 则A 是幂等矩阵.证明 设0=Ax 的基础解系为r ξξξ,,,21 (其实它们都是特征值0的特征向量), 再设()0=-x E A 的基础解系为t r r r +++ξξξ,,,21 (它们都是特征值为1的特征向量), 且n t r =+, 设矩阵(可逆)()n r r T ξξξξξ,,,,,,121 +=满足B E AT T t =⎪⎪⎭⎫⎝⎛=-0001, 而B 是幂等矩阵, 故1-=TBT A 也是幂等矩阵.例3.1.1 设B A 、都是幂等矩阵, 且BA AB =, 证明: AB B A -+是幂等矩阵.证明 由题意可知B B A A ==22,, 且BA AB =, 于是:()()2222AB ABB ABA BAB B BA AAB AB A AB B A +---++-+=-+ ABAB AB ABA BAB B BA AB AB A +---++-+= AB AB AB BA B BA A +---++=AB B A -+=. 例3.1.2 设B A ,为n 阶幂等矩阵, 且BA AB =, ()0,≠∈∀ab R b a . 证明 (1) 若()E bB aA =+2则0==BA AB 或1±=+b a .(2) 若()E bB aA =-2则0==BA AB 或1±=-b a . 证明 (1) ()E bB aA =+2, 由题设知BA AB B B A A ===,,22, 则有()B b abAB A a B b abBA abAB A a bB aA 22222222++=+++=+. 对上式两边同乘于B A ,得: AB AB b abAB AB a =++222.移项得 ()()[]0112222=-+=-++AB b a AB b ab a . 从而有()012==+AB b a 或, 即0==BA AB 或1±=-b a . 同理可证( 2).例3.1.3 设A 是n 阶实对称阵, 且A A =2, 证明: ∃正交矩阵T ,⎥⎦⎤⎢⎣⎡=-000.1rE AT T t s . 证明 设ξ是属于λ的特征向量, 那么λξξ=A ,()ξλξλλξξ22===A A A又A A =2,λξξ=2A , 从而()02=-ξλλ,但0≠λ,10,2或故==∴λλλ.(由幂等矩阵的性质也可以得知), 故A 的特征值不是0就是1.故⎥⎦⎤⎢⎣⎡=∃-000.,1r E AT T t s T 正交矩阵(T 可由特征向量构造, 将A 转化为标准型即为所求). 3.2 幂等矩阵的等价命题幂等矩阵的等价命题在实数域与复数域基本是一致的, 故在此只考虑幂等矩阵在实数域的等价命题.定理3.2.1 以下命题等价:(i) A A =2; (ii) ()*2*A A =, ()T T A A =2; (iii) ()A E A E -=-2; (iv) ()A Im x x Ax ∈⇔=; (v) ()()A E Im A Ker -=, ()()A E Ker A Im -=;(vi) ()(){}0A E Im A Im =-⋂, ()(){}0A E Ker A Ker =-⋂;(vii) ()()n R A E Im A Im =-⊕, ()()n R A E Ker A Ker =-⊕;故A E -的列向量都满足0=Ax . 从而()()A Ker A E Im ⊆-,又()A Ker α∈∀, 有:()()()A E Im A E A E A A -∈⇒-=-+⇒=ααααα0.由α的任意性可知()()A Ker A E Imf ⊇-. 综上, ()()A Ker A E Im =-.“⇐” 对n R ∈∀α有()()()A Ker A E Im αA E =-∈-,即()()A Ker A E ∈-α.于是有()[]()002=-⇒=-ααA A A E A .由α的任意性得A A A A ==-220,即. 同理可证⇔=A A 2()()A E Ker A Im -=.(i)⇔(vi) 若()()A E Im A Im x -⋂∈, 即()z A E Ay x -==对某两个z y 、成立,则()02=-==z A E A y A x , 故()(){}0A E Im A Im =-⋂.同理可证后面一个式子. 从而(iv)成立.反之, 若(vi)成立, 则对任一x , 有()x A E Ax x -+=是x 的唯一分解.但又有唯一分解()x A E x A x 22-+=,又()()()A E Im x A E ,A Im x A 22-∈-∈. 于是对任何x 成立着x A Ax 2=, 从而A A =2.(vi)⇔(vii) 注意到()x A E Ax x -+=对任何x 成立,故总有()()n R A E Im A Im =-⊕, 故(vi)与(vii)等价. (vii)⇔(viii)()()n R A E Im A Im =-⊕总是成立的. 由维数公式知()[]()[]()n A E A A E A A E A =-+=-⋂+-+dim dim dim dim .由性质3.1.8可知, 若A A =2, 则trA r A =.另外, 利用矩阵的满秩分解,我们可以具体的找出(ix)中的变换阵()0≠P P .设11Q P A =,22Q P A E =-均为满秩分解, 则有[]E Q Q P P =⎥⎦⎤⎢⎣⎡2121,, 且[]⎥⎦⎤⎢⎣⎡2121,Q Q P P ,均为方阵. 从而[]E Q Q P P =⎥⎦⎤⎢⎣⎡2121,. 由此可知r E P Q =11, 021=P Q , 012=P Q , r n E P Q -=22. 于是可证明[]⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡000,2121r E P P A Q Q .从此式还可以看出, 1P 与2P 的列向量分别是A 的属于特征值1与0的特征向量. 最后,矩阵的满秩分解可用来判定幂等性: 若21A A A =是满秩分解, 则A A =2当且仅当E A A =12. 另一方面, 常用此特殊性来构造幂等矩阵. 下面给出几个构造幂等矩阵的定理:定理3.2.2]4[ 设非零列向量()T n αααα,,, 21=, 则n 阶矩阵T E A αα-=为幂等矩阵⇔122221=+++=n T ααααα . 证明 “⇒” A A =2 , ()()T T T E E E αααααα-=--∴, 即()T T T T E E αααααααα-=+-2, 从而()01=-T T αααα, 因为α, 0≠T α,因此, 122221=+++=n T ααααα .“⇐” 122221=+++=n T ααααα , ()A E E A T T T T =-=+-=∴αααααααα22.推论3.2.1 令T E A αα-=, 其中: ()Tn αααα,,, 21=为非零列向量. 若122221=+++=n T ααααα , 则n 阶方阵A 不可逆.证明 设A 可逆, 则由幂等矩阵的性质可知E A =,当122221=+++n ααα 时, 由定理3.2.2可知A 为幂等矩阵, 即A A =2,但T E A αα-=, 所以T E E αα-=, 得0=T αα,与122221=+++n ααα 矛盾, 所以A 不可逆.定理3.2.3]5[ 若A 和B 是同阶幂等矩阵, 则B A +为幂等矩阵⇔0=+BA AB .证明 ()BA AB B A B BA AB A B A +++=+++=+222 ,0=+⇔+∴BA AB B A 为幂等矩阵.定理3.2.4 若A 和B 是同阶幂等矩阵, 且BA AB =,则AB 为幂等矩阵.证明 由题意可得 ()AB AABB ABAB AB ===2, 即AB 为幂等矩阵.定理3.2.5 若A 为幂等矩阵, 且E A ≠, 则A 不可逆.证明 设A A =2,则有()0=-E A A . 若A 可逆, 则1-∃A ,t s .E A A AA ==--11 在()0=-E A A 的两边同时乘以1-A , 得0=-E A ,即E A =. 矛盾, 故A 不可逆.定理3.2.6 若A 是幂等矩阵, 且E A ≠, 则矩阵方程0=Ax 有非零解.证明 由定理3.2.5可知, A 不可逆, 即0=A .故矩阵方程0=Ax 有非零解.定理3.2.7 若A 和B 是同阶幂等矩阵, 则B A -是幂等矩阵⇔B BA AB ==.证明 “⇒” B A - 是幂等矩阵,()BA AB B A B BA AB A B A B A --+=+--=-=-∴222, 将BA AB B +=2两边分别左乘和右乘B 得:BBA BAB B +=22, 即BA BAB B +=2. (3.2.1) BAB AB B +=222, 即BAB AB B +=2. (3.2.2) 两式相减可得BA AB =, 从而B BA AB ==.“⇐” ()B A B B B A B BA AB A B A -=+--=+--=-222.3.3幂等矩阵线性组合的可逆性在本节中, 我们讨论两幂等矩阵线性组合bB aA P +=的可逆性. 引理3.3.1]6[ 设矩阵A 是n n ⨯阶方阵, 则A 可逆(){}0=⇔A Ker . 定理 3.3.1 设矩阵B A ,均是幂等矩阵, 即B B A A ==22,. 若存在两个非零复数b a ,, 且0≠+b a 使得bB aA +可逆, 则对所有的复数d c ,, 满足0≠+d c , 则线性组合dB cA +都是可逆的.证明 设0,0,0,≠+≠≠∈d c d c C d c 且,.对 ()dB cA Ker x +∈∀, 有()0=+x dB cA .于是 dBx cAx -=. (3.3.1) 将上式两边依次左乘B A ,, 可得:dBx cBAx dABx cAx -=-=,. (3.3.2) 由(3.3.1)、(3.3.2)可得BAx Ax ABx Bx ==,. (3.3.3)又()22222B b abBA abAB A a bB aA +++=+,()Bx b abBAx abABx Ax a x bB aA 222+++=+∴.将BAx Ax ABx Bx ==,代入上式可得()Bx b abBAx abABx Ax a x bB aA 222+++=+∴()()()()x bB aA b a Bx b a b Ax b a a ++=+++=.由于bB aA +可逆,将上式两边同时左乘()1-+bB aA 得 ()()bBx aAx x bB aA x b a +=+=+. (3.3.4) 再左乘A 得:bABx aAx bBx aAx +=+.即ABx Ax =. 代入dABx cAx -=可得()aABx Ax Ax d c ==⇒=+00.注意到(3.3.3)式有0=Bx , 因此由(3.3.4)式可得()00,0=⇒≠+=+x b a x b a 但.因此(){}0=+dB cA Ker . 由引理1知dB cA +是可逆的.在定理3.3.1中令1==d c , 立即可以得到:推论3.3.1设矩阵B A ,均是幂等矩阵, 即B B A A ==22,. 若B A +可逆,则C b a ∈∀,, 满足0≠+b a , 线性组合bB aA +都是可逆的.定理3.3.2设矩阵B A ,均是幂等矩阵, C b a ∈∀,, 下列命题等价: ⑴ B A -可逆.⑵bB aA +及AB E -是可逆的.证明 (1)⇒(2) 对()bB aA Ker x +∈∀由定理1的证明过程知BAx Ax ABx Bx ==,.从而()()022222=+--=+--=-x B BAx ABx x A x B BA AB A x B A又 B A -可逆, 所以0=x . 即(){}0=+bB aA Ker .由引理3.3.1知 bB aA +可逆. 同样地,对 ()bB aA Ker x +∈∀()ABx x x AB E =⇒=-⇒0.两边同时左乘A , 得Bx BAx x ABx Ax =⇒==.所以 ()02=+--=-Bx BAx ABx Ax x B A .又 B A -可逆, 所以0=x . 所以(){}0=-AB E Ker .由引理3.3.1知E AB -可逆.(2)⇒(1) 对()B A Ker x -∈∀, 有()Bx Ax x B A ==-即,0从而有 Bx BAx ABx Ax ==,.所以 ()()()x bBAB aAB bB aA x AB E bB aA +-+=-+0=-=bBAx bBx .0=⇒x .又bB aA +及AB E -是可逆的. 知(){}0=-B A Ker .由引理3.3.1知B A -可逆. 定理证毕.在定理3.3.2中令1==b a , 立即可以得到:推论3.3.2设矩阵B A ,均是幂等矩阵, 下列两个命题等价:⑴ B A -可逆.⑵ B A +及AB E -可逆.4 幂等矩阵与其他矩阵的关系4.1幂等矩阵与对合矩阵4.1.1对合矩阵定义4.1.1.1 若矩阵A 满足()为单位矩阵E E A =2, 则称A 为对合矩阵.对合矩阵和幂等矩阵是密切相关的, 它们的性质也非常相似, 这里就不在一一举出了, 先举出几个主要性质并进行证明:性质4.1.1.1 若A 是对合矩阵, 则()()n r r E A E A =+-+, 反之, 也成立. 证明 由A 是对合矩阵可知E A =2, 故()()002222=-+⇒=-⇒=E A E A E A E A .由秩的性质可知()()n r r E A E A ≤+-+.又()()E A E A E 2=-++, ()()n r r E A E A ≥+∴-+.综上 ()()n r r E A E A =+-+.反过来, 即可证明当()()n r r E A E A =+-+时, A 是对合矩阵.性质4.1.1.2 对合矩阵的特征值为1或-1.证明 类似于幂等矩阵, 设λ为对合矩阵A 的特征值,由于A 满足E A =2, 故λ满足1112-=⇒=或λλ.性质4.1.1.3 A 是对合矩阵, 则A 一定与对角矩阵相似.证明 当E A ±=时, A 本身已经是对角矩阵.当E A ±≠时,A 的特征值为1或-1. A 的属于1的特征子空间的维数等于齐次线性方程组()0=-x A E 的解空间的维数()A E r n --; A 的属于-1的特征子空间的维数等于齐次线性方程组()0=--x A E 的解空间的维数()A E r n +-, 由性质4.1.1.1得()[]()[]()()[]n n n r r n r n r n A E A E A E A E =-=+-=-+-+-+-22.因此A 可以对角化. 设()A E r t +=, 由性质4.1.1得()r r n A E =--.因此A 的相似标准型为⎥⎦⎤⎢⎣⎡--r n r E E 00. 4.1.2 幂等矩阵与对合矩阵的关系命题4.1.2.1 设A 是n 阶矩阵, 则以下两个命题等价:(1)若()n r r E A A =+-, 则A 是幂等矩阵;(2)若()()n r r E A E A =+-+, 则A 是对合矩阵.证明 (1)⇒(2) ()()n r r E A E A =+-+,()()n r r E A E A =+∴-+2121可变形为()()()n r r E E A E A =+--+2121.由(1)有()E A B +=21是幂等矩阵, 而E A B B =⇒=22, 即A 是对合矩阵.同理可证 (2)⇒(1). 原命题得证.命题4.1.2.2 矩阵A 和B 都是对合矩阵, 则()()B E A E +-21,21幂等矩阵.证明 ()()()()A E E A E A A E A E -=+-=+-=⎥⎦⎤⎢⎣⎡-2124124121222. ()()()()B E E B E B B E B E +=++=++=⎥⎦⎤⎢⎣⎡+2124124121222. 即()()B E A E +-21,21都是幂等矩阵, 原命题得证.命题4.1.2.3 矩阵A 是幂等矩阵, 则E A -2都是对合矩阵.证明 ()E E A A E A A E A =+-=+-=-44442222.即E A -2都是对合矩阵, 原命题得证.命题4.1.2.4 矩阵E A -2是对合矩阵, 则A 是幂等矩阵.证明 E A -2 是对合矩阵, ()222442E A A E E A +-==-∴.A A =⇒2, 即A 是幂等矩阵.4.2 幂等矩阵与投影矩阵4.2.1 投影矩阵投影矩阵是研究广义逆矩阵和最小二乘问题的重要方法与手段. 定义4.2.1.1]5[ 设矩阵n m A ⨯, 任意m n ⨯矩阵X , 若满足:(1) A AXA =; (2) X XAX =;(3) ()AX AX =*; (4) ()XA XA =*中的一个或者几个条件, 都称为A 的广义逆矩阵. 上面四个方程称为Moore-Penrose 方程.向量空间n C 可以分解成子空间L 与M 的直和, 即M L C n ⊕=, 则n C 中任意的向量x 可以唯一的分解成z y x +=, 其中M z L y ∈∈,, 则称y 为向量x 沿着M 到L 的投影, 而称n C 中满足()y x P M L =,的变换M L P ,为沿着M 到L 的投影算子或投影变换. 投影算子M L P ,在n C 的基n e e e ,,,21 下的矩阵称为投影矩阵, 记为M L P ,. 投影矩阵与幂等矩阵是一一对应的.投影矩阵的种类有很多, 在文[7]中有细致的讨论, 如斜投影矩阵, 正交投影矩阵, 加权正交投影矩阵等, 我们在这里只讨论特殊的正交投影矩阵与幂等矩阵的关系.4.2.2幂等矩阵与正交投影矩阵的关系引理4.2.2.1]5[ 对任意矩阵A 有:(1)()**A A A A -与广义逆矩阵()-A A *的选择无关; (2)()A A A A A A =-**, ()****A A A A A A =-. 证明 (1) 因为()()A A Im A Im **=, 故存在矩阵X , AX A A t s **.=,于是()()AX A X AX A A A A A X A A A A ********==--右端与()-A A *选择无关. (2) 记()A A A A A A D -=-**, 可直接证明0*=D D , 于是0=D . 类似的, 可以证明第二式.定理4.2.2.1]5[设A 为任一矩阵, 记A P 为向ImA 的正交投影阵, 则()*_*A A A A P A =. 证明 由以上引理4.2.2.1可知, A P 所含的广义逆()_*A A 的选择无关. 设B 为一满足()()⊥=A Im B Im 的矩阵, 则对任意向量n C x ∈,有分解式21Bt At x +=这里21t t 和为两个适当维数的向量. 依A P 的定义我们有121At Bt P At P x P A A A =+=, 对一切21,t t 成立.这说明A P 满足矩阵方程⎩⎨⎧==)2.2.2.4(.0)1.2.2.4(.B P A A P A A由(4.2.2.2)知()()()A Im B Im P Im *A =⊂⊥.于是AX P t s X A =∃*.,矩阵. (4.2.2.3) 代入(4.2.2.1)得A A A X =**,即()**A X A A =. (4.2.2.4) 显然, 此矩阵方程是相容的.再由相容性定理]5[可知(4.2.2.4)的解为()*_*A A A X =, 代入(4.2.2.3)即可得()*_*A A A A P A =, 定理得证. 定理4.2.2.2 设21P P 、为两个正交投影阵, 则(1)21P P P +=为正交投影阵02221==⇔P P P P ;(2)当01221==P P P P 时, 21P P P +=为向()()21P Im P Im ⊕上的正交投影. 证明 (1) 充分性显然.现证必要性: 设P 是一个正交投影阵, 于是P P =2, 01221=+⇒P P P P . (4.2.2.5) 用1P 分别左乘和右乘(4.2.2.5), 有:012121=+P P P P P . (4.2.2.6) 012112=+P P P P P . (4.2.2.7) (4.2.2.6)+(4.2.2.7)得: 0121=P P P . 再由(4.2.2.6)和(4.2.2.7)可得 01221==P P P P .(2) 我们只需证()()()21P Im P Im P Im ⊕= 对()Px y t s C x P Im y n =∈∃∈∀.,,, 于是 2121y y x P x P Px y +=+== ()()2,1,=∈=i P Im x P y i i i 从021=P P 可以推出21y y ⊥, 证毕. 定理4.2.2.3 设21P P 、为两个正交投影阵, 则 (1)21P P P =为正交投影阵1221P P P P =⇔;(2)当1221P P P P =时, 21P P P =为向()()21P Im P Im ⊕上的正交投影. 定理4.2.2.4 设21P P 、为两个正交投影阵, 则 (1)21P P P -=为正交投影阵21221P P P P P ==⇔;(2)当21P P P -=为正交投影阵时, P 为向()()⊥⊕21P Im P Im 上的正交投影.投影矩阵与幂等矩阵是一一对应的, 这两个定理的证明类似于幂等矩阵的有关性质的证明, 此处略去.结束语本文采用了直接证明的方式证明了幂等矩阵的伴随矩阵是幂等的. 采用数学归纳法证明了若A 是幂等矩阵, 则A 的k 次幂仍是幂等矩阵. 但在本文中只讨论了实数域的幂等矩阵的等价命题, 还可以推广到复数域; 且仅讨论了2次幂等矩阵, 推广到k 次会有更多更好的结果.参考文献[1] 文华. 幂等矩阵与对合矩阵的对角化[J]. 师高等专科学校学报, 2009.6, 18(2): 82-83.[2] Jin Bai Kim, Hee Sik Kim, Seung Dong Kim. An adjoint matrix of real idempotent matrix [J]. of Math. Research & Exposition, 1997, 17(3): 335-339.[3] 凯院, 徐仲, 陆全. 矩阵论典型题解及自测题[M]. 西北工业大学, 2003.10: 228-234.[4] 樊正恩. 幂等矩阵的几个注记[J]. 高师理科学刊, 2001.1, 31(1): 36-39.[5] 王松桂, 吴密霞, 贾忠贞. 矩阵不等式[M]. 科学, 2006.5: 29-31.[6] 大学数学系几何与代数教研室前代数小组. 高等代数(第三版)[M]. 高等教育, 2003.9: 304.[7] 永林. 广义逆矩阵的理论与方法[M]. 师大学, 2005: 7-13.[8] T. Akasaki, idempotent ideals of integral group rings[J]. Algebra, 1972, 23: 343–346.[9] 山军. 幂等矩阵线性组合可逆性的若干条件[J]. 学院学报, 2006.12, 21(5): 17-19.[10] 肖润梅. 幂等矩阵的概念及性质[J]. 雁北师学院学报, 2003.10,19(5): 64-68.致经过近两个月的努力,本论文终于在我的指导老师小燕教授的悉心指导下完成了,在写论文的过程中,从论文的选题,查找资料,拟定提纲,确定论文以来,尽管我遇到了很多的困难,但都在老师和同学的帮助下顺利解决了。

相关文档
最新文档