高中数学解析几何基本公式与题型

合集下载

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全

(完整版)高中数学解析几何公式大全一、直线方程1. 点斜式:y y1 = m(x x1),其中m是直线的斜率,(x1, y1)是直线上的一个点。

2. 斜截式:y = mx + b,其中m是直线的斜率,b是直线在y轴上的截距。

3. 一般式:Ax + By + C = 0,其中A、B、C是常数。

二、圆的方程1. 标准式:(x a)2 + (y b)2 = r2,其中(a, b)是圆心的坐标,r是圆的半径。

2. 一般式:x2 + y2 + Dx + Ey + F = 0,其中D、E、F是常数。

三、椭圆的方程1. 标准式:((x h)2/a2) + ((y k)2/b2) = 1,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

2. 一般式:((x h)2/a2) + ((y k)2/b2) 1 = 0,其中(a, b)是椭圆的半长轴和半短轴,(h, k)是椭圆中心的坐标。

四、双曲线的方程1. 标准式:((x h)2/a2) ((y k)2/b2) = 1,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

2. 一般式:((x h)2/a2) ((y k)2/b2) 1 = 0,其中(a, b)是双曲线的实轴和虚轴,(h, k)是双曲线中心的坐标。

五、抛物线的方程1. 标准式:y2 = 4ax,其中a是抛物线的焦点到准线的距离。

2. 一般式:y2 = 4ax + b,其中a是抛物线的焦点到准线的距离,b是抛物线在y轴上的截距。

六、直线与圆的位置关系1. 判定直线与圆的位置关系:计算直线到圆心的距离d与圆的半径r的关系。

如果d < r,直线与圆相交;如果d = r,直线与圆相切;如果d > r,直线与圆相离。

2. 直线与圆的交点:解直线方程和圆的方程,得到两个交点的坐标。

七、直线与椭圆的位置关系1. 判定直线与椭圆的位置关系:将直线方程代入椭圆方程,得到一个关于x的一元二次方程。

高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法

高中数学平面解析几何的常见题型及解答方法在高中数学学习中,平面解析几何是一个重要的内容,也是考试中的重点。

平面解析几何主要研究平面上的点、直线、圆等几何图形的性质和关系,通过坐标系和代数方法进行分析和解决问题。

下面我们将介绍一些常见的平面解析几何题型及解答方法,希望能给同学们提供一些帮助。

一、直线方程的求解直线方程的求解是平面解析几何中的基础内容。

常见的题型有已知直线上的两点,求直线方程;已知直线的斜率和一点,求直线方程等。

这里我们以已知直线上的两点,求直线方程为例进行说明。

例如,已知直线上的两点为A(2,3)和B(4,5),求直线方程。

解题思路:设直线的方程为y = kx + b,其中k为斜率,b为截距。

根据已知条件,我们可以列出方程组:3 = 2k + b5 = 4k + b解方程组,得到k和b的值,从而得到直线方程。

解题步骤:1.将方程组改写为矩阵形式:| 2 1 | | k | | 3 || 4 1 | | b | = | 5 |2.利用矩阵的逆运算,求出k和b的值。

3.将k和b的值代入直线方程y = kx + b,即可得到直线方程。

通过这个例子,我们可以看到求解直线方程的方法是通过已知条件列方程组,然后通过矩阵运算求解出未知数的值,最后将值代入直线方程得到结果。

二、直线与圆的位置关系直线与圆的位置关系是平面解析几何中的一个重要内容。

常见的题型有直线与圆的切线问题、直线与圆的交点问题等。

这里我们以直线与圆的切线问题为例进行说明。

例如,已知圆的方程为x^2 + y^2 = 4,直线的方程为y = 2x - 1,求直线与圆的切点坐标。

解题思路:首先,我们需要确定直线与圆是否有交点。

当直线与圆有交点时,我们可以通过求解方程组得到交点坐标。

当直线与圆没有交点时,我们需要判断直线与圆的位置关系,进而确定是否有切点。

解题步骤:1.将直线方程代入圆的方程,得到一个关于x的二次方程。

2.求解二次方程,得到x的值。

高中数学平面解析几何知识点总结

高中数学平面解析几何知识点总结

平面解析几何一、直线与圆1.斜率公式 2121y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).(3)两点式112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b+=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).3.两条直线的平行和垂直(1)若111:l y k x b =+,222:l y k x b =+①121212||,l l k k b b ⇔=≠;②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222||A B C l l A B C ⇔=≠; < ②1212120l l A A B B ⊥⇔+=;4.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心⎪⎭⎫ ⎝⎛--2,2E D ,半径r=2422F E D -+. 6.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种: .若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 7.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ;0=∆⇔⇔=相切r d ;0>∆⇔⇔<相交r d . 其中22B A CBb Aa d +++=.8.两圆位置关系的判定方法#设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d ;条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ;条公切线内切121⇔⇔-=r r d ;无公切线内含⇔⇔-<<210r r d .$二、圆锥曲线1.圆锥曲线的定义(1)椭圆:|MF 1|+|MF 2|=2a (2a >|F 1F 2|);(2)双曲线:||MF 1|-|MF 2||=2a (2a <|F 1F 2|).2.圆锥曲线的标准方程(1)椭圆:x 2a 2+y 2b 2=1(a >b >0)(焦点在x 轴上)或y 2a 2+x 2b 2=1(a >b >0)(焦点在y 轴上); (2)双曲线:x 2a 2-y 2b 2=1(a >0,b >0)(焦点在x 轴上)或y 2a 2-x 2b 2=1(a >0,b >0)(焦点在y 轴上). 3.圆锥曲线的几何性质&(1)椭圆22221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=⎧⎨=⎩.长轴长为2a ,短轴长为2b ,焦距为2c ,三者满足a 2=b 2+c 2,顶点为(a,0),(0,b),焦点为(c,0),离心率e=ac ,准线c a 2±=x (X 型). (2)双曲线22221(0,0)x y a b a b-=>>,实轴长为2a ,虚轴长为2b ,焦距为2c ,三者满足a 2+b 2=c 2,顶点为(a,0),焦点为(c,0),离心率e=a c (e>1),渐近线为x ab y ±=. 4.双曲线的方程与渐近线方程的关系(1)若双曲线方程为12222=-b y a x ⇒渐近线方程:22220x y a b -=⇔x ab y ±=. (2)共轭双曲线: 12222=-b y ax 与1-2222=a x b y 渐近线一样. (3)等轴双曲线:若双曲线与12222=-by a x 中a=b ,(e=2,渐近线为y=x ±). 5.抛物线px y 22=的焦半径公式抛物线22(0)y px p =>焦半径02p CF x =+.准线:x=2p ,离心率为e=1.(点到焦点的距离等于点到准线的距离).。

高中数学 第二章 平面解析几何初步 2.1 平面直角坐标系中的基本公式 2.1.1 数轴上的基本公式

高中数学 第二章 平面解析几何初步 2.1 平面直角坐标系中的基本公式 2.1.1 数轴上的基本公式

2.1.1 数轴上的基本公式1.给出下列命题:①零向量只有大小没有方向;②向量的数量是一个正实数;③一个向量的终点坐标就是这个向量的坐标;④两个向量相等,它们的坐标也相等,反之数轴上两个向量的坐标相等,则这两个向量也相等.其中正确的有( B )(A)0个(B)1个(C)2个(D)3个解析:由向量定义知:①不正确;由于向量的数量可以是任一个实数,故②不正确;一个向量的坐标等于终点坐标减去起点坐标,故③不正确;由向量与其数量关系知④正确,所以选B.2.已知数轴上两点A(x),B(2-x2)且点A在点B的右侧,则x的取值X围是( D )(A)(-1,2) (B)(-∞,-1)∪(2,+∞)(C)(-2,1) (D)(-∞,-2)∪(1,+∞)解析:点A在点B的右侧,所以x>2-x2,x2+x-2>0,得x<-2或x>1.故选D.3.当数轴上的三点A,B,O互不重合时,它们的位置关系有六种不同的情形,其中使AB=OB-OA 和||=||-||同时成立的情况有( B )(A)1种(B)2种(C)3种(D)4种解析:AB=OB-OA恒成立,而||=||-||,只能是A在O,B的中间,有两种可能性.4.若数轴上A点的坐标为-1,B点的坐标为4,P点在线段AB上,且=,则P点的坐标为( A )(A)2 (B)-2 (C)0 (D)1解析:设P点的坐标为x,则AP=x+1,PB=4-x,由=,得=,解得x=2.5.数轴上A,B两点的坐标分别为x1,x2,则下列式子中不一定正确的是( B )(A)|AB|=|x1-x2| (B)|BA|=x2-x1(C)AB=x2-x1 (D)BA=x1-x2解析:B中|BA|=|x2-x1|,|BA|不一定等于x2-x1,因为x2-x1可能为负值.6.设M,N,P,Q是数轴上不同的四点,给出以下关系:①MN+NP+PQ+QM=0;②MN+PQ-MQ-PN=0;③PQ-PN+MN-MQ=0;④QM=MN+NP+ PQ.其中正确的序号是.解析:由向量的运算法则知①显然正确;MN+PQ-MQ-PN=MN+PQ+QM+NP= MP+PM=0.故②正确;PQ-PN+MN-MQ=PQ+NP+MN+QM=NQ+QN=0,故③正确; MN+NP+PQ=MQ,与QM不相等,故④错. 答案:①②③7.已知数轴上不同的两点A(a),B(b),则在数轴上满足条件|PA|=|PB|的点P的坐标为( C )(A)(B)(C)(D)b-a解析:设点P的坐标为x.因为|PA|=|PB|,所以|a-x|=|b-x|,即a-x= ±(b-x),解得x=,故选C.8.下列各组点:①M(a)和N(2a);②A(b)和B(2+b);③C(x)和D(x-a);④E(x)和F(x2).其中后面的点一定位于前面的点的右侧的是( B )(A)①(B)②(C)③(D)④解析:因为AB=(2+b)-b=2>0,所以点B一定在点A的右侧.9.在数轴上求一点,使它到点A(-9)的距离是它到点B(-3)的距离的2倍.解:设所求点为P(x),由题意,得d(A,P)=2d(B,P),即|x+9|=2|x+3|,解得x=3或x=-5.故P(3)或P(-5)为所求的点.10.甲、乙两人从A点出发背向行进,甲先出发,行进10 km后,乙再出发.甲的速度为每小时8 km,乙的速度为每小时6 km.当甲离开A点的距离为乙离开A点的距离的2倍时,甲、乙两人的距离是多少?解:以A为原点,以甲行进方向为正方向建立数轴,设乙出发后t h,甲到A点的距离是乙到A点的距离的2倍,则甲的坐标为8t+10,乙的坐标为-6t.由两点间的距离公式得8t+10=2×6t,解得t=.d(甲,乙)=|-6t-(8t+10)|=10+14t=45(km).故甲、乙两人相距45 km.11.(1)如果不等式|x+1|+|x-3|>a恒成立,求a的X围;(2)如果不等式|x+1|+|x-3|<a无解,求a的X围.解:法一设f(x)=|x+1|+|x-3|,由数轴上的距离公式化简得f(x)=画出f(x)图象如图所示.(1)由于函数f(x)的最小值为4,所以要想|x+1|+|x-3|>a恒成立,需a<4.(2)由于f(x)min=4,故要使|x+1|+|x-3|<a无解,要满足a≤4.法二(1)要使|x+1|+|x-3|>a恒成立,只需a小于|x+1|+|x-3|的最小值,而|x+1|+|x-3|表示数轴上的点到A(-1)与B(3)的距离之和,则|x+1|+|x-3|的最小值为|3-(-1)|=4,所以a<4.(2)由(1)知|x+1|+|x-3|的最小值为4,则要使|x+1|+|x-3|<a无解,只需满足a≤4即可.。

高考解析几何题

高考解析几何题

高考解析几何题高考解析几何题的解题技巧与方法解析几何作为高中数学的重要组成部分,在高考数学试题中占有不可忽视的地位。

它主要研究图形的几何性质与代数表达式之间的联系,通过坐标系将几何问题转化为代数问题进行求解。

本文将从几个方面探讨高考解析几何题的解题技巧与方法,帮助考生在面对这类题目时能够更加得心应手。

一、掌握基本概念和公式解析几何的基本概念包括点、线、面的位置关系,以及圆、椭圆、双曲线、抛物线等圆锥曲线的性质。

熟练掌握这些概念及其相关公式是解题的基础。

例如,直线的方程有一般式、点斜式、两点式等,每种形式都有其适用的场合。

圆的标准方程、椭圆的焦点性质等,都需要考生牢记于心。

二、培养图形的直观感知能力解析几何题目往往需要考生能够在脑海中构建出题目所描述的图形,并能够对图形进行操作和变换。

因此,培养良好的图形直观感知能力对于解题至关重要。

考生可以通过多做练习题、观察生活中的几何图形等方式来提高这方面的能力。

三、运用代数方法解决问题解析几何的特点就是将几何问题转化为代数问题。

因此,考生需要掌握如何通过代数运算来求解几何问题。

例如,通过联立方程组求交点,利用向量方法求解角度和距离,或者运用坐标变换简化问题等。

这些方法都需要考生在解题时灵活运用。

四、注意解题步骤的条理性在高考中,解析几何题目往往步骤较多,需要考生条理清晰地进行解题。

首先,要仔细审题,弄清楚题目的要求和所给条件;其次,要合理规划解题步骤,避免在解题过程中出现混乱;最后,要仔细检查,确保每一步的计算都是正确的。

五、总结常见题型和解题模板高考解析几何题目虽然千变万化,但总有规律可循。

考生可以通过总结历年高考题,找出常见的题型和解题模板。

例如,直线与圆的位置关系、动点轨迹问题、最值问题等,都有其特定的解题思路和方法。

掌握这些模板,可以帮助考生在面对新题目时能够迅速找到解题的切入点。

六、提高解题速度和准确性高考是一场与时间赛跑的考试,提高解题速度和准确性是提高分数的关键。

高中数学解析几何知识点总结

高中数学解析几何知识点总结

高中数学解析几何知识点总结1.直线方程直线和圆的方程是解析几何中的重要知识点之一。

在直线方程的研究中,我们需要掌握以下几个要点:1.1 直线的倾斜角直线的倾斜角是指一条直线向上的方向与x轴正方向所成的最小正角。

当直线与x轴平行或重合时,其倾斜角为0度或180度。

需要注意的是,当直线垂直于x轴时,其斜率不存在。

1.2 直线方程的几种形式直线方程可以表示为点斜式、截距式、两点式和斜截式。

其中,当直线经过两点时,即在x轴和y轴上的截距分别为a和b(a≠0,b≠0)时,直线方程为y = (-a/b)x + 1.1.3 直线系直线系是指斜截式方程y = kx + b中的k和b均为确定的数值时,所表示的一组直线。

当b为定值,k变化时,它们表示过定点(0,b)的直线束;当k为定值,b变化时,它们表示一组平行直线。

2.平行和垂直的直线在解析几何中,平行和垂直的直线是常见的情况。

判断两条直线是否平行或垂直,需要注意以下几点:2.1 两条直线平行的条件两条直线平行的条件是:它们是两条不重合的直线,且在它们的斜率都存在的前提下,斜率相等。

需要特别注意的是,抽掉或忽视其中任一个“前提”都会导致结论的错误。

2.2 两条直线垂直的条件两条直线垂直的条件是:它们的斜率之积为-1.同样需要注意的是,在判断两条直线是否垂直时,需要确保它们的斜率都存在。

以上是解析几何中直线方程和平行、垂直直线的基本知识点总结。

掌握这些知识点,对于研究和理解解析几何的其他内容将会有很大的帮助。

本文主要介绍了直线和圆的方程,其中包括直线的平行和垂直方程,过定点的直线方程以及过两条直线交点的直线方程等内容。

同时还介绍了关于点和直线对称的性质,以及圆的标准方程和特例。

下面对每个部分进行小幅度的改写和格式修正。

一、直线方程1.直线的平行和垂直方程直线的平行和垂直方程是很重要的概念,它们可以帮助我们更好地理解直线的性质和特点。

其中,与直线 Ax+By+C=0平行的直线方程是 Ax+By+m=0(m为实数,且C≠m);与直线Ax+By+C=0 垂直的直线方程是Bx-Ay+m=0(m为实数)。

解析几何知识点总结高中

解析几何知识点总结高中

解析几何知识点总结高中几何学是数学的一部分,涵盖了从平面到空间的所有形状和大小的研究。

解析几何是几何学的一个分支,它利用代数运算和坐标系来描述各种形状和位置。

在高中数学的学习中,解析几何是一个重要的知识点。

在本文中,将详细介绍一些高中解析几何的知识点。

1. 二元一次方程二元一次方程是运用解析几何的基本方法之一。

我们可以通过它来描述到两个物体之间的空间位置关系。

下面是二元一次方程的一般式子:ax + by + c = 0。

其中,a、b、和c是常数,x和y是未知数。

在解析几何中,二元一次方程代表一条直线。

该直线的斜率(k)和截距(b)可以得出如下公式:k = -a/b,b = -c/b。

直线的一般式子可以根据两个点或点与斜率之间的关系来确定。

如果已知直线上的两个点A(x1, y1)和B(x2, y2),可以通过计算斜率和截距来得出该直线的一般式子:k = (y2 – y1) / (x2 – x1),b = y – kx。

其中,k为直线的斜率,b为直线的截距。

另一种方法是给定点和斜率的值。

如果直线上有一个点P(x0, y0)和斜率k,可以使用如下公式:y – y0 = k(x – x0)。

这种表示形式称为点斜式。

2. 圆的方程在解析几何中,圆的方程描述了圆的位置和半径。

标准方程如下:(x – a)^2 + (y – b)^2 = r^2。

其中,a和b是圆心的坐标,r是圆的半径。

通过对圆的方程进行简单的变形,可以从常数中得出圆的标准方程。

该变形将方程写成如下形式:x^2 + y^2 + Dx + Ey + F = 0。

其中,D、E和F是常数。

该表达式描述的圆方程称为一般圆方程。

3. 空间几何解析几何不仅适用于平面几何,还可以用于空间几何。

在空间几何中,一个点由三个坐标表示。

直线可以通过两点或点和向量表示,而平面可以通过三个点或点和两条直线表示。

空间几何中的一些重要概念包括向量,对称和距离。

向量是大小和方向的量,可以使用两点之间的差值来描述。

高中数学第八章_平面解析几何

高中数学第八章_平面解析几何

第八章⎪⎪⎪平面解析几何第一节直线的倾斜角与斜率、直线的方程1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0.(2)范围:直线l 倾斜角的取值范围是[0,π). 2.斜率公式(1)直线l 的倾斜角为α(α≠π2),则斜率k =tan_α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1. 3.直线方程的五种形式名称 几何条件 方程 适用范围 斜截式 纵截距、斜率 y =kx +b 与x 轴不垂直的直线 点斜式 过一点、斜率y -y 0=k (x -x 0) 两点式过两点y -y 1y 2-y 1=x -x 1x 2-x 1与两坐标轴均不垂直的直线截距式 纵、横截距x a +y b=1 不过原点且与两坐标轴均不垂直的直线 一般式Ax +By +C =0(A 2+B 2≠0)所有直线若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),线段P 1P 2的中点M 的坐标为(x ,y ),则⎩⎨⎧x =x 1+x 22,y =y 1+y22,此公式为线段P 1P 2的中点坐标公式.[小题体验]1.设直线l 过原点,其倾斜角为α,将直线l 绕坐标原点沿逆时针方向旋转45°,得到直线l 1,则直线l 1的倾斜角为( )A .α+45°B .α-135°C .135°-αD .α+45°或α-135°解析:选D 由倾斜角的取值范围知,只有当0°≤α+45°<180°,即0°≤α<135°时,l 1的倾斜角才是α+45°.而0°≤α<180°,所以当135°≤α<180°时,l 1的倾斜角为α-135°,故选D.2.下列说法中正确的是( )A.y -y 1x -x 1=k 表示过点P 1(x 1,y 1),且斜率为k 的直线方程 B .直线y =kx +b 与y 轴交于一点B (0,b ),其中截距b =|OB | C .在x 轴和y 轴上的截距分别为a 与b 的直线方程是x a +yb =1D .方程(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)表示过点P 1(x 1,y 1),P 2(x 2,y 2)的直线解析:选D 对于A ,直线不包括点P 1,故A 不正确;对于B ,截距不是距离,是B 点的纵坐标,其值可正可负,故B 不正确;对于C ,经过原点的直线在两坐标轴上的截距都是0,不能表示为x a +yb =1,故C 不正确;对于D ,此方程为直线两点式方程的变形,故D 正确.故选D.3.(2018·嘉兴检测)直线l 1:x +y +2=0在x 轴上的截距为________;若将l 1绕它与y 轴的交点顺时针旋转90°,则所得到的直线l 2的方程为________________.解析:对于直线l 1:x +y +2=0,令y =0,得x =-2,即直线l 1在x 轴上的截距为-2;令x =0,得y =-2,即l 1与y 轴的交点为(0,-2),直线l 1的倾斜角为135°,∴直线l 2的倾斜角为135°-90°=45°,∴l 2的斜率为1,故l 2的方程为y =x -2,即x -y -2=0.答案:-2 x -y -2=01.点斜式、斜截式方程适用于不垂直于x 轴的直线;两点式方程不能表示垂直于x ,y 轴的直线;截距式方程不能表示垂直于坐标轴和过原点的直线.2.截距不是距离,距离是非负值,而截距可正可负,可为零,在与截距有关的问题中,要注意讨论截距是否为零.3.求直线方程时,若不能断定直线是否具有斜率时,应注意分类讨论,即应对斜率是否存在加以讨论. [小题纠偏]1.直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎦⎤π6,π2∪⎣⎡⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6解析:选B 设直线的倾斜角为θ,则tan θ=-33cos α, 又cos α∈[-1,1],所以-33≤tan θ≤33, 又0≤θ<π,且y =tan θ在⎣⎡⎭⎫0,π2和⎝⎛⎭⎫π2,π上均为增函数,故θ∈⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π.故选B. 2.过点(5,10),且到原点的距离为5的直线方程是________. 解析:当斜率不存在时,所求直线方程为x -5=0满足题意; 当斜率存在时,设其为k ,则所求直线方程为y -10=k (x -5), 即kx -y +10-5k =0.由距离公式,得|10-5k |k 2+1=5,解得k =34.故所求直线方程为3x -4y +25=0.综上知,所求直线方程为x -5=0或3x -4y +25=0. 答案:x -5=0或3x -4y +25=0考点一 直线的倾斜角与斜率(基础送分型考点——自主练透)[题组练透]1.若直线l 经过A (2,1),B (1,-m 2)(m ∈R )两点,则直线l 的倾斜角α的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎝⎛⎭⎫π2,π C.⎣⎡⎭⎫π4,π2D.⎝⎛⎦⎤π2,3π4解析:选C 因为直线l 的斜率k =tan α=1+m 22-1=m 2+1≥1,所以π4≤α<π2.故倾斜角α的取值范围是⎣⎡⎭⎫π4,π2.2.经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.解析:如图所示,结合图形,若l 与线段AB 总有公共点,则k PA ≤k ≤k PB ,而k PB >0,k PA <0,故k <0时,倾斜角α为钝角,k =0时,α=0,k>0时,α为锐角.又k PA =-2-(-1)1-0=-1,k PB =1-(-1)2-0=1,∴-1≤k ≤1.又当0≤k ≤1时,0≤α≤π4;当-1≤k <0时,3π4≤α<π.故倾斜角α的取值范围为α∈⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π. 答案:[-1,1] ⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π3.若A (2,2),B (a,0),C (0,b )(ab ≠0)三点共线,求1a +1b 的值. 解:∵k AB =0-2a -2=-2a -2,k AC =b -20-2=-b -22,且A ,B ,C 三点共线,∴k AB =k AC ,即-2a -2=-b -22,整理得ab =2(a +b ),将该等式两边同除以2ab 得1a +1b =12.[谨记通法]1.倾斜角与斜率的关系当α∈⎣⎡⎭⎫0,π2且由0增大到π2⎝⎛⎭⎫α≠π2时,k 的值由0增大到+∞. 当α∈⎝⎛⎭⎫π2,π时,k 也是关于α的单调函数,当α在此区间内由π2⎝⎛⎭⎫α≠π2增大到π(α≠π)时,k 的值由-∞趋近于0(k ≠0).2.斜率的3种求法(1)定义法:若已知直线的倾斜角α或α的某种三角函数值,一般根据k =tan α求斜率.(2)公式法:若已知直线上两点A (x 1,y 1),B (x 2,y 2),一般根据斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2)求斜率.(3)方程法:若已知直线的方程为Ax +By +C =0(B ≠0),则l 的斜率k =-AB .考点二 直线的方程(重点保分型考点——师生共研)[典例引领]求适合下列条件的直线方程:(1)经过点(4,1),且在两坐标轴上的截距相等;(2)经过点(-1,-3),倾斜角等于直线y =3x 的倾斜角的2倍; (3)经过点(3,4),且与两坐标轴围成一个等腰直角三角形. 解:(1)设直线方程在x ,y 轴上的截距均为a , 若a =0,即直线方程过点(0,0)和(4,1), ∴直线方程为y =14x ,即x -4y =0;若a ≠0,则设直线方程为x a +ya =1, ∵直线方程过点(4,1),∴4a +1a =1, 解得a =5,∴直线方程为x +y -5=0.综上可知,所求直线的方程为x -4y =0或x +y -5=0.(2)由已知,设直线y =3x 的倾斜角为α ,则所求直线的倾斜角为2α. ∵tan α=3,∴tan 2α=2tan α1-tan 2α=-34.又直线经过点(-1,-3),因此所求直线方程为y +3=-34(x +1),即3x +4y +15=0.(3)由题意可知,所求直线的斜率为±1. 又过点(3,4),由点斜式得y -4=±(x -3). 即所求直线的方程为x -y +1=0或x +y -7=0.[由题悟法]求直线方程的2个注意点(1)在求直线方程时,应选择适当的形式,并注意各种形式的适用条件.(2)对于点斜式、截距式方程使用时要注意分类讨论思想的运用(若采用点斜式,应先考虑斜率不存在的情况;若采用截距式,应判断截距是否为零).[即时应用]求适合下列条件的直线方程:(1)经过点A (-3,3),且倾斜角为直线3x +y +1=0的倾斜角的一半的直线方程为________. (2)过点(2,1)且在x 轴上的截距与在y 轴上的截距之和为6的直线方程为________. 解析:(1)由3x +y +1=0,得此直线的斜率为-3, 所以倾斜角为120°,从而所求直线的倾斜角为60°, 所以所求直线的斜率为 3. 又直线过点A (-3,3),所以所求直线方程为y -3=3(x +3), 即3x -y +6=0.(2)由题意可设直线方程为x a +yb =1,则⎩⎪⎨⎪⎧a +b =6,2a +1b =1,解得a =b =3,或a =4,b =2.故所求直线方程为x +y -3=0或x +2y -4=0. 答案:(1)3x -y +6=0 (2)x +y -3=0或x +2y -4=0 考点三 直线方程的综合应用(题点多变型考点——多角探明) [锁定考向]直线方程的综合应用是常考内容之一,它常与函数、导数、不等式、圆相结合,命题多为客观题. 常见的命题角度有:(1)与基本不等式相结合的最值问题; (2)与导数的几何意义相结合的问题; (3)由直线方程解决参数问题.[题点全练]角度一:与基本不等式相结合的最值问题1.过点P (2,1)作直线l ,与x 轴和y 轴的正半轴分别交于A ,B 两点,求: (1)△AOB 面积的最小值及此时直线l 的方程;(2)直线l 在两坐标轴上截距之和的最小值及此时直线l 的方程; (3)|PA |·|PB |的最小值及此时直线l 的方程. 解:(1)设直线l 的方程为y -1=k (x -2), 则可得A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k ). ∵直线l 与x 轴,y 轴正半轴分别交于A ,B 两点, ∴⎩⎪⎨⎪⎧2k -1k >0,1-2k >0,得k <0. ∴S △AOB =12·|OA |·|OB |=12·⎝⎛⎭⎫2-1k ·(1-2k )=12⎝⎛⎭⎫4-1k-4k ≥12⎣⎡⎦⎤4+2 ⎝⎛⎭⎫-1k ·(-4k ) =4,当且仅当-1k=-4k ,即k =-12时,△AOB 的面积有最小值4,此时直线l 的方程为y -1=-12(x -2),即x +2y -4=0.(2)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴截距之和为2-1k +1-2k =3-2k -1k ≥3+2(-2k )·⎝⎛⎭⎫-1k =3+22,当且仅当-2k =-1k,即k =-22时等号成立. 故截距之和的最小值为3+22, 此时直线l 的方程为y -1=-22(x -2), 即x +2y -2-2=0.(3)∵A ⎝⎛⎭⎫2-1k ,0,B (0,1-2k )(k <0), ∴|PA |·|PB |=1k 2+1·4+4k 2=2⎣⎡⎦⎤1-k +(-k )≥4, 当且仅当-k =-1k , 即k =-1时上式等号成立.故|PA |·|PB |的最小值为4,此时直线l 的方程为y -1=-(x -2),即x +y -3=0. 角度二:与导数的几何意义相结合的问题2.设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,则点P 横坐标的取值范围为( )A.⎣⎡⎦⎤-1,-12 B.[]-1,0 C .[0,1]D.⎣⎡⎦⎤12,1解析:选A 由题意知y ′=2x +2,设P (x 0,y 0), 则k =2x 0+2.因为曲线C 在点P 处的切线倾斜角的取值范围为⎣⎡⎦⎤0,π4,所以0≤k ≤1,即0≤2x 0+2≤1,故-1≤x 0≤-12. 角度三:由直线方程解决参数问题3.已知直线l 1:ax -2y =2a -4,l 2:2x +a 2y =2a 2+4,当0<a <2时,直线l 1,l 2与两坐标轴围成一个四边形,当四边形的面积最小时,求实数a 的值.解:由题意知直线l 1,l 2恒过定点P (2,2),直线l 1在y 轴上的截距为2-a ,直线l 2在x 轴上的截距为a 2+2,所以四边形的面积S =12×(2-a )×2+12×(a 2+2)×2=a 2-a +4=⎝⎛⎭⎫a -122+154,当a =12时,四边形的面积最小,故a =12.[通法在握]处理直线方程综合应用的2大策略(1)含有参数的直线方程可看作直线系方程,这时要能够整理成过定点的直线系,即能够看出“动中有定”.(2)求解与直线方程有关的最值问题,先求出斜率或设出直线方程,建立目标函数,再利用基本不等式求解最值.[演练冲关]1.设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|PA |·|PB |的最大值是________.解析:易求定点A (0,0),B (1,3).当P 与A 和B 均不重合时,因为P 为直线x +my =0与mx -y -m +3=0的交点,且易知两直线垂直,则PA ⊥PB ,所以|PA |2+|PB |2=|AB |2=10,所以|PA |·|PB |≤|PA |2+|PB |22=5(当且仅当|PA |=|PB |=5时,等号成立),当P 与A 或B 重合时,|PA |·|PB |=0,故|PA |·|PB |的最大值是5.答案:52.已知直线l :kx -y +1+2k =0(k ∈R ). (1)证明:直线l 过定点;(2)若直线l 不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于点A ,交y 轴正半轴于点B ,O 为坐标原点,设△AOB 的面积为S ,求S 的最小值及此时直线l 的方程.解:(1)证明:直线l 的方程可化为y =k (x +2)+1,故无论k 取何值,直线l 总过定点(-2,1). (2)直线l 的方程为y =kx +2k +1,则直线l 在y 轴上的截距为2k +1,要使直线l 不经过第四象限,则⎩⎪⎨⎪⎧k ≥0,1+2k ≥0,解得k ≥0,故k 的取值范围为[)0,+∞.(3)依题意,直线l 在x 轴上的截距为-1+2kk ,在y 轴上的截距为1+2k , ∴A ⎝⎛⎭⎫-1+2k k ,0,B (0,1+2k ).又-1+2kk <0且1+2k >0,∴k >0.故S =12|OA ||OB |=12×1+2k k ×(1+2k )=12⎝⎛⎭⎫4k +1k +4≥12(4+4)=4, 当且仅当4k =1k ,即k =12时取等号.故S 的最小值为4,此时直线l 的方程为x -2y +4=0.一抓基础,多练小题做到眼疾手快1.(2019·金华一中模拟)直线x +(a 2+1)y +1=0的倾斜角的取值范围为( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,πC.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π解析:选B 由直线方程可知斜率k =-1a 2+1,设倾斜角为α,则tan α=-1a 2+1,而-1≤-1a 2+1<0,∴-1≤tan α<0,又∵α∈[0,π),∴3π4≤α<π,故选B. 2.直线x sin α+y +2=0的倾斜角的取值范围是( ) A .[0,π) B.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4 D.⎣⎡⎦⎤0,π4∪⎣⎡⎭⎫π2,π 解析:选B 设直线的倾斜角为θ,则有tan θ=-sin α,其中sin α∈[-1,1].又θ∈[0,π),所以0≤θ≤π4或3π4≤θ<π. 3.(2018·湖州质检)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段P Q 的中点坐标为(1,-1),则直线l 的斜率为( )A.13B .-13C .-32D.23解析:选B 依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得a =-5,b =-3,从而可得直线l 的斜率为-3-17+5=-13.4.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( ) A .k 1<k 2<k 3 B .k 3<k 1<k 2 C .k 3<k 2<k 1 D .k 1<k 3<k 2解析:选D 直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2,故选D.5.(2018·豫西五校联考)曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为________. 解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)), 因为y ′=3x 2-1≥-1,所以tan θ≥-1, 结合正切函数的图象可知, θ的取值范围为⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π. 答案:⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫3π4,π 二保高考,全练题型做到高考达标1.已知A (-1,1),B (3,1),C (1,3),则△ABC 的BC 边上的高所在直线方程为( ) A .x +y =0 B .x -y +2=0 C .x +y +2=0D .x -y =0解析:选B 因为B (3,1),C (1,3), 所以k BC =3-11-3=-1,故BC 边上的高所在直线的斜率k =1,又高线经过点A ,所以其直线方程为x -y +2=0.2.已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2 解析:选A ∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2, ∴直线l 的方程为y =3x +2,故选A.3.(2018·温州五校联考)在同一平面直角坐标系中,直线l 1:ax +y +b =0和直线l 2:bx +y +a =0的图象可能是( )解析:选B 当a >0,b >0时,-a <0,-b <0,选项B 符合.4.若直线x -2y +b =0与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是( ) A .[-2,2] B .(-∞,-2]∪[2,+∞) C .[-2,0)∪(0,2]D .(-∞,+∞)解析:选C 令x =0,得y =b 2,令y =0,得x =-b ,所以所求三角形面积为12⎪⎪⎪⎪b 2|-b |=14b 2,且b ≠0,因为14b 2≤1,所以b 2≤4,所以b 的取值范围是[-2,0)∪(0,2].5.函数y =a 1-x (a >0,a ≠1)的图象恒过定点A ,若点A 在mx +ny -1=0(mn >0)上,则1m +1n 的最小值为( )A .2B .4C .8D .1解析:选B ∵函数y =a 1-x (a >0,a ≠1)的图象恒过定点A (1,1). ∴把A (1,1)代入直线方程得m +n =1(mn >0). ∴1m +1n =⎝⎛⎭⎫1m +1n (m +n )=2+n m +m n ≥2+2 n m ·m n =4(当且仅当m =n =12时取等号), ∴1m +1n的最小值为4. 6.(2018·温州调研)已知三角形的三个顶点为A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为________.解析:∵BC 的中点坐标为⎝⎛⎭⎫32,-12,∴BC 边上中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0. 答案:x +13y +5=07.若直线ax +y +3a -1=0恒过定点M ,则直线2x +3y -6=0关于M 点对称的直线方程为________________.解析:由ax +y +3a -1=0,可得a (x +3)+(y -1)=0,令⎩⎪⎨⎪⎧ x +3=0,y -1=0,可得⎩⎪⎨⎪⎧x =-3,y =1,∴M (-3,1),M 不在直线2x +3y -6=0上,设直线2x +3y -6=0关于M 点对称的直线方程为2x +3y +c =0(c ≠-6),则|-6+3-6|4+9=|-6+3+c |4+9,解得c =12或c =-6(舍去),∴所求直线方程为2x +3y +12=0.答案:2x +3y +12=08.若圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称,则1a +3b 的最小值是________.解析:由圆x 2+y 2+2x -6y +1=0知其标准方程为(x +1)2+(y -3)2=9, ∵圆x 2+y 2+2x -6y +1=0关于直线ax -by +3=0(a >0,b >0)对称, ∴该直线经过圆心(-1,3),即-a -3b +3=0, ∴a +3b =3(a >0,b >0). ∴1a +3b =13(a +3b )⎝⎛⎭⎫1a +3b =13⎝⎛⎭⎫1+3a b +3b a +9≥13⎝⎛⎭⎫10+23a b ·3b a =163, 当且仅当3b a =3ab ,即a =b 时取等号. 故1a +3b 的最小值是163.答案:1639.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程: (1)过定点A (-3,4); (2)斜率为16.解:(1)设直线l 的方程为y =k (x +3)+4,它在x 轴,y 轴上的截距分别是-4k -3,3k +4, 由已知,得(3k +4)⎝⎛⎭⎫4k +3=±6, 解得k 1=-23或k 2=-83.故直线l 的方程为2x +3y -6=0或8x +3y +12=0.(2)设直线l 在y 轴上的截距为b ,则直线l 的方程是y =16x +b ,它在x 轴上的截距是-6b ,由已知,得|-6b ·b |=6,∴b =±1.∴直线l 的方程为x -6y +6=0或x -6y -6=0.10.如图,射线OA ,OB 分别与x 轴正半轴成45°和30°角,过点P (1,0)的直线AB 分别交OA ,OB 于A ,B 两点,当AB 的中点C 恰好落在直线y =12x 上时,求直线AB 的方程.解:由题意可得k OA =tan 45°=1,k OB =tan(180°-30°)=-33, 所以直线l OA :y =x ,l OB :y =-33x . 设A (m ,m ),B (-3n ,n ),所以AB 的中点C ⎝ ⎛⎭⎪⎫m -3n 2,m +n 2,由点C 在直线y =12x 上,且A ,P ,B 三点共线得⎩⎪⎨⎪⎧m +n 2=12·m -3n 2,m -0m -1=n -0-3n -1,解得m =3,所以A (3,3). 又P (1,0),所以k AB =k AP =33-1=3+32,所以l AB :y =3+32(x -1),即直线AB 的方程为(3+3)x -2y -3-3=0.三上台阶,自主选做志在冲刺名校 1.已知曲线y =1e x+1,则曲线的切线中斜率最小的直线与两坐标轴所围成的三角形的面积为________. 解析:y ′=-e x(e x +1)2=-1e x+1ex +2, 因为e x >0,所以e x +1ex ≥2e x ·1e x =2(当且仅当e x =1e x ,即x =0时取等号),所以e x +1ex +2≥4, 故y ′=-1e x +1ex +2≥-14(当且仅当x =0时取等号).所以当x =0时,曲线的切线斜率取得最小值,此时切点的坐标为⎝⎛⎭⎫0,12,切线的方程为y -12=-14(x -0),即x +4y -2=0.该切线在x 轴上的截距为2,在y 轴上的截距为12,所以该切线与两坐标轴所围成的三角形的面积S =12×2×12=12.答案:122.已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A ,B 两点,如图所示,当△ABO 的面积取最小值时,求直线l 的方程.解:法一:设A (a,0),B (0,b )(a >0,b >0), 则直线l 的方程为x a +yb =1. 因为l 过点P (3,2),所以3a +2b =1. 因为1=3a +2b ≥26ab ,整理得ab ≥24,所以S △ABO =12ab ≥12,当且仅当3a =2b ,即a =6,b =4时取等号. 此时直线l 的方程是x 6+y4=1,即2x +3y -12=0.法二:依题意知,直线l 的斜率k 存在且k <0, 可设直线l 的方程为y -2=k (x -3)(k <0), 则A ⎝⎛⎭⎫3-2k ,0,B (0,2-3k ), S △ABO =12(2-3k )⎝⎛⎭⎫3-2k =12⎣⎡⎦⎤12+(-9k )+4-k ≥12⎣⎢⎡⎦⎥⎤12+2 (-9k )·4-k=12×(12+12)=12, 当且仅当-9k =4-k ,即k =-23时,等号成立.所以所求直线l 的方程为2x +3y -12=0.第二节两条直线的位置关系1.两条直线平行与垂直的判定 (1)两条直线平行:①对于两条不重合的直线l 1,l 2,若其斜率分别为k 1,k 2,则有l 1∥l 2⇔k 1=k 2. ②当直线l 1,l 2不重合且斜率都不存在时,l 1∥l 2. (2)两条直线垂直:①如果两条直线l 1,l 2的斜率存在,设为k 1,k 2,则有l 1⊥l 2⇔k 1·k 2=-1. ②当其中一条直线的斜率不存在,而另一条直线的斜率为0时,l 1⊥l 2.2.两条直线的交点的求法直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1与l 2的交点坐标就是方程组⎩⎪⎨⎪⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解.3.三种距离公式P 1(x 1,y 1),P 2(x 2,y 2)两点之间的距离|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离 d =|Ax 0+By 0+C |A 2+B 2平行线Ax +By +C 1=0与Ax +By +C 2=0间距离 d =|C 1-C 2|A 2+B 21.(2018·金华四校联考)直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,则m =( ) A .2 B .-3 C .2或-3D .-2或-3解析:选C ∵直线2x +(m +1)y +4=0与直线mx +3y -2=0平行,∴2m =m +13≠4-2,解得m =2或-3.2.“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 由直线(a +1)x +3ay +1=0与直线(a -1)x +(a +1)y -3=0相互垂直,得(a +1)(a -1)+3a (a +1)=0,即4a 2+3a -1=0,解得a =14或-1,∴“a =14”是“直线(a +1)x +3ay +1=0与直线(a -1)x +(a+1)y -3=0相互垂直”的充分不必要条件,故选A.3.(2018·浙江五校联考)已知动点P 的坐标为(x,1-x ),x ∈R ,则动点P 的轨迹方程为________,它到原点距离的最小值为________.解析:设点P 的坐标为(x ,y ),则y =1-x ,即动点P 的轨迹方程为x +y -1=0.原点到直线x +y -1=0的距离为d =|0+0-1|1+1=22,即为所求原点到动点P 的轨迹的最小值.答案:x +y -1=0221.在判断两条直线的位置关系时,易忽视斜率是否存在,两条直线都有斜率可根据条件进行判断,若无斜率,要单独考虑.2.运用两平行直线间的距离公式时易忽视两方程中的x ,y 的系数分别相等这一条件盲目套用公式导致出错.1.已知P :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,Q :a =-1,则P 是Q 的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选A 由于直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行的充要条件是1×a -(-1)×1=0,即a =-1.所以P 是Q 的充要条件.2.(2018·安庆模拟)若直线l 1:x +3y +m =0(m >0)与直线l 2:2x +6y -3=0的距离为10,则m =( ) A .7B.172C .14D .17解析:选B 直线l 1:x +3y +m =0(m >0),即2x +6y +2m =0,因为它与直线l 2:2x +6y -3=0的距离为10,所以|2m +3|4+36=10,解得m =172.考点一 两条直线的位置关系(基础送分型考点——自主练透)[题组练透]1.已知a ≠0,直线ax +(b +2)y +4=0与直线ax +(b -2)y -3=0互相垂直,则ab 的最大值为( ) A .0 B .2 C .4D. 2解析:选B 若b =2,两直线方程分别为y =-a 4x -1和x =3a ,此时两直线相交但不垂直.若b =-2,两直线方程分别为x =-4a 和y =a 4x -34,此时两直线相交但不垂直.若b ≠±2,两直线方程分别为y =-a b +2x -4b +2和y =-a b -2x +3b -2,此时两直线的斜率分别为-a b +2,-a b -2,由-a b +2·⎝⎛⎭⎫-a b -2=-1,得a 2+b 2=4.因为a 2+b 2=4≥2ab ,所以ab ≤2,且当a =b =2或a =b =-2时取等号,故ab 的最大值为2.2.(2018·诸暨模拟)已知a ,b 为正数,且直线ax +by -6=0与直线2x +(b -3)y +5=0平行,则2a +3b 的最小值为________.解析:由两直线平行可得,a (b -3)=2b ,即2b +3a =ab ,2a +3b =1.又a ,b 为正数,所以2a +3b =(2a+3b )·⎝⎛⎭⎫2a +3b =13+6a b +6b a≥13+2 6a b ·6ba =25,当且仅当a =b =5时取等号,故2a +3b 的最小值为25.答案:253.已知两直线l 1:mx +8y +n =0和l 2:2x +my -1=0,试确定m ,n 的值,使 (1)l 1与l 2相交于点P (m ,-1);(3)l 1⊥l 2,且l 1在y 轴上的截距为-1.解:(1)由题意得⎩⎪⎨⎪⎧m 2-8+n =0,2m -m -1=0,解得m =1,n =7.即m =1,n =7时,l 1与l 2相交于点P (m ,-1).(2)∵l 1∥l 2,∴⎩⎪⎨⎪⎧m 2-16=0,-m -2n ≠0,解得⎩⎪⎨⎪⎧ m =4,n ≠-2或⎩⎪⎨⎪⎧m =-4,n ≠2.即m =4,n ≠-2或m =-4,n ≠2时,l 1∥l 2. (3)当且仅当2m +8m =0, 即m =0时,l 1⊥l 2. 又-n8=-1,∴n =8.即m =0,n =8时,l 1⊥l 2, 且l 1在y 轴上的截距为-1.[谨记通法]1.已知两直线的斜率存在,判断两直线平行垂直的方法 (1)两直线平行⇔两直线的斜率相等且在坐标轴上的截距不等; (2)两直线垂直⇔两直线的斜率之积等于-1.[提醒] 当直线斜率不确定时,要注意斜率不存在的情况. 2.由一般式确定两直线位置关系的方法[提醒] 在判断两直线位置关系时,比例式A 1A 2与B 1B 2,C 1C 2的关系容易记住,在解答选择、填空题时,建议多用比例式来解答.考点二 距离问题(重点保分型考点——师生共研)[典例引领]1.(2018·衢州模拟)若直线l 1:x +ay +6=0与l 2:(a -2)x +3y +2a =0平行,则l 1与l 2间的距离为( ) A.2 B.823 C. 3D.833解析:选B 因为l 1∥l 2,所以1a -2=a 3≠62a,解得a =-1,所以l 1:x -y +6=0,l 2:x -y +23=0,所以l 1与l 2之间的距离d =⎪⎪⎪⎪6-232=823.2.直线3x +4y -3=0上一点P 与点Q (2,-2)的连线的最小值是________. 解析:∵点Q 到直线的距离即为P ,Q 两点连线的最小值, ∴|P Q |min =|3×2+4×(-2)-3|32+42=1.答案:13.若直线l 过点P (-1,2)且到点A (2,3)和点B (-4,5)的距离相等,则直线l 的方程为________. 解析:法一:当直线l 的斜率存在时,设直线l 的方程为y -2=k (x +1),即kx -y +k +2=0. 由题意知|2k -3+k +2|k 2+1=|-4k -5+k +2|k 2+1,即|3k -1|=|-3k -3|,∴k =-13.∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当直线l 的斜率不存在时,直线l 的方程为x =-1,也符合题意. 故所求直线l 的方程为x +3y -5=0或x =-1. 法二:当AB ∥l 时,有k =k AB =-13,∴直线l 的方程为y -2=-13(x +1),即x +3y -5=0.当l 过AB 中点时,AB 的中点为(-1,4). ∴直线l 的方程为x =-1.故所求直线l 的方程为x +3y -5=0或x =-1. 答案:x +3y -5=0或x =-1[由题悟法]处理距离问题的2大策略(1)点到直线的距离问题可直接代入点到直线的距离公式去求.(2)动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而使计算简便.[即时应用]1.已知P 是直线2x -3y +6=0上一点,O 为坐标原点,且点A 的坐标为(-1,1),若|PO |=|PA |,则P点的坐标为________.解析:法一:设P (a ,b ),则⎩⎨⎧2a -3b +6=0,a 2+b 2=(a +1)2+(b -1)2,解得a =3,b =4.∴P 点的坐标为(3,4). 法二:线段OA 的中垂线方程为x -y +1=0,则由⎩⎪⎨⎪⎧ 2x -3y +6=0,x -y +1=0.解得⎩⎪⎨⎪⎧x =3,y =4,则P 点的坐标为(3,4).答案:(3,4)2.已知直线l :ax +y -1=0和点A (1,2),B (3,6).若点A ,B 到直线l 的距离相等,则实数a 的值为________. 解析:法一:要使点A ,B 到直线l 的距离相等, 则AB ∥l ,或A ,B 的中点(2,4)在直线l 上. 所以-a =6-23-1=2或2a +4-1=0, 解得a =-2或-32.法二:要使点A ,B 到直线l 的距离相等, 则|a +1|a 2+1=|3a +5|a 2+1,解得a =-2或-32.答案:-2或-32考点三 对称问题(题点多变型考点——多角探明) [锁定考向]对称问题是高考常考内容之一,也是考查学生转化能力的一种常见题型. 常见的命题角度有: (1)点关于点对称; (2)点关于线对称; (3)线关于线对称.[题点全练]角度一:点关于点对称1.过点P (0,1)作直线l 使它被直线l 1:2x +y -8=0和l 2:x -3y +10=0截得的线段被点P 平分,则直线l 的方程为________________.解析:设l 1与l 的交点为A (a,8-2a ),则由题意知,点A 关于点P 的对称点B (-a,2a -6)在l 2上,把B 点坐标代入l 2的方程得-a -3(2a -6)+10=0,解得a =4,即点A (4,0)在直线l 上, 所以由两点式得直线l 的方程为x +4y -4=0. 答案:x +4y -4=02.已知直线l :2x -3y +1=0,点A (-1,-2),则直线l 关于点A (-1,-2)对称的直线l ′的方程为________.解析:法一:在l :2x -3y +1=0上任取两点,如M (1,1),N (4,3), 则M ,N 关于点A 的对称点M ′,N ′均在直线l ′上.易知M ′(-3,-5),N ′(-6,-7),由两点式可得l ′的方程为2x -3y -9=0.法二:设P (x ,y )为l ′上任意一点,则P (x ,y )关于点A (-1,-2)的对称点为P ′(-2-x ,-4-y ), ∵P ′在直线l 上,∴2(-2-x )-3(-4-y )+1=0, 即2x -3y -9=0. 答案:2x -3y -9=0 角度二:点关于线对称3.已知直线l :2x -3y +1=0,点A (-1,-2).求: (1)点A 关于直线l 的对称点A ′的坐标;(2)直线m :3x -2y -6=0关于直线l 的对称直线m ′的方程.解:(1)设A ′(x ,y ),则⎩⎪⎨⎪⎧y +2x +1×23=-1,2×x -12-3×y -22+1=0,解得⎩⎨⎧x =-3313,y =413.∴A ′⎝⎛⎭⎫-3313,413. (2)在直线m 上取一点,如M (2,0),则M (2,0)关于直线l 的对称点M ′必在直线m ′上. 设M ′(a ,b ),则⎩⎪⎨⎪⎧2×a +22-3×b +02+1=0,b -0a -2×23=-1.解得M ′⎝⎛⎭⎫613,3013.设直线m 与直线l 的交点为N ,则由⎩⎪⎨⎪⎧2x -3y +1=0,3x -2y -6=0.得N (4,3).又∵m ′经过点N (4,3),∴由两点式得直线m ′的方程为9x -46y +102=0. 角度三:线关于线对称4.直线2x -y +3=0关于直线x -y +2=0对称的直线方程是( ) A .x -2y +3=0 B .x -2y -3=0 C .x +2y +1=0D .x +2y -1=0解析:选A 设所求直线上任意一点P (x ,y ),则P 关于x -y +2=0的对称点为P ′(x 0,y 0), 由⎩⎪⎨⎪⎧x +x 02-y +y 02+2=0,x -x 0=-(y -y 0),得⎩⎪⎨⎪⎧x 0=y -2,y 0=x +2,由点P ′(x 0,y 0)在直线2x -y +3=0上, ∴2(y -2)-(x +2)+3=0, 即x -2y +3=0.[通法在握]1.中心对称问题的2个类型及求解方法 (1)点关于点对称:若点M (x 1,y 1)及N (x ,y )关于P (a ,b )对称,则由中点坐标公式得⎩⎪⎨⎪⎧x =2a -x 1,y =2b -y 1,进而求解.(2)直线关于点的对称,主要求解方法是:①在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程;②求出一个对称点,再利用两对称直线平行,由点斜式得到所求直线方程. 2.轴对称问题的2个类型及求解方法 (1)点关于直线的对称:若两点P 1(x 1,y 1)与P 2(x 2,y 2)关于直线l :Ax +By +C =0对称,由方程组⎩⎪⎨⎪⎧A ⎝⎛⎭⎫x 1+x 22+B ⎝⎛⎭⎫y 1+y 22+C =0,y 2-y 1x 2-x 1·⎝⎛⎭⎫-A B =-1,可得到点P 1关于l 对称的点P 2的坐标(x 2,y 2)(其中B ≠0,x 1≠x 2). (2)直线关于直线的对称:一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.[演练冲关]1.已知直线y =2x 是△ABC 中∠C 的平分线所在的直线,若点A ,B 的坐标分别是(-4,2),(3,1),则点C 的坐标为( )A .(-2,4)B .(-2,-4)C .(2,4)D .(2,-4)解析:选C 设A (-4,2)关于直线y =2x 的对称点为(x ,y ),则⎩⎪⎨⎪⎧y -2x +4×2=-1,y +22=2×-4+x2,解得⎩⎪⎨⎪⎧x =4,y =-2,∴BC 所在直线的方程为y -1=-2-14-3(x -3),即3x +y -10=0.同理可得点B (3,1)关于直线y =2x 的对称点为(-1,3),∴AC 所在直线的方程为y -2=3-2-1-(-4)(x +4),即x -3y +10=0.联立⎩⎪⎨⎪⎧3x +y -10=0,x -3y +10=0,解得⎩⎪⎨⎪⎧x =2,y =4,可得C (2,4). 2.已知入射光线经过点M (-3,4),被直线l :x -y +3=0反射,反射光线经过点N (2,6),则反射光线所在直线的方程为________.解析:设点M (-3,4)关于直线l :x -y +3=0的对称点为M ′(a ,b ),则反射光线所在直线过点M ′, 所以⎩⎪⎨⎪⎧b -4a -(-3)·1=-1,-3+a 2-b +42+3=0,解得a =1,b =0.又反射光线经过点N (2,6),所以所求直线的方程为y -06-0=x -12-1,即6x -y -6=0. 答案:6x -y -6=03.已知△ABC 中,顶点A (4,5),点B 在直线l :2x -y +2=0上,点C 在x 轴上,求△ABC 周长的最小值.解:设点A 关于直线l :2x -y +2=0的对称点为A 1(x 1,y 1),点A 关于x 轴的对称点为A 2(x 2,y 2),连接A 1A 2交l 于点B ,交x 轴于点C ,则此时△ABC 的周长取最小值,且最小值为||A 1A 2.∵A 1与A 关于直线l :2x -y +2=0对称, ∴⎩⎪⎨⎪⎧y 1-5x 1-4×2=-1,2×x 1+42-y 1+52+2=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=7.∴A 1(0,7).易求得A 2(4,-5),∴△ABC 周长的最小值为||A 1A 2=(4-0)2+(-5-7)2=410.一抓基础,多练小题做到眼疾手快1.(2018·浙江名校协作体联考)“a =-1”是“直线ax +3y +3=0和直线x +(a -2)y +1=0平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选C 因为直线ax +3y +3=0和直线x +(a -2)y +1=0平行的充要条件是⎩⎪⎨⎪⎧a (a -2)=3×1,a ×1≠3×1,解得a =-1,故选C.2.(2018·丽水调研)已知直线l 1过点(-2,0)且倾斜角为30°,直线l 2过点(2,0)且与直线l 1垂直,则直线l 1与直线l 2的交点坐标为( )A .(3,3)B .(2,3)C .(1,3)D.⎝⎛⎭⎫1,32 解析:选C 直线l 1的斜率为k 1=tan 30°=33,因为直线l 2与直线l 1垂直,所以k 2=-1k 1=-3,所以直线l 1的方程为y =33(x +2),直线l 2的方程为y =-3(x -2).两式联立,解得⎩⎨⎧x =1,y =3,即直线l 1与直线l 2的交点坐标为(1,3).3.(2018·诸暨期初)已知点A (7,-4)关于直线l 的对称点为B (-5,6),则该对称直线l 的方程为( ) A .6x +5y -1=0 B .5x +6y +1=0 C .5x -6y -1=0D .6x -5y -1=0解析:选D 由题可得,直线l 是线段AB 的垂直平分线.因为A (7,-4),B (-5,6),所以k AB =6+4-5-7=-56,所以k l =65.又因为A (7,-4),B (-5,6)的中点坐标为(1,1).所以直线l 的方程为y -1=65(x -1),即6x -5y -1=0.4.已知点P (4,a )到直线4x -3y -1=0的距离不大于3,则a 的取值范围是________.解析:由题意得,点P 到直线的距离为|4×4-3×a -1|5=|15-3a |5.因为|15-3a |5≤3,即|15-3a |≤15,解得0≤a ≤10,所以a 的取值范围是[0,10].答案:[0,10]5.若两平行直线3x -2y -1=0,6x +ay +c =0之间的距离为21313,则c 的值是________.解析:依题意知,63=a -2≠c -1,解得a =-4,c ≠-2,即直线6x +ay +c =0可化为3x -2y +c2=0,又两平行直线之间的距离为21313, 所以⎪⎪⎪⎪c 2+132+(-2)2=21313,解得c =2或-6.答案:2或-6二保高考,全练题型做到高考达标1.(2018·舟山调研)在直角坐标平面内,过定点P 的直线l :ax +y -1=0与过定点Q 的直线m :x -ay +3=0相交于点M ,则|MP |2+|M Q |2的值为( )A.102B.10C .5D .10解析:选D 由题意知P (0,1),Q (-3,0),∵过定点P 的直线ax +y -1=0与过定点Q 的直线x -ay +3=0垂直, ∴M 位于以P Q 为直径的圆上, ∵|P Q |=9+1=10, ∴|MP |2+|M Q |2=|P Q |2=10.2.(2018·慈溪模拟)曲线y =2x -x 3在x =-1处的切线为l ,则点P (3,2)到直线l 的距离为( ) A.722B.922C.1122D.91010解析:选A 由题可得,切点坐标为(-1,-1).y ′=2-3x 2,由导数的几何意义可知,该切线的斜率为k =2-3=-1,所以切线的方程为x +y +2=0.所以点P (3,2)到直线l 的距离为d =|3+2+2|12+12=722.3.(2018·绵阳模拟)若P ,Q 分别为直线3x +4y -12=0与6x +8y +5=0上任意一点,则|P Q |的最小值为( )A.95 B.185 C.2910D.295解析:选C 因为36=48≠-125,所以两直线平行,由题意可知|P Q |的最小值为这两条平行直线间的距离, 即|-24-5|62+82=2910, 所以|P Q |的最小值为2910.4.(2018·厦门模拟)将一张坐标纸折叠一次,使得点(0,2)与点(4,0)重合,点(7,3)与点(m ,n )重合,则m +n 等于( )A.345B.365C.283D.323解析:选A 由题意可知,纸的折痕应是点(0,2)与点(4,0)连线的中垂线,即直线y =2x -3,它也是点(7,3)与点(m ,n )连线的中垂线,则⎩⎪⎨⎪⎧3+n 2=2×7+m2-3,n -3m -7=-12,解得⎩⎨⎧m =35,n =315,故m +n =345.5.(2018·钦州期中)已知直线l 的方程为f (x ,y )=0,P 1(x 1,y 1)和P 2(x 2,y 2)分别为直线l 上和l 外的点,则方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示( )A .过点P 1且与l 垂直的直线B .与l 重合的直线C .过点P 2且与l 平行的直线D .不过点P 2,但与l 平行的直线解析:选C 由直线l 的方程为f (x ,y )=0,知方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示与l 平行的直线,P 1(x 1,y 1)为直线l 上的点,则f (x 1,y 1)=0,f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0化为f (x ,y )-f (x 2,y 2)=0,显然P 2(x 2,y 2)满足方程f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0,所以f (x ,y )-f (x 1,y 1)-f (x 2,y 2)=0表示过点P 2且与l 平行的直线.故选C.6.已知三角形的一个顶点A (4,-1),它的两条角平分线所在直线的方程分别为l 1:x -y -1=0和l 2:x -1=0,则BC 边所在直线的方程为________________.解析:A 不在这两条角平分线上,因此l 1,l 2是另两个角的角平分线.点A 关于直线l 1的对称点A 1,点A 关于直线l 2的对称点A 2均在边BC 所在直线l 上.设A 1(x 1,y 1),则有⎩⎪⎨⎪⎧y 1+1x 1-4×1=-1,x 1+42-y 1-12-1=0,解得⎩⎪⎨⎪⎧x 1=0,y 1=3,所以A 1(0,3).同理设A 2(x 2,y 2),易求得A 2(-2,-1). 所以BC 边所在直线方程为2x -y +3=0. 答案:2x -y +3=07.(2018·余姚检测)已知直线l 过点P (3,4)且与点A (-2,2),B (4,-2)等距离,则直线l 的方程为________. 解析:显然直线l 的斜率不存在时,不满足题意;设所求直线方程为y -4=k (x -3), 即kx -y +4-3k =0,由已知,得|-2k -2+4-3k |1+k 2=|4k +2+4-3k |1+k 2,∴k =2或k =-23.∴所求直线l 的方程为2x -y -2=0或2x +3y -18=0. 答案:2x -y -2=0或2x +3y -18=08.如图所示,已知两点A (4,0),B (0,4),从点P (2,0)射出的光线经直线AB 反射后再射到直线OB 上,最后经直线OB 反射后又回到P 点,则光线所经过的路程为________.解析:易得AB 所在的直线方程为x +y =4,由于点P 关于直线AB 对称的点为A 1(4,2),点P 关于y 轴对称的点为A 2(-2,0),则光线所经过的路程即A 1与A 2两点间的距离.于是|A 1A 2|=(4+2)2+(2-0)2=210.答案:2109.(2018·绍兴一中检测)两平行直线l 1,l 2分别过点P (-1,3),Q (2,-1),它们分别绕P ,Q 旋转,但始终保持平行,则l 1,l 2之间的距离的取值范围是________.解析:∵l 1∥l 2,且P ∈l 1,Q ∈l 2,∴l 1,l 2间的最大距离为|P Q |=[2-(-1)]2+(-1-3)2=5,又l 1与l 2不重合,∴l 1,l 2之间距离的取值范围是(0,5].答案:(0,5]10.已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x -y -5=0,AC 边上的高BH 所在直线方程为x -2y -5=0,求直线BC 的方程.解:依题意知:k AC =-2,A (5,1), ∴l AC 的方程为2x +y -11=0,联立⎩⎪⎨⎪⎧2x +y -11=0,2x -y -5=0,得C (4,3).设B (x 0,y 0),则AB 的中点M ⎝⎛⎭⎫x 0+52,y 0+12, 代入2x -y -5=0, 得2x 0-y 0-1=0,联立⎩⎪⎨⎪⎧2x 0-y 0-1=0,x 0-2y 0-5=0,得B (-1,-3),∴k BC =65,∴直线BC 的方程为y -3=65(x -4),即6x -5y -9=0.三上台阶,自主选做志在冲刺名校1.已知线段AB 的两个端点A (0,-3),B (3,0),且直线y =2λx +λ+2与线段AB 总相交,则实数λ的。

解析几何中的基本公式

解析几何中的基本公式

解析几何中的基本公式解析几何是高中数学中的一门重要学科,它研究几何图形的坐标表示方法和相关性质。

在解析几何中,使用了一系列经典的基本公式,本文将对这些公式进行详细解析。

一、两点间距离公式在解析几何中,经常需要计算两点之间的距离。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们之间的距离可以用以下公式表示:$$d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$$其中 $d$ 表示两点之间的距离。

这个公式的计算方法非常简单,只需要将两点横、纵坐标的差值平方相加,再开方即可。

二、两点间中点公式在解析几何中,还需要计算两点间的中点。

对于平面直角坐标系中的两个点 $P(x_1,y_1)$ 和 $Q(x_2,y_2)$,它们的中点可以用以下公式表示:$$(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})$$这个公式的计算方法也非常简单,只需要将两点横、纵坐标分别求出平均值,即可得到中点的坐标。

三、点到直线距离公式在解析几何中,还需要计算一个点到一条直线的距离。

对于一条直线 $ax+by+c=0$ 和一个点 $P(x_0,y_0)$,它们之间的距离可以用以下公式表示:$$d=\frac{|ax_0+by_0+c|}{\sqrt{a^2+b^2}}$$其中 $d$ 表示点 $P$ 到直线的距离。

这个公式的计算方法稍微有些复杂,但是可以通过向量的方法来简化计算。

四、直线的斜截式方程公式在解析几何中,我们经常需要用一条直线的方程表示它的位置关系。

在平面直角坐标系中,如果直线的斜率为$k$,截距为$b$,则这条直线的方程可以用以下公式表示:$$y=kx+b$$这个公式非常简单明了,如果已知一条直线的斜率和截距,则可以用这个公式求出它的方程。

五、两条直线的交点公式在解析几何中,我们经常需要求出两条直线的交点,以确定它们的位置关系。

对于一条直线 $y=k_1x+b_1$ 和另一条直线$y=k_2x+b_2$,它们的交点可以用以下公式表示:$$(\frac{b_2-b_1}{k_1-k_2},\frac{k_1b_2-k_2b_1}{k_1-k_2})$$这个公式的计算方法稍微有些复杂,需要将两条直线的方程联立后,解出它们的交点坐标。

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)

高中数学解析几何总结(非常全)高中数学解析几何第一部分:直线一、直线的倾斜角与斜率1.倾斜角α直线l向上的方向与x轴正向所成的角叫做直线的倾斜角α,其范围为0≤α<180度。

2.斜率直线倾斜角α的正切值叫做这条直线的斜率,表示为k=tanα。

1)倾斜角为90度的直线没有斜率。

2)每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率。

当直线垂直于x轴时,其斜率不存在,因此在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

3)设经过A(x1,y1)和B(x2,y2)两点的直线的斜率为k,则当x1≠x2时,k=(y1-y2)/(x1-x2);当x1=x2时,斜率不存在。

二、直线的方程1.点斜式已知直线上一点P(x,y)及直线的斜率k(倾斜角α),求直线的方程,可以用点斜式表示为y-y1=k(x-x1)。

需要注意的是,当直线斜率不存在时,不能用点斜式表示,此时方程为x=x1.2.斜截式若已知直线在y轴上的截距(直线与y轴焦点的纵坐标)为b,斜率为k,则直线方程为y=kx+b。

特别地,斜率存在且经过坐标原点的直线方程为y=kx。

需要正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

3.两点式若已知直线经过(x1,y1)和(x2,y2)两点,且(x1≠x2,y1≠y2),则直线的方程为(y-y1)/(x-x1)=(y2-y1)/(x2-x1)。

需要注意的是,不能表示与x轴和y轴垂直的直线。

4.截距式若已知直线在x轴,y轴上的截距分别是a,b(a≠0,b≠0),则直线方程为xy/a + y/b = 1.需要注意的是,截距式方程不能表示经过原点的直线,也不能表示垂直于坐标轴的直线。

5.一般式任何一条直线方程均可写成一般式:Ax+By+C=0(A、B不同时为零)。

反之,任何一个二元一次方程都表示一条直线。

首先,我们需要指出直线方程的特殊形式可以化为直线方程的一般式,但一般式不一定能化为特殊形式,这取决于系数A、B、C是否为零。

高中数学解析几何公式大全 (1)

高中数学解析几何公式大全 (1)

证明方法:在△ABC内,三边为a,b,c,点O是该三角形的重心,AOA'、BOB'、COC'分别为a、b、c边上的中线。

根据重心性质知,OA'=1/3AA',OB'=1/3BB',OC'=1/3CC',过O,A分别作a边上高OH',AH,可知OH'=1/3AH 则,S△BOC=1/2×OH'a=1/2×1/3AHa=1/3S△ABC;同理可证S△AOC=1/3S△ABC,S△AOB=1/3S△ABC,所以,S△BOC=S△AOC=S△AOB重心到三角形3个顶点距离平方的和最小。

(等边三角形)证明方法:设三角形三个顶点为(x1,y1),(x2,y2),(x3,y3) 平面上任意一点为(x,y)则该点到三顶点距离平方和为:(x1-x)2+(y1-y)2+(x2-x)2+(y2-y)2+(x3-x)2+(y3-y)2=3x2-2x(x1+x2+x3)+3y2-2y(y1+y2+y3)+x12+x22+x32+y12+y 22+y32=3[x-1/3*(x1+x2+x3)]2+3[y-1/3*(y1+y2+y3)]2+x12+x22+x32+ y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2显然当x=(x1+x2+x3)/3,y=(y1+y2+y3)/3(重心坐标)时上式取得最小值x12+x22+x32+y12+y22+y32-1/3(x1+x2+x3)2-1/3(y1+y2+y3)2 最终得出结论。

4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3];空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/35、三角形内到三边距离之积最大的点。

高中数学解析几何基础复习 题集附答案

高中数学解析几何基础复习 题集附答案

高中数学解析几何基础复习题集附答案高中数学解析几何基础复习题集附答案在高中数学中,解析几何是一个非常重要的内容。

解析几何是指在直角坐标系中,通过代数的方法来研究几何问题。

掌握解析几何的基础知识对于学习高中数学以及应用数学都非常有帮助。

为了帮助大家进行复习,下面将提供一些高中数学解析几何基础题目,并附上详细的答案解析。

1. 已知直线L1:2x + 3y = 5和L2: y = 4x - 1,求两直线的交点坐标。

解析:首先将直线L1和L2的方程组合,得到2x + 3(4x - 1) = 5,化简得到14x - 3 = 5,继续化简得到14x = 8,x = 8/14 = 4/7。

代入L2的方程求y的值,得到y = 4(4/7) - 1 = 16/7 - 7/7 = 9/7。

所以两直线的交点坐标为(4/7, 9/7)。

2. 已知直线L:x + y = 4和曲线C:x^2 + y^2 = 5,求直线与曲线的交点坐标。

解析:将直线L的方程代入曲线C的方程中,得到(x + y)^2 + y^2 = 5,展开得到x^2 + y^2 + 2xy + y^2 = 5,化简得到x^2 + 2xy + 2y^2 = 5。

由于直线L与曲线C有交点,所以存在某个x和y满足这个方程。

观察方程的左边,可以发现它可以写成(x + y)^2 + y^2 = 5,也就是(x +y)^2 = 5 - y^2。

由于(x + y)^2必须大于等于0,所以5 - y^2必须大于等于0,解这个不等式得到-√5 ≤ y ≤ √5。

将y的取值范围代入方程(x +y)^2 = 5 - y^2,解得x = 4 - y。

因此,两直线的交点坐标为(x, y) = (4 - y, y),其中-√5 ≤ y ≤ √5。

3. 已知平面内三点A(1, 2),B(3, -4),C(-2, 3),判断是否共线。

解析:判断三点是否共线可以利用向量的共线条件。

设有两个向量AB和AC,若这两个向量共线,则存在一个实数k,使得AB = kAC。

高中数学公式总结解析几何

高中数学公式总结解析几何

高中数学公式总结解析几何解析几何是数学中的一个分支,研究的对象是平面和空间中的几何图形。

它以坐标系为基础,通过代数的方法来研究几何问题。

在高中数学中,解析几何是一个重要的内容,下面是高中数学解析几何的一些重要公式的总结。

1.一次函数的标准方程对于一次函数y = kx + b,其中k为斜率,b为截距。

可以得到它的标准方程为Ax + By + C = 0,其中A = -k,B = 1,C = -b。

通过标准方程可以求得直线的斜率、截距等信息。

2.直线的距离公式设直线方程为Ax+By+C=0,点P(x1,y1)到该直线的距离为d=,Ax1+By1+C,/√(A^2+B^2)。

3.直线的倾斜角的求解对于斜率为k的直线,其倾斜角θ满足tanθ = k。

4.直线的平行和垂直关系两条直线斜率分别为k1和k2,如果k1=k2,则两条直线平行;如果k1*k2=-1,则两条直线垂直。

5.圆的标准方程设圆的圆心为C(h,k),半径为r,则圆的标准方程为(x-h)^2+(y-k)^2=r^26.两点间的距离公式设两点A(x1,y1)和B(x2,y2),则两点之间的距离d=√((x2-x1)^2+(y2-y1)^2)。

7.点到直线的距离公式设直线方程为Ax+By+C=0,点P(x0,y0)到该直线的距离为d=,Ax0+By0+C,/√(A^2+B^2)。

8.点在直线上的条件对于一条直线Ax+By+C=0,如果点P(x,y)满足该方程,则点P在直线上。

9.直线与圆的位置关系对于一条直线Ax+By+C=0和圆(x-h)^2+(y-k)^2=r^2,可以通过判别式D=,Ah+Bk+C,/√(A^2+B^2)来判断直线和圆的位置关系。

当D>r时,直线与圆相离;当D=r时,直线与圆相切;当D<r时,直线与圆相交。

10.两圆的位置关系对于两个圆(x-h1)^2+(y-k1)^2=r1^2和(x-h2)^2+(y-k2)^2=r2^2,可以通过判别式D=√((h1-h2)^2+(k1-k2)^2)来判断两个圆的位置关系。

高中解析几何知识归纳

高中解析几何知识归纳

高中解析几何知识归纳高中解析几何是数学中的一个重要组成部分,主要研究平面和空间中点、线、面之间的相互关系和位置关系。

以下是对高中解析几何知识点的详细介绍:一、平面解析几何1. 点:平面上的点用坐标系表示,有序数对(x, y)表示。

2. 直线:直线的方程一般形式为Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

3. 圆:圆的标准方程为(x - h)²+ (y - k)²= r²,其中(h, k)为圆心坐标,r为半径。

4. 圆锥曲线:包括椭圆、双曲线和抛物线。

-椭圆:椭圆的标准方程为x²/a²+ y²/b²= 1,其中a为半长轴,b为半短轴。

-双曲线:双曲线的标准方程为x²/a²- y²/b²= 1,其中a为实轴半长,b为虚轴半长。

-抛物线:抛物线的标准方程为y²= 4ax或x²= 4ay,其中a为焦点到准线的距离。

二、空间解析几何1. 点:空间中的点用坐标系表示,有序数对(x, y, z)表示。

2. 直线:空间直线的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C不同时为0。

3. 平面:平面的方程一般形式为Ax + By + Cz + D = 0,其中A、B、C、D为常数,A、B、C 不同时为0。

4. 空间几何体:包括立方体、球、锥体、柱体等。

三、解析几何的基本公式和性质1. 点到直线的距离公式:d = |Ax1 + By1 + C| / √(A²+ B²),其中(x1, y1)为点的坐标。

2. 点到直线的距离性质:点到直线的距离等于点到直线的垂线的长度。

3. 直线与直线的交点公式:解直线方程组,得到交点的坐标。

4. 直线与圆的位置关系:直线与圆相交、相切或相离。

5. 圆与圆的位置关系:圆与圆相交、相切或相离。

高中数学平面解析几何知识点梳理

高中数学平面解析几何知识点梳理

平面解析几何一.直线部分1.直线的倾斜角与斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为叫做直线的倾斜角.倾斜角[ 0,180 ) , 90 斜率不存在.y y2 1 x x k(2)直线的斜率:k ( ), tan .(P1(x1, y1 ) 、P2 (x2, y2) ).1 2x x2 12.直线方程的五种形式:(1)点斜式:y ( ) ( 直线l 过点P1 (x1, y1 ) ,且斜率为k ).y1 k x x1注:当直线斜率不存在时,不能用点斜式表示,此时方程为x x0 .(2)斜截式:y kx b ( b 为直线l 在y 轴上的截距).(3)两点式:yy2y1y1xx2x1x1( y y ,1 2x x ).1 2注:①不能表示与x 轴和y 轴垂直的直线;②方程形式为:( )( ) ( )( ) 0x2 x y y y y x x 时,方程可以表示任意直线.1 12 1 1x y(4)截距式: 1a b(a, b分别为x 轴y 轴上的截距,且a 0,b 0 ).注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线.(5)一般式:Ax By C 0 (其中A 、B 不同时为0).A C Ay x ,即,直线的斜率:k .一般式化为斜截式:B B B 注:(1)已知直线纵截距 b ,常设其方程为y kx b或x 0.已知直线横截距x0 ,常设其方程为x my x0 (直线斜率k 存在时,m 为k的倒数)或y 0.已知直线过点( x0 ,y0 ),常设其方程为y k(x x0) y0 或x x0 .(2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合.3.直线在坐标轴上的截矩可正,可负,也可为0.(1)直线在两坐标轴上的截距.相.等..直线的斜率为1或直线过原点.(2)直线两截.距.互.为.相.反.数.直线的斜率为 1 或直线过原点.(3)直线两截.距.绝.对.值.相.等.直线的斜率为1或直线过原点.4.两条直线的平行和垂直:(1)若l1 : y k1x b1,l2 : y k2x b2①l1 // l k k ,b b ;②2 1 2 1 2 l l k k .1 2 1 2 1(2)若l1 : A x B y C 0 ,l2 : A2 x B2 y C2 0,有1 1 1①l1 // l A B A B 且A C A C .②l1 l2 A1A2 B1B2 0.2 1 2 2 1 1 2 2 15.平面两点距离公式:( P x y 、1 ( 1, 1) P2 (x2, y2) ) , 2 2P1P (x x ) ( y y ) .x轴上两点间距离:2 1 2 1 2AB x .B xA线段P1P 的中点是M (x0 , y0 ) ,则2 xyx1y122xy22.6.点到直线的距离公式:点(x0 ,y )P 到直线l:Ax By C 0的距离:0Ax By C0 0d .2 2A B7.两平行直线间的距离:两条平行直线l1:Ax By C 0,l :Ax By C 0距离:1 2 2C C1 2d .2 2A B8.直线系方程:(1)平行直线系方程:①直线y kx b 中当斜率k 一定而b 变动时,表示平行直线系方程..②与直线l : Ax By C 0 平行的直线可表示为A x By C1 0 .③过点P(x , y ) 与直线l : Ax By C 0 平行的直线可表示为:A(x x0 ) B( y y0 ) 0.0 0(2)垂直直线系方程:①与直线l : Ax By C 0 垂直的直线可表示为B x Ay C1 0.②过点P(x , y ) 与直线l : Ax By C 0 垂直的直线可表示为:B(x x0 ) A( y y0 ) 0.0 0(3)定点直线系方程:①经过定点P0 (x0, y0) 的直线系方程为y y0 k(x x0 )( 除直线x x0 ), 其中k 是待定的系数.②经过定点P0 (x0, y0) 的直线系方程为A(x x0) B(y y0) 0, 其中A, B 是待定的系数.(4)共点直线系方程:经过两直线l1:A x B y C 0,l :A x B y C 0 交点的直线系方程为1 1 12 2 2 2A1 x B y C ( A2 x B2 y C2 ) 0 ( 除1 1 l ) ,其中λ是待定的系数.29.曲线C1 : f ( x, y) 0与C2 : g( x, y) 0的交点坐标方程组( , ) 0f x yg( x, y) 0的解.二.圆部分10.圆的方程:(1)圆的标准方程: 2 ( )2 2(x a) y b r (r 0).2 y2 Dx Ey F D2 E2 F(2)圆的一般方程:x 0( 4 0) .(3)圆的直径式方程:若( 1 ,y ) B(x ,y )A x ,,以线段AB 为直径的圆的方程是:( )( ) ( )( ) 0x x1 x x y y y y . 1 2 22 1 2D E 注:(1)在圆的一般方程中,圆心坐标和半径分别是)( ,2 2(2)一般方程的特点:1 2 2,r D E 4F2.①2x 和2 22 E Fy 的系数相同且不为零;②没有xy 项;③ D 4 02 Bxy Cy Dx Ey F2(3)二元二次方程Ax 0 表示圆的等价条件是:2 E AF2① A C 0 ;② B 0 ;③ 4 0D .11.圆的弦长的求法:(1)几何法:当直线和圆相交时,设弦长为l ,弦心距为d ,半径为r ,l 2 2 2则:“半弦长=半径( d r+弦心距”——) 2 2 2;2(2)代数法:设l 的斜率为k ,l与圆交点分别为( , ) ( , )A x1 y ,B x y ,则1 2 22 | AB | 1 k |1x A x | 1 | y yB A B2k|(其中| x1 x |,| y y |的求法是将直线和圆的方程联立消去y 或x,利用韦达定理求解)2 1 212.点与圆的位置关系:点P( x0, y0 ) 与圆 2 ( ) 22(x a) y b r 的位置关系有三种①P 在在圆外 2 2 2d r ( x0 a) ( y b) r .②P 在在圆内 2 22d r (x0 a) ( y b) r .③P 在在圆上 2 2d .【P到圆心距离2r ( x0 a) ( y b) r2 2d (a x ) (b y ) 】0 013.直线与圆的位置关系:Aa Bb C 直线Ax By C 0与圆(x a)2 ( y b)2 r 2 的位置关系有三种(d ):2 B2 A圆心到直线距离为 d ,由直线和圆联立方程组消去x (或y )后,所得一元二次方程的判别式为.d r 0;d r 相切0;d r 相交0.相离14.两圆位置关系: 设两圆圆心分别为O1,O2 ,半径分别为r1,r2 ,O1O2 dd r 条公切线;d r1 r2 内含无公切线;1 r 外离 42d r 条公切线;d r1 r2 内切1条公切线;1 r 外切 32r1 r d r r 相交 2 .条公切线 2 1 22 y2 Dx Ey F D 2 E2 F15.圆系方程:x 0( 4 0)2 y2 Dx Ey F(1)过直线l:Ax By C 0与圆C : x 0的交点的圆系方程:2 y2 Dx Ey F Ax By Cx ( ) 0, λ是待定的系数.(2)过圆 2 y2 D x E y F 22 y D x E y FC : x 1 1 1 0与圆C2 : x 2 2 2 0的交点的圆系方程:12 y D x E y F x y D x E y F2 2 2x ( 2 2 2 ) 0, λ是待定的系数.1 1 1特别地,当1时, 2 2 2 2x y D x E y F x y D x E y F 就是1 1 1 (2 2 2 ) 0(D D )x (E E ) y (F F ) 0表示两圆的公共弦所在的直线方程,即过两圆交点的直线.1 2 1 2 1 216.圆的切线方程:(1)过圆 2 y2 r 2x 上的点P( x0 , y0 ) 的切线方程为:2 x0x y y r .(2)过圆(x a)2 ( y b) 2 r 2 上的点P(x0, y ) 的切线方程为:2 (x a)( x a y b y b r .0 ) ( )( )(3)当点( 0 , y )P x 在圆外时,可设切方程为y y0 k(x x0 ) ,利用圆心到直线距离等于半径,即d r ,求出k ;或利用0 ,求出k .若求得k 只有一值,则还有一条斜率不存在的直线x x .2 y2 D x E y F2 y2 D x E y F17.把两圆x 1 1 1 0与x 2 2 2 0方程相减即得相交弦所在直线方程: (D ) ( ) ( ) 0 .1 D x E E y F F2 1 2 1 218.对称问题:(1)中心对称:①点关于点对称:点A( x1 ,y1) 关于M ( , ) 的对称点A(2x0 x1,2y0 y1) .x0 y②直线关于点对称:法1:在直线上取两点,利用中点公式求出两点关于已知点对称的两点坐标,由两点式求直线方程.法2:求出一个对称点,在利用l1 // l 由点斜式得出直线方程.2(2)轴对称:①点关于直线对称:点与对称点连线斜率是已知直线斜率的负倒数,点与对称点的中点在直线上.点A、A 关于直线l 对称AAAA⊥l中点在l上k AA·k l 1AA中点坐标满足.l方程②直线关于直线对称:(设a,b 关于l对称)法1:若a,b 相交,求出交点坐标,并在直线 a 上任取一点,求该点关于直线l 的对称点.若a// l ,则b// l ,且a,b与l的距离相等.法2:求出a上两个点A, B 关于l的对称点,在由两点式求出直线的方程.(3)点( a, b) 关于x 轴对称:( a,- b) 、关于y 轴对称:(- a, b) 、关于原点对称:(- a,- b)、点( a, b) 关于直线y=x 对称:(b, a) 、关于y=- x 对称:(- b,- a) 、关于y = x + m 对称:( b - m、a +m) 、关于y=- x+m 对称:(- b+m、- a+m ) .xxxyyy1A(x , y ) B(x , y ) C(x , y ),,19 ABC G.若,则△的重心的坐标是1 12 23 333 20.各种角的范围:直线的倾斜角0 180 两条相交直线的夹角0 900 90两条异面线所成的角。

高中数学解析几何题型

高中数学解析几何题型

解析几何题型考点 1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手 ,构造方程解之 .例 1.假设抛物线 y 22 px 的焦点与椭圆 x 2 y 2 p 的值为〔〕 6 1的右焦点重合,那么2A . 2B . 2C . 4D . 4考查意图 : 此题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的根本几何性质 .解答过程:椭圆 x 2y 21的右焦点为 (2,0),所以抛物线 y 22 px 的焦点为 (2,0),那么 p 4,62考点 2. 求线段的长求线段的长也是高考题中的常见题型之一 ,其解法为从曲线的性质入手 ,找出点的坐标 ,利用距离公式解之 .例 2.抛物线 y-x 2+3 上存在关于直线x+y=0 对称的相异两点 A 、B ,那么 |AB| 等于22考查意图 : 此题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线 AB 的方程为 yx b ,由 yx 2 3 x 2 x b 3 0x 1 x 2 1,yx b进而可求出 AB 的中点 M ( 1 ,1 b) ,又由 M ( 1 , 1 b) 在直线 x y 0 上可求出22 2 2b 1 ,∴ x 2x2 0 ,由弦长公式可求出 AB1 12 12 4 ( 2)3 2 .22例 3.如图,把椭圆x y1 的长轴25 16AB 分成 8 等份,过每个分点作x 轴的垂线交椭圆的上半部分于 1 23 45 67七个点, F 是椭圆的一个焦点,P ,P , P , P , P , P , P那么PF 1P 2 F P 3F P 4F P 5F P 6 F P 7 F ____________.考查意图 : 此题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆 x 2y 2 1 的方程知 a 2 25, a 5.25 16∴PF 1PF 2 P 3FP 4F P 5F P 6 F P 7 F 7 2a7 a 7 5 35.2考点 3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用 :(1)椭圆的离心率 e=c∈(0,1) (e 越大那么椭圆越扁 );a (2) 双曲线的离心率 e=c∈(1, +∞ ) (e 越大那么双曲线开口越大). a例 4.双曲线的离心率为 2 ,焦点是 ( 4,0) , (4,0) ,那么双曲线方程为A. x2 y2 1 B. x2 y 2 1 C. x2 y2 1 D. x2 y 2 14 12 12 4 10 6 6 10考查意图 :此题主要考查双曲线的标准方程和双曲线的离心率以及焦点等根本概念.解答过程:Q e c 2,c 4, 所以a 2, b2 12. 应选(A).a例 5.双曲线3x 2 y 2 9 ,那么双曲线右支上的点P到右焦点的距离与点P 到右准线的距离之比等于〔〕A. 2B. 2 3C. 2 3考查意图 : 此题主要考查双曲线的性质和离心率 e=c∈ (1, +∞ ) 的有关知识的应用能力 . a解答过程:依题意可知 a 3, c a2 b 2 3 9 2 3.考点 4.求最大 (小 )值求最大 (小 )值 , 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大 (小 )值 :特别是 ,一些题目还需要应用曲线的几何意义来解答.例 6.抛物线 y2=4x,过点 P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,那么 y12+y22的最小值是.考查意图 : 此题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小 )值的方法 . 解: 设过点 P(4,0)的直线为y k x 4 , k 2 x2 8x 16 4x,k 2 x2 8k 2 4 x 16 k2 0,y 2 y 2 4 x1 x2 4 8k 2 4 16 2 1 32.1 2k2 k2故填 32.考点 5 圆锥曲线的根本概念和性质例 7.在平面直角坐标系xOy 中 ,圆心在第二象限、半径为 2 2的圆 C 与直线 y=x 相切于坐标原点 O.椭圆x2 y2 =1 与圆 C 的一个交点到椭圆两焦点的距离之和为10.a2 9〔1〕求圆 C 的方程;〔2〕试探究圆 C 上是否存在异于原点的点Q,使 Q 到椭圆右焦点 F 的距离等于线段OF 的长.假设存在,请求出点Q 的坐标;假设不存在,请说明理由.[解答过程 ] (1) 设圆 C 的圆心为(m, n)那么mn, 解得m2,n 2 2 2, n 2.所求的圆的方程为(x 2) 2 ( y 2) 2 8 (2) 由可得2a 10 , a 5 .椭圆的方程为x2 y2右焦点为F( 4, 0) ;251 ,9假设存在 Q 点 2 2 2 cos ,2 2 2 sin 使QF OF ,2 2 2 cos22 2 2 sin2.4 4整理得sin 3cos 2 2 ,代入 sin2 cos2 1 .212 2 cos 7 0 , cos 12 2 8 12 2 2 2得:10cos 10 10 1.因此不存在符合题意的Q 点 .例 8.如图 ,曲线 G 的方程为y2 2 x( y 0) .以原点为圆心,以t (t 0)为半径的圆分别与曲线G 和 y 轴的正半轴相交于 A 与点 B.直线 AB 与 x 轴相交于点 C.〔Ⅰ〕求点 A 的横坐标 a 与点 C 的横坐标 c 的关系式;〔Ⅱ〕设曲线G 上点 D 的横坐标为 a 2 ,求证:直线CD的斜率为定值. [ 解答过程 ] 〔 I〕由题意知,A(a, 2a).因为 | OA | t,所以 a 2 2a t 2 .由于t 0,故有t a 2 2a . 〔1〕由点 B〔0, t 〕, C〔 c,0〕的坐标知,直线BC的方程为xy 1.c t又因点 A 在直线 BC上,故有a2a 1, c t将〔 1〕代入上式,得 a 2a 1,解得c a 2 2( a 2) .c a(a 2)(I I〕因为D(a 2 2(a 2) ),所以直线 CD 的斜率为kCD 2( a 2)2(a2)2(a 2)a 2 ca 2 ( a 22(a2) )2(a1,2)所以直线 CD 的斜率为定值 .22例 9.椭圆 E :x2y 21(ab 0) ,AB 是它的一条弦,M(2,1) 是弦 AB 的中点,假设以ab点 M(2,1) 为焦点,椭圆 E 的右准线为相应准线的双曲线C 和直线 AB 交于点 N(4, 1) ,假设椭圆离心率e 和双曲线离心率 e 1 之间满足 ee 1 1 ,求:〔1〕椭圆 E 的离心率;〔 2〕双曲线 C 的方程 .解答过程:〔 1〕设 A 、 B 坐标分别为 A(x 1 , y 1 ), B(x 2 , y 2 ) , 那么x 12 y 121 ,x 22y 22 1 ,二式相减得:a2b2a 2b2ky 1 y 2 (x 1x 2 )b 2 2b 2 kMN1 ( 1)ABx 1 x 2(y 1y 2 )a 2a 21,2 4所以 a 22b 2 2(a 2 c 2 ) , a 2 2c 2 ,那么ec2 ;a2〔2〕椭圆 E 的右准线为 xa 2 ( 2c) 22c ,双曲线的离心率 e 11 2 ,cce设 P(x, y) 是双曲线上任一点,那么:| PM | (x 2)2 (y 1)22,| x 2c || x 2c |两端平方且将 N(4, 1) 代入得: c 1或 c 3 ,当 c 1时,双曲线方程为: (x 2) 2 (y 1)20 ,不合题意,舍去;当 c 3时,双曲线方程为:(x 10)2 (y1) 2 32 ,即为所求 .考点 6利用向量求曲线方程和解决相关问题例 10.双曲线 C 与椭圆x 2y 21有相同的焦点,直线 y=3x 为 C 的一条渐近线 .8 4(1)求双曲线 C 的方程;(2)过点 P(0,4)的直线 l ,交双曲线C 于 A,B 两点,交 x 轴于 Q 点〔 Q 点与 C 的顶点不重合〕 .uuuruuuruuur8时,求 Q 点的坐标 .当PQ1QA2 QB,且123考查意图 : 此题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力 ,以及运用数形结合思想 ,方程和转化的思想解决问题的能力. 解答过程:〔Ⅰ〕设双曲线方程为x 2 y 2 1 ,a2b 2由椭圆 x2y 2 1,求得两焦点为 ( 2,0),(2,0) ,8 4对于双曲线 C : c 2 ,又 y3x 为双曲线 C 的一条渐近线b 3 解得 a 21,b 23 ,a双曲线 C 的方程为 x 2 y 2 13〔Ⅱ〕解法一:由题意知直线 l 的斜率 k 存在且不等于零 .设 l 的方程: y kx 4, A( x , y ) , B( x 2 , y 2 ) ,那么Q( 4,0) .11kuuuruuur 4 4Q PQ1 QA, ( 1( x 1, 4) , y 1).k k 44 )x 14 41 (x 1 k k1kk 44 1y 1 y 11Q A( x 1 , y 1) 在双曲线 C 上,162 (11 )216 10 .k1116 32 1 16 1216 k2k220.(16 k 2) 1232 11616k 2 0.33同理有: (16 k 2)2232 216 16 k 2 0.3假设16k 20, 那么直线l过顶点,不合题意 .16 k 20,1, 2 是二次方程(16k 2 )x 2 32x 16 16 k 2 0.的两根 .8 , 31232k 4 ,此时 0, k 2 .2k 2 163所求 Q 的坐标为 ( 2,0) .解法二:由题意知直线l 的斜率 k 存在且不等于零设 l 的方程, y kx 4, A( x , y ), B(x 2, y ) ,那么Q( 4,0) .112kuuuruuurQ uur1 . Q PQ1QA,分 PA 的比为由定比分点坐标公式得4 1x 1 x 14(1 1 ) k 1 1k 14 1y 14y 1111下同解法一解法三:由题意知直线l 的斜率 k 存在且不等于零设 l 的方程: y kx4, A( x 1, y 1 ), B( x 2 , y 2 ) ,那么Q(4,0) .kuuuruuuruuur( 4, 4)1( x 1 4, y 1)4, y 2 ) .Q PQ1 QA2QB ,2(x 2k kk41y1 2 y 2,14,24 ,y 1y 2又 128 , 1 1 2,即 3( y 1 y 2 ) 2 y 1 y 2 .3y 1 y 23将 y kx 4 代入 x2y 2 1得 (3 k 2 )y 224 y 48 3k 20 .3Q 3 k 20 ,否那么l与渐近线平行 .y 1 y 23 24 , y 1y 2 48 3k 2 .k 2 3 k 22448 3k 2 . k 2 3 3 k 2 23 k 2Q( 2,0) .解法四: 由题意知直线 l 得斜率 k 存在且不等于零, 设 l 的方程: y kx 4 , A( x 1 , y 1 ), B( x 2, y 2 ) ,那么Q(4 k ,0)uuuvuuuv(x 14, y 1 ) .Q PQ1 QA, ( 4, 4)1kk4 441k.同理1.4 kx 1 4kx 2 4x 1k12 44 8 .kx 1 4kx 2 43即2k 2 x x25k( xx ) 8.〔 * 〕1 1 2y kx 4又x2y 213消去 y 得 (3k 2 ) x 2 8kx 190 .当 3 k 20 时,那么直线 l 与双曲线得渐近线平行,不合题意,3 k 20 .x 1x 28kk 2由韦达定理有:319x 1 x 23 k 2代入〔 * 〕式得k 2 4, k2 .所求 Q 点的坐标为 ( 2,0) .例 11.设动点 P 到点 A(- l ,0)和 B(1, 0)的距离分别为 d 1 和 d 2,∠APB = 2θ,且存在常数λ (0<λ< 1= ,使得 d 1 d 2 sin 2θ=λ.( 1〕证明:动点 P 的轨迹 C 为双曲线,并求出 C 的方程;( 2〕过点 B 作直线交双曲线 C 的右支于 M 、 N 两点 ,试确定λ的范围 ,使 OM · ON = 0,其中点 O 为坐标原点.[解答过程 ] 解法 1:〔 1〕在 △PAB 中, AB2 ,即 22d 12 d 22 2d 1d 2 cos 2 ,4 (d 1 d 2 ) 2 4d 1d 2 sin 2,即d 1 d 244d 1d 2 sin 22 12 〔常数〕,点 P 的轨迹 C 是以 A ,B 为焦点,实轴长 2a2 1 的双曲线.方程为: x 2y 211.(2〕设M (x 1,y 1),N (x 2,y 2)①当 MN 垂直于 x 轴时, MN 的方程为 x 1 , M (11), , N (1, 1) 在双曲线上.即11 1115,因为 01 ,所以5 1 .2122②当 MN 不垂直于 x 轴时,设 MN 的方程为 y k( x1) .x 2 y 21 得:(1 )k 2 x22(1 )k 2x (1)( k2),由1yk( x 1)由题意知:(1)k 2,所以x 1x 2 2k 2 (1) ,x 1x 2(1 )( k 2) .(1 )k 2(1 )k 2于是:y 1 y 2k 2 (x 1 1)(x 2 1)k 2 2.(1) k 2因为 OM ON0,且 M ,N 在双曲线右支上,所以x 1x 2x 1x 1x 2y 1y 2 0 k 22(1 )(1 )5 1 2.x 2 012 1 12223k1 01由①②知,5 12 .2≤3解法 2:〔 1〕同解法 1(2〕M ( x1,y1),N( x2,y2),MN的中点E(x0,y0).①当 x1 x22121 0,1,MB 1因 0 1 ,所以 5 1 ;2x 2 y 21 1 1②当 x1 x2, 1 x0 .kMNx22 y22 1 y011又k MN kBE y0 .所以(1 ) y02 x02 x 0;x0 1MN 2MN2 2由∠ MON 得x02 y02 ,由第二定得e(x1 x2 ) 2a22 2 2121x0 1 x02 (1 ) 2x0.1 1所以 (1 ) y02 x02 2(1 ) x0 (1 ) 2.于是由(1 ) y02 x02 x0, 得x (1 ) 2 .(1 ) y02 x02 2(1 )x0 (1 ) 2, 0 2 3因 x0 1,所以(1)2 1,又0 1,2 3解得: 5 1 2.由①②知 5 1 ≤ 2 .2 3 2 3 考点 7 利用向量理曲中的最例 12. E 的中心在坐原点O,焦点在 x 上,离心率3,点 C( 1,0) 的直3uuur uuurAOB 的面到达最大直和 E 的方交 E 于 A、 B 两点,且 CA 2BC ,求当程.解答程:因的离心率3,故可方程2x 2 3y 2 t(t 0) ,直方程3my x 1,由2x2 3y2 t得: (2m 2 3)y 2 4my 2 t 0 ,A(x1, y1), B(x2, y2),my x 1y4my1 y2 ⋯⋯⋯⋯① A 2m 2 3CoxBuuur uuury 2) ,即 y 1 2y 2 ⋯⋯⋯⋯②又 CA2BC ,故 (x 1 1,y 1)2( 1 x 2,由①②得: y 18m,y 24m ,2m 22m 233S AOB1| y 1 y 2 | 6 | m 3 |=66 ,22m 2322| m || m |当 m 23,即m6,AOB 面 取最大 ,22此y 1y 22 t32m 2 ,即 t 10 ,2m 2 3(2m 2 3)2所以,直 方程 x6 y 1 0 , 方程 2x23y 210 .2uuur(xuuur(xuuuruuur6 ,求| 2x 3y 12 |的最大例 13. PA 5, y) , PB5, y) ,且 | PA | | PB |和最小 .解答 程:P(x, y) ,A( 5,0) , B( 5, 0) , uuur uuur6 ,且 | AB | 2 5 6 , 因 | PA | | PB |所以, 点 P 的 迹是以 A 、 B 焦点,6 的 ,方程 x 2y 2 1,令 x3cos , y 2sin,94| 2x3y 12 |= | 6 2 cos(4) 12 |,当cos() 1 , | 2x3y 12 |取最大4当cos() 1 , | 2x 3y 12 |取最小412 6 2 ,12 6 2 .考点 8 利用向量 理 曲 中的取 范例 14.〔 2006 年福建卷〕x 2y 21的左焦点 F ,2O 坐 原点 .y〔I 〕求 点 O 、 F ,并且与 的左准l 相切的 的方程;B〔II 〕 点 F 且不与坐 垂直的直 交 于 A 、 B 两点,FGOx段 AB 的垂直平分 与x 交于点 G ,求点 G 横坐 的取 范.lA考 意 :本小 主要考 直 、 、 和不等式等根本知 ,考平面解析几何的根本方法,考 运算能力和 合解 能力.解答 程:〔I 〕Q a 2 2,b 2 1, c 1,F ( 1,0), l : x2.Q 圆过点 O 、 F ,圆心 M 在直线 x1上 .2设M (1,t), 那么圆半径 r (1 ) ( 2)3 .222由OMr,得( 1 )2 t 2 3 ,2 2 解得 t2.所求圆的方程为 (x1)2 (y2) 2 9 .24 〔II 〕设直线 AB 的方程为 y k( x 1)(k 0),代入 x 2y 21,整理得(1 2k 2 )x 2 4k 2 x 2k 2 2 0.2Q 直线 AB 过椭圆的左焦点 F , 方程有两个不等实根 .记A( x 1, y 1), B( x 2, y 2), AB 中点 N (x 0, y 0),那么x 1x 24 k 2,2k 21AB 的垂直平分线 NG 的方程为 y y 01(x x 0 ).k令 y 0,得x G x 0ky 02k 2 k 2k 2 1 1.1 2k 212k 212 4k22k 22Q k 0,1 0,x G2点 G 横坐标的取值范围为 (1,0).222例 15.双曲线 C : x2y 21(a 0,b0) , B 是右顶点, F 是右焦点,点A 在 x 轴正半abuuuruuur uuur轴上, 且满足 | OA |,| OB |,| OF | 成等比数列, 过 F 作双曲线 C 在第一、 三象限的渐近线的垂线l ,垂足为 P ,uuur uuuruuur uur〔1〕求证: PA OP PA FP ;〔2〕假设 l 与双曲线 C 的左、右两支分别相交于点D,E ,求双曲线 C 的离心率 e 的取值范围 .uuur uuuruuuruuur uuura2a2解答过程:〔 1〕因| OB |2,0) ,| OA |,| OB |,| OF |成等比数列,故| OA |uuur,即 A(|OF |cc直线 l : ya(x c) ,ybDO PE FBx A由y a(x c) a2 abbP(,b x, )y c cauuur(0,ab uuur a2,ab uur b2 ab,故:PAc),OP ( ), FP (c, )c c c uuur uuur a2 b2 uuur uur uuur uuur uuur uur那么: PA OP c2 PA FP ,即PA OP PA FP ;uuur uuur uur uuur uur uuur uuur uuur uuur uuur uuur uur 〔或 PA (OP FP) PA (PF PO) PA OF 0 ,即PA OP PA FP 〕y a c) 4 4 4 2(x (b 2 a )x 2 2 a cx (a c a2 b2 ) 0 ,〔2〕由 bb2x 2 a2 y 2 a2 b2 b2 b2 b2( a4 c2 a2b2 )b2由 x1 x 22 a4bb2〔或由k DF k DO a br r 例 16.a (x,0) , b0 得: b4 a4 b2 c2 a2 a2 e2 2 e 2.b b2 c2 a2 a2 e2 2 e 2 〕ar r r r(1,y) , (a 3b) (a 3b) ,〔 1〕求点P(x, y) 的轨迹C的方程;〔 2〕假设直线y kx m(m 0) 与曲线 C 交于 A、 B 两点,D(0, 1) ,且 | AD | | BD | ,试求 m 的取值范围 .r r ,解答过程:〔〕 a 3b =(x,0) 3(1,y) (x 3, 3y)1r r(x,0) 3(1, y) (x 3, 3y)a 3b =,r r r r r r r r0 ,因 (a 3b) (a 3b) ,故 (a 3b) (a 3b)即 (x 3, 3y) (x 3, 3y) x 2 3y 2 3 0 ,故 P 点的轨迹方程为x2 y 2 1.3y kx m得: (1 3k 2 )x 2 6kmx 3m2 3 0 ,〔2〕由3y2 3x 2设 A(x 1 , y 1), B(x 2 , y 2 ) , A 、 B 的中点为 M(x 0 , y 0 )那么 (6km)24(1 3k 2 )( 3m 2 3) 12(m 2 1 3k 2 ) 0 ,x 1 x 26km , x 0 x 1 x 2 3km , y 0 kx 0 mm ,1 3k 22 1 3k 21 3k 2即 A 、 B 的中点为 (3km2 ,m 2 ) ,1 3k 1 3k m1)(x3km2 ) ,那么线段 AB 的垂直平分线为: y1 2(3kk 1 3k将 D(0, 1) 的坐标代入,化简得: 4m 3k 2 1 ,那么由m 2 1 3k 2得:m24m 0 ,解之得 m0 或 m 4 ,4m 3k 2 1又 4m3k 21 1,所以 m1 ,14 故 m 的取值范围是 () .,0) U (4,4考点 9 利用向量处理圆锥曲线中的存在性问题例 17. A,B,C 是长轴长为4 的椭圆上的三点,点A 是长轴的一个顶点, BC 过椭圆的中uuur uuur uuur uuur心 O ,且 AC BC 0 , | BC | 2 | AC |,〔1〕求椭圆的方程;〔 2 〕如果椭圆上的两点P,Q 使PCQ 的平分线垂直于 OA ,是否总存在实数,使得λuuur uuurPQ λAB ?请说明理由;yC解答过程:〔 1〕以 O 为原点, OA 所在直线为 x 轴建立平面直角坐标系,那么A(2,0) ,OAxx 2 y 2 BQ设椭圆方程为1,不妨设 C 在 x 轴上方,P4b2uuur uuur uuur uuur uuur由椭圆的对称性, | BC | 2 | AC | 2 | OC | | AC | | OC | ,uuur uuur AC OC ,即 OCA 为等腰直角三角形,又 AC BC 0由 A(2,0) 得: C(1,1) ,代入椭圆方程得:b 24,3即,椭圆方程为x 23y 241;42λuuuruuurAB// PQ〕假设总存在实数λAB ,即 ,〔 ,使得 PQ由 C(1,1) 得 B( 1, 1) ,那么 kAB0 ( 1) 1 ,2 ( 1) 3假设设 CP : y k(x 1) 1,那么 CQ :yk(x 1) 1 ,x 23y 21(1 3k 2 )x 2 3k 2 由 44 6k(k 1)x 6k 10 ,y k(x 1) 1由 C(1,1)得 x1 是方程 (1 3k2 )x 2 6k(k 1)x 3k 2 6k 1 0 的一个根,由韦达定理得: x Px P 1 3k 2 6k 1 ,以 k 代 k 得 x Q 3k26k 1 ,1 3k2 1 3k 2故k PQ y P y Qk(x Px Q ) 2k1,故 AB// PQ ,x P x Qx Px Q3uuur uuur即总存在实数 λ,使得 PQ λAB .考点 10 利用向量处理直线与圆锥曲线的关系问题例 18.设 G 、M 分别是 ABC 的重心和外心, A(0, a) , B(0,a)(auuuur uuur0) ,且 GM AB ,〔 1〕求点 C 的轨迹方程;uuur uuur?〔 2〕是否存在直线 m ,使 m 过点 (a,0) 并且与点 C 的轨迹交于 P 、Q 两点,且 OP OQ 假设存在,求出直线 m 的方程;假设不存在,请说明理由. 解答过程:〔 1〕设 C(x, y) ,那么 G( x,y) ,uuuuruuur3 3因为 GMAB ,所以 GM// AB ,那么 M( x,0) ,3由 M 为 ABC 的外心,那么 |MA| | MC | ,即( x )2a2(xx) 2 y 2 ,33整理得:x 2 y 2 1(x0) ;3a2a2〔2〕假设直线 m 存在,设方程为y k(x a) ,y k(x a)由 x 2y 2 1(x得: (1 3k 2 )x 2 6k 2 ax 3a 2 (k 2 1)0 ,3a 2 a 20)设 P(x 1, y 1 ),Q(x 2 , y 2 ) ,那么x 1x 26k 2 a ,x 1x 23a 2 (k 2 1) ,1 3k2 1 3k 2y 1 y 2 k 2 (x 1 a)(x 2 a) k 2[x 1 x 2a(x 1 x 2 ) a 2] =2k 2a 2,1 3k 2uuur uuur0 得: x 1x 2 y 1y 2 0 ,由 OP OQ3a 2 (k 2 1)2k 2a 2 0 ,解之得 k3 , 即1 3k21 3k2又点 (a,0) 在椭圆的内部,直线 m 过点 (a,0) ,故存在直线 m ,其方程为 y 3(xa) . 【专题训练与高考预测】 一、选择题1.如果双曲线经过点 (6, 3) ,且它的两条渐近线方程是y1x ,那么双曲线方程是〔〕3A . x 2y 2 1B . x 2y 21C . x 2y 2 1D . x 2y 2 136 981 9918 32.椭圆x 2y 2 1 和双曲线 x 2 y 21 有公共的焦点,那么双曲线的的渐近线方 5n 22m 2 3n 23m 2程为〔 〕A. x15 yB. y15 x C. x3 yD. y3 x42243.F, F为椭圆x 2 y 2的焦点, M 为椭圆上一点,MF12 a 2 b 2 1(a b 0)1 垂直于 x 轴,且 FMF 1 2 60 ,那么椭圆的离心率为〔 〕A.1B.2 C. 3D. 322324.二次曲线x 2y 2 1,当 m [ 2, 1] 时,该曲线的离心率 e 的取值范围是〔〕4mA. [ 2 , 3]B. [ 3 , 5]C.[ 5 , 6]D. [ 3 , 6 ]2 222 2 2 2 25.直线 m 的方程为 y kx1 ,双曲线 C 的方程为2 y 2 1,假设直线 m 与双曲线 C 的右支 x相交于不重合的两点,那么实数 k 的取值范围是〔 〕A. ( 2, 2)B. (1, 2)C.[ 2, 2)D.[1, 2)6.圆的方程为x 2 y 2 4 ,假设抛物线过点 A( 1,0) , B(1,0) ,且以圆的切线为准线,那么抛物线的焦点的轨迹方程为〔 〕A. x 2 y 21(y0)B. x 2y 2 1(y 0)3 44 3C. x 2 y 2 1(x0)D. x 2y 2 1(x 0)344 3二、填空题7 . 已 知 P 是 以 F 1 、 F 2 为 焦 点 的 椭 圆x 2y 21(a b 0) 上 一 点 , 假设 PF 1 PF 2a 2b 2tan PF 1 F 21,那么椭圆的离心率为______________ .28. 椭圆 x 2 +2y 2=12,A 是 x 轴正方向上的一定点,假设过点 A ,斜率为 1 的直线被椭圆截得的弦长为4 13,点 A 的坐标是 ______________ .39.P 是椭圆x 2y 21 上的点, F 1, F2 是椭圆的左右焦点,设 | PF | | PF | k ,那么 k 的最大值4 3 1 2与最小值之差是 ______________ . 10.给出以下命题:①圆 (x2) 2 (y 1)2 1关于点 M(1,2) 对称的圆的方程是 (x 3) 2(y3)2 1 ;②双曲线 x2y 2 1 右支上一点 P 到左准线的距离为 18,那么该点到右焦点的距离为29 ;16 92③顶点在原点,对称轴是坐标轴,且经过点( 4, 3) 的抛物线方程只能是y29x ;4④ P 、 Q 是椭圆 x 2 4y 216 上的两个动点, O 为原点,直线 OP,OQ 的斜率之积为1,那么4|OP |2 | OQ|2 等于定值 20 .把你认为正确的命题的序号填在横线上 _________________ .三、解答题11.两点 A( 2,0), B(2, 0) ,动点 P 在 y 轴上的射影为uuur uuur uuuur,Q , PA PB2PQ 2〔 1〕求动点 P 的轨迹 E 的方程;〔 2〕设直线 m 过点 A ,斜率为 k ,当 0 k 1时,曲线 E 的上支上有且仅有一点 C 到直线 m 的距离为2 ,试求 k 的值及此时点 C 的坐标 .12.如图, F ( 3,0) ,F2 (3,0) 是双曲线 C 的两焦点,直线x 4是双曲线 C的右准线,A1, A21 3是双曲线 C 的两个顶点,点P 是双曲线 C 右支上异于A2 的一动点,直线 A 1 P 、 A 2P 交双曲线 C 的右准线分别于 M,N 两点,y〔1〕求双曲线 C 的方程;MP〔2〕求证:uuuur uuuur是定值 .F1 F 2 FM F N A 1 o A 2x1 2N13.uuur uuurOFQ 的面积为 S,且OF FQ 1 ,建立如下图坐标系,y〔1〕假设S 1 ,uuur2 ,求直线FQ的方程;Q | OF |2uuur,S 3c,假设以 O 为中心, F 为焦点的椭圆过点uuurF〔2〕设| OF | c(c 2) Q,求当| OQ |取ox4得最小值时的椭圆方程 .14.点H( 3,0) ,点P在y轴上,点Q在x轴的正半轴上,点M 在直线 PQ 上,且满足uuur uuur uuur 3 uuuurHP PM 0 , PM MQ ,2〔1〕当点 P 在 y 轴上移动时,求点M 的轨迹 C;y〔2〕过点T( 1,0)作直线 m 与轨迹 C 交于 A、 B 两点,假设在 x 轴上存在一点PE(x 0 ,0) ,使得ABE 为等边三角形,求x0的值.o Q EHT M xAB15.椭圆x2 y 21(a b 0)的长、短轴端点分别为A、B,从此椭圆上一点M 向 x 轴a 2 b2作垂线,恰好通过椭圆的左焦点F1,向量AB与OM是共线向量.〔 1〕求椭圆的离心率e;〔 2〕设 Q 是椭圆上任意一点,F1、 F2分别是左、右焦点,求∠F1 QF2的取值范围;16.两点M〔 -1,0〕, N〔 1, 0〕且点 P 使MP MN , PM PN , NM NP 成公差小于零的等差数列,〔Ⅰ〕点 P 的轨迹是什么曲线?〔Ⅱ〕假设点P 坐标为 ( x 0 , y 0 ) ,为 PM 与 PN 的夹角,求tan θ .【参考答案】一. 1. C .提示,设双曲线方程为 ( 1 1x y),将点 (6, 3) 代入求出 即可 .x y)( 3 32 . D . 因 为双 曲线的 焦点 在 x 轴上 , 故椭 圆焦 点 为 ( 3m 22, 双 曲 线焦点 为5n ,0) ( 2m 23n 2 ,0) , 由 3m 25n 2 2m 2 3n 2 得 | m | 2 2 | n | , 所 以 , 双 曲 线 的 渐 近 线 为y6 | n | 3x .2 | m |43.C .设 | MF 1 | d ,那么 | MF 2 |2d ,1 2|3d ,| FFe c 2c| FF 12 | d 3d 3 .a 2a |MF 1 | | MF 2 |2d3曲线为双曲线,且 51,应选 C ;或用 a 2 4 , b 2m 来计算.4.C .25.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组.6.B .数形结合,利用梯形中位线和椭圆的定义 .二.7. 解: 设 c 为为椭圆半焦距,∵PFPF 0 ,∴ PFPF.12122PF 2221 PF 1(2c) ∴又tan PF 1 F 2PF 2 2a2PF 1PF 2 1PF 12c 2 5c 5解得: ( a)9 ,ea3 .选 D .8. 解: 设 A 〔x , 0〕〔 x > 0〕,那么直线 l 的方程为 y=x-x ,设直线l 与椭圆相交于 P 〔 x ,1y 〕, Q 〔 x 、y 〕,由 y=x-x可得 3x 2 -4x x+2x2,1220 0 0x 2+2y 2=12x 1x 24x 0,x 1x 22x 02 12 ,那么33| x 1 x 2 | ( x 1 x 2 ) 24x 1 x 2 16x 0 2 8x 0 2 48 22.9336 2 x 03∴ 4 141 x2 | x 1x 2 |,即4 142236 2 x 02 .333∴ x 02=4,又 x 0 > 0,∴ x 0=2,∴ A 〔2, 0〕.9.1; k | PF 1 | | PF 2 | (a ex)(a ex) a 2 e 2x 2.10.②④ .uuuruuur( 2 x,y) ,三. 11.解〔 1〕 点 P 的坐 (x, y) , 点 Q(0, y) , PQ (x,0) ,PAuuur (2 x,uuur uuurx 2 2y 2 , PB y) , PA PBuuur uuuruuuur2 y 22x 2 ,因 PA PB2PQ2,所以 x 2即 点 P 的 迹方程 : y 2 x 22 ;〔 2〕 直 m : yk(x2)(0 k 1) ,依 意,点 C 在与直 m 平行,且与m 之 的距离2 的直 上,此直 m : y kxb ,由|2k b | 2 ,即 b 22 2kb 2 ,⋯⋯①1k21把 ykx b 代入 y 2 x 22 ,整理得: (k 2 1)x 2 2kbx (b 22) 0 ,4k 2b 24(k 2 1)(b 2 2) 0 ,即 b 2 2k 22 ,⋯⋯⋯⋯②由①②得: k25, b10 , 55此 ,由方程y2 5 x1010).5 5C(2 2,y 2 x 2 212.解:〔 1〕依 意得: ca 24a 225 ,3 ,,所以, bc 3所求双曲C 的方程x 2 y 21 ;45〔2〕 P(x 0 , y 0 ) , M(x 1 , y 1 ) , N(x 2 , y 2 ) , A 1 (2,0) , A 2 (2,0) ,uuuur2,y uuuur(x2, y), uuuur 10, uuuur2 ,A P (x) ,A P0 A 1M ( , y 1)A 2N ( , y 2 )1233uuuur uuuur(x 02)y 110y 0 ,y 110y 0,同理: y 22y 0 因 A 1P 与 A 1M 共 ,故3(x 03(x 0 ,32)2)uuuur 13 uuuur ( 5 2 )FM 1 ( , y 1 ) ,F 2 N , y ,3 3uuuuruuuur 656520y 0265 205(x 02 4)y 1y 2 ==410.所以 FM 1F 2 N =9924) 99(x 0 9(x 024)uuuruuuruuur13.解:〔 1〕因 | OF | 2, F(2,0) , OF (2,0), Q(x 0 , y 0 ) , FQ(x 0 2,y 0 ) ,uuur uuur 5 , OF FQ 2(x 0 2) 1,解得 x 01 uuur12 151由 S|,得 y 0| OF | | y 0 | | y 02,故 Q( , ) ,22 2 2所以, PQ 所在直 方程y x 2 或 yx2 ;uuuruuur〔 2〕 Q(x 0 , y 0 ) ,因 | OF |c(c2), FQ(x 0 c,y 0 ),uuur uuur 1由 OF FQ c(x 0 c) 1 得: x 0 c ,c又 S1c | y 0 |3c , y 03 ,242Q(c1 3 uuur2 (c1 2 9,,) ,| OQ |)4c2uuurc3) ,易知,当 c2, | OQ | 最小,此 Q( 5,22方程x22a 2b 2 4210 ,y 1,(a b 0) ,259 ,解得 aa2b 21 b 264a 24b 2所以, 方程x 2y 2 1 .10614.解:〔 1〕 M(x,uuur3 uuuuryx,y) ,由 PMMQ 得: P(0,) , Q(,0)uuur uuur223得: (3, y )(x, 3y ) 0 ,即 y 2 4x由 HP PM ,22由点 Q 在 x 的正半 上,故 x 0 ,即 点 M 的 迹 C 是以 (0,0) 点,以 (1,0)焦点的抛物 ,除去原点;〔2〕 m : yk(x 1)(k0) ,代入 y 2 4x 得:k 2x 2 2(k 2 2)x k 20 ⋯⋯⋯⋯①A(x 1 , y 1) , B(x 2 , y 2 ) , x 1 , x 2 是方程①的两个 根,x 1 x 22(k 22) , x 1x 21,所以 段AB 的中点 (2 k2 , 2) , k 2k 2k线段 AB 的垂直平分线方程为y21 2 k 2k(xk 2),k令 y0 ,x 02 1,得E( 2 1,0),k 2k 2因为 ABE 为正三角形,那么点E 到直线 AB 的距离等于3| AB | ,2又| AB|(x 1 x 2 )2(y 1 y2 )2=41 k 2k 2,k 21所以,23 1 k 421 k 2,解得: k3, x 011 .k 2| k |2315.解:〔 1〕∵ F ( c,0), 那么 xMc, yMb 2 ,∴ k OMb 2 .1a ac∵ k ABb,OM 与 AB 是共线向量,∴b 2b,∴ b=c,故 e2 .aaca2〔 2〕设 FQr 1, F 2Q r 2 , F 1 QF 2,1r 1 r 2 2a, F 1 F 2 2c,cosr 12 r 22 4c 2(r 1 r 2 )2 2r 1r 2 4c 2a 2 1a 21 02r 1r 22r 1r 2r 1r 2( r 1 r 2 ) 22当且仅当 r 1r 2 时, cos θ =0,∴θ [ 0, ] .216. 解:〔Ⅰ〕记 P 〔 x,y 〕,由 M 〔 -1, 0〕N 〔1 ,0〕得uuuuruuur( 1 x, y), PN NP ( 1 x, y) , MNNM (2,0) .PMMP 所以 MP MN2(1 x) . PM PN x 2 y 21, NM NP 2(1 x) .于是, MP MN , PM PN , NMNP 是公差小于零的等差数列等价于x 2 y 2 1 1 [2(1 x) 2(1 x)]即x 2y 23.2x 02(1 x) 2(1 x) 0所以,点 P 的轨迹是以原点为圆心,3 为半径的右半圆 .〔Ⅱ〕点 P 的坐标为 ( x , y ) 。

高中数学解析几何题型(基础篇)

高中数学解析几何题型(基础篇)

第七讲 解析几何新题型【考点透视】 一.直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用. 【例题解析】 考点1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.例1.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D.考点2. 求线段的长求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.故选C例3.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用.解答过程:由椭圆2212516x y +=的方程知225, 5.a a =∴=∴12345677277535.2a PF P F P F P F P F P F P F a ⨯++++++==⨯=⨯= 故填35.考点3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁);(2) 双曲线的离心率e =ac ∈(1, +∞) (e 越大则双曲线开口越大).结合有关知识来解题.例4.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -= 考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念.解答过程:2,4,c e c a===所以22,12.a b ∴==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会.例5.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A. 2B.332 C. 2 D.4考查意图: 本题主要考查双曲线的性质和离心率e =a c ∈(1, +∞) 的有关知识的应用能力.解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.求最大(小)值求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.例6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P (4,0)的直线为()()224,8164,y k x k x x x =-∴-+= ()()122222222122284160,8414416232.k x k x k k y y x x k k ∴-++=+⎛⎫∴+=+=⨯=+≥ ⎪⎝⎭故填32.考点5 圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标原点O .椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.[考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为 (m, n)则,222,m n n =-⎧⎪⎨⋅=⎪⎩ 解得2,2.m n =-⎧⎨=⎩ 所求的圆的方程为 22(2)(2)8x y ++-= (2) 由已知可得 210a = , 5a =.椭圆的方程为 221259x y += , 右焦点为 F( 4, 0) ;假设存在Q 点()222cos ,222sin θθ-++使QF OF =,()()22222cos 4222sin 4θθ-+-++=.整理得 sin 3cos 22θθ=+, 代入 22sin cos 1θθ+=.得:210cos 122cos 70θθ++= , 122812222cos 11010θ-±-±==<-.因此不存在符合题意的Q 点. 例8.如图,曲线G 的方程为)0(22≥=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的 正半轴相交于 A 与点B . 直线AB 与 x 轴相交于点C .(Ⅰ)求点 A 的横坐标 a 与点 C 的横坐标c 的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A因为.2,||22t a a t OA =+=所以 由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+tyc x又因点A 在直线BC 上,故有,12=+ta ca将(1)代入上式,得,1)2(2=++a a a ca 解得 )2(22+++=a a c .(II )因为))2(22(++a a D ,所以直线CD 的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值.例9.已知椭圆2222x y E :1(a b 0)a b +=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求: (1)椭圆E 的离心率;(2)双曲线C 的方程.解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ), 则221122x y 1a b +=,222222x y 1a b+=,二式相减得: 21212AB21212y y (x x )b kx x (y y )a-+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =,则c e a==(2)椭圆E的右准线为2a x 2c c ===,双曲线的离心率11e e==设P(x,y)是双曲线上任一点,则:|PM ||x 2c |==-两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去; 当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法; (2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:例10.双曲线C与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ==,且3821-=+λλ时,求Q 点的坐标.考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.解答过程:(Ⅰ)设双曲线方程为22221x y a b-=,由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,∴对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线 ∴3b a= 解得 221,3a b ==,∴双曲线C 的方程为2213y x -=(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零.设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k-.1PQ QA λ=,11144(,4)(,)x y kkλ∴--=+.111111114444()44x k k x k k y y λλλλ⎧=--⎧⎪-=+⎪⎪∴⇒⎨⎨⎪⎪-==-⎩⎪⎩11(,)A x y 在双曲线C 上, ∴2121111616()10k λλλ+--=.∴222211161632160.3k k λλλ++--=∴2221116(16)32160.3k k λλ-++-=同理有:2222216(16)32160.3k k λλ-++-=若2160,k -=则直线l 过顶点,不合题意.2160,k ∴-≠12,λλ∴是二次方程22216(16)32160.3k x x k -++-=的两根.122328163k λλ∴+==--,24k ∴=,此时0,2k ∆>∴=±. ∴所求Q 的坐标为(2,0)±.解法二:由题意知直线l 的斜率k 存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.1PQ QA λ=, Q ∴分PA 的比为1λ.由定比分点坐标公式得1111111111144(1)14401x x k k y y λλλλλλλ⎧⎧-==-+⎪⎪+⎪⎪→⎨⎨+⎪⎪=-=⎪⎪+⎩⎩下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.12PQ QA QB λλ==, 111222444(,4)(,)(,)x y x y kkkλλ∴--=+=+.11224y y λλ∴-==, 114y λ∴=-,224y λ=-,又1283λλ+=-, 121123y y ∴+=,即12123()2y y y y +=.将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=. 230k -≠,否则l 与渐近线平行.212122224483,33k y y y y k k -∴+==--.222244833233k k k -∴⨯=⨯--.2k ∴=±(2,0)Q ∴±.解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k-1PQ QA λ=,11144(,4)(,)x y k kλ∴--=+. ∴1114444k kx x kλ-==-++.同理 1244kx λ=-+. 1212448443kx kx λλ+=--=-++.即2121225()80k x x k x x +++=.(*)又 22413y kx y x =+⎧⎪⎨-=⎪⎩消去y 得22(3)8190k x kx ---=.当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -≠.由韦达定理有: 12212283193k x x k x x k ⎧+=⎪⎪-⎨⎪=-⎪-⎩代入(*)式得24,2k k ==±.∴所求Q 点的坐标为(2,0)±.例11.设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线.方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即2111511012λλλλλ-±-=⇒+-=⇒=-,因为01λ<<,所以512λ-=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--.于是:22212122(1)(1)(1)k y y k x x kλλλ=--=--. 因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)2101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒<<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩.23λ<.解法2:(1)同解法1(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-, 因为01λ<<,所以λ;②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-;由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1).23x λλ-=-因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<23λ<.考点7 利用向量处理圆锥曲线中的最值问题C BA oy x利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易.例12.设椭圆E 的中心在坐标原点O ,焦点在x 轴上,过点C(1,0)-的直线交椭圆E 于A 、B 两点,且CA 2BC =,求当AOB ∆的面积达到最大值时直线和椭圆E 的方程.,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1⎧+=⎨=+⎩得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………② 由①②得:128m y 2m 3=+,224m y 2m 3-=+, 则AOB 1221mS |y y |6||22m 3∆=-=+=632|m ||m |≤+当23m 2=,即m =AOB ∆面积取最大值,此时2122222t 32m y y 2m 3(2m 3)-==-++,即t10=,所以,直线方程为x 10+=,椭圆方程为222x 3y 10+=.小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知PA (x y)=,PB (x y)=,且|PA ||PB |6+=, 求|2x 3y 12|--的最大值和最小值.解答过程:设P(x,y),A(,0),因为|PA ||PB |6+=,且|AB |6=,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆, 椭圆方程为22x y 194+=,令x 3cos ,y 2sin =θ=θ,则|2x 3y 12|--=|)12|4πθ+-,当cos()14πθ+=-时,|2x 3y 12|--取最大值12+当cos()14πθ+=时,|2x 3y 12|--取最小值12-小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域问题.例14.(2006年福建卷) 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点, 线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=- 圆过点O 、F ,∴圆心M 在直线12x =-上.设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =3,2=解得t =∴所求圆的方程为2219()(.24x y ++=(II )设直线AB 的方程为(1)(0),y k x k =+≠ 代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++≠∴-<< ∴点G 横坐标的取值范围为1(,0).2-例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA |,|OB |,|OF |成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ⋅=⋅;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围.解答过程:(1)因|OA |,|OB |,|OF |成等比数列,故22|OB |a |OA |c |OF |==,即2aA(,0)c ,直线l :a y (x c)b=--,由2a y (x c)a ab bP(,)b c c y x a ⎧=--⎪⎪⇒⎨⎪=⎪⎩, 故:22ab a ab b abPA (0,),OP (,),FP (,)c c c c c =-==-, 则:222a b PA OP PA FP c⋅=-=⋅,即PA OP PA FP ⋅=⋅;(或PA (OP FP)PA (PF PO)PA OF 0⋅-=⋅-=⋅=,即PA OP PA FP ⋅=⋅)(2)由44422222222222222a y (x c)a a a c (b )x 2cx (a b )0bb b b b x a y a b ⎧=--⎪⇒-+-+=⎨⎪-=⎩, 由4222212422a c (ab )b xx 0a b b -+=<-得:4422222b a b c a a e 2e >⇒=->⇒>⇒> (或由DF DO k k>⇒a b b a->-⇒22222b c a a e 2e =->⇒>⇒>小结:向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,必须先恰当地求出各个点的坐标.例16.已知a (x,0)=,b (1,y)=,(a 3b)(a 3b)+⊥-, (1)求点P(x,y)的轨迹C 的方程;(2)若直线y kx m(m 0)=+≠与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围.解答过程:(1)a 3b +=(x,0)y)(x =+,a 3b -=(x,0)y)(x -=,因(a 3b)(a 3b)+⊥-,故(a 3b)(a 3b)0+⋅-=,即22(x (x x 3y 30+⋅=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx m x 3y 3=+⎧⎨-=⎩得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0∆=----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k =+=-, 即A 、B 的中点为223km m(,)13k 13k --,则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,则由222m 13k 04m 3k 1⎧+->⎪⎨=-⎪⎩得:2m 4m 0->,解之得m 0<或m 4>, 又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+∞.小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐PQCBA xy O标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0⋅=,|BC |2|AC |=, (1)求椭圆的方程;(2)如果椭圆上的两点P,Q 使PCQ ∠的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方, 由椭圆的对称性,|BC |2|AC |2|OC ||AC ||OC |==⇒=, 又AC BC 0⋅=AC OC ⇒⊥,即ΔOCA 为等腰直角三角形, 由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB//PQ , 由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1⎧+=⎪⇒+--+--=⎨⎪=-+⎩, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=⋅=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P QP Qy y k(x x )2k1k x x x x 3-+-===--,故AB//PQ ,即总存在实数λ,使得PQ λAB =.评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,一般情况下,是把直线的方程和曲线的方程组成方程组,进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围.例18.设G 、M 分别是ABC ∆的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =λ, (1)求点C 的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OP OQ 0⋅=?若存在,求出直线m 的方程;若不存在,请说明理由. 解答过程:(1)设C(x,y),则x yG(,)33,因为GM AB =λ,所以GM //AB ,则x M(,0)3,由M 为ABC ∆的外心,则|MA ||MC |==整理得:2222x y 1(x 0)3a a+=≠;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3a a =-⎧⎪⎨+=≠⎪⎩得:22222(13k )x 6k ax 3a (k 1)0+++-=, 设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+, 22212121212y y k (x a)(x a)k [x x a(x x )a ]=--=-++=2222k a 13k -+,由OP OQ 0⋅=得:1212x x y y 0+=,即2222223a (k 1)2k a 013k 13k --+=++,解之得k =,又点(a,0)在椭圆的内部,直线m 过点(a,0),故存在直线m ,其方程为y a)=-.小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 【专题训练与高考预测】 一、选择题1.如果双曲线经过点,且它的两条渐近线方程是1y x 3=±,那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n-=有公共的焦点,那么双曲线的的渐近线方程为( )A.x =B. y =C. x =D. y =3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴, 且12FMF 60∠=︒,则椭圆的离心率为( )A.12B.24.二次曲线22x y 14m+=,当m [2,1]∈--时,该曲线的离心率e 的取值范围是( )A. B. C. D.5.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是( )A.( B. C.[ D.6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为( )A. 22x y 1(y 0)34+=≠ B. 22x y 1(y 0)43+=≠C. 22x y 1(x 0)34-=≠ D. 22x y 1(x 0)43-=≠二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PF21tan 21=∠F PF ,则椭圆的离心率为 ______________ .8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ .9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k⋅=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP,OQ 的斜率之积为14-,则22|OP ||OQ |+等于定值20 .把你认为正确的命题的序号填在横线上_________________ . 三、解答题11.已知两点,B(0),动点P 在y 轴上的射影为Q ,2PA PB 2PQ ⋅=, (1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m k 的值及此时点C 的坐标.FQoyx12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点, (1)求双曲线C 的方程; (2)求证:12FM F N ⋅是定值.13.已知OFQ ∆的面积为S ,且OF FQ 1⋅=,建立如图所示坐标系, (1)若1S 2=,|OF |2=,求直线FQ 的方程;(2)设|OF |c(c 2)=≥,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程.14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0⋅=,3PM MQ 2=-,(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 轴上存在一点0E(x ,0)使得ABE ∆为等边三角形,求0x 的值.15.已知椭圆)0(12222>>=+b a by a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列,(Ⅰ)点P 的轨迹是什么曲线?(Ⅱ)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tan θ.【参考答案】一. 1.C .提示,设双曲线方程为11(x y)(x y)33+-=λ,将点代入求出λ即可.2.D .因为双曲线的焦点在x 轴上,故椭圆焦点为,双曲线焦点为,由22223m 5n 2m 3n -=+得|m |n |=,所以,双曲线的渐近线为y == .3.C .设1|MF |d =,则2|MF |2d =,12|FF |=,1212|FF |c 2c e a 2a |MF ||MF |=====+ 4.C .1>,故选C ;或用2a 4=,2b m =-来计算.5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义.二.7.解:设c 为为椭圆半焦距,∵021=⋅PF PF ,∴21PF PF ⊥ .又21tan 21=∠F PF ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+212)2(122122221PF PF a PF PF c PF PF解得:25()93,c c e a a === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 2+2y 2=12 34021x x x =+,31222021-=⋅x x x ,则20202021221212363234889164)(||x x x x x x x x x -=--=-+=-.∴||13144212x x x -⋅+=,即202363223144x -⋅⋅=.∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =⋅=+-=- .10.②④.三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,PA (2x,y)=-,PB (x,y)=--,22PA PB x 2y ⋅=-+,因为2PA PB 2PQ ⋅=,所以222x 2y 2x -+=, 即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x k 1)=<<,依题意,点C 在与直线m 平行,且与m设此直线为1m :y kx b =+=2b 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=, 则22224k b 4(k 1)(b 2)0∆=---=,即22b 2k 2+=,…………②由①②得:k=b =此时,由方程组22y y x 2⎧=⎪⎨⎪-=⎩. 12.解:(1)依题意得:c 3=,2a 4c 3=,所以a 2=,2b 5=, 所求双曲线C 的方程为22x y 145-=; (2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+,200A P (x 2,y )=-,1110A M (,y )3=,222A N (,y )3=-,因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113FM (,y )3=,225F N (,y )3=-,所以12FM F N ⋅=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-⨯--=-- . 13.解:(1)因为|OF |2=,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=-,0OF FQ 2(x 2)1⋅=-=,解得05x 2=,由0011S |OF ||y ||y |22=⋅==,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF |c(c 2)=≥,则00FQ (x c,y )=-, 由0OF FQ c(x c)1⋅=-=得:01x c c=+, 又013S c |y |c 24==,则03y 2=±, 13Q(c ,)c 2+±,2219|OQ |(c )c 4=++,易知,当c 2=时,|OQ |最小,此时53Q(,)22±,设椭圆方程为2222x y 1,(a b 0)a b +=>>,则2222a b 425914a4b ⎧-=⎪⎨+=⎪⎩,解得22a 10b 6⎧=⎪⎨=⎪⎩, 所以,椭圆方程为22x y 1106+= . 14.解:(1)设M(x,y),由3PM MQ 2=-得:y P(0,)2-,xQ(,0)3,由HP PM 0⋅=得:y3y(3,)(x,)022-=,即2y 4x =, 由点Q 在x 轴的正半轴上,故x 0>,即动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点; (2)设m :y k(x 1)(k 0)=+≠,代入2y 4x =得:2222k x 2(k 2)x k 0+-+=…………①设11A(x ,y ),22B(x ,y ),则12x ,x 是方程①的两个实根,则21222(k 2)x x k -+=-,12x x 1=,所以线段AB 的中点为222k 2(,)k k-,线段AB 的垂直平分线方程为22212k y (x )k k k--=--,令y 0=,022x 1k=+,得22E(1,0)k+, 因为ABE ∆为正三角形,则点E 到直线AB|AB |,又|AB|k =,011x 3= .15.解:(1)∵ab yc x c F M M 21,),0,(=-=-则,∴acb k OM 2-= .∵AB OM a b k AB 与,-=是共线向量,∴a b ac b -=-2,∴b=c,故22=e .(2)设1122121212,,,2,2,FQr F Q r F QF r r a F F c θ==∠=∴+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r θ+-+--===-≥-=+当且仅当21r r =时,cos θ=0,∴θ]2,0[π∈ .16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得 (1,),PM MP x y =-=---),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以 )1(2x MN MP +=⋅ . 122-+=⋅y x PN PM , )1(2x NP NM -=⋅ .于是, NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 ⎩⎨⎧>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学解析几何基本公式与题型解析几何中的基本公式1、 两点间距离:若)y ,x (B ),y ,x (A 2211,则212212)()(y y x x AB -+-=特别地:x //AB 轴, 则=AB 。

y //AB 轴, 则=AB 。

2、 平行线间距离:若0C By Ax :l ,0C By Ax :l 2211=++=++则:2221BA C C d +-=注意点:x ,y 对应项系数应相等。

3、 点到直线的距离:0C By Ax :l ),y ,x (P =++则P 到l 的距离为:22BA CBy Ax d +++=4、 直线与圆锥曲线相交的弦长公式:⎩⎨⎧=+=0)y ,x (F bkx y消y :02=++c bx ax ,务必注意.0>∆若l 与曲线交于A ),(),,(2211y x B y x则:2122))(1(x x k AB -+=5、 若A ),(),,(2211y x B y x ,P (x ,y )。

P 在直线AB 上,且P分有向线段AB 所成的比为λ,则⎪⎪⎩⎪⎪⎨⎧λ+λ+=λ+λ+=112121y y y x x x ,特别地:λ=1时,P 为AB 中点且⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x变形后:yy y y x x x x --=λ--=λ2121或 6、 若直线l 1的斜率为k 1,直线l 2的斜率为k 2,则l 1到l 2的角为),0(,π∈αα适用范围:k 1,k 2都存在且k 1k 2≠-1 , 21121tan k k k k +-=α若l 1与l 2的夹角为θ,则=θtan 21211k k k k +-,]2,0(π∈θ注意:(1)l 1到l 2的角,指从l 1按逆时针方向旋转到l 2所成的角,范围),0(π l 1到l 2的夹角:指 l 1、l 2相交所成的锐角或直角。

(2)l 1⊥l 2时,夹角、到角=2π。

(3)当l 1与l 2中有一条不存在斜率时,画图,求到角或夹角。

7、 (1)倾斜角α,),0(π∈α;(2)]0[,π∈θθ→→,,夹角b a ;(3)直线l 与平面]20[π∈ββα,,的夹角;(4)l 1与l 2的夹角为θ,∈θ]20[π,,其中l 1//l 2时夹角θ=0; (5)二面角,θ],0(π∈α; (6)l 1到l 2的角)0(π∈θθ,,8、 直线的倾斜角α与斜率k 的关系a) 每一条直线都有倾斜角α,但不一定有斜率。

b) 若直线存在斜率k ,而倾斜角为α,则k=tan α。

9、 直线l 1与直线l 2的的平行与垂直(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2⇔ k 1=k 2②l 1⊥l 2⇔ k 1k 2=-1 (2)若0:,0:22221111=++=++C y B x A l C y B x A l若A 1、A 2、B 1、B 2都不为零① l 1//l 2⇔212121C C B B A A ≠=; ② l 1⊥l 2⇔ A 1A 2+B 1B 2=0; ③ l 1与l 2相交⇔2121B B A A ≠ ④ l 1与l 2重合⇔212121C C B B A A ==; 注意:若A 2或B 2中含有字母,应注意讨论字母=0与≠0的情况。

10、 直线方程的五种形式名称 方程 注意点斜截式: y=kx+b 应分①斜率不存在 ②斜率存在点斜式: )( x x k y y -=- (1)斜率不存在: x x =(2)斜率存在时为)( x x k y y -=- 两点式: 121121x x x x y y y y --=--截距式:1=+bya x 其中l 交x 轴于)0,(a ,交y 轴于),0(b 当直线l 在坐标轴上,截距相等时应分:(1)截距=0 设y=kx (2)截距=0≠a 设1=+aya x 即x+y=a一般式: 0=++C By Ax (其中A 、B 不同时为零) 10、确定圆需三个独立的条件圆的方程 (1)标准方程: 222)()(r b y a x =-+-, 半径圆心,----r b a ),(。

(2)一般方程:022=++++F Ey Dx y x ,()0422>-+F E D,)2,2(圆心----ED 2422FE D r -+=11、直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种若22BA C Bb Aa d +++=,0<∆⇔⇔>相离r d0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d 12、两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21条公切线外离421⇔⇔+>r r d 条公切线外切321⇔⇔+=r r d条公切线相交22121⇔⇔+<<-r r d r r 条公切线内切121⇔⇔-=r r d 无公切线内含⇔⇔-<<210r r d外离 外切相交 内切 内含13、圆锥曲线定义、标准方程及性质 (一)椭圆定义Ⅰ:若F 1,F 2是两定点,P 为动点,且21212F F a PF PF >=+ (a 为常数)则P 点的轨迹是椭圆。

定义Ⅱ:若F 1为定点,l 为定直线,动点P 到F 1的距离与到定直线l 的距离之比为常数e (0<e<1),则P 点的轨迹是椭圆。

标准方程:12222=+b y a x)0(>>b a定义域:}{a x a x ≤≤-值域:}{b y b x ≤≤-长轴长=a 2,短轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21c a x e PF +=,)(22x ca e PF -=,212PF a PF -=,ca PF c a +≤≤-1等(注意涉及焦半径①用点P 坐标表示,②第一定义。

)注意:(1)图中线段的几何特征:=11F A c a F A -=22,=21F A c a F A +=12 =11F B a F B F B F B ===122221 ,222122b a B A B A +==等等。

顶点与准线距离、焦点与准线距离分别与c b a ,,有关。

(2)21F PF ∆中经常利用余弦定理....、三角形面积公式.......将有关线段1PF 、2PF 、2c ,有关角21PF F ∠结合起来,建立1PF +2PF 、1PF •2PF 等关系(3)椭圆上的点有时常用到三角换元:⎩⎨⎧θ=θ=sin cos b y a x ;(4)注意题目中椭圆的焦点在x 轴上还是在y 轴上,请补充当焦点在y 轴上时,其相应的性质。

二、双曲线(一)定义:Ⅰ若F 1,F 2是两定点,21212F F a PF PF <=-(a 为常数),则动点P 的轨迹是双曲线。

Ⅱ若动点P 到定点F 与定直线l 的距离之比是常数e (e>1),则动点P 的轨迹是双曲线。

(二)图形:(三)性质方程:12222=-b y a x )0,0(>>b a 12222=-bx a y )0,0(>>b a定义域:}{a x a x x ≤≥或; 值域为R ; 实轴长=a 2,虚轴长=2b焦距:2c准线方程:ca x 2±=焦半径:)(21c a x e PF +=,)(22x ca e PF -=,a PF PF 221=-;注意:(1)图中线段的几何特征:=1AF a c BF -=2,=2AF c a BF +=1顶点到准线的距离:c a a c a a 22+-或;焦点到准线的距离:ca c c a c 22+-或 两准线间的距离=ca 22(2)若双曲线方程为12222=-b y a x ⇒渐近线方程:⇒=-02222b y a x x aby ±=若渐近线方程为x a by ±=⇒0=±b y a x ⇒双曲线可设为λ=-2222b y a x若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-2222by a x(0>λ,焦点在x 轴上,0<λ,焦点在y 轴上)(3)特别地当⇔=时b a 离心率2=e ⇔两渐近线互相垂直,分别为y=x ±,此时双曲线为等轴双曲线,可设为λ=-22y x ;(4)注意21F PF ∆中结合定义a PF PF 221=-与余弦定理21cos PF F ∠,将有关线段1PF 、2PF 、21F F 和角结合起来。

(5)完成当焦点在y 轴上时,标准方程及相应性质。

二、抛物线(一)定义:到定点F 与定直线l 的距离相等的点的轨迹是抛物线。

即:到定点F 的距离与到定直线l 的距离之比是常数e (e=1)。

(二)图形:(三)性质:方程:焦参数-->=p p px y ),0(,22;焦点: )0,2(p,通径p AB 2=; 准线: 2px -=;焦半径:,2p x CF += 过焦点弦长p x x px p x CD ++=+++=212122注意:(1)几何特征:焦点到顶点的距离=2p;焦点到准线的距离=p ;通径长=p 2顶点是焦点向准线所作垂线段中点。

(2)抛物线px y 22=上的动点可设为P ),2(2y py或或)2,2(2pt pt P P px y y x 2),(2=其中解析几何基本题型【考点透视】 一.直线和圆的方程1.理解直线的斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行与垂直的条件,两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系. 3.了解二元一次不等式表示平面区域. 4.了解线性规划的意义,并会简单的应用. 5.了解解析几何的基本思想,了解坐标法.6.掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程. 二.圆锥曲线方程1.掌握椭圆的定义、标准方程和椭圆的简单几何性质. 2.掌握双曲线的定义、标准方程和双曲线的简单几何性质. 3.掌握抛物线的定义、标准方程和抛物线的简单几何性质. 4.了解圆锥曲线的初步应用. 【例题解析】 考点1.求参数的值求参数的值是高考题中的常见题型之一,其解法为从曲线的性质入手,构造方程解之.例1.若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( )A .2-B .2C .4-D .4考查意图: 本题主要考查抛物线、椭圆的标准方程和抛物线、椭圆的基本几何性质.解答过程:椭圆22162x y +=的右焦点为(2,0),所以抛物线22y px =的焦点为(2,0),则4p =,故选D.考点2. 求线段的长求线段的长也是高考题中的常见题型之一,其解法为从曲线的性质入手,找出点的坐标,利用距离公式解之.例2.已知抛物线y-x 2+3上存在关于直线x+y=0对称的相异两点A 、B ,则|AB|等于A.3B.4C.32D.42 考查意图: 本题主要考查直线与圆锥曲线的位置关系和距离公式的应用.解:设直线AB 的方程为y x b =+,由22123301y x x x b x x y x b⎧=-+⇒++-=⇒+=-⎨=+⎩,进而可求出AB 的中点11(,)22M b --+,又由11(,)22M b --+在直线0x y +=上可求出1b =,∴220x x +-=,由弦长公式可求出221114(2)32AB =+-⨯-=.故选C例3.如图,把椭圆2212516x y +=的长轴AB 分成8等份,过每个分点作x 轴的垂线交椭圆的上半部分于1234567,,,,,,P P P P P P P 七个点,F 是椭圆的一个焦点, 则1234567PF P F P F P F P F P F P F ++++++=____________. 考查意图: 本题主要考查椭圆的性质和距离公式的灵活应用. 解答过程:由椭圆2212516x y +=的方程知225, 5.a a =∴=∴12345677277535.2a PF P F P F P F P F P F P F a ⨯++++++==⨯=⨯= 故填35.考点3. 曲线的离心率曲线的离心率是高考题中的热点题型之一,其解法为充分利用: (1)椭圆的离心率e =ac ∈(0,1) (e 越大则椭圆越扁);(2) 双曲线的离心率e =ac ∈(1, +∞) (e 越大则双曲线开口越大).结合有关知识来解题.例4.已知双曲线的离心率为2,焦点是(4,0)-,(4,0),则双曲线方程为A .221412x y -=B .221124x y -=C .221106x y -=D .221610x y -=考查意图:本题主要考查双曲线的标准方程和双曲线的离心率以及焦点等基本概念. 解答过程:2,4,c e c a===所以22,12.a b ∴==故选(A). 小结: 对双曲线的标准方程和双曲线的离心率以及焦点等基本概念,要注意认真掌握.尤其对双曲线的焦点位置和双曲线标准方程中分母大小关系要认真体会.例5.已知双曲线9322=-y x ,则双曲线右支上的点P 到右焦点的距离与点P 到右准线的距离之比等于( )A. 2B.332 C. 2 D.4考查意图: 本题主要考查双曲线的性质和离心率e =a c ∈(1, +∞) 的有关知识的应用能力.解答过程:依题意可知 3293,322=+=+==b a c a . 考点4.求最大(小)值求最大(小)值, 是高考题中的热点题型之一.其解法为转化为二次函数问题或利用不等式求最大(小)值:特别是,一些题目还需要应用曲线的几何意义来解答.例6.已知抛物线y 2=4x ,过点P (4,0)的直线与抛物线相交于A(x 1,y 1),B(x 2,y 2)两点,则y 12+y 22的最小值是 .考查意图: 本题主要考查直线与抛物线的位置关系,以及利用不等式求最大(小)值的方法. 解:设过点P (4,0)的直线为()()224,8164,y k x k x x x =-∴-+=()()122222222122284160,8414416232.k x k x k k y y x x k k ∴-++=+⎛⎫∴+=+=⨯=+≥ ⎪⎝⎭故填32.考点5 圆锥曲线的基本概念和性质圆锥曲线第一定义中的限制条件、圆锥曲线第二定义的统一性,都是考试的重点内容,要能够熟练运用;常用的解题技巧要熟记于心. 例7.在平面直角坐标系xOy 中,已知圆心在第二象限、半径为22的圆C 与直线y =x 相切于坐标原点O .椭圆9222y ax +=1与圆C 的一个交点到椭圆两焦点的距离之和为10.(1)求圆C 的方程;(2)试探究圆C 上是否存在异于原点的点Q ,使Q 到椭圆右焦点F 的距离等于线段OF 的长.若存在,请求出点Q 的坐标;若不存在,请说明理由.[考查目的]本小题主要考查直线、椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力. [解答过程] (1) 设圆C 的圆心为 (m, n)则,m n n =-⎧⎪⎨⎪⎩ 解得2,2.m n =-⎧⎨=⎩ 所求的圆的方程为 22(2)(2)8x y ++-=(2) 由已知可得 210a = , 5a =.椭圆的方程为 221259x y += , 右焦点为 F( 4, 0) ;假设存在Q 点()222cos ,222sin θθ-++使QF OF =,()()22222cos 4222sin 4θθ-+-++=.整理得 sin 3cos 22θθ=+, 代入 22sin cos 1θθ+=.得:210cos 122cos 70θθ++= , 122812222cos 11010θ-±-±==<-.因此不存在符合题意的Q 点. 例8.如图,曲线G 的方程为)0(22≥=y x y .以原点为圆心,以)0(>t t 为半径的圆分别与曲线G 和y 轴的 正半轴相交于 A 与点B . 直线AB 与 x 轴相交于点C .(Ⅰ)求点 A 的横坐标 a 与点 C 的横坐标c 的关系式;(Ⅱ)设曲线G 上点D 的横坐标为2+a ,求证:直线CD 的斜率为定值. [考查目的]本小题综合考查平面解析几何知识,主要涉及平面直角坐标素中的 两点间距离公式、直线的方程与斜率、抛物线上的点与曲线方程的关系 ,考查运算能力与思维能力,综合分析问题的能力. [解答过程](I )由题意知,).2,(a a A因为.2,||22t a a t OA =+=所以由于.2,02a a t t +=>故有 (1)由点B (0,t ),C (c ,0)的坐标知,直线BC 的方程为.1=+tyc x 又因点A 在直线BC 上,故有,12=+ta ca将(1)代入上式,得,1)2(2=++a a a ca 解得 )2(22+++=a a c .(II )因为))2(22(++a a D ,所以直线CD 的斜率为1)2(2)2(2))2(22(2)2(22)2(2-=+-+=+++-++=-++=a a a a a a c a a k CD ,所以直线CD 的斜率为定值.例9.已知椭圆2222x y E :1(a b 0)a b+=>>,AB 是它的一条弦,M(2,1)是弦AB 的中点,若以点M(2,1)为焦点,椭圆E 的右准线为相应准线的双曲线C 和直线AB 交于点N(4,1)-,若椭圆离心率e 和双曲线离心率1e 之间满足1ee 1=,求: (1)椭圆E 的离心率;(2)双曲线C 的方程.解答过程:(1)设A 、B 坐标分别为1122A(x ,y ),B(x ,y ),则221122x y 1a b +=,222222x y 1a b +=,二式相减得:21212AB21212y y (x x )b kx x (y y )a-+==-=-+2MN 22b 1(1)k 1a 24---===--, 所以2222a 2b 2(a c )==-,22a 2c =,则c e a==(2)椭圆E的右准线为2a x 2c c ==,双曲线的离心率11e e==设P(x,y)是双曲线上任一点,则:|PM ||x 2c |=-两端平方且将N(4,1)-代入得:c 1=或c 3=,当c 1=时,双曲线方程为:22(x 2)(y 1)0---=,不合题意,舍去; 当c 3=时,双曲线方程为:22(x 10)(y 1)32---=,即为所求. 小结:(1)“点差法”是处理弦的中点与斜率问题的常用方法;(2)求解圆锥曲线时,若有焦点、准线,则通常会用到第二定义. 考点6 利用向量求曲线方程和解决相关问题利用向量给出题设条件,可以将复杂的题设简单化,便于理解和计算. 典型例题:例10.双曲线C 与椭圆22184x y +=有相同的焦点,直线y =x 3为C 的一条渐近线.(1)求双曲线C 的方程;(2)过点P (0,4)的直线l ,交双曲线C 于A,B 两点,交x 轴于Q 点(Q 点与C 的顶点不重合).当12PQ QA QB λλ==,且3821-=+λλ时,求Q 点的坐标.考查意图: 本题考查利用直线、椭圆、双曲线和平面向量等知识综合解题的能力,以及运用数形结合思想,方程和转化的思想解决问题的能力.解答过程:(Ⅰ)设双曲线方程为22221x y a b-=,由椭圆22184x y +=,求得两焦点为(2,0),(2,0)-,∴对于双曲线:2C c =,又3y x =为双曲线C 的一条渐近线 ∴3b a= 解得 221,3a b ==,∴双曲线C 的方程为2213y x -=(Ⅱ)解法一:由题意知直线l 的斜率k 存在且不等于零.设l 的方程:114,(,)y kx A x y =+,22(,)B x y ,则4(,0)Q k-.1PQ QA λ=,11144(,4)(,)x y kkλ∴--=+.111111114444()44x k k x k k y y λλλλ⎧=--⎧⎪-=+⎪⎪∴⇒⎨⎨⎪⎪-==-⎩⎪⎩11(,)A x y 在双曲线C 上, ∴2121111616()10k λλλ+--=.∴222211161632160.3k k λλλ++--=∴2221116(16)32160.3k k λλ-++-=同理有:2222216(16)32160.3k k λλ-++-=若2160,k -=则直线l 过顶点,不合题意.2160,k ∴-≠12,λλ∴是二次方程22216(16)32160.3k x x k -++-=的两根.122328163k λλ∴+==--,24k ∴=,此时0,2k ∆>∴=±.∴所求Q 的坐标为(2,0)±.解法二:由题意知直线l 的斜率k 存在且不等于零 设l 的方程,11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.1PQ QA λ=, Q ∴分PA 的比为1λ.由定比分点坐标公式得1111111111144(1)14401x x k k y y λλλλλλλ⎧⎧-==-+⎪⎪+⎪⎪→⎨⎨+⎪⎪=-=⎪⎪+⎩⎩下同解法一解法三:由题意知直线l 的斜率k 存在且不等于零 设l 的方程:11224,(,),(,)y kx A x y B x y =+,则4(,0)Q k-.12PQ QA QB λλ==, 111222444(,4)(,)(,)x y x y kkkλλ∴--=+=+.11224y y λλ∴-==, 114y λ∴=-,224y λ=-,又1283λλ+=-, 121123y y ∴+=,即12123()2y y y y +=.将4y kx =+代入2213y x -=得222(3)244830k y y k --+-=.230k -≠,否则l 与渐近线平行.212122224483,33k y y y y k k -∴+==--.222244833233k k k -∴⨯=⨯--.2k ∴=±(2,0)Q ∴±.解法四:由题意知直线l 得斜率k 存在且不等于零,设l 的方程:4y kx =+,1122(,),(,)A x y B x y ,则4(,0)Q k-1PQ QA λ=,11144(,4)(,)x y k kλ∴--=+. ∴1114444k kx x kλ-==-++.同理 1244kx λ=-+.1212448443kx kx λλ+=--=-++.即2121225()80k x x k x x +++=.(*)又 22413y kx y x =+⎧⎪⎨-=⎪⎩消去y 得22(3)8190k x kx ---=.当230k -=时,则直线l 与双曲线得渐近线平行,不合题意,230k -≠.由韦达定理有: 12212283193k x x k x x k ⎧+=⎪⎪-⎨⎪=-⎪-⎩代入(*)式得24,2k k ==±.∴所求Q 点的坐标为(2,0)±.例11.设动点P 到点A (-l ,0)和B (1,0)的距离分别为d 1和d 2, ∠APB =2θ,且存在常数λ(0<λ<1=,使得d 1d 2 sin 2θ=λ. (1)证明:动点P 的轨迹C 为双曲线,并求出C 的方程;(2)过点B 作直线交双曲线C 的右支于M 、N 两点,试确定λ的范围, 使OM ·ON =0,其中点O 为坐标原点.[考查目的]本小题主要考查直线、双曲线等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.[解答过程]解法1:(1)在PAB △中,2AB =,即222121222cos 2d d d d θ=+-, 2212124()4sin d d d d θ=-+,即2121244sin 212d d d d θλ-=-=-<(常数), 点P 的轨迹C 是以A B ,为焦点,实轴长221a λ=-的双曲线.方程为:2211x y λλ-=-.(2)设11()M x y ,,22()N x y ,①当MN 垂直于x 轴时,MN 的方程为1x =,(11)M ,,(11)N -,在双曲线上. 即2111511012λλλλλ-±-=⇒+-=⇒=-,因为01λ<<,所以512λ-=.②当MN 不垂直于x 轴时,设MN 的方程为(1)y k x =-.由2211(1)x y y k x λλ⎧-=⎪-⎨⎪=-⎩得:2222(1)2(1)(1)()0k x k x k λλλλλ⎡⎤--+---+=⎣⎦, 由题意知:2(1)0k λλ⎡⎤--≠⎣⎦,所以21222(1)(1)k x x k λλλ--+=--,2122(1)()(1)k x x k λλλλ--+=--. 于是:22212122(1)(1)(1)k y y k x x kλλλ=--=--.因为0=⋅ON OM ,且M N ,在双曲线右支上,所以2121222122212(1)0(1)2101131001x x y y k x x k x x λλλλλλλλλλλλλλλ-⎧+=⎧-⎧=⎪>⎪⎪⎪+-+>⇒⇒<+--⎨⎨⎨⎪⎪⎪>+->>⎩⎩⎪-⎩. 由①②23λ<.解法2:(1)同解法1(2)设11()M x y ,,22()N x y ,,MN 的中点为00()E x y ,. ①当121x x ==时,221101MB λλλλλ=-=⇒+-=-, 因为01λ<<,所以λ②当12x x ≠时,002222212111111y x k y x y x MN ⋅-=⇒⎪⎪⎩⎪⎪⎨⎧=--=--λλλλλλ. 又001MN BE y k k x ==-.所以22000(1)y x x λλλ-=-;由2MON π=∠得222002MN x y ⎛⎫+= ⎪⎝⎭,由第二定义得2212()222MN e x x a ⎛⎫+-⎡⎤= ⎪⎢⎥⎣⎦⎝⎭220001(1)21x x λλ==+---. 所以222000(1)2(1)(1)y x x λλλλ-=--+-.于是由22000222000(1),(1)2(1)(1),y x x y x x λλλλλλλ⎧-=-⎪⎨-=--+-⎪⎩得20(1).23x λλ-=-因为01x >,所以2(1)123λλ->-,又01λ<<,23λ<<.由①②23λ<.考点7 利用向量处理圆锥曲线中的最值问题利用向量的数量积构造出等式或函数关系,再利用函数求最值的方法求最值,要比只利用解析几何知识建立等量关系容易.例12.设椭圆E 的中心在坐标原点O ,焦点在xC(1,0)-的直线交椭圆E 于A 、B 两点,且CA 2BC =,求当AOB ∆的面积达到最大值时直线和椭圆E 的方C BA oy x,故可设椭圆方程为222x 3y t(t 0)+=>,直线方程为my x 1=+,由222x 3y t my x 1⎧+=⎨=+⎩得:22(2m 3)y 4my 2t 0+-+-=,设1122A(x ,y ),B(x ,y ), 则1224m y y 2m 3+=+…………① 又CA 2BC =,故1122(x 1,y )2(1x ,y )+=---,即12y 2y =-…………② 由①②得:128m y 2m 3=+,224m y 2m 3-=+, 则AOB 1221mS |y y |6||22m 3∆=-=+=632|m ||m |+当23m 2=,即m =AOB ∆面积取最大值,此时2122222t 32m y y 2m 3(2m 3)-==-++,即t10=,所以,直线方程为x 10+=,椭圆方程为222x 3y 10+=.小结:利用向量的数量积构造等量关系要比利用圆锥曲线的性质构造等量关系容易. 例13.已知PA (x y)=,PB (x y)=,且|PA ||PB |6+=, 求|2x 3y 12|--的最大值和最小值.解答过程:设P(x,y),A(,,因为|PA ||PB |6+=,且|AB |6=,所以,动点P 的轨迹是以A 、B 为焦点,长轴长为6的椭圆, 椭圆方程为22x y 194+=,令x 3cos ,y 2sin =θ=θ,则|2x 3y 12|--=|)12|4πθ+-,当cos()14πθ+=-时,|2x 3y 12|--取最大值12+当cos()14πθ+=时,|2x 3y 12|--取最小值12-小结:利用椭圆的参数方程,可以将复杂的代数运算化为简单的三角运算. 考点8 利用向量处理圆锥曲线中的取值范围问题解析几何中求变量的范围,一般情况下最终都转化成方程是否有解或转化成求函数的值域例14. 已知椭圆2212x y +=的左焦点为F ,O 为坐标原点.(I )求过点O 、F ,并且与椭圆的左准线l 相切的圆的方程; (II )设过点F 且不与坐标轴垂直的直线交椭圆于A 、B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围. 考查意图:本小题主要考查直线、圆、椭圆和不等式等基本知识,考 查平面解析几何的基本方法,考查运算能力和综合解题能力. 解答过程:(I )222,1,1,(1,0),: 2.a b c F l x ==∴=-=- 圆过点O 、F ,∴圆心M 在直线12x =-上.设1(,),2M t -则圆半径13()(2).22r =---=由,OM r =3,2解得t =∴所求圆的方程为2219()(.24x y ++=(II )设直线AB 的方程为(1)(0),y k x k =+≠ 代入221,2x y +=整理得2222(12)4220.k x k x k +++-=直线AB 过椭圆的左焦点F ,∴方程有两个不等实根. 记1122(,),(,),A x y B x y AB 中点00(,),N x y则21224,21k x x k +=-+AB ∴的垂直平分线NG 的方程为001().y y x x k-=--令0,y =得222002222211.21212124210,0,2G G k k k x x ky k k k k k x =+=-+=-=-+++++≠∴-<<∴点G 横坐标的取值范围为1(,0).2-例15.已知双曲线C :2222x y 1(a 0,b 0)a b-=>>,B 是右顶点,F 是右焦点,点A 在x 轴正半轴上,且满足|OA |,|OB |,|OF |成等比数列,过F 作双曲线C 在第一、三象限的渐近线的垂线l ,垂足为P ,(1)求证:PA OP PA FP ⋅=⋅;(2)若l 与双曲线C 的左、右两支分别相交于点D,E ,求双曲线C 的离心率e 的取值范围.解答过程:(1)因|OA |,|OB |,|OF |成等比数列,故22|OB |a |OA |c |OF |==,即2aA(,0)c ,直线l :a y (x c)b =--,由2a y (x c)a ab bP(,)b c c y x a ⎧=--⎪⎪⇒⎨⎪=⎪⎩, 故:22ab a ab b abPA (0,),OP (,),FP (,)c c c c c =-==-,则:222a b PA OP PA FP c⋅=-=⋅,即PA OP PA FP ⋅=⋅;(或PA (OP FP)PA (PF PO)PA OF 0⋅-=⋅-=⋅=,即PA OP PA FP ⋅=⋅)(2)由44422222222222222a y (x c)a a a c (b )x 2cx (a b )0bb b b b x a y a b ⎧=--⎪⇒-+-+=⎨⎪-=⎩, 由4222212422a c (ab )b xx 0a b b -+=<-得:4422222b a b c a a e 2e >⇒=->⇒>⇒> (或由DF DO k k >⇒a b b a->-⇒22222b c a a e 2e =->⇒>⇒>小结:向量的数量积在构造等量关系中的作用举足轻重,而要运用数量积,必须先恰当地求出各个点的坐标.例16.已知a (x,0)=,b (1,y)=,(a 3b)(a 3b)+⊥-, (1)求点P(x,y)的轨迹C 的方程;(2)若直线y kx m(m 0)=+≠与曲线C 交于A 、B 两点,D(0,1)-,且|AD ||BD |=, 试求m 的取值范围.解答过程:(1)a 3b +=(x,0)y)(x =+,a 3b -=(x,0)y)(x -=,因(a 3b)(a 3b)+⊥-,故(a 3b)(a 3b)0+⋅-=,即22(x (x x 3y 30+⋅=--=,故P 点的轨迹方程为22x y 13-=. (2)由22y kx m x 3y 3=+⎧⎨-=⎩得:222(13k )x 6kmx 3m 30----=, 设1122A(x ,y ),B(x ,y ),A 、B 的中点为00M(x ,y )则22222(6km)4(13k )(3m 3)12(m 13k )0∆=----=+->,1226km x x 13k +=-,1202x x 3km x 213k +==-,002my kx m 13k =+=-, 即A 、B 的中点为223km m(,)13k 13k --,则线段AB 的垂直平分线为:22m 13kmy ()(x )13k k 13k -=----, 将D(0,1)-的坐标代入,化简得:24m 3k 1=-,则由222m 13k 04m 3k 1⎧+->⎪⎨=-⎪⎩得:2m 4m 0->,解之得m 0<或m 4>,又24m 3k 11=->-,所以1m 4>-, 故m 的取值范围是1(,0)(4,)4-+∞.小结:求变量的范围,要注意式子的隐含条件,否则会产生增根现象. 考点9 利用向量处理圆锥曲线中的存在性问题存在性问题,其一般解法是先假设命题存在,用待定系数法设出所求的曲线方程或点的坐标,再根据合理的推理,若能推出题设中的系数,则存在性成立,否则,不成立. 例17.已知A,B,C 是长轴长为4的椭圆上的三点,点A 是长轴的一个顶点,BC 过椭圆的中心O ,且AC BC 0⋅=,|BC |2|AC |=, (1)求椭圆的方程;PQCBA xy O(2)如果椭圆上的两点P ,Q 使PCQ ∠的平分线垂直于OA ,是否总存在实数λ,使得PQ λAB =?请说明理由;解答过程:(1)以O 为原点,OA 所在直线为x 轴建立 平面直角坐标系,则A(2,0),设椭圆方程为222x y14b+=,不妨设C 在x 轴上方, 由椭圆的对称性,|BC |2|AC |2|OC ||AC ||OC |==⇒=, 又AC BC 0⋅=AC OC ⇒⊥,即ΔOCA 为等腰直角三角形, 由A(2,0)得:C(1,1),代入椭圆方程得:24b 3=, 即,椭圆方程为22x 3y 144+=; (2)假设总存在实数λ,使得PQ λAB =,即AB//PQ , 由C(1,1)得B(1,1)--,则AB 0(1)1k 2(1)3--==--,若设CP :y k(x 1)1=-+,则CQ :y k(x 1)1=--+,由22222x 3y 1(13k )x 6k(k 1)x 3k 6k 1044y k(x 1)1⎧+=⎪⇒+--+--=⎨⎪=-+⎩, 由C(1,1)得x 1=是方程222(13k )x 6k(k 1)x 3k 6k 10+--+--=的一个根,由韦达定理得:2P P 23k 6k 1x x 113k --=⋅=+,以k -代k 得2Q 23k 6k 1x 13k+-=+, 故P Q P Q PQ P QP Qy y k(x x )2k1k x x x x 3-+-===--,故AB//PQ , 即总存在实数λ,使得PQ λAB =.评注:此题考察了坐标系的建立、待定系数法、椭圆的对称性、向量的垂直、向量的共线及探索性问题的处理方法等,是一道很好的综合题. 考点10 利用向量处理直线与圆锥曲线的关系问题直线和圆锥曲线的关系问题,一般情况下,是把直线的方程和曲线的方程组成方程组,进一步来判断方程组的解的情况,但要注意判别式的使用和题设中变量的范围.例18.设G 、M 分别是ABC ∆的重心和外心,A(0,a)-,B(0,a)(a 0)>,且GM AB =λ, (1)求点C 的轨迹方程;(2)是否存在直线m ,使m 过点(a,0)并且与点C 的轨迹交于P 、Q 两点,且OP OQ 0⋅=?若存在,求出直线m 的方程;若不存在,请说明理由.解答过程:(1)设C(x,y),则x yG(,)33,因为GM AB =λ,所以GM//AB ,则x M(,0)3,由M 为ABC ∆的外心,则|MA ||MC |==整理得:2222x y 1(x 0)3a a+=≠;(2)假设直线m 存在,设方程为y k(x a)=-,由2222y k(x a)x y 1(x 0)3a a =-⎧⎪⎨+=≠⎪⎩得:22222(13k )x 6k ax 3a (k 1)0+++-=, 设1122P(x ,y ),Q(x ,y ),则21226k a x x 13k +=+,221223a (k 1)x x 13k -=+,22212121212y y k (x a)(x a)k [x x a(x x )a ]=--=-++=2222k a 13k -+,由OP OQ 0⋅=得:1212x x y y 0+=,即2222223a (k 1)2k a 013k 13k --+=++,解之得k =, 又点(a,0)在椭圆的内部,直线m 过点(a,0), 故存在直线m,其方程为y a)=-.小结:(1)解答存在性的探索问题,一般思路是先假设命题存在,再推出合理或不合理的结果,然后做出正确的判断;(2)直线和圆锥曲线的关系问题,一般最终都转化成直线的方程和圆锥曲线的方程所组成的方程组的求解问题. 【专题训练与高考预测】 一、选择题1.如果双曲线经过点,且它的两条渐近线方程是1y x 3=±,那么双曲线方程是()A .22x y 1369-= B .22x y 1819-= C .22x y 19-= D .22x y 1183-= 2.已知椭圆2222x y 13m 5n +=和双曲线2222x y 12m 3n -=有公共的焦点,那么双曲线的的渐近线方程为( )A.x =B. y =C. x =D. y =3.已知12F ,F 为椭圆2222x y 1(a b 0)a b+=>>的焦点,M 为椭圆上一点,1MF 垂直于x 轴, 且12FMF 60∠=︒,则椭圆的离心率为( )A.124.二次曲线22x y 14m+=,当m [2,1]∈--时,该曲线的离心率e 的取值范围是( )A. B. C. D.5.直线m 的方程为y kx 1=-,双曲线C 的方程为22x y 1-=,若直线m 与双曲线C 的右支相交于不重合的两点,则实数k 的取值范围是( )A.(B.C.[D.6.已知圆的方程为22x y 4+=,若抛物线过点A(1,0)-,B(1,0),且以圆的切线为准线,则抛物线的焦点的轨迹方程为( )A. 22x y 1(y 0)34+=≠ B. 22x y 1(y 0)43+=≠C. 22x y 1(x 0)34-=≠D. 22x y 1(x 0)43-=≠ 二、填空题7.已知P 是以1F 、2F 为焦点的椭圆)0(12222>>=+b a by a x 上一点,若021=⋅PF PFQy21tan 21=∠F PF ,则椭圆的离心率为 ______________ . 8.已知椭圆x 2+2y 2=12,A 是x 轴正方向上的一定点,若过点A ,斜率为1的直线被椭圆截得的弦长为3134,点A 的坐标是______________ .9.P 是椭圆22x y 143+=上的点,12F ,F 是椭圆的左右焦点,设12|PF ||PF |k ⋅=,则k 的最大值与最小值之差是______________ . 10.给出下列命题:①圆22(x 2)(y 1)1++-=关于点M(1,2)-对称的圆的方程是22(x 3)(y 3)1++-=;②双曲线22x y 1169-=右支上一点P 到左准线的距离为18,那么该点到右焦点的距离为292;③顶点在原点,对称轴是坐标轴,且经过点(4,3)--的抛物线方程只能是29y x 4=-;④P 、Q 是椭圆22x 4y 16+=上的两个动点,O 为原点,直线OP ,OQ 的斜率之积为14-,则22|OP ||OQ |+等于定值20 .把你认为正确的命题的序号填在横线上_________________ . 三、解答题11.已知两点,B(,动点P 在y 轴上的射影为Q ,2PA PB 2PQ ⋅=, (1)求动点P 的轨迹E 的方程;(2)设直线m 过点A ,斜率为k ,当0k 1<<时,曲线E 的上支上有且仅有一点C 到直线m k 的值及此时点C 的坐标.12.如图,1F (3,0)-,2F (3,0)是双曲线C 的两焦点,直线4x 3=是双曲线C 的右准线,12A ,A是双曲线C 的两个顶点,点P 是双曲线C 右支上异于2A 的一动点,直线1A P 、2A P 交双曲线C 的右准线分别于M,N 两点, (1)求双曲线C 的方程;(2)求证:12FM F N ⋅是定值.13.已知OFQ ∆的面积为S ,且OF FQ 1⋅=,建立如图所示坐标系,(1)若1S 2=,|OF |2=,求直线FQ 的方程;(2)设|OF |c(c 2)=≥,3S c 4=,若以O 为中心,F 为焦点的椭圆过点Q ,求当|OQ |取得最小值时的椭圆方程.14.已知点H(3,0)-,点P 在y 轴上,点Q 在x 轴的正半轴上,点M 在直线PQ 上,且满足HP PM 0⋅=,3PM MQ 2=-,(1)当点P 在y 轴上移动时,求点M 的轨迹C ;(2)过点T(1,0)-作直线m 与轨迹C 交于A 、B 两点,若在x 0E(x ,0),使得ABE ∆为等边三角形,求0x 的值.15.已知椭圆)0(12222>>=+b a b y a x 的长、短轴端点分别为A 、B ,从此椭圆上一点M 向x 轴作垂线,恰好通过椭圆的左焦点1F ,向量AB 与OM 是共线向量. (1)求椭圆的离心率e ;(2)设Q 是椭圆上任意一点, 1F 、2F 分别是左、右焦点,求∠21QF F 的取值范围;16.已知两点M (-1,0),N (1,0)且点P 使NP NM PN PM MN MP ⋅⋅⋅,,成公差小于零的等差数列, (Ⅰ)点P 的轨迹是什么曲线?(Ⅱ)若点P 坐标为),(00y x ,θ为PN PM 与的夹角,求tanθ.【参考答案】一. 1.C .提示,设双曲线方程为11(x y)(x y)33+-=λ,将点代入求出λ即可.2.D .因为双曲线的焦点在x 轴上,故椭圆焦点为,双曲线焦点为,由22223m 5n 2m 3n -=+得|m |n |=,所以,双曲线的渐近线为y == .3.C .设1|MF |d =,则2|MF |2d =,12|FF |=,1212|FF |c 2c e a 2a |MF ||MF |====+4.C .1>,故选C ;或用2a 4=,2b m =-来计算.5.B .将两方程组成方程组,利用判别式及根与系数的关系建立不等式组. 6.B .数形结合,利用梯形中位线和椭圆的定义.二.7.解:设c 为为椭圆半焦距,∵021=⋅PF PF ,∴21PF PF ⊥ .又21tan 21=∠F PF ∴⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=+212)2(122122221PF PF a PF PF c PF PF解得:25()93,cc e aa === . 选D . 8. 解:设A (x 0,0)(x 0>0),则直线l 的方程为y=x-x 0,设直线l 与椭圆相交于P (x 1,y 1),Q (x 2、y 2),由 y=x-x 0 可得3x 2-4x 0x+2x 02-12=0, x 2+2y 2=12 34021x x x =+,31222021-=⋅x x x ,则20202021221212363234889164)(||x x x x x x x x x -=--=-+=-.∴||13144212x x x -⋅+=,即202363223144x -⋅⋅=.∴x 02=4,又x 0>0,∴x 0=2,∴A (2,0).9.1;22212k |PF ||PF |(a ex)(a ex)a e x =⋅=+-=- .10.②④.三. 11.解(1)设动点P 的坐标为(x,y),则点Q(0,y),PQ (x,0)=-,PA (2x,y)=-,PB (x,y)=--,22PA PB x 2y ⋅=-+,因为2PA PB 2PQ ⋅=,所以222x 2y 2x -+=, 即动点P 的轨迹方程为:22y x 2-=; (2)设直线m :y k(x k 1)=<<,依题意,点C 在与直线m 平行,且与m的直线上,设此直线为1m :y kx b =+=2b 2+=,……①把y kx b =+代入22y x 2-=,整理得:222(k 1)x 2kbx (b 2)0-++-=, 则22224k b 4(k 1)(b 2)0∆=---=,即22b 2k 2+=,…………② 由①②得:k =b =此时,由方程组22y y x 2⎧=⎪⎨⎪-=⎩. 12.解:(1)依题意得:c 3=,2a 4c 3=,所以a 2=,2b 5=, 所求双曲线C 的方程为22x y 145-=; (2)设00P(x ,y ),11M(x ,y ),22N(x ,y ),则1A (2,0)-,2A (2,0),100A P (x 2,y )=+,200A P (x 2,y )=-,1110A M (,y )3=,222A N (,y )3=-,因为1A P 与1A M 共线,故01010(x 2)y y 3+=,01010y y 3(x 2)=+,同理:0202y y 3(x 2)=--, 则1113FM (,y )3=,225F N (,y )3=-,所以12FM F N ⋅=1265y y 9-+=202020y 6599(x 4)---=20205(x 4)206541099(x 4)-⨯--=-- . 13.解:(1)因为|OF |2=,则F(2,0),OF (2,0)=,设00Q(x ,y ),则00FQ (x 2,y )=-,0OF FQ 2(x 2)1⋅=-=,解得05x 2=,由0011S |OF ||y ||y |22=⋅==,得01y 2=±,故51Q(,)22±,所以,PQ 所在直线方程为y x 2=-或y x 2=-+;(2)设00Q(x ,y ),因为|OF |c(c 2)=≥,则00FQ (x c,y )=-, 由0OF FQ c(x c)1⋅=-=得:01x c c=+,又013S c |y |c 24==,则03y 2=±,13Q(c ,)c 2+±,2219|OQ |(c )c 4=++,易知,当c 2=时,|OQ |最小,此时53Q(,)22±,设椭圆方程为2222x y 1,(a b 0)a b +=>>,则2222a b 425914a4b ⎧-=⎪⎨+=⎪⎩,解得22a 10b 6⎧=⎪⎨=⎪⎩, 所以,椭圆方程为22x y 1106+= . 14.解:(1)设M(x,y),由3PM MQ 2=-得:y P(0,)2-,xQ(,0)3,由HP PM 0⋅=得:y3y(3,)(x,)022-=,即2y 4x =, 由点Q 在x 轴的正半轴上,故x 0>,即动点M 的轨迹C 是以(0,0)为顶点,以(1,0)为焦点的抛物线,除去原点; (2)设m :y k(x 1)(k 0)=+≠,代入2y 4x =得:2222k x 2(k 2)x k 0+-+=…………①设11A(x ,y ),22B(x ,y ),则12x ,x 是方程①的两个实根,则21222(k 2)x x k -+=-,12x x 1=,所以线段AB 的中点为222k 2(,)k k-, 线段AB 的垂直平分线方程为22212k y (x )k k k--=--, 令y 0=,022x 1k=+,得22E(1,0)k+, 因为ABE ∆为正三角形,则点E 到直线AB|AB |,又|AB|k =011x 3= .15.解:(1)∵ab yc x c F M M 21,),0,(=-=-则,∴acb k OM 2-= .∵AB OM a b k AB 与,-=是共线向量,∴a b ac b -=-2,∴b=c,故22=e .(2)设1122121212,,,2,2,FQr F Q r F QF r r a F F c θ==∠=∴+==22222221212122121212124()24cos 11022()2r r c r r r r c a a r r r r r r r r θ+-+--===-≥-=+当且仅当21r r =时,cosθ=0,∴θ]2,0[π∈ .16.解:(Ⅰ)记P (x,y ),由M (-1,0)N (1,0)得 (1,),PM MP x y =-=---),1(y x NP PN ---=-=, )0,2(=-=NM MN . 所以 )1(2x MN MP +=⋅ . 122-+=⋅y x PN PM , )1(2x NP NM -=⋅ .于是, NP NM PN PM MN MP ⋅⋅⋅,,是公差小于零的等差数列等价于⎪⎩⎪⎨⎧<+---++=-+0)1(2)1(2)]1(2)1(2[21122x x x x y x 即 ⎩⎨⎧>=+0322x y x . 所以,点P 的轨迹是以原点为圆心,3为半径的右半圆. (Ⅱ)点P 的坐标为),(00y x 。

相关文档
最新文档