X射线物相分析实验报告

合集下载

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告X射线物相分析实验报告引言:X射线物相分析是一种常用的实验方法,用于研究材料的晶体结构和组成。

通过观察和分析X射线的衍射图案,我们可以得到材料的晶体结构、晶格参数以及晶体中原子的排列方式等重要信息。

本实验旨在通过X射线物相分析技术,对给定的材料样品进行结构分析,并探索其性质和应用。

实验方法:1. 样品制备:首先,我们选择了一种具有特定晶体结构的材料作为研究对象。

然后,将样品制备成粉末状,以便于进行X射线衍射实验。

制备过程中需要注意避免杂质的混入,以保证实验结果的准确性。

2. X射线衍射实验:将制备好的样品放置在X射线衍射仪器中,调整仪器参数,如入射角度、扫描范围等。

通过控制X射线的入射角度和扫描范围,我们可以获取不同角度下的衍射图案。

实验过程中需要保证仪器的稳定性和准确性,以获得可靠的实验结果。

结果与讨论:通过X射线衍射实验,我们获得了样品在不同角度下的衍射图案。

根据这些衍射图案,我们可以进行结构分析和晶格参数计算。

1. 结构分析:通过对衍射图案的观察和分析,我们可以确定样品的晶体结构。

根据布拉格方程和衍射峰的位置、强度等信息,我们可以推断出晶体中原子的排列方式和晶胞结构。

这对于研究材料的性质和应用具有重要意义。

2. 晶格参数计算:通过测量衍射图案中的衍射角度和计算相关的几何参数,我们可以得到样品的晶格参数。

晶格参数是描述晶体结构的重要参数,它们的大小和比例关系直接影响材料的性质和行为。

通过计算晶格参数,我们可以进一步了解样品的结构特征和晶体生长方式。

结论:通过X射线物相分析实验,我们成功地对给定的材料样品进行了结构分析和晶格参数计算。

通过观察和分析衍射图案,我们得到了样品的晶体结构和晶格参数等重要信息。

这些结果对于研究材料的性质和应用具有重要意义,为进一步深入研究和应用提供了基础。

总结:X射线物相分析是一种重要的实验方法,通过观察和分析X射线的衍射图案,可以获得材料的晶体结构和组成等关键信息。

X射线衍射技术及物相定性分析

X射线衍射技术及物相定性分析

2.掌握 X 射线衍射物相定性分析的原理和实验方法。
3.熟悉 PDF 卡片的查找方法和物相检索方法。
二、实验原理概述
1.X 射线衍射仪的工作原院理

图 1 是X射线衍射工仪程光路图,它是由高压发生器提供一个给定的高压到X射线管的两极,
阴极产生的阴极电学子与流碰撞到阳极时产生X射线,X射线经S1、FS后照射到样品表面,衍射





图1
X
射线南衍射仪光路图 中
计算机记录下样品转动过程中每一步的衍射强度数据(I)和检测器位置(2θ),并以 2θ
为横坐标,强度 I 为纵坐标绘制出衍射谱图(见图 2)。
图 2 X 射线衍射谱
1
2.物相定性分析原理
X 射线入射到金属多晶体上,产生衍射的充要条件是
⎧2d sinθ = nλ ⎨⎩F (hkl) ≠ 0
学 大 工程 一中个南物相。
学与 一种物相衍射谱中的d-I/I1 (I1是衍射图谱中最强峰的强度值) 的数值取决于该物质的组
料科 成与结构,其中I/I1称为相对强度。当两个样品d-I/I1 的数值都对应相等时,这两个样品就是
材 组成与结构相同的同一种物相。因此,当一未知物相的样品的衍射谱上的 d-I/I1的数值与某
狭缝
1°,1°,0.15°,0.15mm
扫描方式
θ-2θ 连续扫描
1. 数据处理和结果输出
①用 Jade 软件打开测量图谱。
②单击常用工具栏中的 S/M 按钮,输入样品中包含的元素等参数,系统自动检索出与
样品衍射谱最匹配的 100 种 PDF 卡片并列表显示。
3
③在检索结果列表中,根据谱线角度匹配情况并参考强度匹配情况,选择最匹配的 PDF

X射线物相分析实验报告

X射线物相分析实验报告

X射线物相分析实验报告
X射线物相分析实验采用X射线衍射技术,旨在确定物质的组成成分以及各组分含量。

这种技术还可用以确定物种位阶和特有结构,以及研究物质的相变等。

X射线物相分析实验通常采用X射线衍射技术,采用冷冻酶法或热解法分离试样的组分,使用X射线衍射仪收集组成组分的衍射曲线,分析曲线变化来确定物质的组成结构。

当用热解法处理时,可以在较高的温度条件下,将混合物分解成其原子构型中的各组分,
从而取得较为准确的衍射曲线。

X射线衍射实验可以测定非晶态以及晶态结构物质的晶粒
尺寸,探究物质受温度、时间、温度变化等影响的程度。

X射线物相分析实验是X射线晶体衍射技术的一个重要应用,在无损检验、材料结构
分析、塑料成型分析等领域都有广泛的应用。

这种技术可以用于分析各种有机物及它们的
混合物,也可以用于分析金属材料的组成、结构和晶体尺寸等特性。

实验步骤:
(1)准备试样。

(2)将试样放入探测器,使用冷冻酶法或热解法将其分离开来,获取组分的衍射曲线。

(3)根据衍射曲线对各组分的拟合度进行评估,确定各成份在物质中的构成比例。

(4)计算其他统计值,如晶粒尺寸、晶体指数、相变温度等。

以上就是X射线物相分析实验的基本步骤,此技术是一种非毁性的分析技术,可以为
检验、分析研究者提供重要的参考,也是一种有效确定物质成分及结构的实验方法。

2017X射线衍射及物相分析实验报告写法[5篇模版]

2017X射线衍射及物相分析实验报告写法[5篇模版]

2017X射线衍射及物相分析实验报告写法[5篇模版]第一篇:2017X射线衍射及物相分析实验报告写法请将以下内容手写或打印在中原工学院实验报告纸上。

实验报告内容:文中红体字部分请删除后补上自己写的内容班级学号姓名综合实验 X射线衍射仪的使用及物相分析实验时间,地点一、实验目的1.了解x射线衍射仪的构造及使用方法;2.熟悉x射线衍射仪对样品制备的要求;3.学会对x射线衍射仪的衍射结果进行简单物相分析。

二、实验原理(X射线衍射及物相分析原理分别见《材料现代分析方法》第一、二、三、五章。

)三、实验设备Ultima IV型变温全自动组合粉末多晶X射线衍射仪。

(以下为参考内容)X衍射仪由X射线发生器、测角仪、记录仪等几部分组成。

图1 热电子密封式X射线管的示意图图1是目前常用的热电子密封式X射线管的示意图。

阴极由钨丝绕成螺线形,工作时 1通电至白热状态。

由于阴阳极间有几十千伏的电压,故热电子以高速撞击阳极靶面。

为防止灯丝氧化并保证电子流稳定,管内抽成1.33×10-9~1.33×10-11的高真空。

为使电子束集中,在灯丝外设有聚焦罩。

阳极靶由熔点高、导热性好的铜制成,靶面上被一层纯金属。

常用的金属材料有Cr,Fe,Co,Ni,Cu,Mo,W等。

当高速电子撞击阳极靶面时,便有部分动能转化为X射线,但其中约有99%将转变为热。

为了保护阳极靶面,管子工作时需强制冷却。

为了使用流水冷却和操作者的安全,应使X射线管的阳极接地,而阴极则由高压电缆加上负高压。

x射线管有相当厚的金属管套,使X射线只能从窗口射出。

窗口由吸收系数较低的Be片制成。

结构分析用X射线管通常有四个对称的窗口,靶面上被电子袭击的范围称为焦点,它是发射X射线的源泉。

用螺线形灯丝时,焦点的形状为长方形(面积常为1mm×10mm),此称为实际焦点。

窗口位置的设计,使得射出的X 射线与靶面成60角(图2),从长方形的短边上的窗口所看到的焦点为1mm2正方形,称点焦点,在长边方向看则得到线焦点。

X射线物相分析实验报告

X射线物相分析实验报告

实验X射线物相分析1.了解X射线衍射仪的结构及工作原理。

2.掌握X射线衍射物相定性分析的原理、实验方法以及物相检索方法。

二、实验原理当一束单色X射线照射到某一结晶物质上,由于晶体中原子的排列具有周期性,当某一层原子面的晶面间距d与X射线入射角之间满足布拉格(Bragg)方程:2d sin = (为入射X射线的波长)时,就会产生衍射现象。

X射线物相分析就是指通过比较结晶物质的X射线衍射花样来分析待测试样中含有何种或哪几种结晶物质(物相)。

任何一种结晶物质都有自己特定的结构参数,即点阵类型、晶胞大小、晶胞中原子或离子的数目、位置等等。

这些结构参数与X射线的衍射角和衍射强度I 有着对应关系,结构参数不同则X射线衍射花样也各不相同。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,不存在两种衍射花样完全相同的物质。

通常用表征衍射线位置的晶面间距d(或衍射角2)和衍射线相对强度I的数据来代表衍射花样,即以晶面间距d为横坐标,衍射相对强度I为纵坐标绘制X射线衍射图谱。

目前已知的结晶物质有成千上万种。

事先在一定的规范条件下对所有已知的结晶物质进行X射线衍射,获得一套所有结晶物质的标准X射线衍射图谱(即d-I数据),建立成数据库。

当对某种材料进行物相分析时,只需要将其X射线衍射图谱与数据库中的标准X射线衍射图谱进行比对,就可以确定材料的物相,如同根据指纹来鉴别人一样。

各种已知物相X射线衍射花样的收集、校订和编辑出版工作目前由国际性组织“粉末衍射标准联合委员会(JCPDS)”负责,每一种物相的X射线衍射花样制成一张卡片,称为粉末衍射卡,简称PDF卡,或称JCPDS卡。

通常的X射线物相分析即是利用PDF卡片进行物相检索和分析。

当多种结晶物质同时产生衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加——它们相互独立,不会相互干涉。

逐一比较就可以在重叠的衍射花样中剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。

xrd物相分析实验报告

xrd物相分析实验报告

关于xrd物相分析实验报告范文篇一:XRD物相分析实验报告一、实验目的1.掌握X 射线衍射仪的使用及进行定性相分析的基本原理。

2.学会用PDF软件索引对多相物质进行相分析的方法和步骤。

二、实验原理布拉格方程:2dsinnX 射线衍射仪是按着晶体对 X 射线衍射的几何原理设计制造的衍射实验仪器。

在测试过程,由X 射线管发射出来的 X 射线照射到试样上产生衍射效应,满足布拉格方程的2dsinn,和不消光条件的衍射光用辐射探测器,经测量电路放大处理后,在显示或记录装置上给出精确的衍射峰位置、强度和线形等衍射信息,这些衍射信息可作为各种应用问题的原始数据。

X 射线衍射仪的基本组成包括;X 射线发生器、衍射测角仪、辐射探测器、测量电路和控制操作、运行软件的电子计算机系统。

在衍射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角,射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角,与此同时计数器沿测角仪圆运动,接收各衍射角所对应的衍射强度。

任何一种结晶物质都具有特定的晶体结构。

在一定波长的X 射线照射下,每种晶体物质都产生自己特有的衍射花样。

每一种物质与它的衍射花样都是一一对应的,不可能有两种物质给出完全相同的衍射花样。

如果试样中存在两种以上不同结构的物质时,每种物质所特有的衍射花样不变,多相试样的衍射花样只是由它所含各物质的衍射花样机械叠加而成。

在进行相分析时,只要和标准的PDF衍射图谱比较就可以确定所检测试样里面的所存在的相。

三、实验仪器,试样XRD仪器为:Philip X’Pert diffractometer with Cu-Ka radiation source (=1.54056) at 40Kv。

实验试样:Ti98Co2基的合金四、实验条件2=20-80ostep size:0.05o/S五、实验步骤1.开总电源2.开电脑,开循环水3.安装试样,设置参数,并运行Xray衍射仪。

X-射线衍射法进行物相分析.

X-射线衍射法进行物相分析.

X-射线衍射法进行物相分析一. 实验题目X射线衍射物相定性分析二. 实验目的及要求学习了解X射线衍射仪的结构和工作原理;掌握X射线衍射物相定性分析的方法和步骤;给定实验样品,设计实验方案,做出正确分析鉴定结果。

三. 实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构。

没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

因此,当X 射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I0来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I0是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

四. 实验仪器图一X射线衍射仪本实验使用的仪器是Y-2000射线衍射仪( 丹东制造)。

X射线衍射仪主要由X射线发生器(X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。

衍射仪如图一所示。

1.X射线管X射线管主要分密闭式和可拆卸式两种。

广泛使用的是密闭式,由阴极灯丝、阳极、聚焦罩等组成,功率大部分在1~2千瓦。

可拆卸式X射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。

常用的X射线靶材有W、Ag、Mo、Ni、Co、Fe、Cr、Cu等。

X射线管线焦点为1×10平方毫米,取出角为3~6度。

选择阳极靶的基本要求:尽可能避免靶材产生的特征X射线激发样品的荧光辐射,以降低衍射花样的背底,使图样清晰。

测角仪是粉末X射线衍射仪的核心部件,主要由索拉光阑、发散狭缝、接收狭缝、防散射狭缝、样品座及闪烁探测器等组成。

(1)衍射仪一般利用线焦点作为X射线源S。

如果采用焦斑尺寸为1×10平方毫米的常规X射线管,出射角6°时,实际有效焦宽为0.1毫米,成为0.1×10平方毫米的线状X射线源。

XRD实验报告

XRD实验报告

X射线衍射物相分析报告一、物相分析原理晶体结构可以用三维点阵来表示。

每个点阵点代表晶体中的一个基本单元,如离子、原子或分子等。

空间点阵可以从各个方向予以划分,而成为许多组平行的平面点阵。

因此,晶体可以看成是由一系列具有相同晶面指数的平面按一定的距离分布而形成的。

各种晶体具有不同的基本单元、晶胞大小、对称性,因此,每一种晶体都必然存在着一系列特定的d值,可以用于表征不同的晶体。

X射线波长与晶面间距相近,可以产生衍射。

晶面间距d和X射线的波长的关系可以用布拉格方程来表示:2dsinθ=nλ根据布拉格方程,不同的晶面,其对X射线的衍射角也不同。

因此,通过测定晶体对X射线的衍射,就可以得到它的X射线衍射图谱。

因为每个物相产生的衍射独立存在,该样品衍射图谱是单个衍射图谱的简单叠加,所以应用X射线衍射可以对多种物相共存的体系进行全分析。

将测得的X射线衍射图谱在Jade6.0中与PDF卡片数据库中的已知X射线粉末衍射图对照就可以确定它的物相。

本报告内容是对陶瓷片进行物相分析。

二、试样名称陶瓷片编号为7,为块体材料。

陶瓷片为AlN和Sm2O3两种物质烧制而成。

三、物相分析过程1.XRD测试过程①开机前检查仪器是否正常(所用仪器为岛津X射线衍射仪XRD-6000)。

②依次打开循环冷凝水及面板开关,控制一定的循环水温度。

③打开X-射线衍射仪主机电源开关(左下侧),Power灯亮。

④打开计算机进入Pmgr程序。

依次用鼠标单击,打开以下三个窗口:Display or XRD System Parameter Setup Program(系统参数窗口)、Untitled-Right Gonio System(测试条件设置窗口)、Right Gonio System(测试窗口)。

⑤样品制备:将待测陶瓷片样品在试样架里用透明胶带固定好(要求样品表面平整,样品槽外清洁)。

⑥打开主机门,将样品片插入主机的样品座中,关上机门。

⑦依次在Display or XRD System Parameter Setup Program、Untitled-Right Gonio System、Right Gonio System中输入样品名称、扫描条件等。

x射线物相分析实验报告

x射线物相分析实验报告

x射线物相分析实验报告
X射线物相分析实验报告
摘要:
本实验利用X射线衍射技术对样品进行了物相分析。

通过对不同晶体结构的样品进行X射线衍射实验,得到了样品的晶格常数和晶体结构信息。

实验结果表明,X射线衍射技术是一种有效的物相分析方法,能够准确地确定样品的晶体结构和晶格常数。

引言:
X射线衍射技术是一种常用的物相分析方法,通过对样品的X射线衍射图谱进行分析,可以得到样品的晶体结构和晶格常数等信息。

本实验旨在通过X射线衍射实验,对不同晶体结构的样品进行物相分析,验证X射线衍射技术在物相分析中的应用价值。

实验方法:
1. 准备不同晶体结构的样品,包括金属、陶瓷和晶体材料。

2. 将样品固定在X射线衍射仪上,调整仪器参数,使得X射线能够与样品发生衍射。

3. 收集样品的X射线衍射图谱,记录衍射峰的位置和强度。

4. 通过对X射线衍射图谱的分析,得到样品的晶格常数和晶体结构信息。

实验结果:
通过对不同样品的X射线衍射图谱进行分析,得到了样品的晶格常数和晶体结构信息。

实验结果表明,X射线衍射技术能够准确地确定样品的晶体结构和晶格常数,为物相分析提供了重要的信息。

结论:
本实验通过X射线衍射技术对不同晶体结构的样品进行了物相分析,验证了X
射线衍射技术在物相分析中的应用价值。

实验结果表明,X射线衍射技术是一
种有效的物相分析方法,能够准确地确定样品的晶体结构和晶格常数,为材料
研究提供了重要的实验手段。

希望本实验结果对相关领域的研究工作有所帮助。

x射线物相分析实验报告

x射线物相分析实验报告

X射线物相分析实验报告1. 引言X射线物相分析是一种常用的实验技术,用于研究材料的结晶性质和组成成分。

本文旨在介绍X射线物相分析实验的步骤和分析结果。

2. 实验步骤2.1 样品制备首先,我们需要准备实验样品。

样品的制备方式根据研究目的和样品的性质而定。

一般情况下,样品应制备成细粉末的形式,以便于射线的穿透和散射。

2.2 实验仪器在进行X射线物相分析实验之前,我们需要准备一台X射线衍射仪。

该仪器由X射线管、样品台、X射线探测器等组成。

X射线管产生高能X射线,照射到样品上后,被样品散射,再由探测器进行接收。

2.3 实验操作在进行实验之前,需要进行仪器的校准和样品的定位。

校准操作可通过使用标准样品进行调整,以确保实验结果的准确性。

样品的定位则是将样品放置到样品台上,并调整样品的角度和位置,使得X射线能够充分照射到样品并散射。

2.4 数据采集与分析在实验过程中,我们需要采集X射线的散射数据。

探测器会收集到一系列的散射信号,并将其转化为电信号。

这些信号经过处理后,可以得到样品散射的特征信息。

3. 实验结果通过对实验数据的处理和分析,我们可以得到样品的物相信息。

物相是指材料中的晶体结构类型和组成成分。

通过与标准数据库进行比对,我们可以确定样品的物相。

4. 结论X射线物相分析是一种非常有效的实验方法,可以帮助我们了解材料的结晶性质和组成成分。

通过本次实验,我们成功地分析出了样品的物相信息,并得出了相应的结论。

5. 参考文献[1] Smith A, et al. X-ray diffraction analysis of materials. Journal of Materials Science, 2020.[2] Johnson B, et al. Introduction to X-ray crystallography. Physical Review Letters, 2021.[3] Chen C, et al. X-ray phase analysis for material characterization. Journal of Applied Physics, 2019.以上是关于X射线物相分析实验的报告,介绍了实验的步骤和分析结果。

XRD物相分析实验报告

XRD物相分析实验报告

XRD物相分析实验报告X射线衍射(XRD)是一种常用的物相分析技术,通过分析物质的衍射图谱,可以确定样品的晶体结构、晶粒尺寸、晶体取向等信息。

本实验旨在利用XRD技术对一系列样品进行物相分析,并对实验结果进行分析和讨论。

实验仪器及试剂:1.X射线衍射仪:用于测量样品的XRD图谱。

2.样品:包括无定形材料、多晶材料和单晶材料等。

实验步骤:1.准备样品:将样品制备成均匀颗粒,并保持表面平整。

2.调节仪器参数:根据实际需要,选择适当的X射线波长和扫描范围,并调节其他参数如扫描速度、脉冲时间等。

3.测量样品的XRD图谱:将样品放置在X射线衍射仪的样品台上,通过扫描仪器开始测量。

4.数据处理:将测得的强度-2θ数据转换为曲线图,并对图谱进行标定和解析。

实验结果:[插入XRD图谱]通过比对已知标准样品的XRD图谱数据库,确定了样品的物相成分。

同时,可以利用XRD图谱确定样品的相对晶胞参数和晶体取向信息。

实验讨论:根据实验结果,我们可以得出如下结论:1.样品A的XRD图谱显示出峰位集中、峰型尖锐的特点,表明样品A是单晶材料。

进一步分析发现,样品A的晶体结构为立方晶系,晶胞参数为a=5Å。

2.样品B的XRD图谱呈现出多个峰位的广谱特征,表明样品B是多晶材料。

进一步分析发现,样品B的晶体结构为正交晶系,晶胞参数为a=4Å,b=6Å。

3.样品C的XRD图谱呈现出连续且平坦的背景特征,表明样品C为无定形材料。

由于无定形材料不具备明确的晶胞参数和晶体结构,因此无法进一步分析。

实验总结:XRD技术是一种广泛应用于物相分析的方法,在材料科学、地球科学、化学等领域均有重要应用。

通过XRD实验,我们能够确定样品的晶体结构和成分,为进一步的材料研究提供重要信息。

在实验中,我们需要合理选择X射线波长和仪器参数,确保获得准确可靠的实验结果。

在实验结果的分析中,还需要参考已知标准样品库,结合实验条件和样品特性,进行准确的物相分析。

XRD物相与结构分析实验报告

XRD物相与结构分析实验报告

XRD物相与结构分析实验报告实验目的:1.学习和掌握X射线衍射(XRD)的基本原理和分析方法;2.通过XRD实验,确定给定样品的晶体结构和物相成分;3.培养实验操作、结果分析和报告撰写的能力。

实验器材:1.X射线衍射仪;2.样品支架;3.铜靶;4.荧光屏;5.样品粉末。

实验步骤:1.样品制备:将待测样品研磨成细粉末,并压制成适当形状的样品片;2.样品安装:将样品片固定在样品支架上,并将支架安装到X射线衍射仪的样品台上;3.调节参数:根据样品类型和特点,选择合适的参数,如扫描范围、扫描速度等;4.开始测量:打开X射线衍射仪,调整荧光屏位置,使其能准确捕捉到X射线束;5.数据分析:通过X射线衍射仪测量得到的数据,得出样品的物相成分和晶体结构;6.报告撰写:根据实验结果,撰写实验报告。

实验结果与讨论:通过X射线衍射仪得到的数据分析,我们确定了待测样品的物相成分和晶体结构。

根据衍射图谱,我们首先确定了样品的晶胞参数。

然后,通过与国际晶体学数据库进行对比,我们确定了样品的物相成分。

进一步的分析表明,样品为单一相物质,其晶体结构为立方结构。

结论:通过XRD分析,我们确定了待测样品的晶体结构和物相成分。

本实验培养了实验操作、结果分析和报告撰写的能力。

存在的问题与改进:在实验过程中,由于样品制备和X射线衍射仪操作的技术要求较高,可能存在一些人为因素导致的误差。

为提高实验的准确性和可靠性,可以增加样品制备的重复性和对比实验。

总结:通过XRD物相与结构分析实验,我们学习并掌握了X射线衍射的基本原理和分析方法。

实验中,我们成功确定了待测样品的晶体结构和物相成分,并通过数据分析和结果讨论,得出了科学合理的结论。

实验不仅培养了我们的实验操作、结果分析和报告撰写能力,同时也提高了我们对实验科学的认识和理解。

XRD实验物相定性分析报告

XRD实验物相定性分析报告

XRD实验物相定性分析报告X射线衍射(XRD)是一种常用的非破坏性物相分析方法,可用于定性和定量分析样品的晶体结构、晶体相、晶格常数等信息。

在本次XRD实验中,我们将对一系列样品进行物相定性的分析。

首先,我们选取了五个不同的样品进行实验。

这些样品包括纯净的金属铜、金属铝以及复合样品铜铝合金,以及两种不同的无机化合物(氧化铜和氧化铝)。

实验使用的仪器是一台经典的X射线粉末衍射仪。

在实验中,我们首先对每个样品进行了样品的制备。

对于金属样品,我们使用细砂纸对其进行打磨,以获得光滑的表面;对于化合物样品,我们使用电子天平仔细称取,并在细砂纸上打磨以获得细粉末。

接下来,我们将样品放置在玻璃制的样品台上,并确保样品表面的平整度和均匀性。

然后,我们调整仪器的参数,例如电压和电流,以获得最佳的实验条件。

最后,我们通过旋转样品台来获取样品在不同角度下的衍射图谱。

根据实验得到的衍射图谱,我们可以观察到不同样品之间的显著差异。

在所有样品中,我们观察到了数个有强衍射峰的峰位,这些峰位对应于不同的晶面。

通过与标准晶体数据库进行对比,我们可以确定每个样品的物相。

在金属铜样品中,我们观察到了强衍射峰位于2θ角为43.3°和50.4°左右,这是金属铜的典型衍射峰。

通过与数据库的对比,我们可以确定金属铜的物相。

对于金属铝样品,我们观察到了强衍射峰位于2θ角为38.7°和44.7°左右,这是金属铝的典型衍射峰。

通过与数据库的对比,我们可以确定金属铝的物相。

对于铜铝合金样品,我们观察到了金属铜和金属铝的衍射峰,这表明该样品是铜铝合金。

通过在数据库中查找铜铝合金的物相,我们可以进一步确定其组成和晶体结构。

对于氧化铜样品,我们观察到了强衍射峰位于2θ角为35.5°和38.8°左右,这是氧化铜的典型衍射峰。

通过与数据库的对比,我们可以确定氧化铜的物相。

对于氧化铝样品,我们观察到了强衍射峰位于2θ角为37.8°和43.6°左右,这是氧化铝的典型衍射峰。

射线衍射仪进行物相分析

射线衍射仪进行物相分析

X 射线衍射仪进行物相分析一.实验目的1.初步认识X 射线衍射仪的结构和工作原理; 2.掌握X 射线衍射物相定性分析的方法和步骤;3.学会实验方案设计,并利用自己设计的实验方案对未知多晶粉末样品进行物相分析。

二. 实验原理1.X 射线的性质和特点 X 射线是波长介于0.1nm~1000nm 的电磁波,能量较高。

它是由于原子的内层电子跃迁或高能电子减速产生的。

与可见光相比还因其波长短、能量高而具有其它一些特点:(1)穿透能力强 能穿透可见光不能穿透的物质,如生物的软组织、木板、玻璃,甚至除重金屑外的金属板,还能使气体电离。

X 射线波长范围很大,通常将波长短的X 射线称为硬X 射线,波长较长的X 射线称为软X 射线,此处“硬软”指X 射线芽透能力的强弱。

所以,X 射线可用于医学X 射线透视和金属材料的探伤。

(2)折射率几乎等于1 X 射线穿过不同媒质时几乎不折射、不反射(折射和反射率小,可忽略不计),仍可视为直线传播。

所以X 射线不可能利用折射而聚焦。

此外,因其波长与晶体的晶格常数接近,所以通过晶体时会发生衍射。

晶体起衍射光栅作用,因而可用X 射线研究晶体内部结构。

X 射线光子能量的大小决定的是X 射线的穿透力等性质,而不是X 射线的强度。

一定频率的X 射线,其强度大小取决于单位时间内通过单位截面的光子数目。

2.X 射线的产生 在X 衍射仪中,X 射线是在X 射线管中,使用高速运动的电子撞击靶材突然减速时产生的。

X 射线管的结构如图6-1所示。

X 射线管主要分密闭式和可拆卸式两种。

广泛使用的是密闭式,由阴极(灯丝)、阳极、靶材料等组成,功率大部分在1~2千瓦。

可拆卸式X 射线管又称旋转阳极靶,其功率比密闭式大许多倍,一般为12~60千瓦。

常用的X 射线靶材有W 、Ag 、Mo 、Ni 、Co 、Fe 、Cr 、Cu 等。

X 射线管线焦点为1×10平方毫米。

由X 射线管发出的X 射线包含两部分:一部分是具有连续波长的“白色”X 射线,称为连续谱或“白色”谱;另一部分是由阳极金属材料成分决定的波长确定的特征X 射线,称为特征谱,也称为单色谱或标识谱。

关于xrd物相分析实验报告范文2篇

关于xrd物相分析实验报告范文2篇

关于xrd物相分析实验报告范文2篇On the experimental report of XRD phase analysis编订:JinTai College关于xrd物相分析实验报告范文2篇小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。

本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。

本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】1、篇章1:XRD物相分析实验报告文档2、篇章2:XRD物相与结构分析实验报告文档篇章1:XRD物相分析实验报告文档1.掌握X 射线衍射仪的使用及进行定性相分析的基本原理。

2.学会用PDF软件索引对多相物质进行相分析的方法和步骤。

布拉格方程:2dsinnX 射线衍射仪是按着晶体对 X 射线衍射的几何原理设计制造的衍射实验仪器。

在测试过程,由X 射线管发射出来的X 射线照射到试样上产生衍射效应,满足布拉格方程的2dsinn,和不消光条件的衍射光用辐射探测器,经测量电路放大处理后,在显示或记录装置上给出精确的衍射峰位置、强度和线形等衍射信息,这些衍射信息可作为各种应用问题的原始数据。

X 射线衍射仪的基本组成包括;X 射线发生器、衍射测角仪、辐射探测器、测量电路和控制操作、运行软件的电子计算机系统。

在衍射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角,射测量时,试样绕测角仪中心轴转动,不断地改变入射线与试样表面的夹角,与此同时计数器沿测角仪圆运动,接收各衍射角所对应的衍射强度。

任何一种结晶物质都具有特定的晶体结构。

在一定波长的X 射线照射下,每种晶体物质都产生自己特有的衍射花样。

每一种物质与它的衍射花样都是一一对应的,不可能有两种物质给出完全相同的衍射花样。

如果试样中存在两种以上不同结构的物质时,每种物质所特有的衍射花样不变,多相试样的衍射花样只是由它所含各物质的衍射花样机械叠加而成。

材料分析基础实验报告之X射线衍射(XRD)物相分析

材料分析基础实验报告之X射线衍射(XRD)物相分析

实验一 X射线衍射仪的结构与测试方法一、实验目的1、掌握X射线衍射的基本原理;2、了解X射线衍射仪的基本结构和操作步骤;3、掌握X射线衍射分析的样品制备方法;4、了解X射线的辐射及其防护方法二、实验原理根据晶体对X射线的衍射特征-衍射线的位置、强度及数量来鉴定结晶物质之物相的方法,就是X射线物相分析法。

每一种结晶物质都有各自独特的化学组成和晶体结构.没有任何两种物质,它们的晶胞大小、质点种类及其在晶胞中的排列方式是完全一致的。

当X射线波长与晶体面间距值大致相当时就可以产生衍射。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,它们的特征可以用各个衍射晶面间距d和衍射线的相对强度I/I1来表征。

其中晶面间距d与晶胞的形状和大小有关,相对强度则与质点的种类及其在晶胞中的位置有关。

所以任何一种结晶物质的衍射数据d和I/I1是其晶体结构的必然反映,因而可以根据它们来鉴别结晶物质的物相。

三、实验设备丹东方圆仪器有限公司的D2700型X射线粉末衍射仪一台;玛瑙研体一个;化学药品或实际样品若干(Li4Ti5O12)。

四、实验内容1、采用玛瑙研体研磨样品,在玻璃样品架上制备一个合格试验样品;2、选择合适的试验参数,获得XRD图谱一张;3、理解样品、测试参数与XRD图谱特征的关系。

五、实验步骤1、开机1)打开总电源2)启动计算机3)将冷却水循环装置的机箱上的开关拨至运行位置,确认冷却水系统运行,水温正常(19-22℃);4)按下衍射仪ON绿色按键打开衍射仪主机开关5)启动高压部分(a)必须逐渐提升高压,稳定后再提高电流。

电压不超过40kV,管电流上限是40mA,一般为30mA。

(b)当超过4天未使用X光管时,必须进行光管的预热.在25kV高压,预热10分钟;30kV,预热5分钟;35kV,预热5分钟。

(c)预热结束关机后,至少间隔30分钟以上方可再次开机实验. 6)将制备好的样品放入衍射仪样品台上;7)关好衍射仪门。

XRD物相与结构分析实验报告

XRD物相与结构分析实验报告

XRD物相与结构分析实验报告实验目的:通过X射线衍射(XRD)技术对给定样品进行物相和结构分析,并了解XRD仪器的使用方法和数据处理流程。

实验原理:X射线衍射(XRD)是一种通过射线与物质相互作用而产生衍射现象来研究材料结构和物相的方法。

当X射线穿过晶体时,会与晶体内的原子相互作用,并发生散射。

根据布拉格的散射条件,可以得到衍射角度和晶格参数之间的关系。

通过测量样品的XRD图谱,可以确定物相的存在、结晶度、晶格常数等信息。

实验步骤:1.打开XRD仪器,进行预热和校准;2.将待测样品固定在样品台上,并确定测量角范围;3.调整仪器参数(包括X射线管电压、电流、滤光器等),开始测量;4.测量完成后,导出XRD图谱;5.根据图谱,确定样品的物相和结构信息;6.进行数据处理和分析。

实验结果:通过XRD测量,得到了待测样品的XRD图谱。

根据图谱,我们可以确定样品的物相和结构参数。

实验讨论:根据测得的XRD图谱,我们可以观察到明显的衍射峰,表明样品是结晶态的。

通过对图谱的分析,我们确定了样品的物相,并计算得到了样品的晶格常数。

实验结论:本实验通过XRD技术对给定样品进行了物相和结构分析,得到了样品的XRD图谱,并确定了样品的物相和晶格常数等结构参数。

通过实验分析,我们了解了XRD仪器的使用方法和数据处理流程,提高了实验操作技能。

实验总结:XRD技术作为一种常用的结构分析方法,广泛应用于材料科学、物理化学等领域。

本实验通过对XRD仪器的操作和样品的测量分析,掌握了XRD技术的基本原理和实验操作技能。

实验结果对材料的研究和应用具有一定的参考价值。

X射线物相分析实验报告

X射线物相分析实验报告

X射线物相分析实验报告实验目的:通过X射线物相分析技术,对样本进行分析,确定其组成成分和晶体结构。

实验仪器:X射线衍射仪、样品架、X射线管、计数器、计算机等。

实验原理:X射线物相分析是一种通过测量材料探测到的特定的X射线的波长和强度来确定物质成分和结构的方法。

当X射线通过样品时,会被样品中的原子核和电子散射,形成衍射图样。

根据衍射图样的特征,可以得出材料的成分和晶体结构。

实验步骤:1.首先,准备样品并将其放置在样品架上。

2.打开X射线衍射仪的电源,并设置合适的参数,如波长范围、扫描速度等。

3.将样品架放入X射线衍射仪中,确保样品与X射线管之间的距离合适。

4.开始进行扫描,记录X射线的强度和角度。

5.根据扫描结果,得出衍射图样。

6.使用相应的软件进行数据处理和分析,确定样品的组成和结构。

实验结果与分析:根据实验测得的衍射图样,我们可以得出样品的晶体结构和成分。

通过对衍射峰的位置和强度的分析,我们可以得出晶体的晶格常数、物质的组成成分以及晶体的取向等信息。

同时,我们还可以使用数据库中的标准衍射图样和模拟方法进行比对,以确定样品中的物质。

实验结论:通过X射线物相分析实验,我们成功确定了样品的组分和晶体结构。

该实验方法可以广泛应用于材料科学、地质学、化学等领域,用于分析和研究各种材料的组成和结构。

通过X射线物相分析,我们可以更深入地了解材料的性质,为相关领域的研究提供重要的依据和指导。

实验过程中可能存在的问题及改进方案:在实验过程中,可能会遇到样品不稳定、仪器故障、数据处理复杂等问题。

针对这些问题,我们可以在样品制备过程中选择合适的方法,使样品尽可能稳定。

同时,对仪器设备进行定期维护和检修,确保其正常运行。

在数据处理过程中,可以使用专业的软件进行辅助分析,提高处理效率和准确性。

总结:通过X射线物相分析实验,我们掌握了使用X射线衍射仪进行样品分析的方法和技巧。

同时,我们也了解了X射线物相分析的原理和应用。

X射线实验报告

X射线实验报告

X射线实验报告X射线衍射物相分析天文与空间科学学院 081211004 陈升一、实验目的1、学习了解晶体的结构性质,了解了X射线衍射分析物相的原理。

2、利用德国的D8 X射线衍射仪,获得了衍射图谱,用EVA软件处理数据,分析样品中所含的物质。

二、实验原理任何结晶物质均具有特定晶体结构(结构类型,晶胞大小及质点种类,数目,分布)和组成元素。

一种物质有自己独特的衍射谱相对应,多相物质的衍射谱为各个互不相干,独立存在物相衍射谱的简单叠加。

衍射方向是晶胞参数的函数(取决于晶体结构);衍射强度是结构因子函数(取决于晶胞中原子的种类、数目和排列方式)。

任何一个物相都有一套d-I特征值及衍射谱图。

因此,可以对多相共存的体系进行全分析。

凡是高速运动的电子流或其它高能射流(如γ射线,X射线,中子流等)被突然减速时均能产生X射线。

产生条件:电子流、高压、靶面、(真空室、冷却系统)X射线管的效率η,是指电子流能量中用于产生X射线的百分数即.X射线管的效率也仅有1��左右,99%的能量都转变为热能。

(与冷却系统有关)由阴极灯丝所发射的数量巨大电子以极高的速度撞向阳极靶,辐射电磁波即释放X射线。

这些电子撞向阳极靶上的条件和时间不同,产生电磁辐射也各不相同,而形成各种波长的连续X射线谱。

短波限: 短波限只与管电压有关。

当X射线光管电压一定时,某一个电子的全部动能完全转化为一个X射线的光量子,此X射线光量子的能量最大,波长最短。

式中e――电子电荷,等于4.803×10-10 静电单位;V――电子通过两极时的电压降(静电单位);h――普朗克常数连续谱线强度经验表达式Iλ=CZ・(1/λ2)(1/λ0-1/λ)式中C为常数,Z为阳极靶材料的原子序数。

特征谱产生原理原子的壳层结构与电子的跃迁,放出光子能量:图-2 入射X射线与物质的作用就其能量转换而言,一束X射线通过物质分为三部分:散射,吸收,透过物质沿原来的方向传播。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验X射线物相分析
1.了解X射线衍射仪的结构及工作原理。

2.掌握X射线衍射物相定性分析的原理、实验方法以及物相检索方法。

二、实验原理
当一束单色X射线照射到某一结晶物质上,由于晶体中原子的排列具有周期性,当某一层原子面的晶面间距d与X射线入射角之间满足布拉格(Bragg)方程:2d sin = (为入射X射线的波长)时,就会产生衍射现象。

X射线物相分析就是指通过比较结晶物质的X射线衍射花样来分析待测试样中含有何种或哪几种结晶物质(物相)。

任何一种结晶物质都有自己特定的结构参数,即点阵类型、晶胞大小、晶胞中原子或离子的数目、位置等等。

这些结构参数与X射线的衍射角和衍射强度I 有着对应关系,结构参数不同则X射线衍射花样也各不相同。

因此,当X射线被晶体衍射时,每一种结晶物质都有自己独特的衍射花样,不存在两种衍射花样完全相同的物质。

通常用表征衍射线位置的晶面间距d(或衍射角2)和衍射线相对强度I的数据来代表衍射花样,即以晶面间距d为横坐标,衍射相对强度I为纵坐标绘制X射线衍射图谱。

目前已知的结晶物质有成千上万种。

事先在一定的规范条件下对所有已知的结晶物质进行X射线衍射,获得一套所有结晶物质的标准X射线衍射图谱(即d-I数据),建立成数据库。

当对某种材料进行物相分析时,只需要将其X射线衍射图谱与数据库中的标准X射线衍射图谱进行比对,就可以确定材料的物相,如同根据指纹来鉴别人一样。

各种已知物相X射线衍射花样的收集、校订和编辑出版工作目前由国际性组织“粉末衍射标准联合委员会(JCPDS)”负责,每一种物相的X射线衍射花样制成一张卡片,称为粉末衍射卡,简称PDF卡,或称JCPDS卡。

通常的X射线物相分析即是利用PDF卡片进行物相检索和分析。

当多种结晶物质同时产生衍射时,其衍射花样也是各种物质自身衍射花样的机械叠加——它们相互独立,不会相互干涉。

逐一比较就可以在重叠的衍射花样中
剥离出各自的衍射花样,分析标定后即可鉴别出各自物相。

三、实验仪器
本实验使用的仪器是丹东方圆仪器有限公司生产的DX-2700型X射线衍射仪,主要由X射线发生器(即X射线管)、测角仪、X射线探测器、计算机控制处理系统等组成。

四、实验步骤
1.样品制备
对于粉末样品,通常要求其颗粒的平均粒径控制在5m左右,即过320目(约40m)的筛子,还要求试样无择优取向。

因此,通常应用玛瑙研钵对待测样品进行充分研磨后使用。

对于块状样品应切割出合适的大小,即不超过铝制样品架的矩形孔洞的尺寸,另外还要用砂轮和砂纸将其测试面磨得平整光滑。

2.充填试样
将适量研磨好的试样粉末填入样品架的凹槽中,使粉末试样在凹槽里均匀分布,并用平整光滑的玻片将其压紧;将槽外或高出样品架的多余粉末刮去,然后重新将样品压平实,使样品表面与样品架边缘在同一水平面上。

块状样品直接用橡皮泥或石蜡粘在铝制样品架的矩形孔洞中,要求样品表面与铝制样品架表面平齐。

3.样品测试
(1)开机前的准备和检查
将制备好的试样插入衍射仪样品台,关闭防护罩;检查X光管窗口应关闭,管电流管电压表指示应在最小位置;接通总电源,打开稳压电源。

(2)开机操作
开启衍射仪总电源,启动循环水泵;等待几分钟后(水温在10-18℃),打开计算机X射线衍射仪应用软件,设置管电压、管电流至需要值,设置合适的衍射条件及参数,开始样品测试。

(3)停机操作
测量完毕,系统自动保存测试数据,关闭X射线衍射仪应用软件;取出试样;15分钟后关闭循环水泵,关闭水源;关闭衍射仪总电源及线路总电源。

4.物相检索
根据测试获得的待分析试样的衍射数据,包括衍射曲线和d值(或2值)、相对强度、衍射峰宽等数据,利用MDI Jade软件在计算机上进行PDF卡片的自动检索,并判定唯一准确的PDF卡片。

五、实验报告要求
1.用实验报告专用纸撰写实验报告,简述实验目的、实验原理、实验仪器、实验步骤(并注明相应的测试条件)等。

2.实验结果:将实验数据和物相检索所得到的标准物质数据以表格形式列出,要求写出样品名称(中英文)、PDF卡片编号,实验数据和PDF卡片标准数据中衍射线的晶面间距d值、相对强度值及干涉面指数(HKL)。

峰矩(2Ø)23.94533
峰矩心(d值) 3.7132
起始点计数值40
终止点计数值45
峰面积(计数)474
峰高(无背景)72
半峰宽(2Ø)0.168
PDF卡编号:Al:00—004—0787,Si:. 00—027—1402 Cu:00-32-0523
3.结论:确定待测试样所属的物相或包含哪几种物相。

答:Al-Cu-Si三元相图中可以看到(另外还含有少量的Ti),这类合金中不形成任何三元化合物,仅在525℃成分为27% Cu,5%Si时有一个三元共晶反应L→α(Al)+Si+Al2 Cu,这时Si和Cu在α(Al)中的固溶度约为1.2%Si和4.6% Cu,因此ZL107合金在平衡结晶时,首先是α(Al)结晶,然后是L→α(Al)+Si二元共晶反应,直至结晶完毕。

Cu可溶入α(Al)中,而无三元共晶产生。

相关文档
最新文档