FPGA经验谈

FPGA经验谈

寒假学习经验谈

今年的寒假时间相比往年少了很多天,但是相比去年而言,今年显得尤为重要,自己很重视这次的留校,尽自己的努力学习。

寒假的学习分为两个阶段,第一个阶段:全面的对单片机做一个总结,用了将近十天的时间,单片机是以后学习的基础,要想走的远,基础要打好,单片机的外设模块一个一个的走了一遍,具体的就不多说了;

第二个阶段:对EDA的入门学习,选择学习EDA是经过我的深思熟虑才做出的决定,总的说来,EDA的学习有十三天左右,因为是入门阶段,学的东西比较基础,有些知识很容易理解但却很容易遗忘,同样有些知识就不能理解,模模糊糊的。初学EDA ,先要学习的是Verilog 语言,Verilog语言是对硬件的描述语言,在很多地方与C语言不同,存在着很大的差异性,例如在写代码的时候,要在开头定义所有的输入量和输出量,还应该定义位宽,在一个.V文件中只能有一个模板module—endmodule ;我自己感觉,在用V语言写代码的时候,应用比较多的还是always语句、case语句、if-else语句,说实话,也就这些个语句能够明白,其他的语句可能是用的比较少,知道其用法的像assign顺序执行语句、fork-join 并行块,task-endtask任务语句,不过在使用fork-join语句的时候一直出现错误,错误显示fork-join语句不可综合,但是资料上和听学长讲,fork-join语句是可以综合的。在V语言中,若使用数据类型的时候没有定义位宽,系统会有默认值,如INT数据在未定义时,位宽是32位,reg存储型数据位宽默认值也是32位,还有一点就是在使用assign语句的时候,若为定义,系统默认为连线型数据wire。

Verilog编写代码时出现的错误和警告:

Error (10112): Ignored design unit "bingxing" at bingxing.v(1) due to previous errors

:严重错误多是头文件的问题;

Error (10170): Verilog HDL syntax error at paobiao.v(26) near text "always"; expecting "@", or "end", or an identifier ("always" is a reserved keyword ), or a system task, or "{", or a sequential statement :错误原因:看起来无从下手,其实是在写代码的时候,begin end缺失或者是在结束处未加;等;

Warning (10034): Output port "cnt4" at Verilog1.v(3) has no driver :定义了cnt4,但是没有使用;

Warning (10230): Verilog HDL assignment warning at jishu.v(19): truncated value with size 32 to match size of target (4) :使用数据的时候没有定义位宽如:cnt<=cnt+1 (1’b1)

在写V代码的时候会遇到很多的警告,有些警告如共多少个管脚、未使用管脚没有接地、未配置管脚、未配置EPPROM等这些警告是可以忽略和消除的,还有一些警告如某管脚没有逻辑功能等就要重视了;

EDA的学习是一项长期的事情,不能够追求进度的快慢,要打好基础,一步一步的走。总结起来EDA的学习一定要坚持。

一个硬件工程师高手的设计经验分享(上)

推荐到论坛 一:成本节约 现象一:这些拉高/拉低的电阻用多大的阻值关系不大,就选个整数5K 吧 点评:市场上不存在5K 的阻值,最接近的是 4.99K(精度1%),其次是5.1K(精度5%),其成本分别比精度为20%的4.7K 高4倍和2 倍。20%精度的电阻阻值只有1、1.5、2.2、3.3、4.7、6.8几个类别(含10的整数倍);类似地,20%精度的电容也只有以上几种值,如果选了其它的值就必须使用更高的精度,成本就翻了几倍,却不能带来任何好处。 现象二:面板上的指示灯选什么颜色呢?我觉得蓝色比较特别,就选它吧 点评:其它红绿黄橙等颜色的不管大小(5MM 以下)封装如何,都已成熟了几十年,价格一般都在5毛钱以下,而蓝色却是近三四年才发明的东西,技术成熟度和供货稳定度都较差,价格却要贵四五倍。目前蓝色指示灯只用在不能用其它颜色替代的场合,如显示视频信号等。 现象三:这点逻辑用74XX 的门电路搭也行,但太土,还是用CPLD吧,显得高档多了 点评:74XX的门电路只几毛钱,而CPLD至少也得几十块,(GAL/PAL虽然只几块钱,但公司不推荐使用)。成本提高了N 倍不说,还给生产、文档等工作增添数倍的工作。现象四:我们的系统要求这么高,包括MEM、CPU、FPGA等所有的芯片都要选最快的 点评:在一个高速系统中并不是每一部分都工作在高速状态,而器件速度每提高一个等级,价格差不多要翻倍,另外还给信号完整性问题带来极大的负面影响。 现象五:这板子的PCB 设计要求不高,就用细一点的线,自动布吧 点评:自动布线必然要占用更大的PCB 面积,同时产生比手动布线多好多倍的过孔,在批量很大的产品中,PCB 厂家降价所考虑的因素除了商务因素外,就是线宽和过孔数量,它们分别影响到PCB 的成品率和钻头的消耗数量,节约了供应商的成本,也就给降价找到了 理由。 现象六:程序只要稳定就可以了,代码长一点,效率低一点不是关键 点评:CPU 的速度和存储器的空间都是用钱买来的,如果写代码时多花几天时间提高一下程序效率,那么从降低CPU 主频和减少存储器容量所节约的成本绝对是划算的。CPLD/FPGA设计也类似。 二:低功耗设计 现象一:我们这系统是220V供电,就不用在乎功耗问题了 点评:低功耗设计并不仅仅是为了省电,更多的好处在于降低了电源模块及散热系统的成本、

FPGA_ASIC-基于FPGA的ECC算法高速实现

基于FPGA 的ECC 算法高速实现? 武玉华,黄允,李艳俊,欧海文 (北京电子科技学院,北京 100070) 摘要:椭圆曲线密码体制(Elliptic Curve Cryptosystem ,ECC)是目前已知的所有公钥密码体制中能提供最高比特强度(strength-per-bit )的一种公钥加密体制。研究椭圆曲线密码算法的芯片设计有较大的研究价值和实用价值。本文在深入研究椭圆曲线加解密理论基础上,使用Verilog 硬件描述语言实现了一种ECC 加密算法,具有高速低功耗的特点。 关键词:ECC ;FPGA ;高速 中图分类号:TP309 文献标识码:A The FPGA design of ECC encryption algorithm WU Yu-hua, HUANG Yun, LI Yan-jun, OU Hai-wen (Beijing Electronic Science and Technology Institute ,Beijing 100070 China) Abstract :ECC is one of the known public crypto methods that provide the best strength-per-bit. Researching in the hardware design of ECC have much value. In this paper, we lucubrate the ECC’s theory, and implement a sort of ECC encryption algorithm, it has some advantages such as high-speed and low-exploit. Keywords :ECC; FPGA; high-speed 1 引言 1985年,Neal Koblitz 和V https://www.360docs.net/doc/787528053.html,ler 提出了基于椭圆曲线群上离散代数问题的公钥密码体制——椭圆曲线密码体制(简记为ECC)。ECC 与RSA 相比具有密钥更短、安全性更高的特点,通常认为163位的ECC 密钥长度能够提供相当于1024位RSA 密钥长度的安全性,571位的ECC 密钥长度能够提供相当于15360位RSA 密钥长度的安全性。ECC 是目前所有公钥密码系统中单位密钥安全性最高的密码系统。因为ECC 的密钥较短,所以运算耗费的资源较少,目前ECC 广泛应用于无线连接设备中,譬如PDA, smart cards 等等。目前,欧洲、俄罗斯、韩国和中国等都己经或打算将ECC 作为国家密码标准。 椭圆曲线密码系统的基域包括素域GF (P)和二进制域GF(n 2),在硬件实现上GF(n 2)椭圆曲线密码系统占用系统资源更少,效率更高。因此最近几年有限域GF(n 2)上基本运算的硬件实现、有限域GF(n 2)上椭圆曲线密码系统的硬件实现都得到了业内重视。相对于软件实现的椭圆曲线加密/解密体制,硬件实现可以提供更高的安全性和更快的速度。本文在深入研究椭圆曲线加解密理论基础上,使用Verilog 硬件描述语言实现了一种ECC 加密算法,并通过QuartusII5.0工具进行了编译仿真,实验结果表明其功能正确,具有高速低功耗的特点。 2 椭圆曲线算法理论 2.1 椭圆曲线数学基础 2.1.1 椭圆曲线定义 椭圆曲线E 是一个光滑的Weierstrass 方程在P(K)中的全部解(x ,y)的集合。K 为域。K 上的摄影平面P(K)是一些等价类的集合{(XY :Z)}。 22322313246:E Y Z a XYZ a YZ X a X Z a XZ a Z ++=+++ 其中曲线上唯一的一个无穷远点是(0:1:0)。这个点对应于点∞。 经过上述方程作如下转化可得: 设x =X/Z,y =Y/Z ?基金项目:国家自然科学基金资助项目(70431002);北京电子科技学院信息安全与保密重点实验室基金项目(YZDJ0509)

一个合格的FPGA工程师需要掌握哪些知识

一个合格的FPGA工程师需要掌握哪些知识?这里根据自己的一些心得总结一下,其他朋友可以补充啊。 1.Verilog语言及其于硬件电路之间的关系。 2.器件结构(最好熟练掌握Spartan3,Vertix4系列的器件结构,及其资源于Verilog行为描述方法的关系。)。 3.开发工具(熟练掌握Synplify,Quartus,ISE,Modelsim)。 4.数字电路(组合电路,触发器,特别是D触发器构成分频器,奇数倍分频占空比为50%,时序电路,并且能用Verilog语言描叙。)。 5.熟悉FPGA设计流程(仿真,综合,布局布线,时序分析)。 6.熟练掌握资源估算(特别是slice,lut,ram等资源的估算)。 7.同步设计原理。 8.熟练掌握基本概念(如建立时间,保持时间,流量(即所做FPGA设计的波特率)计算,延迟时间计算(所做FPGA设计),竞争冒险,消除毛刺的方法等等)。 9.具备具体设计经验(对应届生而言如毕业设计)。 10.良好的设计思路(流水线设计即熟称打拍子,在速率资源功耗之间的折中考虑)。 一个合格的FPGA工程师至少在以下三个方面的一个非常熟悉: 1.嵌入式应用 2.DSP应用 3.高速收发器应用 将自己的走过的弯路和总结的经验与大家分享一下,希望对您有一点点

的参考价值。 首先从先从如何成为一个合格的设计者说起吧!初学者觉得一切都是挑战,一切都新鲜,不知从何处下手。我总结了学习EDA逻辑设计的4个步骤,请拍砖! 1。首先,应该好好学习一下FPGA/CPLD的设计设计流程。 不要简单的以为就是设计输入-》仿真-》综合-》实现那么一回事,要抠细,要学精,要多问每个步骤的注意事项,区分相关步骤的联系和区别。比如要搞清楚功能仿真、综合后仿真、Translate后仿真、Map 后的仿真、布局布线后仿真的作用都是什么,什么时候应该做,什么时候可以不做这些仿真!学习清楚了设计流程最大的好处就是有利于培养良好的EDA设计习惯,日后会受益非浅! 2。关于设计输入和Coding Style。 设计输入最好学习HDL语言,Verilog、VHDL都可以,可以把状态机输入和原理图输入作为补充内容,但不是重点。我在前面的帖子已经反复强调了Coding Style的重要性。因为它是逻辑设计人员的一个基本业务素质。而且Coding Style不是看几篇文章,学几条原则就能够成为高手的,他需要您在工作中不断的体会和积累,在学习的最初,有Coding Style的意识,设计者就会有意的积累,对日后发展很有好处。反之则后患无穷。 3。培养硬件的意识,培养系统的观念。 我也在交流和授课的时候很强调硬件意识,如果从形式上看,逻辑设计随着智能化和优化手段的不断发展最后会越来越灵活,越来越简单。比

FPGA CPLD ASIC学习书籍集锦

FPGA|CPLD|ASIC学习书籍集锦 《FPGA设计及应用(第二版)》评价:★★★ 作者:褚振勇齐亮田红心高楷娟西安电子科技大学出版社出版日期: 2006年12月第 2 版书号:ISBN 7-5606-1132-X/TP·0574 本书介绍了FPGA的相关基础知识, VHDL硬件描述语言,FPGA开发软件的使用;器件配置与调试;FPGA设计中的基本问题和电路设计实例等。 《CPLD/FPGA应用系统设计与(基础篇)》评价:暂无 作者:亿特科技人民邮电出版社出版日期:2005年7月书号:ISBN 7-115-13200-3/TP.4503 本书介绍了CPLD/FPGA开发工具Quartus II,并精选了10多个实际开发案例进行讲解:16位并行乘法器设计、通用16位乘法器的流水线设计、双端口RAM存储器的设计、同步/异步FIFO存储器的设计、海明码编解码器芯片的设计、RS编解码器芯片设计及其扩展应用、带PWM输出的定时器/计数器芯片设计及其扩展应用、通用存储控制器芯片的设计以及USB2.0接口芯片设计。 《FPGA数字电子系统设计与开发实例导航》评价:暂无 作者:求是科技人民邮电出版社出版日期:2005年6月书号:ISBN 7-115-13189-9/TP.4519 本书首先介绍了FPGA的相关基础知识,然后通过7个在实际工程应用中的案例详细介绍了通过FPGA 实现I2C协议要求的接口、UART控制器、USB接口控制器、数字视频信号处理器、VGA/LCD显示控制器、CAN总线控制器、以太网控制器的方法。

《Altera FPGA/CPLD 设计( 高级篇)》评价: 暂无 作者: EDA 先锋工作室 人民邮电出版社 出版日期:2005年7月 书号:ISBN 7-115-13499-5/TP.4707 本书深讨论了Altera FPGA/CPLD 的设计、优化技巧。在讨论FPGA/CPLD 设计指导原则的基础上,介绍了Altera 器件的高级应用;引领读者学习逻辑锁定设计工具,详细讨论了时序约束与静态时序分析方法;结合实例讨论如何进行设计优化,介绍了Altera 的可编程器件的高级设计工具与系统级设计技巧。 ! 《Altera FPGA/CPLD 设计 (基础篇)》评价: 暂无 作者: EDA 先锋工作室 人民邮电出版社 出版日期:2005年7月 书号:ISBN 7-115-13499-5/TP.4707 本书介绍了FPGA/CPLD 的基本设计方法。在介绍FPGA/CPLD 概念的基础上,介绍了Altera 主流FPGA/CPLD 的结构与特点,实例讲解Quartus II 与ModelSim 、Synplify Pro 等常用EDA 工具的开发流程。 《Verilog HDL 程序设计与应用》评价: 暂无 作者:王伟人民邮电出版社 出版日期:2005年7月 书号:ISBN 7-115-13204-6/TP.4534 本书第1部分讲解Verilog HDL 语法知识;第2部分是实例部分,通过从已公布的成熟源代码中精选的50多个最具代表性的建模实例,辅以框图和详细注释帮助读者理解程序,从而学习典型电路单元的建模方法;第3部分是系统设计实战,为初学者展示了一个小型系统的详细设计流程。 《CPLD/FPGA 应用开发技术与工程实践》评价: 暂无 作者: 求是科技 人民邮电出版社 出版日期:2005年1月 书号:ISBN 7-115-12720-4/TP.4272 本书介绍了CPLD 和FPGA 典型产品的结构原理、性能特点以及Altera 公司提供的开发软件-MAX+PLUSII ,列举了VHDL 语言的各种语法结构以及相应的例程。包括组合逻辑电路设计、时序逻辑电路设计、运算电路设计以及存储器电路设计等。最后用4个有一定难度的例程向读者完整地再

(完整版)FPGA资深FAE的经验独白

骏龙科技Andrew —— FPGA资深FAE的经验独白 时间:2014-08-25 来源:elecfans 作者: 关键字:FPGA FAE骏龙科技 看似简单的几个问题,Andrew却回答的井井有条,小编已经没有办法有什么其他词语去形容了。本文Andrew不仅仅对FPGA入门学习流程做了详细的分享,更是对FPGA开发工作的要求分成大公司和小公司两个层面来分析。你能想象曾经从一个疏忽学业的人成为一名资深FAE的嘛? 1. 您认为想学FPGA的话,先学好什么才最重要? Andrew:我们玩FPGA的通常就是跟数字电路打交道,要想玩得转,必须先学习并掌握最最基础的数字电路和HDL硬件描述语言,当然这只是入门必备,实际上远远不够。个人拙见,要入行除了至少掌握一种FPGA的仿真及开发调试流程之外;起码还要了解一些模拟电路知识,掌握诸如电源纹波、时钟抖动、信号质量等经常需要测量的硬件参数的测试方法;起码还要掌握一种原理图和Layout设计软件,能够查看分析调试电路板上的电路模块,如电源、时钟、存储器、配置、I/O和高速收发器等模块;起码还要掌握一种单片机的开发流程,项目中难免有一些需要配置控制的需求,使用外置单片机或者内置ARM硬核或者其他软CPU来实现,简单又方便;由于本人水平有限,其他方面这里就不再赘述。 那么,针对FPGA入门学习的一般流程,简单总结一下,供朋友们参考,有经验的大牛可以绕道: 1.首先要有开发平台,把该准备的都准备好,磨刀不误砍柴工: 比如ALTERA的Quartus II软件、开发板和配置调试工具USB Blaster,以及仿真软件Modelsim SE。软件可以从网上下载,入门功能的许可的和谐方法一大堆;开发板和USB Blaster可以借,可以买,动手能力强的朋友,自己画一块也行。对于初学者,建议找一块有详细配套教程的开发板。 2. 对于新手来讲,按部就班地学习往往就是最快的学习方法: 照猫画虎尽管囫囵吞枣一知半解,但起码能把开发流程摸熟,能跑起来。刚拿到开发板,肯定是丈二和尚摸不着头脑。这个时候,建议先根据开发板的配套教程,把原理图上的各项模块功能厘清,把FPGA周围的电源、时钟、复位、配置、GPIO和连接器等的电路原理理一理分析分析。再按照配套教程中介绍的流程,把配套的测试工程跑通,在这个阶段,

(完整版)什么是FPGA

1. FPGA与单片机的区别? 单片机和FPGA的区别,本质是软件和硬件的区别。 单片机设计属软件范畴;它的硬件(单片机芯片)是固定的,通过软件编程语言描述软件指令在硬件芯片上的执行; FPGA设计属硬件范畴,它的硬件(FPGA)是可编程的,是一个通过硬件描述语言在FPGA芯片上自定义集成电路的过程; 二者最大的区别:单片机(无论哈佛总线结构或者冯诺依曼结构)均为取出指令->执行,指令是顺序执行的(即使是中断,其发生后的中断服务程序也是顺序执行的);而FPGA(包括CPLD)是基于逻辑门和触发器的,它是并行执行方式,即 当CLOCK上升沿到来时,所有的触发器都会动作,它没有取出指令->执行这种操 作,数字电路中所有逻辑门和触发器(D,SR等)均可以实现,它适合真正意义上 的并行任务处理。 2. 单片机、FPGA、DSP、ASIC的区别 1、ASIC原本就是专门为某一项功能开发的专用集成芯片,集成度很低,成本很低,可是够用了。后来ASIC发展了一些,称为半定制专用集成电路,相对来说更接近FPGA,甚至在某些地方,ASIC就是个大概念,FPGA属于ASIC之下的一部分。 2、FPGA基本就是高端的CPLD,数字电路。这种器件是用逻辑门来表述性能的。本身他就是一堆的逻辑门,与非门、或非门、触发器(可以用与非门形成吧)等基本数字器件,编程决定了有多少器件被使用以及它们之间的连接。通过硬件描述语言把它转成电路连接,从最基本的逻辑门层面上连接成电路(参见数字电路书上那些全加器触发器什么的)。应该说,虽然看起来像一块CPU,其实是完全硬件实现的。它是在PAL、GAL、EPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。 FPGA在抗干扰,速度上有很大优势。 后来因为写代码麻烦,对控制部分比较薄弱,本来跟其他CPU配合使用,即麻烦的算法CPU提交给FPGA,FPGA算完把结果再返回给CPU。可是这样外围电路就变得麻烦。 于是提出了SOC设计方法,就是直接在FPGA里写一个CPU出来,既然FPGA万能,做个CPU自然毫无压力。 这其中还有软核和硬核的区别,不过除了性能,使用方法大同小异。所谓IP核,就是把各种专用集成电路用硬件描述语言描述,然后烧到FPGA里形成专门的电路,这样就不必另外搭芯片了,所有的电路在一片FPGA里面形成。 3、DSP实际应该称为DSPs,即用于DSP处理的专用芯片。跟普通计算机的区别一方面是他是哈佛结构的,也就是数据和程序空间分开(普通计算机是冯诺依曼结构)。另一方面他有流水线结构,不过现在其他也有了,见贤思齐。再一方面他有专用的硬件算法电路,用以完成DSP运算,比如最基本的乘法累加。上过DSP的就知道,蝶形算法FFT什么的,拆成最基本单元就是乘法累加,把这部分加速了,整体性能就有非常大的提高。DSP对于

FPGA型号对比

FPGA入门 什么是FPGA与CPLD的区别FPGA的应用FPGA的优势Altera产品介绍设计流程开始FPGA设计设计工具与实例获得下一步资源Altera产品介绍 ASIC 如果您正在寻找 ASIC,这里将为您提供所需要的一切。我们的 HardCopy ASIC支持Stratix原型的无缝移植,在最短的时间内帮助您以最低的风险、最低的ASIC 开发总成本将产品推向市场。 CPLD 对于胶合逻辑以及任何控制功能,我们的非易失 MAX 系列提供市场上成本最低的CPLD —— 单芯片解决方案,非常适合接口桥接、电平转换、I/O 扩展和模拟 I/O 管理应用。 产品系列密度工艺节点

FPGAs逻辑单元ALM (高性能自适应逻辑模块)工艺节点 Stratix V1,052,000397,00028nm Stratix IV813,050325,22040nm Stratix III338,000135,20065nm Stratix II132,54053,01690nm Stratix79,040-130nm FPGAs逻辑单元ALM (高性能自适应逻辑模块)工艺节点 Arria V503,500190,00028nm Arria II348,500139,40040nm Arria GX90,22036,08890nm FPGAs逻辑单元ALM (高性能自适应逻辑模块)工艺节点 Cyclone V300,000113,20828nm Cyclone IV149,760-60nm Cyclone III198,464-60nm Cyclone II68,416-90nm Cyclone I20,060-130nm CPLD逻辑单元ALM (高性能自适应逻辑模块)工艺节点 MAX V2,210-0.18um MAX II2,210-0.18um MAX 3000A640-0.30um

10年FPGA开发经验的工程师肺腑之言

10年FPGA开发经验的工程师肺腑之言 从大学时代第一次接触FPGA至今已有10多年的时间。至今记得当初第一次在EDA实验平台上完成数字秒表,抢答器,密码锁等实验时,那个兴奋劲。当时由于没有接触到HDL硬件描述语言,设计都是在MAX+plus II原理图环境下用74系列逻辑器件搭建起来的。后来读研究生,工作陆陆续续也用过Quartus II,Foundation,ISE,Libero,并且学习了verilogHDL语言,学习的过程中也慢慢体会到verilog的妙用,原来一小段语言就能完成复杂的原理图设计,而且语言的移植性可操作性比原理图设计强很多。 在学习一门技术之前我们往往从它的编程语言入手,比如学习单片机时,我们往往从汇编或者C语言入门。所以不少开始接触FPGA的开发人员,往往是从VHDL或者Verilog开始入手学习的。但我个人认为,若能先结合《数字电路基础》系统学习各种74系列逻辑电路,深刻理解逻辑功能,对于学习HDL 语言大有裨益,往往会起到事半功倍的效果。 当然,任何编程语言的学习都不是一朝一夕的事,经验技巧的积累都是在点滴中完成,FPGA设计也无例外。下面就以我的切身体会,谈谈FPGA设计的经验技巧。 1)看代码,建模型 只有在脑海中建立了一个个逻辑模型,理解FPGA内部逻辑结构实现的基础,才能明白为什么写Verilog和写C整体思路是不一样的,才能理解顺序执行语言和并行执行语言的设计方法上的差异。在看到一段简单程序的时候应该想到是什么样的功能电路。 例如: 上面这段代码实现的功能就是一个带使能端的2选1数据选择器,如下图所示。

再例如: 上面这段always实现的是带同步清零端的串并转换移位寄存器,位宽为width,下图为8位电路模型 当你具备了一定的识代码能力之后,你会发现原来Verilog不是那么的枯燥,只不过是一个个电路模型的拼搭而已。 2)组合逻辑中的if...else...与case 对于多输入端的组合逻辑来说,如果不需要考虑优先级应该尽量采用case语句来描述,这样综合出来的电路并行度要大一些,如果采用if...else...结构,综合出来的电路都是串行的,增大了信号时延路径。降低寄存器间组合路径的延迟是提高系统工作频率的主要手段,因此在完成相同功能的前提下应该尽量使用并行结构逻辑。

CPLD与FPGA区别

CPLD和FPGA区别 可编程逻辑器件主要包括FPGA和CPLD,FPGA是Field Programmable Gate Array缩写,CPLD是Complex Promrammable Logic Device的缩写。 从可编程逻辑器件的发展历史上来讲,CPLD一般是指采用乘积相结构的基于EEPROM的器件,所以具 有非挥发的,不需要外部配置ROM,具有保密性和有限次编程次数(根据不同的结构,从100次到1万次不等)等特点,适合用在胶合逻辑(glue logic,如DSP芯片外围的译码逻辑),IO扩展,IO电平转换,FPGA 芯片配置等应用场合。如Altera的MAX7000和MAX3000系列芯片,Xilinx的XC9500和CoolRunner/II 系列芯片,Lattice的ispMACH4000/Z系列芯片都是CPLD器件,容量从32宏单元到512宏单元不等。 FPGA主要是指采用四输入查找表(LUT4)的基于SRAM的器件,因为SRAM是挥发的,掉电丢失数据, 所以FPGA需要外部配置ROM,上电的时候,从外部的ROM把FPGA的配置数据导入到FPGA芯片内部后工作。具有SRAM的FPGA采用标准的CMOS制造工艺,可以随着最新的工艺而更新还代,给用户带来了实惠;衡量FPGA容量的一个基本指标是逻辑单元(Logic cell或者Logic element),由一个可编程得LUT4和一个可编程的DFF组成,LUT4完成组合逻辑功能, 而DFF用来实现时序功能。FPGA的容量从几千的逻辑单元到几十万的逻辑单元不等。如Altera的Cyclone/II/III和Stratix/II/III系列芯片,Xilinx Spartan3/3E/3A/3AN和Virtex4/5系列芯片都是FPGA器件。 随着芯片技术的发展,CPLD和FPGA的概念已经模糊在一起,如Altera和Lattice公司把小容量(小于2K 左右逻辑单元)非挥发的可编程器件归到CPLD里,如Altera的MAXII系列和Lattice的MACH XO系列芯片,把基于SRAM的FPGA和FLASH的储存单元做到一个芯片里面,以及跟传统的CPLD不一样了; 总之,我们可以简单的区分FPGA和CPLD,CPLD:小容量(<2K左右LE)的非挥发的可编程器件;其它 的可编程器件都可归到FPGA。 系统的比较: 尽管FPGA和CPLD都是可编程ASIC器件,有很多共同特点,但由于CPLD和FPGA结 构上的差异,具有各自的特点: ①CPLD更适合完成各种算法和组合逻辑,FPGA更适合于完成时序逻辑。换句话说,FPGA更适合于触发器丰富的结构,而CPLD更适合于触发器有限而乘积项丰富的结构。 ②CPLD的连续式布线结构决定了它的时序延迟是均匀的和可预测的,而FPGA的分段式布线结 构决定了其延迟的不可预测性。 ③在编程上FPGA比CPLD具有更大的灵活性。CPLD通过修改具有固定内连电路的逻辑功能 来编程,FPGA主要通过改变内部连线的布线来编程;FPGA可在逻辑门下编程,而CPLD是在逻辑块下编程。 ④FPGA的集成度比CPLD高,具有更复杂的布线结构和逻辑实现。 ⑤CPLD比FPGA使用起来更方便。CPLD的编程采用E2PROM或FASTFLASH技术,无需外部存储器芯片,使用简单。而FPGA的编程信息需存放在外部存储器上,使用方法复杂。 ⑥CPLD的速度比FPGA快,并且具有较大的时间可预测性。这是由于FPGA是门级编程,并 且CLB之间采用分布式互联,而CPLD是逻辑块级编程,并且其逻辑块之间的互联是集总式的。

FPGA学习步骤30页

FPGA学习步骤,我的体会 FPGA在目前应用领域非常,在目前的单板设计里面,几乎都可以看到它的身影。从简单的逻辑组合,到高端的图像、通信协议处理,从单片逻辑到复杂的ASIC原型验证,从小家电到航天器,都可以看到FPGA应用,它的优点在这里无庸赘述。从个人实用角度看,对于学生,掌握FPGA可以找到一份很好的工作,对于有经验的工作人员,使用fgpa可以让设计变得非常有灵活性。掌握了fpga的设计,单板硬件设计就非常容易(不是系统设计),特别是上大学时如同天书的逻辑时序图,看起来就非常亲切。但fpga的入门却有一定难度,因为它不像软件设计,只要有一台计算机,几乎就可以完成所有的设计。fpga的设计与硬件直接相关,需要实实在在的调试仪器,譬如示波器等。这些硬件设备一般比较昂贵,这就造成一定的入门门槛,新人在入门时遇到一点问题或者困难,由于没有调试设备,无法定位问题,最后可能就会放弃。其实这时如果有人稍微指点一下,这个门槛很 容易就过去。 我用FPGA做设计很多年了,远达不到精通的境界,只是熟悉使用,在这里把我对fpga的学习步骤理解写出来,仅是作为一个参考,不对的地方,欢迎大家讨 论和指正。 1、工欲善其事,必先利其器。

计算机必不可少。目前FPGA应用较多的是Altera 和xilinx这两个公司,可以选择安装quartusII或者ISE 软件。这是必备的软件环境。 硬件环境还需要下载器、目标板。虽然有人说没有下载器和目标板也可学习fpga,但那总是纸上谈兵。这就像谈女朋友,总是嘴上说说,通个电话,连个手都没牵,能说人家是你朋友?虽说搭建硬件环境需要花费,但想想,硬件环境至多几百元钱,你要真的掌握FPGA的设计,起薪比别人都不止高出这么多。这点花费算什么? 2、熟悉verilog语言或者vhdl语言,熟练使用 quartusII或者ISE软件。 VHDL和verilog各有优点,选择一个,建议选择verilog。熟练使用设计软件,知道怎样编译、仿真、下载 等过程。 起步阶段不希望报一些培训班,除非你有钱,或者运气好,碰到一个水平高、又想把自己的经验和别人共享的培训老师,不然的话,培训完后总会感觉自己是一个冤大头。入门阶段可以在利用网络资源完成。 3、设计一个小代码,下载到目标板看看结果 此时可以设计一个最简答的程序,譬如点灯。如

FPGA_ASIC-一种高精度运动控制器IP核设计与实现

一种高精度运动控制器IP核设计与实现 闫永志 王宏 杨志家刘鹏 (中国科学院沈阳自动化研究所,辽宁 沈阳 110016) (中国科学院研究生院,北京 100039) 摘 要:本文提出了一种运动控制器软IP的设计方案,该控制器可以控制4个轴的步进电机或数字伺服电机,可以进行各轴独立的定位控制、速度控制,也可任选2轴或3轴来进行直线、圆弧和位模式插补。文中介绍了其系统结构、基本功能和插补算法。设计最终形成软IP核,并在Xilinx公司的Vertex2系列FPGA 中予以实现和验证。 关键词:运动控制 插补 IP ASIC FPGA 中图法分类号: TN4文献标识码:A Design and Implementation of High Precision Motion Controller IP Yongzhi Yan1,2 Hong Wang1 Zhijia Yang1Peng Liu1 1( Shenyang Institute of Automation , Chinese Academy of Sciences, Liaoning Shenyang, 110016) 2( Graduate School of the Chinese Academy of Sciences, Beijing, 100039) Abstract: This paper designs a motion controller soft IP, it can control 4 axes of either stepper motor or pulse type servo drivers for position, speed, and interpolation. Any 2 or 3 axes can be selected to perform linear, circular, and bit pattern interpolation. We describe structure, function and interpolation arithmetic of the motion controller. Finally, the montion controller soft IP is implemented and verified in Xilinx Vertex2 FPGA. Key words:motion control interpolation IP ASIC FPGA 1引言 随着计算机、控制理论、微电子等技术的迅速发展,运动控制技术取得了巨大的进步,已成为推动新的产业革命的关键技术。简单地说,运动控制就是对机械运动部件的位置、速度等进行实时的控制管理,使其按照预期的运动轨迹和规定的运动参数进行运动[1]。早期的运动控制技术主要是伴随着数控技术、机器人技术和工厂自动化技术发展而来的。近年来,随着运动控制技术的不断进步和完善,运动控制器作为一个独立的工业自动化控制类产品,已经应用在越来越多的产业领域中。 目前基于PC(Personal Computer)总线的以DSP(Digital Signal Processing)或专用运动控制ASIC(Application Specific Integrated Circuit)作为核心的开放式运动控制技术已经成为主流。将PC 机的信息处理能力和开放式的特点与运动控制器的运动轨迹控制能力有机地结合在一起,具有信息处理能力强、开放程度高、运动轨迹控制准确、通用性好的特点[2]。本设计使用verilog硬件描述语言设计了一种带有通用的PC机总线接口的运动控制器软IP(Intellectual Property)核,并通过FPGA(Field Programmable Gate Array)予以实现和验证。 2系统结构和基本功能 本设计是一个用于实现4轴运动控制的控制器,通过这个控制器可以控制由步进电机或由数字脉冲型伺服电机驱动的4个轴的位置、速度和插补。该系统由5个部分组成,分别是(1)命令/数据处理模块(2)插补控制模块(3)4个轴的运动控制模块(4)中断信号发生模块(5)脉冲分配模块。图1为该运动控制器的系统结构图。 该运动控制器的主要功能如下: (1)独立的四轴驱动:可以分别控制四个电机驱动轴的运动,四个轴的功能完全相同。 (2)驱动速度控制:驱动脉冲的输出速度可以从1PPS(Pulses Per Second)到4MPPS,每个驱动轴可以进行定速驱动、直线加/减速驱动、S曲线加/减速驱动。 (3)2轴/3轴直线插补驱动:可以选择4个轴中的任何2个或3个轴进行直线插补驱动。 (4)圆弧插补驱动:可以选择4个轴中的任何2个轴进行圆弧插补驱动。

基于verilog的FPGA编程经验总结

基于verilog的FPGA编程经验总结 用了半个多月的ISE,几乎全是自学起来的,碰到了很多很多让人DT好久的小问题,百度也百不到,后来还是都解决了,为了尽量方便以后的刚学ISE的童鞋不再因为一些小问题而纠结,把这几天的经验总结了一下。好了,废话不多说,上料! 1.用ISE仿真的时候.所用变量一定要初始化. ISE默认初始量为”XXXXX”, 而Quarters是默认为”00000”的, 其实实际上, 下到FPGA里后也是默认为0的,只是可以说ISE严谨得令人DT吧. 比如说用一个累加器, result = A+B+result ,必须保证在某一刻A, B, result都为定值时, 之后的数据才不会一直为”XXXXX”; 2.所有的中间线(就是module间用来传递参数的信号)都要用wire定义一下. 这个ise一般会提醒的; 3.任何一个warning都是有用的; 4.debug时要多把中间变量设成输出,然后查看仿真波形; 5.其实,新版本还是比较好用的.虽然取消了test bench wave 功能. 但是最好学会编测试文件,后期比test bench wave好用, 而且貌似一旦测试信号太多,test bench wave就不

显示某些输出了; 6. warning: Nod is unconnected. 表明所在的模块没用被执行,一般是参数没进来, 或者进来的参数不对(“XXXX”之类)的原因引起的. 7.建立rom时候,Error: sinrom can’t be resolved. 因为在把程序挪地方的时候,sinrom.ngc文件没有一同拷过来. 8.把”XXXXX”信号处理掉的一个方法可以是: 从信号中随意选出一位if (data[0] == 0) ....; else if (data[0] == 1).... else data = 0; 就可以把”XXXX”信号给清成”0000”了. 可以很好的解决1中仿真的问题. 9.如果某一个不是时钟的信号被当作周期信号来用的话,就会出现WARNING:Route:455 - CLK Net:trn_clk_OBUF may have excessive skew. because 0 CLK pins and 1 NON_CLK pins failed to route using a CLK template 不管也行. 10. 一开始用FPGA时不要害怕,用ucf文件配好引脚,直接LOAD,先不用管什么区域约束,以后进阶了再学. . 11.暂时就记得这些,以后再补充吧.

采用 CPU,ASIC,FPGA和NP网络处理器的网络交换机体系结构的比较

通用CPU,ASIC,FPGA和NP网络处理器这四种网络交换机体系结构的详细比较分析 使用NP+ASIC的体系设计方式是最为完美的选择。使用ASIC芯片高速处理各种传统的业务,如二层交换、三层路由、ACL、QoS以及组播处理等等,满足核心交换机对于交换机处理性能的需求;而利用NP实现各种非传统或未成熟的业务,根据需要灵活支持IPV6、Load Balancing、VPN、NAT、IDS、策略路由、MPLS、防火墙等多种业务功能,满足核心交换机对于业务按需叠加的需求…… 多层交换体系结构的引入有效地提高了局域网的速度,对多层交换体系结构排队模型、交换实施和交换结构等方面的了解,可以更深刻地认识到局域网交换机在性能上的提高。 首先明确几个基本概念: 排队模型 交换结构是指数据从一个端点到达另一个端点的“高速路”,排队是一种用于控制拥塞的缓冲机制,当交换结构出现拥塞时,会在很大程度上直接影响交换机的性能,所以进行拥塞管理是非常有必要的。在

多个端口争用同一个端口时就需要拥塞管理,对信息包进行排队处理。排队可以采用动态缓冲区排队或固定缓冲区排队,其中动态缓冲区排队时缓冲区长度为固定增量(如每次64K字节),可以更有效地利用缓冲区资源;而固定缓冲区排序时缓冲区的长度是固定的,这样缓冲区的使用效率不高,但比定制控制器(custom conollers)成本低。排队可以在交换结构的输入端口进行,即输入排队,也可在交换结构的输出端口进行,即输出排队。在输入排队时,信息包在进入端口处得到缓冲,最高可将吞吐量减少60%,但会造成线路端阻塞;在输出排队时缓冲区设在输出端口,无线路阻塞,但在流量高峰期间会造成缓冲区溢出。 交换实施 交换实施用来说明交换决策的地点和方式:是在本地还是在中央地点,是最长匹配还是准确匹配。 交换决策的地点是中央地点时,就是集中交换。集中交换采用集中发送表,针对交换和识别提供集中控制,为达到实施的快速处理,查询由ASIC完成,集中交换可以执行第2层或第3层查询。 在分布式交换时,交换决策由端口或模块在本地进行,其第2层和第3层表必须实现同步化,以便说明添加、移动或修改。 交换实施还可分为基于流量的交换和基于转发信息库的交换。基于流量的交换是基于需求的交换,入口包含源地址、目标地址和/或第4

FPGA学习心得体会

篇一:fpga学习心得大报告 《fpga技术基础》学习报告 --课程内容学习心得 姓名: 学号:年级专业: 指导教师: 瞿麟 201010401128 自动化101薛小军摘要从开始学fpga到现在粗略算来的话,已经有3个多月了,就目前而言,我并不确定自己算不算高手们所说的入门了,fpga学习总结。但是不管现在的水平如何,现在就总结一下自己学习它的感受或一些认识吧。 关键词 fpga de2板 quartusii软件 verilog语言 引言 fpga是什么?fpga现状?怎样学习fpga? fpga是现场可编程门阵列的简称,fpga的应用领域最初为通信领域,但目前,随着信息产业和微电子技术的发展,可编程逻辑嵌入式系统设计技术已经成为信息产业最热门的技术之一,应用范围遍及航空航天、医疗、通讯、网络通讯、安防、广播、汽车电子、工业、消费类市场、测量测试等多个热门领域。并随着工艺的进步和技术的发展,向更多、更广泛的应用领域扩展。越来越多的设计也开始以asic转向fpga, fpga正以各种电子产品的形式进入了我们日常生活的各个角落。 正文 (1)掌握fpga的编程语言 在学习一门技术之前我们往往从它的编程语言开始,如同学习单片机一样,我们从c语言开始入门,当掌握了c语言之后,开发单片机应用程序也就不是什么难事了。学习fpga也是如此,fpga的编程语言有两种:vhdl和verilog,这两种语言都适合用于fpga的编程。 (2)fpga实验尤为重要 除了学习编程语言以外,更重要的是实践,将自己设计的程序能够在真正的fpga里运行起来,这时我们需要选一块板子进行实验,我们选择使用de2板才进行试验。 初识de2开发板 de2的资源de2的资源非常丰富,包括 1. 核心的fpga芯片-cyclone ii 2c35 f672c6,从名称可以看出,它包含有35千个le,在altera的芯片系列中,不算最多,但也绝对够用。altera下载控制芯片- epcs16以及usb-blaste对jtag的支持。 2.存储用的芯片有: 512-kb sram,8-mbyte sdram,4-mbyte flash memory 3. 经典io配置:拥有4个按钮,18个拨动开关,18个红色发光二极管,9个绿色发光二极管,8个七段数码管,16*2字符液晶显示屏, 4. 超强多媒体:24位cd音质音频芯片wm8731(mic输入+linein+ 标准音频输出),视频解码芯片(支持ntsc/pal制式),带有高速dac视屏输出vga模块。 5.更多标准接口:通用串行总线usb控制模块以及a、b型接口,sd card接口,irda红外模块, 10/100m自适应以太网络适配器,rs-232标准串口, ps/2键盘接口 6.其他:50m,27m晶振各一个,支持外部时钟, 80针带保护电路的外接io 7.此外还有:配套的光盘资料,qutuarsii软件,niosii 6.0ide,例程与说明文档。 关于管脚分配 当我们创建一个fpga用户系统的时候,到最后要做的工作就是下载,在下载之前必须根据芯片的型号分配管脚,这样才能将程序中特定功能的管脚与实际中的fpga片外硬件电路一一对

FPGA、CPLD、ASIC、DSP、单片机的区别

1. FPGA FPGA(Field-Programmable Gate Array),即现场可编程门阵列,它是在PAL、GAL、CPLD等可编程器件的基础上进一步发展的产物。它是作为专用集成电路(ASIC)领域中的一种半定制电路而出现的,既解决了定制电路的不足,又克服了原有可编程器件门电路数有限的缺点。以硬件描述语言(Verilog或VHDL)所完成的电路设计,可以经过简单的综合与布局,快速的烧录至FPGA 上进行测试,是现代IC设计验证的技术主流。这些可编辑元件可以被用来实现一些基本的逻辑门电路(比如AND、OR、XOR、NOT)或者更复杂一些的组合功能比如解码器或数学方程式。在大多数的FPGA里面,这些可编辑的元件里也包含记忆元件例如触发器(Flip-flop)或者其他更加完整的记忆块。系统设计师可以根据需要通过可编辑的连接把FPGA内部的逻辑块连接起来,就好像一个电路试验板被放在了一个芯片里。一个出厂后的成品FPGA的逻辑块和连接可以按照设计者而改变,所以FPGA可以完成所需要的逻辑功能。 什么是FPGA? 简单来说,FPGA就是“可反复编程的逻辑器件”。FPGA取自 Field Programmable Gate Array的首个字母,代表现场(Field)可编程(Programmable)逻辑阵列(Gate Array)。 由于在产品发售后您仍然可以对产品设计作出修改,因此我们可以顺利地对产品进行更新以及针对新的协议标准作出相应改进。相对于对售后产品设计无法进行修改的ASIC和ASSP来说,这是FPGA特有的一个优势。由于FPGA 可编程的灵活性以及近年来科技的快速发展,FPGA也正向高集成,高性能,低功耗,低价格的方向发展,并具备了与ASIC和ASSP 同等的性能,被广泛地使用在各行各业的电子及通信设备里。 FPGA与CPLD的区别 尽管很多人听说过CPLD,但是关于CPLD与FPGA之间的区别,了解的人可能不是很多。虽然FPGA与CPLD都是“可反复编程的逻辑器件”,但是在技术上却有一些差异。简单地说,FPGA就是将CPLD的电路规模,功能,性能等方面强化之后的产物。 一般而言,CPLD与FPGA之间的区别的如下所示(当然也有例外)。

相关主题
相关文档
最新文档