展开与折叠2PPT教学课件
合集下载
展开与折叠 PPT课件 2 北师大版
•
76、好习惯成就一生,坏习惯毁人前程。
•
77、年轻就是这样,有错过有遗憾,最后才会学着珍惜。
•
78、时间不会停下来等你,我们现在过的每一天,都是余生中最年轻的一天。
•
79、在极度失望时,上天总会给你一点希望;在你感到痛苦时,又会让你偶遇一些温暖。在这忽冷忽热中,我们学会了看护自己,学会了坚强。
•
80、乐观者在灾祸中看到机会;悲观者在机会中看到灾祸。
•
46、在浩瀚的宇宙里,每天都只是一瞬,活在今天,忘掉昨天。
•
47、小事成就大事,细节成就完美。
•
48、凡真心尝试助人者,没有不帮到自己的。
•
49、人往往会这样,顺风顺水,人的智力就会下降一些;如果突遇挫折,智力就会应激增长。
•
50、想像力比知识更重要。不是无知,而是对无知的无知,才是知的死亡。
•
51、对于最有能力的领航人风浪总是格外的汹涌。
各位老师、同学们 下午好!
雍燕
§1.2 展开与折叠
做做看:
下列三图中哪一个可以折叠成多面体?
(1)
(2)
(3) 三棱锥的平面展开图
正方体 四棱锥
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
•
18、励志照亮人生,创业改变命运。
•
19、就算生活让你再蛋疼,也要笑着学会忍。
•
20、当你能飞的时候就不要放弃飞。
•
21、所有欺骗中,自欺是最为严重的。
•
22、糊涂一点就会快乐一点。有的人有的事,想得太多会疼,想不通会头疼,想通了会心痛。
最新【北师大版】七年级上册数学ppt课件.展开与折叠 第二课时
北师大版数学课件
精品整理
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
Hale Waihona Puke ◆反馈演练 (◎第一阶
◎第二阶
◎第三阶
)
精品整理
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
Hale Waihona Puke ◆反馈演练 (◎第一阶
◎第二阶
◎第三阶
)
山西出版社精品课件2 展开与折叠
单击页面即可演示
动手做一做
下图中左边的图形经过折叠能围成右边的棱柱吗?
准备活动
1.定义
在棱柱中,任何相邻两个面的交线都叫做棱. 在棱柱中,相邻两个侧面的交线都叫做侧棱.
2.棱柱的种类
三棱柱、四棱柱、五棱柱、六棱柱、…… n棱柱:底面图形的形状为n边形的棱柱叫做n 棱柱.
议一议
(1)这个棱柱的上下底面一样吗? (2)这个棱柱有几个侧面?侧面的形状是什 么图形?
A
B
C
D
E
F
G
能围成正方体的图形有: A、D、G
考考你
如果“你”在前面,那么什么在后面? 了 太 你 们 棒 !
KEY: 棒
想 一 想
把圆锥、圆柱的侧面展开,会得到什么图形?
圆柱体 侧面
展开
长方形
圆锥体
拓展:你能将图形(1)、(3)修改后使其 能折叠成棱柱吗?
想一想
如图所示六棱柱,底面边长都是5厘米,侧 棱长4厘米.观察并回答问题: (1)这个六棱柱共多少个面?它们分别是什 么形状?哪些面的形状和面积完全相同? (2)这个六棱柱一共有多少条棱?它们的长 度分别是多少?
把同一个正方体的表面沿某些棱剪 开,展开所得到的平面图形是否一样? 能得到哪些展开图?
议一议
(3)侧面的个数与底面图形的边数有什么关系? (4)这个棱柱有几条侧棱?它们的长度之间有 什么关系?
棱柱的特点
(1)棱柱的所有侧棱长都相等; (2)棱柱的上、下底面形状相同; (3)棱柱的侧面的形状都是长方形; (4)侧面的个数和底面图形的边数相等.
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
探究1:
你能设法得到下列平面图形吗?
动手做一做
下图中左边的图形经过折叠能围成右边的棱柱吗?
准备活动
1.定义
在棱柱中,任何相邻两个面的交线都叫做棱. 在棱柱中,相邻两个侧面的交线都叫做侧棱.
2.棱柱的种类
三棱柱、四棱柱、五棱柱、六棱柱、…… n棱柱:底面图形的形状为n边形的棱柱叫做n 棱柱.
议一议
(1)这个棱柱的上下底面一样吗? (2)这个棱柱有几个侧面?侧面的形状是什 么图形?
A
B
C
D
E
F
G
能围成正方体的图形有: A、D、G
考考你
如果“你”在前面,那么什么在后面? 了 太 你 们 棒 !
KEY: 棒
想 一 想
把圆锥、圆柱的侧面展开,会得到什么图形?
圆柱体 侧面
展开
长方形
圆锥体
拓展:你能将图形(1)、(3)修改后使其 能折叠成棱柱吗?
想一想
如图所示六棱柱,底面边长都是5厘米,侧 棱长4厘米.观察并回答问题: (1)这个六棱柱共多少个面?它们分别是什 么形状?哪些面的形状和面积完全相同? (2)这个六棱柱一共有多少条棱?它们的长 度分别是多少?
把同一个正方体的表面沿某些棱剪 开,展开所得到的平面图形是否一样? 能得到哪些展开图?
议一议
(3)侧面的个数与底面图形的边数有什么关系? (4)这个棱柱有几条侧棱?它们的长度之间有 什么关系?
棱柱的特点
(1)棱柱的所有侧棱长都相等; (2)棱柱的上、下底面形状相同; (3)棱柱的侧面的形状都是长方形; (4)侧面的个数和底面图形的边数相等.
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
探究1:
你能设法得到下列平面图形吗?
立体图形的展开与折叠ppt课件
2024/1/27
25
鼓励学生在日常生活中多加观察和实践
2024/1/27
观察身边的立体图形
建议学生多留意身边的各种立体图形,如家具、玩具、包 装盒等,思考它们的形状、结构和展开方式。
实践立体图形的展开与折叠
鼓励学生动手尝试将身边的立体图形展开成平面图形,并 尝试重新折叠成立体图形,加深对立体图形与平面图形之 间转换关系的理解。
解题思路与方法
通过实例分析,分享解决创新题型的思路和方法,如逆向思维、构 造法等。
学生自主探究与展示
鼓励学生自主探究创新题型,并展示他们的解题过程和成果。
2024/1/27
18
05 学生自主操作练 习环节
2024/1/27
19
提供多种不同难度级别练习题
基础练习题
针对初学者,提供简单的立体图 形展开与折叠题目,帮助学生掌
2024/1/27
12
标记法:在展开图上做标记辅助判断
01
02
03
做标记
在展开图的各个部分上标 注出对应的立体图形的特 征,如角度、边长等。
2024/1/27
分析标记
根据标注的特征,分析各 个部分在立体图形中的位 置关系。
判断折叠方向
结合分析的结果,判断各 个部分应该朝哪个方向折 叠。
13
实践操作:动手尝试不同折叠方式
个性化指导
针对不同学生的问题,教师给予 个性化的指导和建议,帮助学生 更好地掌握立体图形的展开与折
叠知识。
鼓励尝试
教师鼓励学生大胆尝试和探索新 的解题方法和思路,培养学生的
创新意识和实践能力。
2024/1/27
22
06 课程总结与拓展 延伸
【北师大版】七年级上册数学ppt课件.展开与折叠 第二课时
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
数 学 精 品 课 件
北 师 大 版
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
◆典例导学
◆反馈演练 (
◎第一阶
◎第二阶
◎第三阶
)
◆知识导航
5.3展开与折叠(第二课时)课件
这样的袭击方式容易暴露自己而让害虫跑掉,它想
给害虫一个出其不意,绕过油
罐来攻其不备,那么壁虎经过 什么路线,要跑多远的路程才 能用最少的时间捕到害虫? A B
作业
P165:4 设计作业(要注重美观与实用)
有一个底面直径为5cm,高为20cm的圆柱形茶 杯,厂家请你为它设计一个棱柱形包装盒,请完成你 的方案,做成样品,说明你的设想。
由表面展开图形想象其折叠围成立体图形的方法
你还有什么问题要提出来?
1.下列平面图形经过折叠后能得到一个无盖正方
体盒子的是(
)
A
B
C
D
2.下列图形中,经过折叠后能围成一个三棱柱的图 形有( )
A.2个
B.3个
C.4个
D.5个
3.如图是正方体表面的展开图,如果将其合成原来
的正方体的表面,则与点A重合的顶点是___
正方体折叠一
返回
正方体折叠二
返回
比赛提示
返回
1 4 6
点此演示
规则:各小组先分析作出选 择后,分别剪折,剪
2
3 5
坏了不能再用,成功
的不同情况多者胜.
7
9 10
8
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
考考你2 要使平面展开图,折叠围成立体图形
后,相对两面上的数互为相反数, 则x= y=
小结
通过本课的学习,你有什么收获?
______.
L A N M K J I
B
C
D E F
G
给害虫一个出其不意,绕过油
罐来攻其不备,那么壁虎经过 什么路线,要跑多远的路程才 能用最少的时间捕到害虫? A B
作业
P165:4 设计作业(要注重美观与实用)
有一个底面直径为5cm,高为20cm的圆柱形茶 杯,厂家请你为它设计一个棱柱形包装盒,请完成你 的方案,做成样品,说明你的设想。
由表面展开图形想象其折叠围成立体图形的方法
你还有什么问题要提出来?
1.下列平面图形经过折叠后能得到一个无盖正方
体盒子的是(
)
A
B
C
D
2.下列图形中,经过折叠后能围成一个三棱柱的图 形有( )
A.2个
B.3个
C.4个
D.5个
3.如图是正方体表面的展开图,如果将其合成原来
的正方体的表面,则与点A重合的顶点是___
正方体折叠一
返回
正方体折叠二
返回
比赛提示
返回
1 4 6
点此演示
规则:各小组先分析作出选 择后,分别剪折,剪
2
3 5
坏了不能再用,成功
的不同情况多者胜.
7
9 10
8
考考你1
将下面几何体与能围成它们的图形连结起来
1
2
3
4
5
6
1
2
3
4
5
6
考考你2 要使平面展开图,折叠围成立体图形
后,相对两面上的数互为相反数, 则x= y=
小结
通过本课的学习,你有什么收获?
______.
L A N M K J I
B
C
D E F
G
2020年北师大版七年级数学上册第1章第2节展开与折叠 两个课时课件
1 25
4
1 2
6
4
1
如图,这是一个正方体的展开图,如
果将它组成原来的正方体,哪些点与
点P重合。
S
T
P
H
R
U
V
M
N
Q
Z
l
W
K
Y
下图是一个正方体的展开图,标注了字 母A的面是正方体的正面,如果正方体的左
面与右面所标注代数式的值相等,求 x 的
值.
-2
3 -4 1
A 3x-2
如图是一个正方体纸盒的展开图,请在图
A
BCD
E
F
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
(Ⅱ)动手操作,探究新知
第二类,2,3,1型,共三种。
(Ⅱ)动手操作,探究新知
第三类,2,2,2型,只有一种。
第四类,3,3型,只有一种。
(Ⅱ)动手操作,探究新知
问题
1.既然都是正方体,为什么剪出的平 面图形会不一样呢?
2.一个正方体要将其展开成一个平面 图形,必须沿几条棱剪开?
(Ⅲ)先猜想再实践,发展几何直觉
活动一
观察圆柱形纸筒展开的侧面是一个什么图形
(Ⅰ)创设情境,导入课题
活动一
观察圆锥形圣诞帽的侧面是什么图形?
考考你
如图,上面的图形分别是下面哪个立体图 形展开的形状?把它们用线连起来。
想一想: 下面几个图形是一些常见几何 体的展开图,你能正确说出这些几何 体的名字么?
(Ⅱ)动手操作,探究新知
做一做
D1 A1
D A
C1 1.如图: ⑴ 长方体有 8 个顶点,
12条棱,
数学七年级上:1.2《展开与折叠》ppt课件(共16张PPT)
第四类;3,3型,只有一种 中间没有面,三三连一线
展开图巧记
中间四个面,上下各一面。 中间三个面,一二隔河见。 中间两个面,楼梯天天见。 中间没有面,三三连一线。
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式 的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
作业
1、 课本P12习题1.3
§1.2 展开与折叠
做做看: 下列三图中哪一个可以折叠成多面体?
(1)
(2)
(3)
三棱锥的平面展开图
正方体
长方体
四棱锥
三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)
(3)
五棱锥
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗? (2) (1) (3)
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面? 了 太 你 们 棒 !
ห้องสมุดไป่ตู้
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
坚 持 就 是
胜
利
圆柱体 侧面
展开
长方形
圆锥体 侧面
展开
扇形
小结
1、立体图形是由平面图形组成的。 2、能根据展开图判断立体图形。 3、能判断平面图形是否为立体图形的展开图。
(√) (4) (5)
(√) (6)
(√)
(√)
(× )
(× )
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下:
《图形的展开与折叠》PPT课件
多功能折叠包装设计
结合折叠技术和多功能设计,实现包装的多重用途和便捷性。
在其他领域的应用
折叠式家具设计
利用折叠技术,设计出可折叠的 家具,节省空间并方便携带。
展开式展示架设计
通过展开技术,将展示架展开成 较大的展示面积,提高展示效果
。
折叠式机器人设计
利用折叠技术,设计出可折叠的 机器人结构,实现机器人的灵活
图形折叠
将一个平面图形按照特定的方式 折叠起来,形成三维图形的过程 。
课程目标与要求
知识目标
掌握图形展开与折叠的基 本概念和原理,了解不同 图形的展开与折叠方法。
能力目标
能够运用所学知识解决图 形展开与折叠的实际问题 ,培养空间想象能力和动
手实践能力。
情感目标
激发学生对图形展开与折 叠的兴趣和好奇心,培养
探索精神和创新意识。
图形展开与折叠的应用领域
建筑设计
在建筑设计中,经常需要将三维的建筑模型展开 成平面图,以便进行施工和预算。同时,也需要 将平面的设计图折叠成立体的模型,以检查设计 的合理性和可行性。
包装设计
在包装设计中,经常需要将三维的包装盒展开成 平面图,以便进行印刷和制作。同时,也需要将 平面的设计图折叠成立体的包装盒,以检查包装 的实用性和美观性。
坐标法
通过建立坐标系,确定各 点的坐标位置,从而绘制 出折叠后的图形。
软件辅助法
利用计算机图形软件,如 AutoCAD、SketchUp等 ,进行建模和渲染,生成 折叠图的三维效果。
04
图形展开与折叠的实例边形展开为矩形
通过折叠矩形的一对对角线,可以将 其展开为一条线段。
介绍了图形展开与折叠在日常生活、建筑 设计、艺术创作等领域的应用,以及如何 利用展开与折叠解决实际问题。
结合折叠技术和多功能设计,实现包装的多重用途和便捷性。
在其他领域的应用
折叠式家具设计
利用折叠技术,设计出可折叠的 家具,节省空间并方便携带。
展开式展示架设计
通过展开技术,将展示架展开成 较大的展示面积,提高展示效果
。
折叠式机器人设计
利用折叠技术,设计出可折叠的 机器人结构,实现机器人的灵活
图形折叠
将一个平面图形按照特定的方式 折叠起来,形成三维图形的过程 。
课程目标与要求
知识目标
掌握图形展开与折叠的基 本概念和原理,了解不同 图形的展开与折叠方法。
能力目标
能够运用所学知识解决图 形展开与折叠的实际问题 ,培养空间想象能力和动
手实践能力。
情感目标
激发学生对图形展开与折 叠的兴趣和好奇心,培养
探索精神和创新意识。
图形展开与折叠的应用领域
建筑设计
在建筑设计中,经常需要将三维的建筑模型展开 成平面图,以便进行施工和预算。同时,也需要 将平面的设计图折叠成立体的模型,以检查设计 的合理性和可行性。
包装设计
在包装设计中,经常需要将三维的包装盒展开成 平面图,以便进行印刷和制作。同时,也需要将 平面的设计图折叠成立体的包装盒,以检查包装 的实用性和美观性。
坐标法
通过建立坐标系,确定各 点的坐标位置,从而绘制 出折叠后的图形。
软件辅助法
利用计算机图形软件,如 AutoCAD、SketchUp等 ,进行建模和渲染,生成 折叠图的三维效果。
04
图形展开与折叠的实例边形展开为矩形
通过折叠矩形的一对对角线,可以将 其展开为一条线段。
介绍了图形展开与折叠在日常生活、建筑 设计、艺术创作等领域的应用,以及如何 利用展开与折叠解决实际问题。
北师大版数学七年级上册1.2《展开与折叠》(第2课时)课件
作业
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱
1、 P12习题1.3; 2、资源与学案第1.2节
坚
持就是
胜
利
圆柱体 展开 长方形 侧面
圆锥体 展开 扇形 侧面
棱柱结构特征:
底面
议一议
1.棱柱有上下两个底面, 它们的形状大小相同.
2.侧面的形状都是长方形.
3.侧面的个数和底面图形 侧棱 的边数相等.
4. 所有侧棱长都相等.
侧面
二. 折叠后你能说出这些多面体的名称吗?
想一想、折一折
以下哪些图形经过折叠可以围成一个棱柱?
小结:
(1)正方体的展开图是平面图形; (2)正方体的展开图,因展开方式
的不同而不同,共有11种。
是不是所有的立体图形 展开后,都是平面图形?
球体的展开图是不是平面图形?
考考你
1、如果“你”在前面,那么什么在后面?
了! 太棒 你们
KEY: 棒
2、“坚”在下,“就”在后,“胜”、“利” 在哪里?
长方体 三棱柱
练习:
下列图形中是什么多面体的展开图? (1)
长方体
(2)ห้องสมุดไป่ตู้
五棱锥
(3)
三棱柱
将一个正方体的表面沿某 些棱剪开,展成一个平面 图形.你能得到哪些图形?
想一想:
下列的图形都是正方体的展开图吗?
(1)
(2)
(3)
(√)
(√)
(4)
(5)
(√)
(×)
(√) (6)
(×)
将相对的两个面涂上相同的颜色, 正方体的平面展开图共有以下11种:
同学们 下午好!
田小平
§1.2 展开与折叠 (第二课时)
探索什么样的图形能围成棱柱