正态分布-3-标准正态分布分布函数数值表

合集下载

标准正态分布+标准正态分布概率表+分布函数+积分

标准正态分布+标准正态分布概率表+分布函数+积分

标准正态分布+标准正态分布概率表+分布函数+积分
X~N(µ,σ²):⼀般正态分布:均值为µ、⽅差为σ²
/zhanghongxian123/article/details/39008493
对于标准正态分布来说,存在⼀张表,称为:标准正态分布表:
该表计算的是:P(X<=x)【某个数落在某个[-@,x]】的概率。

也就是下⾯阴影图形所⽰的⾯积:
如果x=1.96.则将1.96拆分为1.9和0.06.横轴1.9和纵轴0.06的交汇处:0.975.就是x<=1.96的概率。

也就是说,标准正态分布图形与x=a所围⾯积等于x<=a(某个值落在组数据的某个区间的)的概率。

例如,对于某组成绩组数据,服从平均值为45,标准差是10的正态分布:
那么,任抽取⼀个同学的成绩,它的分数在63以上的概率为多少【落在[63,+@]区间的概率】?
也就是图中斜线的⾯积!
如果对f(x)做-@到63的计分,在⽤1减去它。

计分⽐较⿇烦。

那么,将组数据标准化,标准化后的数据服从标准整体分布~!就将63数据标准化。

对63标准化就是“距离/标准差”
(63-45)/10=1.8。

就是说,在标准整体分布中,得分落在区间[1.8,+@]的概率是:
1-0.9641=0.0359=3.59%
也就说,对于正态分布,想求得数据区间概率(⾯积),将“分割点”标准化即可,查表即可!!
以下描述是等同的:
全体学⽣,分数超过63分的同学占3.59%;
全体学⽣,任取⼀个分数⼤于63分的概率为3.59%;
全体学⽣,任取⼀个分数,标准计分⼤于1.8的概率为3.59%;。

正态分布

正态分布

正态分布normal distribution正态分布一种概率分布。

正态分布是具有两个参数μ和σ2的连续型随机变量的分布,第一参数μ是服从正态分布的随机变量的均值,第二个参数σ2是此随机变量的方差,所以正态分布记作N(μ,σ2 )。

服从正态分布的随机变量的概率规律为取与μ邻近的值的概率大,而取离μ越远的值的概率越小;σ越小,分布越集中在μ附近,σ越大,分布越分散。

正态分布的密度函数的特点是:关于μ对称,在μ处达到最大值,在正(负)无穷远处取值为0,在μ±σ处有拐点。

它的形状是中间高两边低,图像是一条位于x轴上方的钟形曲线。

当μ=0,σ2 =1时,称为标准正态分布,记为N(0,1)。

μ维随机向量具有类似的概率规律时,称此随机向量遵从多维正态分布。

多元正态分布有很好的性质,例如,多元正态分布的边缘分布仍为正态分布,它经任何线性变换得到的随机向量仍为多维正态分布,特别它的线性组合为一元正态分布。

正态分布最早由A.棣莫弗在求二项分布的渐近公式中得到。

C.F.高斯在研究测量误差时从另一个角度导出了它。

P.S.拉普拉斯和高斯研究了它的性质。

生产与科学实验中很多随机变量的概率分布都可以近似地用正态分布来描述。

例如,在生产条件不变的情况下,产品的强力、抗压强度、口径、长度等指标;同一种生物体的身长、体重等指标;同一种种子的重量;测量同一物体的误差;弹着点沿某一方向的偏差;某个地区的年降水量;以及理想气体分子的速度分量,等等。

一般来说,如果一个量是由许多微小的独立随机因素影响的结果,那么就可以认为这个量具有正态分布(见中心极限定理)。

从理论上看,正态分布具有很多良好的性质,许多概率分布可以用它来近似;还有一些常用的概率分布是由它直接导出的,例如对数正态分布、t分布、F分布等。

正态分布应用最广泛的连续概率分布,其特征是“钟”形曲线。

附:这种分布的概率密度函数为:(如右图)正态分布公式正态分布1.正态分布:若已知的密度函数(频率曲线)为正态函数(曲线)则称已知曲线服从正态分布,记号~。

正态分布值

正态分布值

正态分布值
正态分布(或称为高斯分布)是统计学中常见的概率分布,在自然、社会和工程领域中都有广泛的应用。

正态分布的概率密度函数为:
f(x|μ,σ) = 1 σ 2π√ e− x−μ2 2σ2 f (x | μ, σ) = 1 σ 2 π e − (x − μ) 2 2 σ 2其中,μ是均值,σ是标准差。

一般情况下,我们使用标准正态分布,即均值μ=0,标准差σ=1的正态分布。

以下是一些常见的正态分布的取值:
1. 在标准正态分布中,当x=-1时,正态分布的取值为0.24197。

2. 在标准正态分布中,当x=0时,正态分布的取值为0.39894。

3. 在标准正态分布中,当x=1时,正态分布的取值为0.24197。

需要注意的是,正态分布是一个连续分布,其取值可以从负无穷到正无穷的所有实数。

因此,正态分布的值取决于具体的均值和标准差,其取值不仅仅局限于上述列举的几个数值。

标准正态分布的分布函数

标准正态分布的分布函数

标准正态分布的分布函数标准正态分布是统计学中非常重要的一种概率分布,也称为高斯分布。

它具有许多重要的性质,被广泛应用于自然科学、社会科学和工程技术等领域。

在实际应用中,我们经常需要计算标准正态分布的分布函数,以便进行概率计算和统计推断。

本文将介绍标准正态分布的分布函数及其计算方法。

标准正态分布的概率密度函数可以表示为:\[f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}\]其中,\(x\) 是随机变量的取值,\(e\) 是自然对数的底。

标准正态分布的分布函数可以表示为:\[Φ(x) = \int_{-∞}^{x} \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2}{2}} dt\]其中,\(Φ(x)\) 表示随机变量取值小于等于 \(x\) 的概率。

由于上述积分式的解析解并不容易得到,因此我们通常使用数值计算或查表的方式来获得标准正态分布的分布函数值。

在实际计算中,我们经常会遇到需要计算标准正态分布的分布函数值的情况。

为了方便计算,统计学家和数学家已经提供了标准正态分布的分布函数表,也可以使用计算软件进行计算。

下面我们将介绍如何使用计算软件来计算标准正态分布的分布函数值。

首先,我们需要打开计算软件,并选择“标准正态分布”相关的函数或命令。

在大多数统计软件中,可以直接使用内置的函数来计算标准正态分布的分布函数值。

以R语言为例,我们可以使用以下命令来计算标准正态分布的分布函数值:```R。

pnorm(x)。

```。

其中,\(x\) 是随机变量的取值。

这条命令将返回随机变量取值小于等于 \(x\) 的概率,即标准正态分布的分布函数值。

除了使用计算软件,我们还可以使用标准正态分布的分布函数表来查找分布函数值。

这些表格通常会列出一系列 \(x\) 值对应的分布函数值,从而方便我们进行查找和使用。

在实际应用中,计算标准正态分布的分布函数值是非常常见的。

第三节 正态分布

第三节 正态分布
第三节 正态分布
主要内容: 主要内容: 一、正态分布概念 二、正态分布的特点 三、应用
一、正态分布概念
正态分布又称高斯分布,常态分布,是一种数据的 波动规律的表达,主要反映了试验的随机误差。
强度分组为横坐标,以频数为纵坐标,绘成强 度—频数直方图
12 10 8 6 4 2 0 18 20 22 24 26 3 7 5 2 10
应用
1.可疑数据的舍弃; A. 莱 特 准 则 ( 3σ 原 则 ) : 由 于 落 在 (u3σ,u+3σ)的概率为99.73%,处在3σ之外的 概率(即误差概率)仅为0.27%,接近0,对于 常规一般仅进行几十次的测量,如处在3σ之 外则说明属于随机误差,应剔除。 由于次判据是建立在n趋向于无穷得基础上得, 所以当n有限时,尤其是n较小时这一判据并不 十分可靠。但是由于其使用方便,故常常被使 用。
(一)正交设计的基本方法
试验设计包括三方面的内容: 1. 因素和水平选择 2. 误差控制:试验方案的制定 3. 数据处理:分析试验结果
一般来说,为保证结论的可靠性,在选取因素时 应把所有影响较大的因素选入试验,某些因素 之间可能还有交互作用,所谓交互作用,就是 这些因素在同时改变水平时,其效果会超过单 独改变某一因素水平时的效果。影响较大的因 素还应包括那些单独变化水平时效果可能不太, 大与其他因素同时变化时交互作用较大的因素, 这样才能保证试验的代表性。因素变化越多越 好,取值不能少于3个,这样才能看出曲线,看 出其变化的趋势。某一因素取值变化的次数即 水平数,为了减少试验次数,往往取两水平(现 行工艺水平和新工艺水平)或三水平(低于现行 工艺水平或理论值、现行工艺水平、高于现行 工艺水平)。 水平变化的范围不宜太大。
且从图12-2还可以看出,按趋势,增加 水分与碾压料重、抗折强度,还有可能 提高,因此还应扩大试验范围,试探其 强度趋势。

标准正态分布表

标准正态分布表

标准正态分布表标准正态分布表是统计学中常用的一种表格,它记录了标准正态分布曲线下的面积值。

标准正态分布是指均值为0,标准差为1的正态分布,其概率密度函数呈钟形曲线,左右对称。

在实际应用中,我们经常需要计算标准正态分布曲线下某个数值范围内的面积,而标准正态分布表则提供了这些数值范围对应的面积值,方便我们进行统计推断和分析。

标准正态分布表的使用方法非常简单。

表格的左侧是小数部分,右侧是小数点后两位,而表格的顶部是个位数部分。

要查找某个数值范围对应的面积值,只需找到对应的个位数和小数部分,然后在交叉的位置就可以找到对应的面积值。

例如,如果要查找标准正态分布曲线下z介于0和1之间的面积值,只需找到0行和10列的交叉位置,即可找到对应的面积值为0.3413。

标准正态分布表的应用非常广泛,它可以帮助我们进行正态分布相关的统计计算和推断。

例如,在假设检验中,我们可以利用标准正态分布表来计算检验统计量的临界值,从而进行假设的推断;在质量控制中,我们可以利用标准正态分布表来计算过程能力指数,评估生产过程的稳定性和一致性;在风险管理中,我们可以利用标准正态分布表来计算风险值的概率,评估风险的可能性和影响程度。

除了查表法,我们还可以利用统计软件进行标准正态分布的计算和推断。

例如,在R语言和Python中,可以利用相关的函数和库来进行标准正态分布的计算和可视化。

这种方法不仅可以提高计算的效率,还可以减少人为失误,特别是在需要进行大量计算和复杂推断时,更加方便快捷。

总之,标准正态分布表是统计学中非常重要的工具,它为我们提供了便利的数值范围对应的面积值,帮助我们进行正态分布相关的统计计算和推断。

在实际应用中,我们既可以利用查表法来获取所需的面积值,也可以利用统计软件进行计算和可视化,以满足不同场景下的需求。

希望本文对标准正态分布表的理解和应用有所帮助,谢谢阅读!。

正态分布的定义与表格PPT(29张)

正态分布的定义与表格PPT(29张)
过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。

2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。

3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。

4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
设X~ N(,2) , X的分布函数是
F(x) 1 xe(t2 2)2d,tx
2
正态分布由它的两个参数μ和σ唯 一确定, 当μ和σ不同时,是不同的正 态分布.
下面我们介绍一种最重要的正态分布
标准正态分布
二、标准正态分布
0,1的正态分布称为标准正态分布.

16、人生在世:可以缺钱,但不能缺德;可以失言,但不能失信;可以倒下,但不能跪下;可以求名,但不能盗名;可以低落,但不能堕落;可以放松,但不能放纵;可以虚荣,但不能虚伪;可以平凡,但不能平庸;可以浪漫,但不能浪荡;可以生气,但不能生事。

17、人生没有笔直路,当你感到迷茫、失落时,找几部这种充满正能量的电影,坐下来静静欣赏,去发现生命中真正重要的东西。

19、大家常说一句话,认真你就输了,可是不认真的话,这辈子你就废了,自己的人生都不认真面对的话,那谁要认真对待你。

20、没有收拾残局的能力,就别放纵善变的情绪。

1、不是井里没有水,而是你挖的不够深。不是成功来得慢,而是你努力的不够多。

2、孤单一人的时间使自己变得优秀,给来的人一个惊喜,也给自己一个好的交代。
决定了图形的中心位置,决定了图形
中峰的陡峭程度.

标准正态分布表

标准正态分布表

标准正态分布表标准正态分布表(Standard Normal Distribution Table),也称为Z分数表或标准化分布表,是统计学中一个重要的参考工具。

它提供了标准正态分布的累积概率密度函数值,使得我们可以通过查表的方式计算和获取不同Z分数对应的概率值。

标准正态分布是指均值为0,标准差为1的正态分布,其概率密度函数可以用公式表示为:Φ(x) = 1 / √(2π) * e^(-x^2/2),其中e为自然对数的底数,π为圆周率。

标准正态分布表的主要用途是帮助解决与正态分布有关的各种概率计算问题。

通过查表,我们可以得到给定Z分数下的累积概率值,也可以根据给定概率值找到对应的Z分数。

标准正态分布表的构建方式是将标准正态分布的累积概率密度函数值进行离散化,然后整理成表格形式。

一般而言,标准正态分布表的横轴是Z分数,纵轴是累积概率值。

下面是标准正态分布表的一个示例:Z分数0.00 0.01 0.02 0.03 ... 0.09-3.4 0.0002 0.0003 0.0003 0.0003 ...0.0004-3.3 0.0005 0.0005 0.0006 0.0006 ...0.0007-3.2 0.0007 0.0008 0.0008 0.0009 ...0.0010-3.1 0.0010 0.0011 0.0011 0.0012 ...0.0013... ... ... ... ... ... ...3.1 0.9989 0.9990 0.9990 0.9991 ...0.99923.2 0.9991 0.9992 0.9992 0.9993 ...0.99943.3 0.9993 0.9994 0.9994 0.9995 ...0.99953.4 0.9995 0.9996 0.9996 0.9996 ...0.9997在实际应用中,我们可以通过以下步骤使用标准正态分布表:1. 根据Z分数的大小确定Z分数所在的行和列。

标准正态分布分位数表

标准正态分布分位数表

标准正态分布分位数表标准正态分布是统计学中非常重要的一个概念,它是指均值为0,标准差为1的正态分布。

在实际应用中,我们经常需要计算标准正态分布的分位数,以便进行概率统计和推断。

本文将介绍标准正态分布分位数表的相关知识,并提供一份标准正态分布分位数表,以供大家参考使用。

首先,我们来了解一下标准正态分布的概念。

标准正态分布的概率密度函数为:\[f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}}\]其中,x为随机变量,e为自然对数的底。

标准正态分布的分布函数可以用积分形式表示:\[F(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}}e^{-\frac{t^2}{2}}dt\]标准正态分布的分位数即为给定概率下的随机变量取值。

以α表示给定的概率,标准正态分布的上侧概率为1-α,即P(X > x) = 1-α。

而标准正态分布分位数表则是给定概率α下,对应的随机变量取值x。

接下来,我们给出一份标准正态分布分位数表的部分内容,以便大家在实际应用中参考使用:```。

α Zα。

0.90 1.28。

0.95 1.64。

0.975 1.96。

0.99 2.33。

```。

在上表中,α表示给定的概率,Zα表示对应的标准正态分布分位数。

以α=0.95为例,对应的Zα=1.64,即在标准正态分布下,随机变量取值小于1.64的概率为0.95。

标准正态分布分位数表的使用可以帮助我们进行概率统计和推断。

例如,在假设检验中,我们可以根据标准正态分布分位数表来确定临界值,从而进行假设检验。

在置信区间估计中,我们也可以利用标准正态分布分位数表来确定置信水平对应的临界值。

总之,标准正态分布分位数表是统计学中非常重要的工具,它可以帮助我们进行概率统计和推断,为科学研究和实际应用提供了重要的支持。

希望大家在使用标准正态分布分位数表时,能够结合具体问题加以灵活运用,更好地发挥其作用。

统计学--正态分布和参考值范围

统计学--正态分布和参考值范围

2019/1/10
9
三、标准正态分布
标准正态分布与标准化变换 标准正态分布表
2019/1/10

这样可将所有不同均数和标准差的资料 都转换为均数为0,标准差为1的分布, 即标准正态分布。
2019/1/10
11
标准正态分布的累计函数
1 u Φ (u) e du 2 σ
2019/1/10
26
三、 百 分 位 数 法
200名血铅频数表及P95计算表
组段
3~ 8 ~
频数f
36 39
累计频数f
36 75
累计频率(%)
18.5 37.5
12 ~
18 ~ 23 ~ 28 ~ 33 ~ 38 ~
47
20 18 16 3 7
122
152 170 186 189 196
61.0
2019/1/10
4
正态分布的概率密度函数:
1 1 2 x / 2 f x e 2 x
为总体均数, 为标准差,
3.14159
e 2.71828
5
记为:X~N(,)
2019/1/10
记为:X~N(,)
如某年某地7岁男孩的身高X服从 均数为121( cm )、标准差为5 (cm)的正态分布,可记为X~ N(122,5)
2019/1/10
6
(二)正态分布的两个参数
描述了正态分布的集中趋势位置。 描述正态分布的离散程度。 越小,曲 线越瘦高,分布越集中;反之,...
2019/1/10
2019/1/10
-3
-2
-1
0
1
2

概率论第四版课件3.4正态分布

概率论第四版课件3.4正态分布
D(X)=σ2
34
正态分布的数学期望与方差
定理3.5说明正态分布中的两个参数μ与σ分别是服从
正态分布的连续型随机变量的数学期望与标准差.因
而若已知数学期望与方差,则完全确定正态分布.
推论 如果连续型随机变量X服从标准正态分布,即
连续型随机变量X~N(0,1),则其数学期望E(X)=0,方
差D(X)=1
导数
Φ0'(x)=φ0(x)
说明函数Φ0(x)为φ0(x)的一个原函数
9
标准正态分布概率计算
➢由于连续型随机变量在任一区间上取值的概率等
于它的概率密度在该区间上的积分,因而概率
P{a<X<b}=P{a≤X<b}
=P{a<X≤b}=P{a≤X≤b}
b
=‫׬‬a φ0(x)dx
=Φ0(x)| ba
=Φ0(b)-Φ0(a)
43
例9
某批零件长度Xcm是一个连续型随机变量,它服从数
学期望为50cm、方差为0.5625cm2的正态分布,规定
长度在50±1.2cm之间的零件为合格品,从中随机抽
取1个零件,求这个零件为合格品的概率.(函数值
Φ0(1.6)=0.945 2)
解:由题意得到参数
μ=E(X)=50
σ= D(X)= 0.5625=0.75
Φ0(1.16)=0.877 0,则概率P{|X-μ|≤1.16σ}=
.
解:由于连续型随机变量X~N(μ,σ2),从而连续型随机
X−μ
变量Y=
~N(0,1)
σ
38
例6
根据标准正态分布概率的计算公式,并注意到参数
σ>0,因此概率
P{|X-μ|≤1.16σ}
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档