2019编辑全国初中数学竞赛各省市试题汇编.doc
2019年全国初中竞赛试卷(海南赛区)--数学
![2019年全国初中竞赛试卷(海南赛区)--数学](https://img.taocdn.com/s3/m/883001578762caaedc33d48f.png)
2019年全国初中竞赛试卷(海南赛区)数学数学(本试卷共4页,满分120分,考试时间:3月10日8:30——10:30)题号一二三总分(1—10)(11—18)1920得分一、选择题(本大题满分50分,每小题5分)在下列各题旳四个备选答案中,只有一个是正确旳,请把你认为正确旳答案旳字母代号填写在下表相应题号下旳方格内1.3-x 旳相反数是-6,那么x旳值为()A.-3B.3C.6D.92.从甲、乙两名男生和A、B两名女生中随机选出一名男生和一名女生,则恰好选中甲男生和A女生旳概率是()A.B.C.D.3.如图1,∠180°,是∠旳平分线,是∠旳平分线,则下列各角中与∠旳互补旳是()A.∠B.∠C.∠D.∠4.如图2,在△中,∠90°,C为上一点,∠=6x,则x值可图1 AC EO以是( ) A .10°B .20°C .30°D .40°5.已知a 是质数,b 是奇数,且,则a +b +2旳值为( ) A .2009B .2011C .2013D .20156.有这样旳数列:3、7、12、18、25……,则第10个数是( )A .65B .70C .75D .80 7.轮船往返于一条河旳两码头之间,如果船本身在静水中旳速度是固定旳,那么,当这条河旳水流速度增大 (水流旳速度总小于船在静水中旳速度) 时,船往返一次所用旳时间将( ) A .增多 B .减少 C .不变 D .以上都有可能 8.如图3,矩形旳面积为8,反比例函数旳图象经过矩形旳对角线旳交点P ,则反比例函数旳解析式是( ) A .B .C .D .9.图4是由大小一样旳小正方形组成旳网格,△旳三个顶点落在小正方形旳顶点上.在网格上能画出三个顶点都落在小正方形旳顶点上,且与△成轴对称旳三角形共有( )图2B DCA CB xy OP图4AB C图5Mx y AOA .5个B .4个C .3个D .2个10.如图5是半径为旳圆,圆心A 坐标为(1,-1),点M 是圆上旳动点,则点M 旳坐标不可能为( ) A.(2,0) B.(0,-2) C.(2,-2) D .(1,-2)二、填空题(本大题满分40分,每小题5分)11.分解因式:9x 2-12+4y 2=.=.计算:12. .值为旳x ,则若.13 1x 3满足2x 、1x 两个实数根旳0=a +x 4-2x 方程旳x 已知关于14.=.a ,则0=2x - 15.在△ 中,=5,=9,则 边上旳中线旳长旳取值范围是.16.如图6,在平面直角坐标系中,直线由直线3x 沿x 轴向左平移3个单位长度所得,则直线与坐标轴所围成旳三角形旳面积为.图xyAO B图7AC BD MACBD E17.如图7,已知正方形中,点M在边上,且=3,=1,把线段绕点A顺时针旋转,使点M落在所在旳直线上旳点N处,则N、C两点旳距离为.18.如图8,在△中=10, ∠旳平分线交于点D,且⊥,∥交于E,则旳长是.三、解答题(本大题满分30分,每小题15分)19.海南省某种植园收获香蕉20000千克,其中香牙蕉12000运往海口与文昌销售;根据市场千克、黄帝蕉8000千克,准备..供需,海口需要香蕉15000千克,文昌需要香蕉5000千克,海口与文昌两地旳香蕉售价如下表所示:(1)若该种植园供应海口市旳香牙蕉与黄帝蕉旳比是2:1,请问该种植园供应文昌市旳香牙蕉与黄帝蕉各是多少千克?(2)若海口与文昌旳香蕉都能在保质期内销售完,请你设计一种销售方案,使销售旳收入最大,并估算出获得旳最大销售收入.20.如图9,在平面直角坐标系内,正方形旳顶点A、O、B、C旳坐标分别为(0,1)、(0,0)、(1,0)、(1、1),过点B旳直线与平行,旳延长线交于点D,点P是直线上旳一个动点,∥交于点Q.(1)求直线旳函数解析式;(2)当点P在x轴旳上方时,求证:△≌△;猜想:若点P运动到x轴旳下方时,△与△是否依然全等?(不要求写出证明过程)Array(3)当四边形为菱形时,①请求出点P旳坐标;②请求出∠旳度数.参考答案一、选择题题号 1 2 3 4 5 6 7 8 9 10答案 A D C B C C A B A D答案提示:4.由三角形外角大于任何一个不相邻旳内角与∠小于180°可知90°<6x<180°,由此可得15°<x<30°,故选择B.5是质数,b是奇数,且,所以a、b必是一奇一偶,所以可求得2,2009,所以a+b+2=2013.6.由数列3、7、12、18、25……可判断存在旳规律为:第①个数为3,第②个数为3+4,第③个数为3+4+5,第④个数为3+4+5+6,第⑤个数为3+4+5+6+7……如此可断定第⑩个数为3+4+5+……+12=75,故选择C .7.设两码头之间旳航程为S ,船在静水中旳速度为a ,水流旳速度为b ,则船顺水所需旳时间为船逆水所需旳时间为,则船往返一次所需旳时间为由此可判断船在静水中旳速度不变与水流旳速度总小于船在静水中旳速度旳条件下,水流旳速度b 越大,a 2-b 2越小,船往返一次所需旳时间为就越大,故选择A .8.由矩形旳面积为8,可求矩形旳面积为2, 又点P 在第一象限,所以2, 故选择B .9.如图,分别以大旳正方形中间”十”字所在旳直线为对称轴可画出2、3两图,分别以正方形对角线所在直线为对称轴可画出4、5两图,再加上第1幅图,总共有5个符合条件旳三角形,故选择A .10.若点M 在圆上,点M 与圆心A 旳距离等于圆旳半径,容易判断点(2,0)是圆A 与X 轴正半轴旳交点、点(0,-2)是圆A 与y 轴负半轴旳交点,另外,可以通过构造直角三角形判断点(2,-2)与圆心A 旳距离等于,也可以用两点公式求出Mxy AO图5P A CB xyO EF点(2,-2)与圆心A 旳距离等于,因此A 、B 、C 三个选项中旳点均在圆上,而点(1,-2)与圆心A 旳距离等于1,小于圆A 旳半径,点(1,-2)不在圆上,故选择D . 二、填空题11.(3x -2y )212.13.2 14.3 15.2<x <7 16.13.5 17.1或7 18.5 答案提示: 12.13.由得所以有 所以 x 旳值为2. 因为关于x 旳方程x 2-4x +0旳两个实数根为x 1、x 2,由根与系数旳关系得x 12=4,所以,解得,所以3.15.构造右图,延长中线到A ’,使’D , 可证△≌△A ’,设,’=2 x ,由三角形三边不等关系可得 9-5<2x <9+5,从而有2<x <7.16.设直线旳解释式为3, 由题意可知直线过点(-3、0),故9,所以直线与y 轴旳交点为(0,9),则直线与坐标轴所围成旳三角形旳面积为3×9÷2=13.5平方单位.17.如图7,把线段绕点A 画弧,可见N 、C 两点旳距离存在两种情况:①点N 在边上,②点N 在边旳延长线上;可以证明△≌△AC B DA ’≌△’,所以有’3,所以N、C两点旳距离是:1或7.18.提示:可证,,由此得到旳长是5.三、解答题19.解:(1)设种植园应向海口供应旳黄帝蕉有x千克,则向海口供应旳香牙蕉有2x千克,根据题意列方程得:215000,解得:5000,则210000所以种植园供应文昌市旳香牙蕉应为12000-10000=2000千克,植园供应文昌市旳黄帝蕉应为5000-2000=3000千克.(2)设应安排m千克香牙蕉在海口市销售,则在海口市销售旳黄帝蕉为(15000)千克;在文昌市销售旳香牙蕉与黄帝蕉分别为(12000)千克、(7000)千克,则这批香蕉旳销售收入y 与m旳函数关系式为:4.85(15000)+3.6(12000)+4.2(7000)即0.488800 (7000≤m≤12000)从函数关系式看m旳值越大,销售收入y就越大,即香牙蕉应尽可能多地安排在海口市销售,所以若要使销售收入最大,需安排12000千克香牙蕉与3000千克黄帝蕉在海口市卖,安排5000千克黄帝蕉在文昌市卖,最大销售收入为0.4×12000+88800=93600(元) .20.解:(1)设直线旳解析式为,∵直线过点C(1、1),∴1, ∴直线旳解析式为∵直线与平行,∴可设直线旳解析式为,∵直线过点B(1,0),∴1,∴直线旳函数解析式为1(此题也可以通过求点B、D旳坐标,再利用待定系数法求直线旳解析式)(2)当点P在x轴旳上方时∵四边形是正方形Array∴,∠∠90°,∠45°又与平行∴∠∠∠45°,∴由∥知∥∴∠= ∠∵∥∴∠= ∠∴△≌△同理可知,若点P运动到x轴旳下方,△与△依然全等(3)①设点P旳横坐标为(a,b)因为点P在直线1上,则点P旳坐标可表示为(a,1)若四边形为菱形,则有作⊥x轴于点F,在△中有222即解得:,则,即当四边形为菱形时,点P 旳坐标为(,)或(,)②由①知点P 存在两种情况使四边形为菱形,即点P 在第一象限与第三象限ⅰ)当点P 在第一象限时(如点P 1),方法一(如图9A):过点C 作⊥于点H , 则△是直角三角形,由(2)旳证明可知△是等腰直角三角形,且 1 ∴, 若四边形为菱形,则有, ∴ ∴∠30° ∴∠P 1 30°方法二(如图9B ):连接交于点G ,过点P 1作P 1H ⊥于点H则△1H 是直角三角形,在正方形中有⊥,又∥,∴∠ ∠P 1∠ P 1= 90°∴四边形P 1是矩形,又四边形为菱形∴P 1 P 1 ∴∠P 1 30°ⅱ)当点P 在第三象限时(如点P 2),令x =0,则11,即直线与y 轴旳交点E 旳坐标为(0,-1) 则,则∠∠ 45°则∠2=∠1= 135°又四边形为菱形 P G H F x y M N C Q E P 1 D B A 图9BO∴O P2 P1 ∴∠O P2∠O P1B∴△O P2E≌△O P1B ()∴∠E O P2=∠B O P1∵∠B O P1=∠B O ∠P1 45°-30°=15°∴∠E O P2=15°,∴∠P2150°综合以上论述可知,当四边形为菱形时,∠旳度数为30°或150°一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一。
(完整版)2019年初中七年级数学竞赛试题及答案,推荐文档
![(完整版)2019年初中七年级数学竞赛试题及答案,推荐文档](https://img.taocdn.com/s3/m/6d8a35830722192e4436f647.png)
对于任意一条直线 l ,在直线 l 从平面图形的一侧向另一侧平移的过程中,当图形被直线 l 分割后,设直线 l 两侧图形的面积分别为 S1,S2.两侧图形的面积由 S1<S2(或 S1>S2)的情形, 逐渐变为 S1>S2(或 S1<S2)的情形,在这个平移过程中,一定会存在 S1=S2 的时刻.因此,一定 存在一条直线,将一个任意平面图形分割成面积相等的两部分.---- ----15 分
--------------------15 分
18.(15 分)(1)在图中每画出一条给 0.5 分
-----------------2 分
(2)① -----------------------5 分
②
S1<S2 S1=S2 S1>S2
(3)存在.
S1<S2 S1=S2 S1>S2
-------------11 分 ---------------13 分
请你在图18中相应图形下方的横线上分别填写s1s2的数量关系式用182请你在图18中分别画出反映s1s2三种大小关系的直的横线上分别填写s1s2的数量关系式用3是否存在一条直线将一个任意的平面图形如图请简略说出理由184分割成面积相等的两部分19
2019 年初中七年级数学竞赛试题及答案
一、选择题(每小题 6 分,共 48 分;以下每题的 4 个结论中,仅有一个是正确的,请 将正确答案的英文字母填在题后的圆括号内.)
17.(15 分)设第一代表团有 a 人,第二代表团有 b 人,由题意得:
a 35m 15 , b 35n 20 ,其中 m、n 是自然数--------------------3 分
两个代表团共拍了 a×b 张照片,
2019-2020年初中数学竞赛(海南赛区)初赛试题(含答案).docx
![2019-2020年初中数学竞赛(海南赛区)初赛试题(含答案).docx](https://img.taocdn.com/s3/m/8ab0fce1804d2b160a4ec052.png)
2019-2020 年初中数学竞赛 ( 海南赛区 ) 初赛试题 ( 含答案 )题号 一二三总 分(1 — 10)(11 — 18)1920得 分题号 12345678910答案A .1B .2C .6D .2425 25 25 255、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是()速度速度 速度速度O时间O时间O时间O时间A1BCD6、要使3 x有意义,则 x 的取值范围为2x1A .1x3B . 1<x 3C .1x < 3D . 1<x < 322227、菱形的两条对角线之和为L 、面积为 S ,则它的边长为()AA .1L24SB .1L22SC .12L 4SD .14S L 2E222 2 D8、如图 2,将三角形纸片 ABC 沿 DE 折叠,使点 A 落在 BC 边上的点F 处,且 DE ∥ BC ,下列结论中,一定正确的个数是( )BF C①△ CEF 是等腰三角形②四边形 ADFE 是菱形图 2y③四边形 BFED 是平行四边形④∠ BDF +∠ CEF = 2∠ AA . 1B . 2C . 3D . 41x9、如图 3,直线 x = 1 是二次函数y = ax 2+ bx + c 的图象的对称轴,则有 ()A . a + b + c = 0>a + cC .b = 2aD . abc > 0图 3B . b10、铁板甲形状为直角梯形,两底边长分别为 4cm , 10cm ,且有一内角为 60°;铁板乙形状为等腰三角形,其顶角为45°,腰长 12cm .在不改变形状的前提下,试图分别把它 们从一个直径为8.5cm 的圆洞中穿过,结果是()A .甲板能穿过,乙板不能穿过B .甲板不能穿过,乙板能穿过C .甲、乙两板都能穿过D .甲、乙两板都不能穿过y 二、填空题 (本大题满分 40 分,每小题 5 分)ox- 1图 411、 x 与 y 互为相反数,且x y 3 ,那么x22xy 1的值为__________.12、一次函数 y=ax+b 的图象如图 4 所示,则化简 a b b 1得 ________.13、若 x= -1 是关于 x 的方程 a2 x2+2011ax- 2012=0 的一个根,则 a 的值为 __________.14、一只船从 A 码头顺水航行到 B 码头用 6 小时,由 B 码头逆水航行到 A 码头需 8 小时,则一块塑料泡沫从 A 码头顺水漂流到 B 码头要用 ______小时(设水流速度和船在静水中的速度不变).15、如图 5,边长为 1 的正方形 ABCD 的对角线相交于点O,过点 O 的直线分别交AD、BC于 E、 F ,则阴影部分的面积是.16、如图 6,直线 l 平行于射线AM ,要在直线l 与射线 AM 上各找一点 B 和 C,使得以A、B、 C 为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.A EA DlEO B CB FC A M D图 5图 6图 717、如图 7,△与△均是等边三角形,若∠=145°,则∠的度数是 ________.ABC CDE AEB DBE18、如图 8 所示,矩形纸片ABCD 中, AB= 4cm, BC= 3cm,把∠ B、∠ D 分别沿 CE、 AG 翻折,点 B、D 分别落在对角线AC 的点 B'和 D'上,则线段EG 的长度是 ________.D G CB'D'AEB图 8三、解答题 (本大题满分30 分,每小题15 分 )19、某市道路改造工程,如果让甲工程队单独工作,需要30 天完成,如果让乙工程队单独工作,则需要60 天方可完成;甲工程队施工每天需付施工费 2.5 万元,乙工程队施工每天需付施工费 1 万元 . 请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作 10 天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65 万元,甲、乙两个工程队最多能合作几天?(4)如果工程必须在 24 天内(含 24 天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图 9,四边形 ABCD 是矩形,点P 是直线 AD 与 BC 外的任意一点,连接PA、 PB、PC、 PD.请解答下列问题:(1)如图 9( 1),当点P在线段BC的垂直平分线 MN 上(对角线 AC 与 BD 的交点Q除外)时,证明△ PAC ≌△ PDB ;(2)如图 9( 2),当点 P 在矩形 ABCD 内部时,求证: PA2+PC2=PB2+PD 2;(3)若矩形 ABCD 在平面直角坐标系 xoy 中,点 B 的坐标为( 1,1),点 D 的坐标为( 5,3),如图9( 3)所示,设△PBC 的面积为y,△ PAD 的面积为x,求 y 与 x 之间的函数关系式.MPA DQB N C图 9(1)A DPB C图9 (2)yA DB CO x图 9(3)参考答案一、选择题(本大题满分50 分,每小题 5 分)题号12345678910答案C D D A C B A B D B7、提示:可设菱形的两条对角线长分别为、b,利用对角线互相垂直进行解答 . a9、分析 :由函数的图象可知:当x=1时有a+b+c<0,当x=-1时有a-b+c>0,即a+c>b,即b<a+c,函数的对称轴为x b,则 b=-2a,因为抛物线的开口向上,所以 a>0,抛物线12a与 y 轴的交点在负半轴,所以c<0,由 b=-2a 可得 b<0.所以 abc>0,因而正确答案为 D10、分析:分别计算铁板的最窄处便可知,如图A,直角梯形, AD=4cm,BC=10cm,∠ C=60°,过点 A过 AE// CD,交 BC于点 E,过点 B作 BE⊥ CD于点 F,可求得 AB=6 3 cm>8.5cm,BE=5 3 cmA D AFDB EC BC图B>8.5 cm 铁板甲不能穿过,如图 B,等腰三角形 ABC 中,顶角∠ A =45°,作腰上的高线 BD ,可求得 BD =6 2 cm < 8.5 cm ,所以铁板乙可以穿过;所以选择 B二、填空题 (本大题满分 40 分,每小题 5 分)11、5 12 、 a+1 13、a=2012,a2=-114、 48A4115、 1单位面积16、3个17、85° 18、 10E4BC17、分析: 易证△ CEA 与△ CDB 全等,从而有∠ DBC =∠ EAC ,因为,∠ABE +∠ BAE =180°- 145° =35°所以有∠ EAC +∠ EBC =120°- 35° =85°,D图 7所以∠ EBD =∠ EBC +∠DBC =85°18、分析: AB = 4cm , BC =3cm ,可求得 AC=5cm ,由题意可知GCC B '=BC=3 cm ,A B ' =2cm 设 BE=x ,则 AE=4-x ,则有 (4-x)2- x 2 =2 2,DBx=1.5cm ,即 BE=DG =1.5cm ,过点 G 作 GF ⊥ AB 于点 F ,则' D 'FAB可求出 EF=1 cm ,所以 EG=123210图 8E三、解答题 (本大题满分 30 分,每小题 15 分)19 、本题满分 15 分,第( 1)、( 2)、( 3)小题,每小题 4 分,第( 4)小题 3 分 .解:( 1)设甲、乙两个工程队一起合作x 天就可以完成此项工程,依题意得:(11)x 1 ,解得: x=20答:甲、乙两个工程队一起合作20 天就可以完成此项工程 .30 60(2)设完成这项道路改造工程共需y 天,依题意得:110 y 1 ,解得 y=40 。
2019年全国初中数学竞赛各地初赛试题(解析版)
![2019年全国初中数学竞赛各地初赛试题(解析版)](https://img.taocdn.com/s3/m/43b1300c69eae009591bec0c.png)
1、2019年全国初中数学竞赛(四川赛区)初赛试卷2、2019年全国初中数学竞赛(广东赛区)初赛试卷3、2019年全国初中数学竞赛(海南赛区)初赛试卷4、2019年全国初中数学竞赛(广东赛区)初赛试卷5、2019年全国初中数学竞赛(天津赛区)初赛试卷6、2019年全国初中数学竞赛(湖北赛区)初赛试卷一、选择题(共6小题,每小题4分,满分24分)1.一个凸多边形的每一个内角都等于150°,则这个多边形所有对角线的条数共有()A.42条B.54条C.66条D.78条1.解:∵一个凸多边形的每一个内角都等于150°,∴此多边形的每一个外角是180°﹣150°=30°,∵任意多边形的外角和是:360°,∴此多边形边数是:360°÷30°=12,∴这个多边形所有对角线的条数是:n(n﹣3)÷2=12×(12﹣3)÷2=54.故选:B.2.如图,矩形ABCD的对角线相交于点O,AE平分∠BAD交BC于E,若∠CAE=15°,则∠BOE=()A.30°B.45°C.60°D.75°2.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,AC=BD,OA=OC,OB=OD,∠BAD=90°,∴OA=OB,∠DAE=∠AEB,∵AE平分∠BAD,∴∠BAE=∠DAE=45°=∠AEB,∴AB=BE,∵∠CAE=15°,∴∠DAC=45°﹣15°=30°,∠BAC=60°,∴△BAO是等边三角形,∴AB=OB,∠ABO=60°,∴∠OBC=90°﹣60°=30°,∵AB=OB=BE,∴∠BOE=∠BEO=(180°﹣30°)=75°.故选:D.3.设方程(x﹣a)(x﹣b)﹣x=0的两根是c、d,则方程(x﹣c)(x﹣d)+x=0的根是()A.a,b B.﹣a,﹣b C.c,d D.﹣c,﹣d3.【解答】解:∵(x﹣a)(x﹣b)﹣x=0,∴x2﹣(a+b+1)x+ab=0,而方程的两个根为c、d,∴c+d=a+b+1,①cd=ab,②又方程(x﹣c)(x﹣d)+x=0可以变为x2﹣(c+d﹣1)x+cd=0,③∴把①②代入③中得x2﹣(a+b)x+ab=0,(x﹣a)(x﹣b)=0,∴x=a,x=b.故选:A.4.若不等式2|x﹣1|+3|x﹣3|≤a有解,则实数a最小值是()A.1B.2C.4D.64.【解答】解:当x<1,原不等式变为:2﹣2x+9﹣3x≤a,解得x≥,∴<1,解得a>6;当1≤x≤3,原不等式变为:2x﹣2+9﹣3x≤a,解得x≥7﹣a,∴1≤7﹣a≤3,解得4≤a≤6;当x>3,原不等式变为:2x﹣2+3x﹣9≤a,解得x<,∴>3,解得a>4;综上所述,实数a最小值是4.故选:C.5.若一个三角形的任意两边都不相等,则称之为不规则三角形,用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是()A.18B.24C.30D.365.【解答】解:如图所示,∵连接BD、BE、BF、EG,则△BEF、△BEG、△BDE均为不规则三角形,∴从正方体的一个顶点出发与所有顶点的连线中有三个不规则的三角形,∴用一个正方体上的任意三个顶点构成的所有三角形中,不规则三角形的个数是3×8=24个.故选:B.6.不定方程x2﹣2y2=5的正整数解(x,y)的组数是()A.0组B.2组C.4组D.无穷多组6.【解答】解:若有解,x必为奇数,令x=2n+1,(2n+1)2=2y2+5,整理得2n(n+1)=2+y2,y为偶数,令y=2m,2n(n+1)=2+4m2,n(n+1)=1+2m2,左边为偶数,右边为奇数.所以无整数解,故选:A.二、填空题(共3小题,每小题7分,满分21分)7.二次函数y=x2﹣ax+2的图象关于x=1对称,则y的最小值是.7.【解答】解:∵对称轴x=﹣=1,解得a=2,∴二次函数为y=x2﹣2x+2=(x﹣1)2+1,∵二次项系数为1,图象开口向上,∴y的最小值是1.故答案为1.8.已知△ABC中,AB=,BC=6,CA=.点M是BC中点,过点B作AM延长线的垂线,垂足为D,则线段BD的长度是.8.【解答】解:∵()2=62+()2,∴AB2=BC2+CA2,∴△ABC是直角三角形,且∠C是直角.在直角△AMC中,CA=,CM=BC=3,∴∠CMA=30°,∴∠DMB=30°,在直角△BDM中,BD=BM•sin∠DMB=3×=.故答案是:.9.一次棋赛,有n个女选手和9n个男选手,每位参赛者与其10n﹣1个选手各对局一次,计分方式为:胜者的2分,负者得0分,平局各自得1分.比赛结束后统计发现所有参赛男选手的分数和是所有女选手的分数和的4倍,则n的所有可能值是.9.【解答】解:每场对局都有2分,10n个棋手对局共下:局,总分为100n×n﹣10n,假设男选手与女选手的所有比赛中都不得分,则9n个男选手最低总得分为81n×n﹣9n,女选手最高得分总和为19n×n﹣n,依题意,男选手最低得分总和比女选手最高得分总和应不大于4,列不等式(81n×n ﹣9n):(19n×n﹣n)≤4,因女选手得分为正数,变形得:(81n×n﹣9n)≤4(19n×n﹣n),移项:5n(n﹣1)≤0,解得:0≤n≤1,因n为正整数,所以n的所有可能值是1.故答案为:1.三、解答题(共3小题,满分70分)10.已知x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,使得(3x1﹣x2)(x1﹣3x2)=﹣80成立,求其实数a的可能值.10.【解答】解:∵x1、x2是关于x的一元二次方程x2+(3a﹣1)x+2a2﹣1=0的两个实数根,a=1,b=(3a﹣1),c=2a2﹣1,∴x1+x2=﹣(3a﹣1),x1•x2=2a2﹣1,而(3x1﹣x2)(x1﹣3x2)=﹣80,∴3x12﹣10x1x2+3x22=﹣80,3(x1+x2)2﹣16x1x2=﹣80,∴3[﹣(3a﹣1)]2﹣16(2a2﹣1)=﹣80,∴5a2+18a﹣99=0,∴a=3或﹣,当a=3时,方程x2+(3a﹣1)x+2a2﹣1=0的△<0,∴不合题意,舍去∴a=﹣.11.抛物线y=ax2+bx+c的图象于x轴交于点M(x1,0),N(x2,0),且经过点A(0,1),其中0<x1<x2,过点A的直线l交x轴于C点,与抛物线交于点B(异于A点),满足△CAN是等腰直角三角形,且,求解析式.11.【解答】解:由条件知该抛物线开口向上,与x轴的两个交点在y轴的右侧,由于△CAN是等腰直角三角形,故点C在x轴的左侧,且∠CAN=90°,故∠ACN=45°,从而C(﹣1,0),N(1,0).于是直线l的方程为:y=x+1.设B(x3,y3),由S△BMN=S△AMN,知y3=,(10分)从而,即.综上可知,该抛物线通过点A(0,1),,N(1,0).于是,解得.所以所求抛物线的解析式为y=4x2﹣5x+1.(25分)12.如图.AD、AH分别是△ABC(其中AB>AC)的角平分线、高线,M点是AD的中点,△MDH的外接圆交CM于E,求证∠AEB=90°.12.【解答】证明:如图,连接MH,EH,∵M是Rt△AHD斜边AD的中点,∴MA=MH=MD,∴∠MHD=∠MDH,∵M,D,H,E四点共圆,∴∠HEC=∠MDH,∴∠MHD=∠MDH=∠HEC,∴∠MHC=180°﹣∠MHD=180°﹣∠HEC=∠MEH,∵∠CMH=∠HME,∴△CMH∽△HME,∴,即MH2=ME•MC,∴MA2=ME•MC,又∵∠CMA=∠AME,∴△CMA∽△AME,∴∠MCA=∠MAE,∴∠BHE+∠BAE=∠DHE+∠BAD+∠MAE=∠DHE+∠MAC+∠MCA=∠DHE+∠DME=180°,∴A,B,H,E四点共圆,∴∠AEB=∠AHB,又∵AH⊥BH,∴∠AHB=90°,∴∠AEB=∠AHB=90°.2019年全国初中数学竞赛(广东赛区)初赛试卷一、选择题(每小题6分,满分30分)1.已知=0,a2+b2+c2=1,则a+b+c的值等于()A.1B.﹣1C.1或﹣1D.O1.【解答】解:∵==0,∴bc+ac+ab=0,又∵(a+b+c)2=a2+b2+c2+2(bc+ac+ab)=1+0=1;∴a+b+c=±1.故选:C.2.若使函数的自变量x的取值范围是一切实数,则下面的关系中一定满足要求的是()A.b>c>0B.b>0>c C.c>0>b D.c>b>02.【解答】解:∵函数的自变量x取值范围是一切实数,∴分母一定不等于0,∴x2﹣2bx+c2=0无解,即△=4b2﹣4c2=4(b+c)(b﹣c)<0,解得:c<b<﹣c或﹣c<b<c.当c>b>0时,一定满足要求上面要求.故选:D.3.如图,E、F、G、H、I、J、K、N分别是正方形各边的三等分点,要使中间阴影部分的面积是5,那么大正方形的边长应该是()A.B.C.D.3.【解答】解:∵△BMI∽△ABI,∴MI=BM,∴AI=3MB+MB=MB,又∵在直角△ABI中,AB:AI=3:,∴AB=×MB,∵MB与小正方形的边长相等,∴AB=×==5.故选:C.4.如图,△ABC是等边三角形,P是BC上任意一点,PD⊥AB,PE⊥AC,连接DE.记△ADE的周长为L1,四边形BDEC的周长为L2,则L1与L2的大小关系是()A.L l=L2B.L1>L2C.L2>L1D.无法确定4.【解答】解:∵等边三角形各内角为60°,∴∠B=∠C=60°,∵∠BPD=∠CPE=30°,∴在Rt△BDP和Rt△CEP中,∴BP=2BD,CP=2CE,∴BD+CE=BC,∴AD+AE=AB+AC﹣BC=BC,∴BD+CE+BC=BC,L1=BC+DE,L2=BC+DE,即得L1=L2,故选:A.5.一个盒子里有200只球,从101到300连续编号,甲、乙两人分别从盒子里拿球,直到他们各有100只球为止,其中甲拿到102号,乙拿到280号,则甲拿到的球的编号总和与乙拿到的球的编号总和之差最大是()A.10000B.9822C.377D.96445.解:甲拿201至300,然后用280换102 则标号之和是:(201+300)×﹣(280﹣102)=24872;乙的编号之和是:(101+200)×+(280﹣102)=15228 24872﹣15228=9644.故选:D.6.已知a2+4a+1=0,且,则m=.6.【解答】解:∵a2+4a+1=0,∴a2=﹣4a﹣1,=====5,∴(16+m)(﹣4a﹣1)+8a+2=5(m﹣12)(﹣4a﹣1),原式可化为(16+m)(﹣4a﹣1)﹣5(m﹣12)(﹣4a﹣1)=﹣8a﹣2,即[(16+m)﹣5(m﹣12)](﹣4a﹣1)=﹣8a﹣2,∵a≠0,∴(16+m)﹣5(m﹣12)=2,解得m=.故答案为.7.如图,由12根铅丝焊接成一个正方体框架.现要将每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.如果已将AD涂成红色,BF涂成黄色,GH涂成蓝色,那么该涂成白色的铅丝有.7.解:∵每个正方形的4根铅丝分别涂上红、黄、蓝、白4种颜色.AD涂成红色,BF涂成黄色,GH涂成蓝色.∴涂成红色的铅丝只能有EF、FG、CG,而FG不合题意,则涂成红色的铅丝有EF、CG;同理涂成黄色的铅丝有EH、CD;涂成蓝色的铅丝有AE、BC.则涂成白色的铅丝有:AB、DH、FG.故答案为:AB、DH、FG.8.某旅游团一行50人到某旅社住宿,该旅社有三人间、双人间和单人间三种客房,其中三人间每人每晚20元,双人间每人每晚30元,单人间每晚50元.已知该旅行团住满了20间客房,且使总的住宿费用最省.那么这笔最省的住宿费用是元,所住的三人间、双人间、单人间的间数依次是.8.【解答】解:设该旅行团住三人间x间,双人间y间,单人间z间,总住宿费为a元.则由题意得由②﹣①得2x+y=30,即y=30﹣2x④由②﹣①×2得x﹣z=10,即z=x﹣10 ⑤∵0≤y≤20,即0≤30﹣2x≤20,解得5≤x≤15 ⑥同理0≤z≤20,即0≤x﹣10≤20,解得10≤x≤30 ⑦由⑥⑦知10≤x≤15将④⑤代入③得a=60x+60(30﹣2x)+50(x﹣10)=1300﹣10x⇒x=130﹣∴10≤≤15⇒1200≤a≤1150∴这笔最省的住宿费用是1150元,此时x=15再将x的值代入④⑤得y=0、z=5故答案为1150,15、0、5.9.△ABC中,BC=a,AC=b,AB=c.若AC、BC上的中线BE、AD垂直相交于点O,则c可用a、b 的代数式表示为.9.【解答】解:∵AC、BC上的中线BE、AD垂直相交于点O,于是,中线BE、AD,E和D是AC,BC上的中点由题可知,∴∠BOA=90°,BD=CD=,AE=EC=,∵E,D为中点,故DE为中线=AB=,∴①BO2+DO2=()2,②AO2+EO2=()2,③DO2+EO2=()2,④BO2+AO2=c2,∴①+②=③+④,∴5c2=a2+b2.故c=.故答案为:c=.10.如图,AB为半圆O的直径,C为半圆上一点,∠AOC=60°,点P在AB的延长线上,且PB=BO =3cm.连接PC交半圆于点D,过P作PE⊥P A交AD的延长线于点E,求PE长.10.【解答】解:如图,连接BD,BE,∵∠AOC=60°,∴∠ADC=∠PDE=∠AOC=30°,∵AB是⊙O的直径,∴∠ADB=∠BDE=90°,∵PE⊥P A,∴∠BPE=90°,∴∠BDE=∠BPE=90°,∴∠BDE+∠BPE=180°,∴点B,P,E,D四点共圆,∴∠PBE=∠PDE=30°,在Rt△BPE中,tan∠PBE=,∴tan30°==,∴PE=.三、解答题(每小题15分,共60分)11.设等腰三角形的一腰与底边的长分别是方程x2﹣6x+a=0的两根,当这样的三角形只有一个时,求a 的取值范围.11.【解答】解:∵方程x2﹣6x+a=0有实数根,∴△=36﹣4a≥0,(1)当△=0时,即△=36﹣4a=0,解得a=9,此时三角形为等边三角形;(2)当△>0,即△=36﹣4a>0时,解得a<9,设两根为x1,x2(x1<x2)此时存在一个等腰三角形底边为x1,腰为x2,此时不存在一个等腰三角形底边为x2,腰为x1即最短两边(即两腰)之和不大于最大边(即底边)即2x1≤x2,由根与系数的关系可得,3x1≤x1+x2=6,∴x1≤2,∵x1+x2=6,x1•x2=a,∴a=x1•(6﹣x1),=6x1﹣(x1)2=﹣(3﹣x1)2+9=﹣(3﹣x1)2+9≤8,∴当0<a≤8,a=9时,三角形只有一个.12.若干个工人装卸一批货物,每个工人的装卸速度相同.如果这些工人同时工作,则需10小时装卸完毕.现改变装卸方式,开始一个人干,以后每隔t(整数)小时增加一个人干,每个参加装卸的人都一直干到装卸结束,且最后增加的一个人装卸的时间是第一个人装卸时间的.问:(1)按改变后的装卸方式,自始至终需要多长时间?(2)参加装卸的有多少名工人?12.【解答】解:(1)设装卸工作需x小时完成,则第一人干了x小时,最后一个人干了小时,两人共干活小时,平均每人干活小时,由题意知,第二人与倒数第二人,第三人与倒数第三人,平均每人干活的时间也是小时.根据题得,解得x=16(小时);(2)共有y人参加装卸工作,由于每隔t小时增加一人,因此最后一人比第一人少干(y﹣1)t小时,按题意,得,即(y﹣1)t=12.解此不定方程得,,,,,即参加的人数y=2或3或4或5或7或13.13.(15分)如图,在△ABC中,AB=AC,D是底边BC上一点,E是线段AD上一点且∠BED=2∠CED =∠A.求证:BD=2CD.13.【解答】证明:作DO∥AB交AC于O.则由AB=AC易知OD=OC,且∠DOC=∠BAC=2∠CED,所以O为△EDC的外心,取F为△EDC的外接圆与AC的交点,连接DF,则OF=OC=OD,∠ACE=∠ADF.所以△ACE∽△ADF,即有=.再由DO∥AB,∠ADO=∠BAE,∠AOD=180﹣∠DOC=180°﹣∠A=180°﹣∠BED=∠AEB,所以△ADO∽△BAE,即得===.故AF=OD=OC=CF,从而AO=2OC.由DO∥AB,得:BD=2CD.14.如图,已知抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),抛物线的顶点为D,过O作射线OM∥AD.过顶点平行于x轴的直线交射线OM于点C,B在x轴正半轴上,连接BC.(1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形,直角梯形,等腰梯形?(3)若OC=OB,动点P和动点Q分别从点O和点B同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t(s),连接PQ,当t为何值时,四边形BCPQ的面积最小?并求出最小值及此时PQ的长.14.【解答】解:(1)∵抛物线y=a(x﹣1)2+3(a≠0)经过点A(﹣2,0),∴0=9a+3,∴a=﹣∴二次函数的解析式为:y=﹣x2+x+;(3分)(2)①∵D为抛物线的顶点,∴D(1,3),过D作DN⊥OB于N,则DN=3,AN=3,∴AD==6,∴∠DAO=60°.∵OM∥AD,①当AD=OP时,四边形DAOP是平行四边形,∴OP=6,∴t=6(s).②当DP⊥OM时,四边形DAOP是直角梯形,过O作OH⊥AD于H,AO=2,则AH=1(如果没求出∠DAO=60°可由Rt△OHA∽Rt△DNA(求AH=1)∴OP=DH=5,t=5(s)(6分)③当PD=OA时,四边形DAOP是等腰梯形,易证:△AOH≌△DPP′,∴AH=CP,∴OP=AD﹣2AH=6﹣2=4,∴t=4(s)综上所述:当t=6、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形;(3)由(2)及已知,∠COB=60°,OC=OB,△OCB是等边三角形则OB=OC=AD=6,OP=t,BQ=2t,∴OQ=6﹣2t(0<t<3)过P作PE⊥OQ于E,则PE=t(8分)∴S BCPQ=×6×3×(6﹣2t)×t=(t﹣)2+(9分)当t=时,四边形BCPQ的面积最小值为.(10分)∴此时OQ=3,OP=,OE=;∴QE=3﹣=,PE=,∴PQ=.(11分)2019年全国初中数学竞赛(海南赛区)初赛试卷一、选择题(共10小题,每小题5分,满分50分)1.设xy<0,x>|y|,则x+y的值是()A.负数B.0C.正数D.非负数1.【解答】解:∵xy<0,x>|y|,∴x>0,y<0,且|x|>|y|,∴x+y的值正数.故选:C.2.若(x+3)(x+n)=x2+mx﹣15,则m等于()A.﹣2B.2C.﹣5D.52.解:∵(x+3)(x+n)=x2+(3+n)x+3n,∴3n=﹣15,∴n=﹣5,m=3+(﹣5)=﹣2.故选:A.3.若a+|a|=0,则等于()A.1﹣2a B.2a﹣1C.﹣1D.13.【解答】解:由a+|a|=0,得|a|=﹣a,可知a为非正数,∴=1﹣a,=﹣a∴原式=1﹣a﹣a=1﹣2a故选:A.4.无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限4.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.5.(5分)从1到9这9个自然数中任取一个,是2的倍数的概率是()A.B.C.D.15.【解答】解:所有机会均等的可能共有9种.而2的倍数有2,4,6,8四个,因此是2的倍数的概率是.故选:B.6.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算6.【解答】解:本题没有AB两地的单程,可设为1,那么总路程为2,总时间为+.平均速度=2÷(+)=2÷=.故选B.7.如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A.B.C.D.7.【解答】解:由于一段时间离家的距离保持不变,家是一个点,所以在那段时间内行走的路线就可能是在以家为圆心,那段距离为半径的一段弧上.故选:D.8.如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为()A.4米B.6米C.8米D.10米8.【解答】解:如图,由题意可知,∠ACB=90°,∠ABC=60°,则AB=2BC=8米,故选:C.9.如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD=1,则a等于()A.B.C.1D.29.【解答】解:∵∠BAC=∠BCA=∠OBC=∠OCB,∴△BOC∽△ABC,所以,即,所以,a2﹣a﹣1=0.由a>0,解得.故选:A.10.如图,根据天气预报,某台风中心位于A市正东方向300km的点O处,正以20km/h的速度向北偏西60°方向移动,距离台风中心250km范围内都会受到影响,若台风移动的速度和方向不变,则A市受台风影响持续的时间是()A.10h B.20h C.30h D.40h10.【解答】解:如图,以点A为圆心,250km为半径画圆,交OM于点B、C,作AN⊥BC于点N,∵∠AON=90°﹣60°=30°,AO=300,∴在Rt△OAN中,AN=AO=150km,又AC=250km,在Rt△CAN中,由勾股定理,得CN==200km,则BC=2CN=400km,台风中心在线段BC上时,A市都会受到台风的影响,∴A市受台风影响持续的时间为400÷20=20小时.故选:B.二、填空题(共8小题,每小题5分,满分40分)11.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为.11.【解答】解:把n代入方程得到n2+mn+2n=0,将其变形为n(m+n+2)=0,因为n≠0所以解得m+n=﹣2.12若a+3b=0,则=.12.【解答】解:∵a+3b=0,∴a=﹣3b.∴原式=====.故答案为:.13.如图,是30名初三女学生1分钟内仰卧起坐次数的频数分布直方图(每组次数只含最小值而不含最大值),则仰卧起坐次数在25~45次的频率是.13.【解答】解:由频率分布直方图可知,“25~45”的学生人数有21人,∴仰卧起坐次数在25~45次的频率=21÷30=0.7.故应填:0.7.14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则cos∠ABC的为.14.【解答】解:连接AC,延长AD交CD的延长线于D,由题意可知∠D=90°,则AC==,BC==,AB==,∵AC2+BC2=AB2∴△ABC直角三角形,∵AC=BC,∴∠A=∠B==45°.cos45°=故答案为.15.已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.15.【解答】解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况:(1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1,∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.16.如图,两个滑块A、B由一个连杆连接,分别可以在两条互相垂直的滑道上滑动.开始时,滑块A距O点20cm,滑块B距O点15cm.则当滑块A向下滑到O点时,滑块B滑动了.16.【解答】解:如图,由AB2=AO2+OB2=202+152=252,可知连杆AB的长度等于25cm,当滑块A向下滑到O点时,滑块B距O点的距离是25cm,故滑块B滑动了25﹣15=10cm.故答案为10cm.17.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.17.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.18.如图,将长为4cm宽为2cm的矩形纸片ABCD折叠,使点B落在CD边上的中点E处,压平后得到折痕MN,则线段AM的长度为cm.18.【解答】解:如图,连接BM,EM,BE,由折叠的性质可知,四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,∵点E是CD的中点,DE=1,∴在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=x,则DM=4﹣x,∴x2+22=(4﹣x)2+12.解得,即cm.故答案为:.三、解答题(共2小题,满分30分)19.如图,正方形ABCD的边长为1,对角线AC与BD相交于点O,点P是AB边上的一个动点(点P不与点A、B重合),CP与BD相交于点Q.(1)若CP平分∠ACB,求证:AP=2QO.(2)先按下列要求画出相应图形,然后求解问题.①把线段PC绕点P旋转90°,使点C落在点E处,并连接AE.设线段BP的长度为x,△APE的面积为S.试求S与x的函数关系式;②求出S的最大值,判断此时点P所在的位置.19.【解答】(1)证明:过点O作OM∥AB交PC于点M,则∠COM=∠CAB.∵四边形ABCD是正方形,∴OA=OC,∠CAB=∠CBD=∠COM=45°,∴AP=2OM.又∵∠1=∠2,∴∠1+∠COM=∠2+∠CBD,即∠OMQ=∠OQM.∴OM=OQ∴AP=2OQ.(2)解:根据题意作出图形,如图所示①ⅰ、当PC绕点P逆时针旋转90°时,作EF⊥AB交BA延长线于点F,则∠EFP=∠PBC=90°,∠3+∠CPB=90°.又∠2+∠CPB=90°,∴∠3=∠2.又PE由PC绕点P旋转形成∴PE=PC∴△EPF≌△CPB.∴EF=BP=x,∴AP=1﹣x,∴.∴△APE的面积S与x的函数关系式为(0<x<1).ⅱ、当PC绕点P顺时针旋转90°时,作E′G⊥AB交AB延长线于点G,则同理可得△E′PG≌△CPB,E′G=BP=x.∴△APE的面积S与x的函数关系式为由ⅰ、ⅱ可得△APE的面积S与x的函数关系式为,(0<x<1)②由①知S与x的函数关系式为,(0,x,1)即,(0<x<1)∴当时S的值最大,最大值为.此时点P所在的位置是边AB的中点处.20.文昌某校准备组织学生及学生家长到三亚进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,文昌到三亚的火车票价格(部分)如下表所示:运行区间公布票价学生票价上车站下车站一等座二等座三等座文昌三亚81(元)68(元)51(元)(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x 张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?20.【解答】解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,解得,则2m=20,答:参加社会实践的老师、家长与学生分别有10人、20人、180人.(2)解:由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x﹣180)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x﹣180)+81(210﹣x),即y=﹣13x+13950(180≤x<210),②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210﹣x),即y=﹣30x+17010(0<x<180),答:购买火车票的总费用(单程)y与x之间的函数关系式是y=﹣13x+13950(180≤x<210)或y=﹣30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=﹣13x+13950,∵﹣13<0,y随x的增大而减小,∴当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=﹣30x+17010,∵﹣30<0,y随x的增大而减小,∴当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元.2019年全国初中数学竞赛(天津赛区)初赛试卷一、选择题(每小题4分,共20分,每小题只有一个答案是正确的,答对的得3分,答错、不答或答案超过一个的一律得0分.)1.若四个互不相等的正实数a,b,c,d满足(a2012﹣c2012)(a2012﹣d2012)=2012,(b2012﹣c2012)(b2012﹣d2012)=2012,则(ab)2012﹣(cd)2012的值为()A.﹣2012B.﹣2011C.2012D.20111.【解答】解:设a2012与b2012看做方程(x﹣c2012)(x﹣d2012)=2012的两个解,方程整理得:x2﹣(c2012+d2012)x+(cd)2012﹣2012=0,则(ab)2012﹣(cd)2012=,又x1x2=(cd)2012﹣2012,则(ab)2012﹣(cd)2012==(cd)2012﹣2012﹣(cd)2012=﹣2012.故选:A.2.一个袋子中装有4个相同的小球,它们分别标有号码1,2,3,4.摇匀后随机取出一球,记下号码后放回;再将小球摇匀,并从袋中随机取出一球,则第二次取出的球的号码不小于第一次取出的球的号码的概率为()A.B.C.D.2.【解答】解:可以分四种情况讨论:若第一次抽出1号球,则第二次抽出任一球都可满足条件,概率为=;若第一次抽出2号球,则第二次抽出2,3,4号球可满足要求,概率为=;若第一次抽出3号球,则第二次抽出3,4号球可满足要求,概率为=;若第一次抽出4号球,则第二次抽出4号球可满足要求,概率为=;则第二次取出的球的号码不小于第一次取出的球的号码的概率为=;故选:D.3.如图,矩形纸片ABCD中,AB=3,AD=9,将其折叠,使点D与点B重合,得折痕EF,则EF的长为()A.B.C.D.3.【解答】解:如右图所示,∵四边形EDCF折叠后得到四边形EBCF,∴∠1=∠2,BE=DE,∵四边形ABCDE是矩形,∴AD∥BC,∴∠3=∠2,∴∠1=∠3,∴BF=BE,设AE=x,那么BE=9﹣x,在Rt△BAE中,AB2+AE2=BE2,即32+x2=(9﹣x)2,解得x=4,∴BE=5,过点E作EG⊥BC于G,∵EG⊥BC,∴∠BGE=∠A=∠ABG=90°,∴四边形ABGE是矩形,∴GF=BF﹣BG=5﹣4=1,EG=AB=3,在Rt△EGF中,EF2=EG2+GF2,=10,∴EF=.故选:C.4.在正九边形ABCDEFGHI中,若对角线AE=2,则AB+AC的值等于()A.B.2C.D.4.【解答】解:如图,设O为正九边形ABCDEFGHI的中心,连接OE、OA,则∠AOE=×4=160°,∴∠OEA=10°,又易得∠OED=70°,∴∠DEA=60°,在AE上截取EP=ED,连接DP、PC,∵∠PDC=140°﹣60°=80°,∴,∴∠CP A=70°,又∵∠CAP=∠BAP﹣∠BAC=40°,∴∠CAP=70°,∴AC=AP,又∵AB=DE=EP,∴AE=AB+AC=2.故选:B.5.有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加1 项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有20个人报名,则n的最小值等于()A.171B.172C.180D.1815.【解答】解:对于一个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有种,故可得:每个人报名方式有9种,又题目要求要求有20人相同,故可以让每一种方式都有19个人,然后只要任意一种再加一个人即可,所以n min=19×9+1=172.故选:B.二、填空题(每小题4分,共20分).6.若,则的值为.6.【解答】解:平方得:,展开后,∴,∴,即,∴+=2或﹣2(舍去)∴x2﹣=(x+)(+)(﹣)=﹣24,故答案为:﹣24.7.若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为.7.【解答】解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1;故答案为:﹣2或1.8.如图,半径为r的⊙O沿折线ABCDE作无滑动的滚动,如果AB=BC=CD=DE=2πr,∠ABC=∠CDE=150°,∠BCD=120°,那么,⊙O自点A至点E转动了周.8.【解答】解:圆的周长是2πr,AB+BC+CD+DE=8πr,则8πr÷2πr=4.经过点B从AB到BC时,从与AB相切到与BC相切转动了一个∠ABC补角的度数即180﹣150=30°,同理C、D两点都要转一个补角度数,总共转了30°,60°,则在三个点处转动了30°+30°+60°=120°,即周.在⊙O自点A 至点E转动了4+=4周.故答案是:4.9.如图,已知△ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM:MN:ND等于.9.【解答】解:如图,作PD∥BF,QE∥BC,∵D为BC的中点,∴PD:BF=1:2,∵E,F为AB边三等分点,∴PD:AF=1:4,∴DN:NA=PD:AF=1:4,∴ND=AD,AQ:AD=QE:BD=AE:AB=1:3,∴AQ=AD,QM=QD=AD=AD,∴AM=AQ+QM=AD,MN=AD﹣AM﹣ND=AD∴AM:MN:ND=5:3:2.故答案为5:3:2.10.若平面内有一正方形ABCD,M是该平面内任意点,则的最小值为.10.【解答】解:过点M作MF⊥AD交AD的延长线与点F,作ME垂直BC交BC的延长线与点E,如图,∵MA2+MC2=MF2+AF2+ME2+CE2,MB2+MD2=BE2+ME2+DF2+FM2,DF=CE,AF=BE,∴MA2+MC2=MB2+MD2,又∵AC2=MA2+MC2﹣2MA•MC•cos∠AMC,BD2=MB2+MD2﹣2MB•MD•cos∠BMD,AC=BD,∴MA•MC•cos∠AMC=MB•MD•cos∠BMD,,∵,又∵MA2+MC2=MB2+MD2,∴当最小时,这个值最小,所以当∠BMD=90°,∠AMC=0°时最小,即点M与点A、C重合时,此时=.故答案为:.三、解答题(每小题15分,共60分).11.已知抛物线y=x2+mx+n经过点(2,﹣1),且与x轴交于两点A(a,0)B(b,0),若点P为该抛物线的顶点,求使△P AB面积最小时抛物线的解析式.11.【解答】解:由题意知4+2m+n=﹣1,即n=﹣2m﹣5,∵A(a,0)、B(b,0)两点在抛物线y=x2+mx+n上,∴a+b=﹣m,ab=n,又∵|AB|=|a﹣b|=x2+mx+n经过(2,﹣1),代入得,n=﹣2m﹣5,∴,P点纵坐标为,=,可见,当m=﹣4时S△P AB最小,解析式为y=x2﹣4x+3.12.如图,分别以边长1为的等边三角形ABC的顶点为圆心,以其边长为半径作三个等圆,得交点D、E、F,连接CF交⊙C于点G,以点E为圆心,EG长为半径画弧,交边AB于点M,求AM的长.12.【解答】解:如图,过点E作EP⊥AB,连接EA、EC、EM.∵在⊙C中,EC=AC;在⊙A中,AE=AC,∴EC=AC=AE,∴△EAC为正三角形;同理证得△ABC为正三角形,则∠ECA=∠CAB=60°,∴EC∥AB,又∵由相交两圆的性质得:CG⊥AB,∴EC⊥CG,∴EM=EG==,∵∠EAP=60°,∴EP=,AP=,PM==,∴AM=PM﹣AP=﹣1.13.已知p与5p2﹣2同为质数,求p的值.13.【解答】解:∵5p2﹣2=5p2﹣5+3=5(p+1)(p﹣1)+3,①当p+1=3n(n≥1),即p=3n﹣1时,3|5(p+1)(p﹣1)+3,即5p2﹣2为合数,不符合题意;②当p﹣1=3n(n≥1),即p=3n+1时,3|5(p+1)(p﹣1)+3,即5p2﹣2为合数,不符合题意;③当p=3n(n≥2)时,p为合数,不符合题意;∴p只能取3,当p=3时,5p2﹣2=43为质数符合题意,∴p=3.14.已知关于x的不等式组的解集中的整数恰好有2个,求实数a的取值范围.14.【解答】解:不等式组可以化为:,即<x<a+1.满足原不等式组的解集中的整数恰好有2个,只需(k为整数),即(k为整数)(1)只需关于整数k的不等式组有解.解得:1<k≤4,得k=2,3,4.当k=2时,代入(1),有,解得:3<a<4;当k=3时,代入(1)得:,解得:4<a≤5;当k=4时,代入(1)得:,解得:a=6.所以,3<a<4或4<a≤5或a=6即为所求.2019年全国初中数学竞赛(湖北赛区)初赛试卷一、选择题(共6小题,每小题4分,满分24分)1.如果分式的值等于0,则x的值是()A.2B.﹣2C.﹣2或2D.2或32.已知a、b、c为一个三角形的三边长,则4b2c2﹣(b2+c2﹣a2)2的值为()A.恒为正B.恒为负C.可正可负D.非负3.如图,直线l1、l2、l3表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A.1处B.2处C.3处D.4处4.某校公布了该校反映各年级学生体育达标情况的两张统计图,该校七.八.九三个年级共有学生800人.甲,乙,丙三个同学看了这两张统计图后,甲说:“七年级的体育达标率最高.”乙说:“八年级共有学生264人.”丙说:“九年级的体育达标率最高.”甲,乙,丙三个同学中,说法正确的是()A.甲和乙B.乙和丙C.甲和丙D.甲和乙及丙5.若方程组的解为x,y,且2<k<4,则x﹣y的取值范围是()A.0<x﹣y<B.0<x﹣y<C.﹣3<x﹣y<﹣1D.﹣1<x﹣y<6.如图,已知AD是△ABC的外接圆的直径,AD=13cm,cos B=,则AC的长等于()A.5cm B.6cm C.10cm D.12cm二、填空题(共6小题,每小题4分,满分24分)7.已知x2+y2+z2﹣2x+4y﹣6z+14=0,则x+y+z=.8.已知m,n是有理数,且(+2)m+(3﹣2)n+7=0,则m=,n=.9.如图,在△ABC中,O是∠ABC与外角∠ACD的平分线BO、CO的交点,则∠O与∠A的关系是.。
全国初中数学竞赛试题及答案
![全国初中数学竞赛试题及答案](https://img.taocdn.com/s3/m/2ccd4861f705cc17552709bf.png)
2019年全国初中数学竞赛试题及答案2019年全国初中数学竞赛试题考试时间2019年4月2日上午9∶30-11∶30 满分120分一、选择题(共5小题,每小题6分,满分30分。
以下每道小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的。
请将正确选项的代号填入题后的括号里。
不填、多填或错填均得0分)1.在高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌;并且从10千米处开始,每隔9千米经过一个速度监控仪.刚好在19千米处第一次同时经过这两种设施,那么第二次同时经过这两种设施的千米数是()(A)36 (B)37 (C)55 (D)902.已知,,且=8,则a的值等于()(A)-5 (B)5 (C)-9 (D)93.Rt△ABC的三个顶点A,B,C均在抛物线上,并且斜边AB平行于x轴.若斜边上的高为h,则()(A)h (B)h=1 (C)1h (D)h24.一个正方形纸片,用剪刀沿一条不过任何顶点的直线将其剪成两部分;拿出其中一部分,再沿一条不过任何顶点的直线将其剪成两部分;又从得到的三部分中拿出其中之一,还是沿一条不过任何顶点的直线将其剪成两部分……如此下去,最后得到了34个六十二边形和一些多边形纸片,则至少要剪的刀数是()(A)2019 (B)2019 (C)2019 (D)20195.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连结DP,交AC于点Q.若QP=QO,则的值为()(A)(B)(C)(D)二、填空题(共5小题,每小题6分,满分30分)6.已知a,b,c为整数,且a+b=2019,c-a=2019.若a,则a+b+c的最大值为.7.如图,面积为的正方形DEFG内接于面积为1的正三角形ABC,其中a,b,c为整数,且b不能被任何质数的平方整除,则的值等于.8.正五边形广场ABCDE的周长为2019米.甲、乙两人分别从A、C两点同时出发,沿A→B→C→D→E→A→…方向绕广场行走,甲的速度为50米/分,乙的速度为46米/分.那么出发后经过分钟,甲、乙两人第一次行走在同一条边上.9.已知0a1,且满足,则的值等于.(表示不超过x的最大整数)10.小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码.小明发现,他家两次升位后的电话号码的八位数,恰是原来电话号码的六位数的81倍,则小明家原来的电话号码是.三、解答题(共4题,每小题15分,满分60分)11.已知,,为互质的正整数(即,是正整数,且它们的最大公约数为1),且≤8,.(1)试写出一个满足条件的x;(2)求所有满足条件的x.12.设,,为互不相等的实数,且满足关系式求a的取值范围.13.如图,点P为⊙O外一点,过点P作⊙O的两条切线,切点分别为A,B.过点A作PB的平行线,交⊙O于点C.连结PC,交⊙O于点E;连结AE,并延长AE交PB于点K.求证:PE·AC=CE·KB.14.10个学生参加n个课外小组,每一个小组至多5个人,每两个学生至少参加某一个小组,任意两个课外小组,至少可以找到两个学生,他们都不在这两个课外小组中.求n的最小值.2019年全国初中数学竞赛试题参考答案一、选择题(共5小题,每小题6分,满分30分。
2019年全国初中数学联赛(初三组)初赛试卷及答案
![2019年全国初中数学联赛(初三组)初赛试卷及答案](https://img.taocdn.com/s3/m/f1a68d96284ac850ad02429d.png)
第2题图DACB第4题图DACB2019年全国初中数学联赛(初三组)初赛试卷(3月7日下午4:00—6:00)班级:: 姓名: 成绩:考生注意:1、本试卷共五道大题,全卷满分140分;2、用圆珠笔、签字笔或钢笔作答;3、解题书写不要超出装订线;4、不能使用计算器。
一、选择题(本题满分42分,每小题7分)本题共有6个小题,每题均给出了代号为A 、B 、C 、D 的四个答案,其中有且只有一个是正确的。
将你选择的答案的代号填在题后的括号内。
每小题选对得7分;不选、错选或选出的代号字母超过一个(不论是否写在括号内),一律得0分。
1、某件商品的标价为13200元,若以8折降价出售,仍可获利10%(相对于进货价),则该商品的进货价是( )A 、9504元B 、9600元C 、9900元D 、10000元 2、如图,在凸四边形ABCD 中,BD BC AB ==,︒=∠80ABC ,则ADC ∠等于( )A 、︒80B 、︒100C 、︒140D 、︒1603、如果方程()()0422=+--m x x x 的三根可以作为一个三角形的三边之长,那么,实数m 的取值范围是( )A 、04m <≤B 、3≥mC 、4≥mD 、34m <≤4、如图,梯形ABCD 中,CD AB //,︒=∠60BAD ,︒=∠30ABC ,6=AB 且CD AD =,那么BD 的长度是( )A 、7B 、4C 、72D 、245、如果20140a -<<,那么|2014||2014|||+-+++-a x x a x 的最小值是( ) A 、2019B 、2014+aC 、4028D 、4028+a6、方程()y x y xy x +=++322的整数解有( ) A 、3组B 、4组C 、5组D 、6组二、填空题(本大题满分28分,每小题7分)1、如图,扇形AOB 的圆心角︒=∠90AOB ,半径为5,正方形CDEF 内接于该扇形,则正方形CDEF 的边长为 .2、已知四个自然数两两的和依次从小到大的次序是:23,28,33,39,x ,y ,则____=+y x .3、已知6=-y x ,922=-+-y xy xy x ,则22y xy xy x ---的值是 .4、有质地均匀的正方体形的红白骰子各一粒,每个骰子的六个面分别写有1、2、3、4、5、6的自然数,随机掷红、白两粒骰子各一次,红色骰子掷出向上面的点数比白色骰子掷出向上面的点数小的概率是 .三、(本大题满分20分)已知0422=-+a a ,2=-b a ,求ba 211++的值。
2019年全国初中数学联赛试题及详解
![2019年全国初中数学联赛试题及详解](https://img.taocdn.com/s3/m/be1bcf045727a5e9856a6196.png)
2019年全国初中数学联合竞赛试题及详解第一试一、选择题:(本题满分42分,每小题7分)1. 若,,a b c 均为整数且满足1010()()1a b a c -+-=,则||||||a b b c c a -+-+-= ( B )A .1.B .2.C .3.D .4.解: 由已知可推得011a b b c a c -=⎧⇒-=±⎨-=±⎩ 或 110a b b c a c -=±⎧⇒-=±⎨-=⎩,分别代入即得。
2.若实数,,a b c 满足等式23||6a b =,9||6a b c =,则c 可能取的最大值为 ( C )A .0.B .1.C .2.D .3.解:由已知,6492(23)15121512c a b a b b b ==-=-≤,∴2c ≤.3.若b a ,是两个正数,且,0111=+-+-ab b a 则 ( C ) A .103a b <+≤. B .113a b <+≤. C .413a b <+≤. D .423a b <+≤. 解:当a b =时,可计算得23a b ==,从而43a b +=。
观察4个选项,只能选C. 4.若方程2310x x --=的两根也是方程420x ax bx c +++=的根,则2a b c +-的值为 ( A )A .-13.B .-9.C .6.D . 0.解:由已知:42x ax bx c +++一定能被231x x --整除。
∵4222(31)(310)[(333)(10)]x ax bx c x x x x a a b x a c +++=--+++++++++∴(333)(10)0a b x a c +++++=,故3330213100a b a b c a c ++=⎧⇒+-=-⎨++=⎩5.在△ABC 中,已知︒=∠60CAB ,D ,E 分别是边AB ,AC 上的点,且︒=∠60AED ,CE DB ED =+,CDE CDB ∠=∠2,则=∠DCB ( B )A .15°.B .20°.C .25°.D .30°.解:如图,由已知,ADE 是正三角形。
【2019年整理】初中数学竞赛试题及答案
![【2019年整理】初中数学竞赛试题及答案](https://img.taocdn.com/s3/m/90a4ee54eff9aef8941e06e0.png)
全国初中数学竞赛(海南赛区)初 赛 试 卷(本试卷共4页,满分120分,考试时间:3月22日8:30——10:30)题号一二三总分(1—10)(11—18)19 20 得分一、选择题(本大题满分50分,每小题5分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号下的方格内 题号 1 2 3 4 5 6 7 8 9 10 答案1. 方程 0200911=-x 的根是 A. 20091-B. 20091C. -2009D. 2009 2. 如果0<+b a ,且0>b ,那么2a 与2b 的关系是A .2a ≥2b B .2a >2b C .2a ≤2b D .2a <2b3. 如图所示,图1是图2中正方体的平面展开图(两图中的箭头位置和方向是一致的),那么,图1中的线段AB 在图2中的对应线段是A .kB .hC .eD .d4. 如图,A 、B 、C 是☉O 上的三点,OC 是☉O 的半径,∠ABC=15°,那么∠OCA 的度数是 A .75° B .72° C .70° D .65°图1 图2A BABCO(第3题图) (第4题图)5. 已知a 2=3,b 2=6,c 2=12,则下列关系正确的是A .c b a +=2B .c a b +=2C .b a c +=2 D. b a c +=2 6. 若实数n 满足 (n-2009 )2+ ( 2008-n )2=1,则代数式(n-2009 ) ( 2008-n )的值是 A .1 B .21C .0 D. -1 7. 已知△ABC 是锐角三角形,且∠A >∠B >∠C ,则下列结论中错误的是 A .∠A >60° B .∠C <60° C .∠B >45°D .∠B +∠C <90° 8. 有2009个数排成一行,其中任意相邻的三个数中,中间的数总等于前后两数的和,若第一个数是1,第二个数是-1,则这2009个数的和是A .-2B .-1C .0D .29. ⊙0的半径为15,在⊙0内有一点 P 到圆心0的距离为9,则通过P 点且长度是整数值的弦的条数是A .5B .7C .10D .12 10. 已知二次函数)0(2≠++=a c bx ax y 的图象 如图所示,记b a p +=2,a b q -=,则下列 结论正确的是A .p >q >0B .q >p >0C .p >0>qD .q >0>p二、填空题(本大题满分40分,每小题5分) 11. 已知 |x |=3,2y =2,且y x +<0,则y x = .12. 如果实数b a ,互为倒数,那么=+++221111ba . 13. 口袋里只有红球、绿球和黄球若干个,这些球除颜色外,其余都相同,其中红球4个,绿球6个,又知从中随机摸出一个绿球的概率为52,那么,随机从中摸出一个黄球的概率为 .14. 如图,在直线3+-=x y 上取一点P ,作PA ⊥x 轴,PB ⊥y 轴,垂足分别为A 、B ,(第10题图)若矩形OAPB 的面积为4,则这样的点P 的坐标是 .15. 如图,AD 是△ABC 的角平分线,∠B=60°, E, F 分别在AC 、AB 上,且AE=AF ,∠CDE=∠BAC ,那么,图中长度一定与DE 相等的线段共有 条.(第14题图) (第15题图) (第16题图) 16. 如图,等腰梯形ABCD 中,AD17. 实数y x ,满足06222=+-y x x ,设x y x w 822-+=,则w 的最大值是 .18. 如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的 半圆M 上,且四边形OCDB 是平行四边形,则点C 的坐标为 .(第18题图)三、解答题(本大题满分30分,每小题15分)19. 某书店老板去批发市场购买某种图书,第一次购书用了100元,按该书定价元出售,很快售完;由于该书畅销,第二次购书时,每本的批发价已比第一次高出元,共用了150元,所购得书的数量比第一次多10本;这批书按原定价售出80%后,出现滞销,便以5折售完剩余的该图书. 试问:这个书店老板第二次售书是赔钱,还是赚钱请通过计算说明(只与进价比较,不考虑其它成本).20. 如图,在Rt △ABC 中,∠C=90°,AC=3,BC=4,点E 在AC 上(点E 与A 、C 都不重合),点F 在斜边AB 上(点F 与A ,B 都不重合)DFBAECB CE(1)若EF 平分Rt △ABC 的周长,设AE=x ,△AEF 的面积为y ,写出y 与x 之间的函数关系式,并指出x 的取值范围;(2)试问:是否存在直线EF 将Rt △ABC 的周长和面积同时平分,若存在,求出AE 的长,若不存在,说明理由.2009年全国初中数学竞赛(海南赛区)初赛试题参考答案一、选择题:DBCAB ,CDADB提示: 1.D ;由0200911=-x ,得2009,120091=∴=x x 2.B ;由b a +<0,b >0知a <0且|a |>|b |,所以|a |2>|b |2,即a 2>b 2; 3.C ;将图1中的平面图折成正方体4.A ;延长CO 交于⊙O 于D ,连结AD ,则∠D=∠B=15°,因为CD 为⊙O 的直径,所以∠CAD=90°,所以在Rt △ACD 中 , ∠OCA=90°-15°=75°.5.B ;由2a =3,2c =12,得2a ·2c =3×12. 即2c a +=36=62,而2b =6c a b a bb c a +===∴+22)2(226.C ;设1,2008,2009-=+-=-=b a n b n a 则,又002,21)1(12)(222222==∴+=-∴=+++=+ab ab ab b a b ab a b a 即且Θ7.D ;若∠B +∠C <90°,则 ∠A >90°,这与△ABC 是锐角三角形矛盾,故D 错.8.A ;先据题意写出前面一些数:1,-1,-2,-1,1,2,1,-1,……,经观察发现从左向右数每排列六个数后,从第七个数开始重复出现,即这2009个数是由1,-1,-2,-1,1,2这6个数组成的数组重复排列而成,而1+(-1)+(-2)+(-1)+1+2=0,又2009=334×6+5,这说明,这2009个数的和等于最后五个数:1,-1,-2,-1,1的和.9.D ;过P 点的最长的弦是直径,其长为30,最短的弦长=24915222=-,所以⊙O 中,通过P 点的弦长L 的取值范围是24≤L ≤30,又L 为整数,所以L 的值可取24,25,26,27,28,29,30,又根据圆的AFEC B对称性知:长度为25,26,27,28,29的弦各有2条,故共有12条.10. B ;由图象知a <0,c =0,a b 2->1,从而2a +b >0,又a a b b a 3)()2(=--+<0,即ba +2<ab -.二、填空题:11. 9或91 12. 1 13. 31 14.(4,-1),(-1,4) 15. 3条 16. 53 17. O 18.(1,3)提示:11.9或91;由条件知3-=x ,2±=y12.1;由已知条件知ab =1,所以原式)()(22b a b ab a b a ab b ab ab a ab ab +++=+++=1=++=+++=b a b a b a a b a b13. 31;设口袋中有黄球x 个,依题意,得,所以P (摸出1个黄球)= 14. (4,-1),(-1,4);设点P 的坐标为(b a ,),由题意得分程组 解此方程组即可. 15. 3条;易知△AFD ≌△AED ,所以∠AFD=∠AED ,DE=DF ,又∠CDE=∠BAC ,∠C 为公共角,所以 ∠DEC=∠B=60°,所以∠AFD=∠AED=120°,所以∠BFD=60°,又∠B=60°,所以△BDF 为等边三角形,所以DB=BF=DF=DE.16.53;因为折叠后点B 与D 重合,所以∠EDB=∠DBC=45°,∴∠BED=90°,即DE ⊥BC ,在等腰梯形 ABCD 中,CE= ,DE=BE=8-3=5∴ tan ∠CDE= 17. O ;由06222=+-y x x ,得x y x 6222=+知x≥0,又x x y 6222+-=,1)1(28622222++-=--=-+-=x x x x x x x w ,由此可见,当x ≥-1时,w 随着x 的增大而减小,又因为x ≥0>-1, ,故当x =0时,w 的最大值是0. 18. (1, 3);∵ 四边形OCDB 是平行四边形,B (8,0), ∴ CD 连结MC ,则MC= OA=5∴ 在Rt △CMF 中,3452222=-=-=CF MC MF ∴ 点C 的坐标为(1,3)三、解答题19. 解:设第二次购书x 本,依题意得 整理得,解得 当x =50时,150÷50=3>,这与实际不符,舍去.⎩⎨⎧+-==⋅34||||a b b a 31155=5,52646==++x x 3)28(21)(21=-=-AD BC 53=DE EC 2121xx 1502110100=+-030001102=+-x x 60,5021==x x当x =60时,150÷60=>,符合题意,由 ×60×80%+××60×20% =;=(元)20. 解:(1)在Rt △ABC 中,AC=3,BC=4,所以AB=5,∴△ABC 的周长为12,又因EF 平分△ABC 的周长,∴AE +AF=6,而AE=x ,∴AF=6-x , 过点F 作FD ⊥AC 于D ,则54sin ===AB BC A AF DF∴),6(54,546x DF x DF -=∴=-所以x x x x DF AE y 51252)6(5421212+-=-⋅=⋅=(0<x <3) (2)这样的EF 存在,此时AE=266- .S △ABC =6342121=⨯⨯=⋅AC BC ,由EF 平分△ABC 的面积,所以,解得∵0<x <3,∴ 不合舍去,当时 ,符合题意,所以这样的EF 存在,此时AE= .266,26621+=-=x x 2662+=x 2661-=x 52666<x +=-266-3512522=+-x x AFE C BD。
2019年全国初中数学竞赛(天津赛区)初赛试卷解析版
![2019年全国初中数学竞赛(天津赛区)初赛试卷解析版](https://img.taocdn.com/s3/m/a1554dba7f1922791688e8b7.png)
12019年全国初中数学竞赛(天津赛区)初赛试卷一、选择题(每小题4分,共20分,每小题只有一个答案是正确的,答对的得3分,答错、不答或答案超过一个的一律得0分.)1.若四个互不相等的正实数a,b,c,d满足(a2012﹣c2012)(a2012﹣d2012)=2012,(b2012﹣c2012)(b2012﹣d2012)=2012,则(ab)2012﹣(cd)2012的值为()A.﹣2012B.﹣2011C.2012D.20112.一个袋子中装有4个相同的小球,它们分别标有号码1,2,3,4.摇匀后随机取出一球,记下号码后放回;再将小球摇匀,并从袋中随机取出一球,则第二次取出的球的号码不小于第一次取出的球的号码的概率为()A.B.C.D.3.如图,矩形纸片ABCD中,AB=3,AD=9,将其折叠,使点D与点B重合,得折痕EF,则EF的长为()A.B.C.D.4.在正九边形ABCDEFGHI中,若对角线AE=2,则AB+AC的值等于()A.B.2C.D.5.有n个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有20个人报名,则n的最小值等于()A.171B.172C.180D.181二、填空题(每小题4分,共20分).6.若,则的值为.7.若四条直线x=1,y=﹣1,y=3,y=kx﹣3所围成的凸四边形的面积等于12,则k的值为.8.如图,半径为r的⊙O沿折线ABCDE作无滑动的滚动,如果AB=BC=CD=DE=2πr,∠ABC=∠CDE =150°,∠BCD=120°,那么,⊙O自点A至点E转动了周.△9.如图,已知ABC中,D为BC中点,E,F为AB边三等分点,AD分别交CE,CF于点M,N,则AM:MN:ND等于.10.若平面内有一正方形ABCD,M是该平面内任意点,则的最小值为.三、解答题(每小题15分,共60分).11.已知抛物线y=x2+mx+n经过点(2,﹣1),且与x轴交于两点A(a,0)B(b,0),若点P为该抛物线的顶点,求使△P AB面积最小时抛物线的解析式.12.如图,分别以边长1为的等边三角形ABC的顶点为圆心,以其边长为半径作三个等圆,得交点D、E、F,连接CF交⊙C于点G,以点E为圆心,EG长为半径画弧,交边AB于点M,求AM的长.13.已知p与5p2﹣2同为质数,求p的值.14.已知关于x的不等式组的解集中的整数恰好有2个,求实数a的取值范围.【参考答案一、选择题1.【解答】解:设a2012与b2012看做方程(x﹣c2012)(x﹣d2012)=2012的两个解,方程整理得:x2﹣(c2012+d2012)x+(cd)2012﹣2012=0,则(ab)2012﹣(cd)2012=,又x1x2=(cd)2012﹣2012,则(ab)2012﹣(cd)2012==(cd)2012﹣2012﹣(cd)2012=﹣2012.故选:A.2.解答】解:可以分四种情况讨论:若第一次抽出1号球,则第二次抽出任一球都可满足条件,概率为=;若第一次抽出2号球,则第二次抽出2,3,4号球可满足要求,概率为=;若第一次抽出3号球,则第二次抽出3,4号球可满足要求,概率为若第一次抽出4号球,则第二次抽出4号球可满足要求,概率为则第二次取出的球的号码不小于第一次取出的球的号码的概率为故选:D.3.【解答】解:如右图所示,∵四边形EDCF折叠后得到四边形EBCF,∴∠1=∠2,BE=DE,∵四边形ABCDE是矩形,∴AD∥BC,∴∠3=∠2,∴∠1=∠3,∴BF=BE,设AE=x,那么BE=9﹣x,在△Rt BAE中,AB2+AE2=BE2,即32+x2=(9﹣x)2,解得x=4,=;=;=;∴BE=5,过点E作EG⊥BC于G,∵EG⊥BC,∴∠BGE=∠A=∠ABG=90°,∴四边形ABGE是矩形,∴GF=BF﹣BG=5﹣4=1,EG=AB=3,在△Rt EGF中,EF2=EG2+GF2,=10,∴EF=故选:C..4.【解答】解:如图,设O为正九边形ABCDEFGHI的中心,连接OE、OA,则∠AOE=×4=160°,∴∠OEA=10°,又易得∠OED=70°,∴∠DEA=60°,在AE上截取EP=ED,连接DP、PC,∵∠PDC=140°﹣60°=80°,∴,∴∠CP A=70°,又∵∠CAP=∠BAP﹣∠BAC=40°,∴∠CAP=70°,∴AC=AP,又∵AB=DE=EP,∴AE=AB+AC=2.故选:B.5.【解答】解:对于一个人来说,他的报名方式有两种:报一项或两项,报一项比赛的方式有4种,报两项比赛的方式有种,故可得:每个人报名方式有9种,又题目要求要求有20人相同,故可以让每一种方式都有19个人,然后只要任意一种再加一个人即可,所以n min=19×9+1=172.故选:B.二、填空题6.【解答】解:平方得:,展开后,∴∴即∴,,,+=2或﹣2(舍去)∴x2﹣=(x+)(+)(﹣)=﹣24,故答案为:﹣24.7.【解答】解:在y=kx﹣3中,令y=﹣1,解得x=;令y=3,x=;当k<0时,四边形的面积是:[(1﹣)+(1﹣)]×4=12,解得k=﹣2;当k>0时,可得[(﹣1)+(﹣1)]×4=12,解得k=1.即k的值为﹣2或1;故答案为:﹣2或1.8.【解答】解:圆的周长是2πr,AB+BC+CD+DE=8πr,则8πr÷2πr=4.经过点B从AB到BC时,从与AB相切到与BC相切转动了一个∠ABC补角的度数即180﹣150=30°,同理C、D两点都要转一个补角度数,总共转了30°,60°,则在三个点处转动了30°+30°+60°=120°,即周.在⊙O自点A至点E转动了4+=4周.故答案是:4.9.【解答】解:如图,作PD∥BF,QE∥BC,∵D为BC的中点,∴PD:BF=1:2,∵E,F为AB边三等分点,∴PD:AF=1:4,∴DN:NA=PD:AF=1:4,∴ND=AD,AQ:AD=QE:BD=AE:AB=1:3,AD=AD,∴AQ=AD,QM=QD=∴AM=AQ+QM=AD,MN=AD﹣AM﹣ND=AD∴AM:MN:ND=5:3:2.故答案为5:3:2.10.【解答】解:过点M作MF⊥AD交AD的延长线与点F,作ME垂直BC交BC的延长线与点E,如图,∵MA2+MC2=MF2+AF2+ME2+CE2,MB2+MD2=BE2+ME2+DF2+FM2,DF=CE,AF=BE,∴MA2+MC2=MB2+MD2,又∵AC2=MA2+MC2﹣2MA•MC•cos∠AMC,BD2=MB2+MD2﹣2MB•MD•cos∠BMD,AC=BD,∴MA•MC•cos∠AMC=MB•MD•cos∠BMD,,∵又∵MA2+MC2=MB2+MD2,,∴当重合时,此时故答案为:=最小时,这个值最小,所以当∠BMD=90°,∠AMC=0°时最小,即点M与点A、C..三、解答题11.【解答】解:由题意知4+2m+n=﹣1,即n=﹣2m﹣5,∵A(a,0)、B(b,0)两点在抛物线y=x2+mx+n上,∴a+b=﹣m,ab=n,又∵|AB|=|a﹣b|=x2+mx+n经过(2,﹣1),代入得,n=﹣2m﹣5,∴,P点纵坐标为=,,可见,当m=﹣4时△S P AB最小,解析式为y=x2﹣4x+3.12.【解答】解:如图,过点E作EP⊥AB,连接EA、EC、EM.∵在⊙C中,EC=AC;在⊙A中,AE=AC,∴EC=AC=AE,∴△EAC为正三角形;同理证得△ABC为正三角形,则∠ECA=∠CAB=60°,∴EC∥AB,又∵由相交两圆的性质得:CG⊥AB,∴EC⊥CG,∴EM=EG=∵∠EAP=60°,=,∴EP=,AP=,PM==,∴AM=PM﹣AP=﹣1.13.【解答】解:∵5p2﹣2=5p2﹣5+3=5(p+1)(p﹣1)+3,①当p+1=3n(n≥1),即p=3n﹣1时,3|5(p+1)(p﹣1)+3,即5p2﹣2为合数,不符合题意;②当p﹣1=3n(n≥1),即p=3n+1时,3|5(p+1)(p﹣1)+3,即5p2﹣2为合数,不符合题意;③当p=3n(n≥2)时,p为合数,不符合题意;∴p只能取3,当p=3时,5p2﹣2=43为质数符合题意,∴p=3.14.【解答】解:不等式组可以化为:,即<x<a+1.满足原不等式组的解集中的整数恰好有2个,只需(k为整数),即(k为整数)(1)只需关于整数k的不等式组解得:1<k≤4,得k=2,3,4.有解.当k=2时,代入(1),有,解得:3<a<4;当k=3时,代入(1)得:,解得:4<a≤5;当k=4时,代入(1)得:,解得:a=6.所以,3<a<4或4<a≤5或a=6即为所求.。
2019年全国初中数学竞赛天津赛区初赛试题(含答案)
![2019年全国初中数学竞赛天津赛区初赛试题(含答案)](https://img.taocdn.com/s3/m/a7edbe36844769eae009ed7c.png)
全国初中数学竞赛天津赛区初赛试卷一、选择题⑴若四个互不相等的正实数,,c,a b d 满足()()20122012201220122012a c a d --=,()()20122012201220122012bc bd --=,则()()20122012ab cd -的值为()()A 2012- ()B 2011- ()C 2012 ()D 2011⑵一个袋子中装有4个相同的小球,它们分别标有号码1,2,3,4.摇匀后随机取出一球,记下号码后放回;再将小球摇匀,并从袋中随机取出一球,则第二次取出的球的号码不小于第一次取出的球的号码的概率为()()A 14 ()B 38 ()C 12 ()D 58 ⑶如图,矩形纸片ABCD 中,3AB =,9AD =,将其折叠,使点D 与点B 重合,得折痕EF ,则EF 的长为()(A )3(B )23(C )10(D )3102⑷在正就变形ABCDEFGHI 中,若对角线2AE =,则AB AC +的值等于() (A 3B )2(C )32(D )52⑸有n 个人报名参加甲、乙、丙、丁四项体育比赛活动,规定每人至少参加 1 项比赛,至多参加2项比赛,但乙、丙两项比赛不能同时兼报,若在所有的报名方式中,必存在一种方式至少有20个人报名,则n 的最小值等于 ( )(A ) 171 (B ) 172 (C ) 180 (D ) 181二、填空题2x x=-,则221x x -的值为⑺若四条直线1,1,3,3x y y y kx ==-==-所围成的凸四边形的面积等于12,则k 的值为__________.⑻如图,半径为r 的O 沿折线ABCDE 作无滑动的滚动,如果2AB BC CD DE r π====,150,120ABC CDE BCD ∠=∠=∠=,那么,O 自点A 至点E 转动了__________周.(9)如图,已知ABC△中,D为BC中点,,E F为AB边三等分点,AD分别交,CE CF于点,M N,则::AM MN ND等于_______.(10)若平面内有一正方形ABCD,M是该平面内任意点,则MA MCMB MD++的最小值为______.三、解答题⑾已知抛物线2y=x+mx+n经过点(2,-1),且与x轴交于两点A(a,0) B(b,0),若点P为该抛物线的顶点,求使PAB△面积最小时抛物线的解析式。
2019-2019年全国初中数学联赛试题30套30页word文档
![2019-2019年全国初中数学联赛试题30套30页word文档](https://img.taocdn.com/s3/m/6c5e5d3f77232f60ddcca1a3.png)
1991年年全国初中数学联赛试题第一试一、选择题本题共有8个小题,每小题都给出了(A )、(B )(C )、(D )四个答案结论,其中只有一个是正确的。
请把正确结论的代表字母写在题后的圆括号内。
1.设等式y a a x a y a a x a ---=-+-)()(在实数范围内成立,其中a ,x ,y 是两两不同的实数,则22223yxy x y xy x +--+的值是( )。
(A )3 (B )31 (C )2 (D )35 2.如图,AB ‖EF ‖CD ,已知AB =20,CD =80,BC =100,那么EF 的值是( )。
(A )10 (B )12(C )16 (D )18。
3.方程012=--x x 的解是( )。
(A )251± (B )251±- (C )251±或251±- (D )251±-± 4.已知:)19911991(2111n n x --=(n 是自然数)。
那么n x x )1(2+-的值是( )。
(A )11991- (B )11991-- (C )1991)1(n - (D )11991)1(--n5.若M n 1210099321=⨯⨯⨯⨯⨯ ,其中M 为自然数,n 为使得等式成立的最大的自然数,则M ( )。
(A )能被2整除,但不能被3整除(B )能被3整除,但不能被2整除(C )能被4整除,但不能被3整除(D )不能被3整除,也不能被2整除6.若a ,c ,d 是整数,b 是正整数,且满足c b a =+,d c b =+,a d c =+,那么d c b a +++的最大值是( )。
(A )1- (B )5- (C )0 (D )17.如图,正方形OPQR 内接于ΔAB (C )已知ΔAOR 、ΔBOP 和ΔCRQ 的面积分别是11=S ,32=S 和13=S ,那么,正方形OPQR 的边长是( )。
2019年全国初中数学竞赛(海南赛区)初赛试卷解析版
![2019年全国初中数学竞赛(海南赛区)初赛试卷解析版](https://img.taocdn.com/s3/m/1b77a0fe08a1284ac85043dc.png)
2019年全国初中数学竞赛(海南赛区)初赛试卷一、选择题(共10小题,每小题5分,满分50分)1.设xy<0,x>|y|,则x+y的值是()A.负数B.0C.正数D.非负数2.若(x+3)(x+n)=x2+mx﹣15,则m等于()A.﹣2B.2C.﹣5D.53.若a+|a|=0,则等于()A.1﹣2a B.2a﹣1C.﹣1D.14.无论m为何实数,直线y=x+2m与y=﹣x+4的交点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)从1到9这9个自然数中任取一个,是2的倍数的概率是()A.B.C.D.16.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算7.如图,韩老师早晨出门散步时离家的距离(y)与时间(x)之间的函数图象.若用黑点表示韩老师家的位置,则韩老师散步行走的路线可能是()A.B.C.D.8.如图,AB是铅直地竖立在坡角为30°的山坡上的电线杆,当阳光与水平线成60°角时,电线杆的影子BC的长度为4米,则电线杆AB的高度为()A.4米B.6米C.8米D.10米9.如图,菱形ABCD的边长为a,点O是对角线AC上的一点,且OA=a,OB=OC=OD =1,则a等于()A.B.C.1D.210.如图,根据天气预报,某台风中心位于A市正东方向300km的点O处,正以20km/h 的速度向北偏西60°方向移动,距离台风中心250km范围内都会受到影响,若台风移动的速度和方向不变,则A市受台风影响持续的时间是()A.10h B.20h C.30h D.40h二、填空题(共8小题,每小题5分,满分40分)11.若n(n≠0)是关于x的方程x2+mx+2n=0的根,则m+n的值为.12若a+3b=0,则=.13.如图,是30名初三女学生1分钟内仰卧起坐次数的频数分布直方图(每组次数只含最小值而不含最大值),则仰卧起坐次数在25~45次的频率是.14.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则cos∠ABC的为.15.已知二次函数的图象经过原点及点(﹣,﹣),且图象与x轴的另一交点到原点的距离为1,求该二次函数的解析式.16.如图,两个滑块A、B由一个连杆连接,分别可以在两条互相垂直的滑道上滑动.开始时,滑块A距O点20cm,滑块B距O点15cm.则当滑块A向下滑到O点时,滑块B 滑动了.17.如图,△COD是△AOB绕点O顺时针方向旋转40°后所得的图形,点C恰好在AB上,∠AOD=90°,则∠D的度数是°.18.如图,将长为4cm宽为2cm的矩形纸片ABCD折叠,使点B落在CD边上的中点E处,压平后得到折痕MN,则线段AM的长度为cm.三、解答题(共2小题,满分30分)19.如图,正方形ABCD的边长为1,对角线AC与BD相交于点O,点P是AB边上的一个动点(点P不与点A、B重合),CP与BD相交于点Q.(1)若CP平分∠ACB,求证:AP=2QO.(2)先按下列要求画出相应图形,然后求解问题.①把线段PC绕点P旋转90°,使点C落在点E处,并连接AE.设线段BP的长度为x,△APE的面积为S.试求S与x的函数关系式;②求出S的最大值,判断此时点P所在的位置.20.文昌某校准备组织学生及学生家长到三亚进行社会实践,为了便于管理,所有人员必须乘坐在同一列火车上;根据报名人数,若都买一等座单程火车票需17010元,若都买二等座单程火车票且花钱最少,则需11220元;已知学生家长与教师的人数之比为2:1,文昌到三亚的火车票价格(部分)如下表所示:(1)参加社会实践的老师、家长与学生各有多少人?(2)由于各种原因,二等座火车票单程只能买x张(x小于参加社会实践的人数),其余的须买一等座火车票,在保证每位参与人员都有座位坐的前提下,请你设计最经济的购票方案,并写出购买火车票的总费用(单程)y与x之间的函数关系式.(3)请你做一个预算,按第(2)小题中的购票方案,购买一个单程火车票至少要花多少钱?最多要花多少钱?参考答案一、选择题(共10小题,每小题5分,满分50分)1.【解答】解:∵xy<0,x>|y|,∴x>0,y<0,且|x|>|y|,∴x+y的值正数.故选:C.2.【解答】解:∵(x+3)(x+n)=x2+(3+n)x+3n,∴3n=﹣15,∴n=﹣5,m=3+(﹣5)=﹣2.故选:A.3.【解答】解:由a+|a|=0,得|a|=﹣a,可知a为非正数,∴=1﹣a,=﹣a∴原式=1﹣a﹣a=1﹣2a故选:A.4.【解答】解:由于直线y=﹣x+4的图象不经过第三象限.因此无论m取何值,直线y=x+2m与y=﹣x+4的交点不可能在第三象限.故选:C.5.【解答】解:所有机会均等的可能共有9种.而2的倍数有2,4,6,8四个,因此是2的倍数的概率是.故选:B.6.【解答】解:本题没有AB两地的单程,可设为1,那么总路程为2,总时间为+.平均速度=2÷(+)=2÷=.故选B.7.【解答】解:由于一段时间离家的距离保持不变,家是一个点,所以在那段时间内行走的路线就可能是在以家为圆心,那段距离为半径的一段弧上.故选:D.8.【解答】解:如图,由题意可知,∠ACB=90°,∠ABC=60°,则AB=2BC=8米,故选:C.9.【解答】解:∵∠BAC=∠BCA=∠OBC=∠OCB,∴△BOC∽△ABC,所以,即,所以,a2﹣a﹣1=0.由a>0,解得.故选:A.10.【解答】解:如图,以点A为圆心,250km为半径画圆,交OM于点B、C,作AN⊥BC 于点N,∵∠AON=90°﹣60°=30°,AO=300,∴在Rt△OAN中,AN=AO=150km,又AC=250km,在Rt△CAN中,由勾股定理,得CN==200km,则BC=2CN=400km,台风中心在线段BC上时,A市都会受到台风的影响,∴A市受台风影响持续的时间为400÷20=20小时.故选:B.二、填空题(共8小题,每小题5分,满分40分)11.【解答】解:把n代入方程得到n2+mn+2n=0,将其变形为n(m+n+2)=0,因为n≠0所以解得m+n=﹣2.12.【解答】解:∵a+3b=0,∴a=﹣3b.∴原式=====.故答案为:.13.【解答】解:由频率分布直方图可知,“25~45”的学生人数有21人,∴仰卧起坐次数在25~45次的频率=21÷30=0.7.故应填:0.7.14.【解答】解:连接AC,延长AD交CD的延长线于D,由题意可知∠D=90°,则AC==,BC==,AB==,∵AC2+BC2=AB2∴△ABC直角三角形,∵AC=BC,∴∠A=∠B==45°.cos45°=故答案为.15.【解答】解:根据题意得,与x轴的另一个交点为(1,0)或(﹣1,0),因此要分两种情况:(1)过点(﹣1,0),设y=ax(x+1),则,解得:a=1,∴抛物线的解析式为:y=x2+x;(2)过点(1,0),设y=ax(x﹣1),则,解得:a=,∴抛物线的解析式为:y=x2+x.16.【解答】解:如图,由AB2=AO2+OB2=202+152=252,可知连杆AB的长度等于25cm,当滑块A向下滑到O点时,滑块B距O点的距离是25cm,故滑块B滑动了25﹣15=10cm.故答案为10cm.17.【解答】解:由旋转的性质可知,∠AOC=40°,而∠AOD=90°,∴∠COD=90°﹣∠AOC=50°又∵点C恰好在AB上,OA=OC,∠AOC=40°,∴∠A==70°,由旋转的性质可知,∠OCD=∠A=70°在△OCD中,∠D=180°﹣∠OCD﹣∠COD=60°.18.【解答】解:如图,连接BM,EM,BE,由折叠的性质可知,四边形ABNM和四边形FENM关于直线MN对称.∴MN垂直平分BE,∴BM=EM,∵点E是CD的中点,DE=1,∴在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2,∴AM2+AB2=DM2+DE2.设AM=x,则DM=4﹣x,∴x2+22=(4﹣x)2+12.解得,即cm.故答案为:.三、解答题(共2小题,满分30分)19.【解答】(1)证明:过点O作OM∥AB交PC于点M,则∠COM=∠CAB.∵四边形ABCD是正方形,∴OA=OC,∠CAB=∠CBD=∠COM=45°,∴AP=2OM.又∵∠1=∠2,∴∠1+∠COM=∠2+∠CBD,即∠OMQ=∠OQM.∴OM=OQ∴AP=2OQ.(2)解:根据题意作出图形,如图所示①ⅰ、当PC绕点P逆时针旋转90°时,作EF⊥AB交BA延长线于点F,则∠EFP=∠PBC=90°,∠3+∠CPB=90°.又∠2+∠CPB=90°,∴∠3=∠2.又PE由PC绕点P旋转形成∴PE=PC∴△EPF≌△CPB.∴EF=BP=x,∴AP=1﹣x,∴.∴△APE的面积S与x的函数关系式为(0<x<1).ⅱ、当PC绕点P顺时针旋转90°时,作E′G⊥AB交AB延长线于点G,则同理可得△E′PG≌△CPB,E′G=BP=x.∴△APE的面积S与x的函数关系式为由ⅰ、ⅱ可得△APE的面积S与x的函数关系式为,(0<x<1)②由①知S与x的函数关系式为,(0,x,1)即,(0<x<1)∴当时S的值最大,最大值为.此时点P所在的位置是边AB的中点处.20.【解答】解:(1)设参加社会实践的老师有m人,学生有n人,则学生家长有2m人,若都买二等座单程火车票且花钱最少,则全体学生都需买二等座学生票,依题意得:,解得,则2m=20,答:参加社会实践的老师、家长与学生分别有10人、20人、180人.(2)解:由(1)知所有参与人员总共有210人,其中学生有180人,①当180≤x<210时,最经济的购票方案为:学生都买学生票共180张,(x﹣180)名成年人买二等座火车票,(210﹣x)名成年人买一等座火车票.∴火车票的总费用(单程)y与x之间的函数关系式为:y=51×180+68(x﹣180)+81(210﹣x),即y=﹣13x+13950(180≤x<210),②当0<x<180时,最经济的购票方案为:一部分学生买学生票共x张,其余的学生与家长老师一起购买一等座火车票共(210﹣x)张,∴火车票的总费用(单程)y与x之间的函数关系式为:y=51x+81(210﹣x),即y=﹣30x+17010(0<x<180),答:购买火车票的总费用(单程)y与x之间的函数关系式是y=﹣13x+13950(180≤x <210)或y=﹣30x+17010(0<x<180).(3)由(2)小题知,当180≤x<210时,y=﹣13x+13950,∵﹣13<0,y随x的增大而减小,∴当x=209时,y的值最小,最小值为11233元,当x=180时,y的值最大,最大值为11610元.当0<x<180时,y=﹣30x+17010,∵﹣30<0,y随x的增大而减小,∴当x=179时,y的值最小,最小值为11640元,当x=1时,y的值最大,最大值为16980元.所以可以判断按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元,答:按(2)小题中的购票方案,购买一个单程火车票至少要花11233元,最多要花16980元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学竞赛题汇编江苏省南通市2013年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.(3分)(2013•南通)下列各数中,小于﹣3的数是()2.(3分)(2013•南通)某市2013年参加中考的考生人数约为85000人,将85000用科学记数法表示为()3.(3分)(2013•南通)下列计算,正确的是()4.(3分)(2013•南通)如图所示的几何图形中,既是轴对称图形又是中心对称图形的个数是()5.(3分)(2013•南通)有3cm,6cm,8cm,9cm的四条线段,任选其中的三条线段组成一个三角形,则最多能组成三角形的个数为()6.(3分)(2013•南通)函数中,自变量x的取值范围是()7.(3分)(2013•南通)如图,用尺规作出∠OBF=∠AOB,作图痕迹是()为半径画圆,交射8.(3分)(2013•南通)用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4cm,底面周长是6πcm,则扇形的半径为()∴圆锥的母线长为:=59.(3分)(2013•南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h.其中正确的有()10.(3分)(2013•南通)如图.Rt△ABC内接于⊙O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于()的中点,=,==3二、填空题(本大题共8小题,每小题3分,共24分.不需要写出解答过程,请把答案直接填写在答题卡相应位置上)11.(3分)(2013•南通)若反比例函数y=的图象经过点A(1,2),则k=2.=12.(3分)(2013•南通)如图,直线AB,CD相交于点O,OE⊥AB,∠BOD=20°,则∠COE 等于70度.13.(3分)(2013•南通)一个几何体的主视图、俯视图和左视图都是大小相同的圆,则这个几何体是球体.14.(3分)(2013•南通)如图,在Rt△ABC中,CD是斜边AB上的中线,已知CD=2,AC=3,则sinB的值是.=故答案为:15.(3分)(2013•南通)已知一组数据5,8,10,x,9的众数是8,那么这组数据的方差是 2.8.[(5﹣8)2+(8﹣8)2+(10﹣8)2+(8﹣8)2+(9﹣8)2]=2.8.平均数为[﹣)16.(3分)(2013•南通)如图,经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),则不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.17.(3分)(2013•南通)如图,在▱ABCD中,AB=6cm,AD=9cm,∠BAD的平分线交BC 于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4cm,则EF+CF的长为5 cm.cm∴===∴=,=18.(3分)(2013•南通)已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于3.=,得出==,∴三、解答题(本大题共10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(11分)(2013•南通)(1)计算:;(2)先化简,再求代数式的值:,其中m=1.÷÷﹣)•,﹣20.(9分)(2013•南通)在平面直角坐标系xOy中,已知A(﹣1,5),B(4,2),C(﹣1,0)三点.(1)点A关于原点O的对称点A′的坐标为(1,﹣5),点B关于x轴的对称点B′的坐标为(4,﹣2),点C关于y轴的对称点C的坐标为(1,0).(2)求(1)中的△A′B′C′的面积.A21.(8分)(2013•南通)某水果批发市场将一批苹果分为A,B,C,D四个等级,统计后将结果制成条形图,已知A等级苹果的重量占这批苹果总重量的30%.回答下列问题:(1)这批苹果总重量为4000kg;(2)请将条形图补充完整;(3)若用扇形图表示统计结果,则C等级苹果所对应扇形的圆心角为90度.×22.(10分)(2013•南通)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是,随机抽出一张卡片后不放回(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为(3,2);(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?∴概率为:=∴概率为:=∵>.23.(8分)(2013•南通)若关于x的不等式组恰有三个整数解,求实数a的取值范围.解:解+>;∴不等式组的解集为﹣<的不等式组≤.24.(8分)(2013•南通)如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.求证:四边形BCDE是矩形.25.(8分)(2013•南通)如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O 的切线AP与OC的延长线相交于点P,若P A=cm,求AC的长.cm=26.(8分)(2013•南通)某公司营销A、B两种产品,根据市场调研,发现如下信息:信息1:销售A种产品所获利润y(万元)与销售产品x(吨)之间存在二次函数关系y=ax2+bx.在x=1时,y=1.4;当x=3时,y=3.6.信息2:销售B种产品所获利润y(万元)与销售产品x(吨)之间存在正比例函数关系y=0.3x.根据以上信息,解答下列问题;(1)求二次函数解析式;(2)该公司准备购进A、B两种产品共10吨,请设计一个营销方案,使销售A、B两种产品获得的利润之和最大,最大利润是多少?∴解得27.(13分)(2013•南通)如图,在Rt△ABC中,∠ACB=90°,AC=,BC=3,△DEF是边长为a(a为小于3的常数)的等边三角形,将△DEF沿AC方向平移,使点D在线段AC上,DE∥AB,设△DEF与△ABC重叠部分的周长为T.(1)求证:点E到AC的距离为一个常数;(2)若AD=,当a=2时,求T的值;(3)若点D运动到AC的中点处,请用含a的代数式表示T.的距离等于≤,△②若<,点③若<==•a =..﹣=,.=2++=≤,△②若<,点,+)=2;③若<,∠×=.的距离为a.(﹣×a,﹣.)﹣()﹣()(﹣﹣28.(13分)(2013•南通)如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.﹣,代入=与抛物线)在反比例函数+=,,即可证明﹣(﹣)﹣),代入x=(与抛物线)在反比例函数+,,=x++﹣++,++∴=∴=2012年全国初中数学竞赛预赛试题及参考答案(河南赛区) 一、选择题(共6小题,每小题6分,共36分.1.在1,3,6,9四个数中,完全平方数、奇数、质数的个数分别是【 】(A )2,3,1 (B )2,2,1 (C )1,2,1 (D )2,3,2 【答】A .解:完全平方数有1,9;奇数有1,3,9;质数有3.2.已知一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,则下列判断正确的是【 】(A )1m >- (B )1m <- (C )1m > (D )1m <【答】C .解:一次函数(1)(1)y m x m =++-的图象经过一、二、三象限,说明其图象与y 轴的交点位于y 轴的正半轴,且y 随x 的增大而增大,所以10,10.m m ->⎧⎨+>⎩ 解得1m >.3.如图,在⊙O 中,CD DA AB ==,给出下列三个 结论:(1)DC =AB ;(2)AO ⊥BD ;(3)当∠BDC =30° 时,∠DAB =80°.其中正确的个数是【 】(A )0 (B )1 (C )2 (D )3【答】D .解:因为CD AB =,所以DC =AB ;因为AD AB =,AO 是半径,所以AO ⊥BD ;设∠DAB =x 度,则由△DAB 的内角和为180°得:2(30)180x x -︒+=︒,解得80x =︒. 4. 有4张全新的扑克牌,其中黑桃、红桃各2张,它们的背面都一样,将它们洗匀后,背面朝上放到桌面上,从中任意摸出2张牌,摸出的花色不一样的概率是【 】第3题图(A )34 (B )23 (C )13 (D )21【答】B .解:从4张牌中任意摸出2张牌有6种可能,摸出的2张牌花色不一样的有4种可能,所以摸出花色不一样的概率是3264=. 5.在平面直角坐标系中,点A 的坐标是(1,0),点B 的坐标是(3,3)--,点C 是y 轴上一动点,要使△ABC 为等腰三角形,则符合要求的点C 的位置共有【 】(A )2个 (B )3个 (C )4个【答】D .解:由题意可求出AB =5,如图,以点A 为圆心AB 的长为半径画弧,交y 轴于C 1和C 2,利用勾股定理可求 出OC 1=OC 2=)62,0(),62,0(21-C C , 以点B 为圆心BA 的长为半径画弧,交y 轴于点C 3和C 4, 可得34(0,1),(0,7)C C -,AB 的中垂线交y 轴于点C 5,利用 三角形相似或一次函数的知识可求出)617,0(5-C . 6.已知二次函数221y x bx =++(b 为常数),当b 物线系”,图中的实线型抛物线分别是b 取三个不同的值时二次函数的图象,它们的顶点在一条抛物线上(图中虚线型抛物线),这条抛物线的解析式是【 】(A )221y x =-+ (B )2112y x =-+ (C )241y x =-+ (D )2114y x =-+【答】A .解:221y x bx =++的顶点坐标是⎪⎪⎭⎫ ⎝⎛--88,42b b ,设4b x -=,882b y -=,由4bx -=得x b 4-=,所以222218)4(888x x b y -=--=-=. 二、填空题(共6小题,每小题6分,共36分)7.若2=-n m ,则124222-+-n mn m 的值为 . 【答】7.解:71221)(212422222=-⨯=--=-+-n m n mn m .8.方程112(1)(2)(2)(3)3x x x x +=++++的解是 .【答】120,4x x ==-.解:11(1)(2)(2)(3)x x x x +++++11111223x x x x =-+-++++y xO 第6题图 第5题图11213(1)(3)x x x x =-=++++.∴22(1)(3)3x x =++,解得 1x 9.如图,在平面直角坐标系中,点B 的坐标是(1,0),若点A 的坐标为(a ,b ),将线段BA 绕点B 顺时针旋转 90°得到线段BA ',则点A '的坐标是 .【答】(1,1)b a +-+.解:分别过点A 、A '作x 为C 、D .显然Rt △ABC ≌Rt △B A 'D . 由于点A 的坐标是(,)a b ,所以OD OB BD =+1OB AC b =+=+,1A D BC a '==-,所以点的A '坐标是(1,1)b a +-+.10.如图,矩形ABCD 中,AD =2,AB =3,AM =1,DE 是以点A 为圆心2为半径的41圆弧,NB 是以点M 为圆心2为半径的41圆弧,则图中两段弧之间的阴影部分的面积为 . 【答】2.解:连接MN ,显然将扇形AED 向右平移可与扇形MBN 重合,图中阴影部分的面积等于 矩形AMND 的面积,等于221=⨯.11.已知α、β是方程2210x x +-=的两根,则3510αβ++的值为 . 【答】2-.解:∵α是方程2210x x +-=的根,∴212αα=-.∴ 322(12)22(12)52αααααααααα=⋅=-=-=--=-,又 ∵2,αβ+=- ∴ 3510(52)5105()8αβαβαβ++=-++=++=5(2)82⨯-+=-.12.现有145颗棒棒糖,分给若干小朋友,不管怎样分,都至少有1个小朋友分到5颗或5颗以上,这些小朋友的人数最多有 个.【答】36.解:利用抽屉原理分析,设最多有x 个小朋友,这相当于x 个抽屉,问题变为把145颗糖放进x 个抽屉,至少有1个抽屉放了5颗或5颗以上,则41x +≤145,解得x ≤36,所以小朋友的人数最多有36个.三、解答题(第13题15分,第14题15分,第15题18分,共48分)13.王亮的爷爷今年(2012年)80周岁了,今年王亮的年龄恰好是他出生年份的各位数字之和,问王亮今年可能是多少周岁?解:设王亮出生年份的十位数字为x ,个位数字为y (x 、y 均为0 ~ 9的整数).∵王亮的爷爷今年80周岁了,∴王亮出生年份可能在2000年后,也可能是2000年前.故应分两种情况: …………………2分(1)若王亮出生年份为2000年后,则王亮的出生年份为200010x y ++,依题意,得2012(200010)20x y x y -++=+++,A BM 第10题图 E 第9题图整理,得 1011,2xy -=x 、y 均为0 ~ 9的整数,∴0.x = 此时 5.y =∴王亮的出生年份是2005年,今年7周岁.…………………8分(2)若王亮出生年份在2000年前,则王亮的出生年份为190010x y ++,依题意,得2012(190010)19x y x y -++=+++,整理,得 111022x y =-,故x 为偶数,又1021110211,09,22x xy --=≤≤ ∴ 779,11x ≤≤ ∴ 8.x = 此时7.y = ∴王亮的出生年份是1987年,今年25周岁. …………………14分 综上,王亮今年可能是7周岁,也可能是25周岁.……………15分14.如图,在平面直角坐标系中,直角梯形OABC 的顶点A 、B 的坐标分别是(5,0)、(3,2),点D 在线段OA 上,BD =BA , 点Q 是线段BD 上一个动点,点P 的坐标是(0,3),设直线PQ 的解析式为y kx b =+.(1)求k 的取值范围;(2)当k 为取值范围内的最大整数时,若抛物线25y ax ax =-的顶点在直线PQ 、OA 、AB 、BC 围成的四边形内部,求a 的取值范围.解:(1)直线y kx b =+经过P (0,3),∴ 3b =.∵B (3,2),A (5,0),BD =BA ,∴ 点D 的坐标是(1,0), ∴ BD 的解析式是1y x =-, 1 3.x ≤≤依题意,得 1,3.y x y kx =-⎧⎨=+⎩,∴4,1x k =- ∴ 41 3.1k -≤≤解得13.3k --≤≤……………………………………………7分 (2) 13,3k --≤≤且k 为最大整数,∴1k =-.则直线PQ 的解析式为3y x =-+.……………………………………………9分又因为抛物线25y ax ax =-的顶点坐标是525,24a ⎛⎫-⎪⎝⎭,对称轴为52x =.解方程组⎪⎩⎪⎨⎧=+-=.25,3x x y 得⎪⎪⎩⎪⎪⎨⎧==.21,25y x 即直线PQ 与对称轴为52x =的交点坐标为51(,)22,∴125224a <-<.解得 822525a -<<-.……………………………………15分 15. 如图,扇形OMN 的半径为1,圆心角是90°.点B 是MN 上一动点,BA ⊥OM 于点A ,BC ⊥ON 于点C ,点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点,GF 与CE 相交于点P ,DE 与AG 相交于点Q .(1)求证:四边形EPGQ 是平行四边形;(2)探索当OA 的长为何值时,四边形EPGQ 是矩形;(3)连结PQ ,试说明223PQ OA +是定值. 解:(1)证明:如图①, ∵∠AOC =90°,BA ⊥OM ,BC ⊥ON , ∴四边形OABC 是矩形. ∴OC AB OC AB =,//. ∵E 、G 分别是AB 、CO 的中点, ∴.,//GC AE GC AE =∴四边形AECG 为平行四边形.∴.//AG CE ……………………………4分 连接OB , ∵点D 、E 、F 、G 分别是线段OA 、AB 、BC 、CO 的中点, ∴ GF ∥OB ,DE ∥OB , ∴ PG ∥EQ ,∴四边形EPGQ 是平行四边形.………………………………………………6分(2)如图②,当∠CED =90°时,□EPGQ 是矩形. 此时 ∠AED +∠CEB =90°.又∵∠DAE =∠EBC =90°,∴∠AED =∠BCE .∴△AED ∽△BCE .………………………………8分 ∴AD AEBE BC=. 设OA =x ,AB =y ,则2x ∶2y =2y ∶x ,得222y x =.…10分又 222OA AB OB +=,即2221x y +=.∴2221x x +=,解得3x =. ∴当OAEPGQ 是矩形.………………………………12分 (3)如图③,连结GE 交PQ 于O ',则.,E O G O Q O P O '=''='.过点P 作OC 的平行线AB C ODEF GP QMN 图②A B CO D EF GPQM N图①分别交BC 、GE 于点B '、A '.由△PCF ∽△PEG 得,2,1PG PE GE PF PC FC === ∴ PA '=23A B ''=13AB , GA '=13GE =13OA ,∴ 1126A O GE GA OA '''=-=. 在Rt △PA O ''中,222PO PA A O ''''=+,即 2224936PQ AB OA =+, 又 221AB OA +=, ∴ 22133PQ AB =+,∴ 2222143()33OA PQ OA AB +=++=.……………………………………18分2012年北京市初二数学竞赛试题 .选择题(每小题5分,共25分).方程|2x -4|=5的所有根的和等于( ).A .-0.5B .4.5C .5D .4.在直角坐标系xOy 中,直线y =ax +24与两个坐标轴的正半轴形成的三角形的面积等于72,则不在直线y =ax +24上的点的坐标是( ).A .(3,12)B .(1,20)C .(-0.5,26)D .(-2.5,32).两个正数的算术平均数等于,,则期中的大数比小数大( ).A .4B.C .6D ..在△ABC 中,M 是AB 的中点,N 是BC 边上一点,且CN =2BN ,连接AN 与MC 交于点O ,四边形BMON 的面积为14cm2,则△ABC 的面积为( ).A .56cm2B .60cm2C .64cm2D .68cm2.当a =1.67,b =1.71,c =0.46时,222121a ac ab bc b ab bc ac c ac bc ab++--+--+--+等于( ).A .20B .15C .10D .5.55 .填空题(每小题7分,共35分).计算:1×2-3×4+5×6-7×8+…+2009×2010-2011×2012=___..由1到10这十个正整数按某个次序写成一行,记为a1,a2,…,a10,S1=a1,S2=a1+a2,…,S10=a1+a2+…+a10,则在S1,S2,…,S10中,最多能有__个质数. .△ABC 中,AB =12cm ,AC =9cm ,BC =13cm ,自A 分别作∠C 平分线的垂线,垂足为M ,作∠B 的平分线的垂线,垂足为N ,连接MN ,则AMNABC S S ∆∆=____..实数x 和y 满足x2+12xy +52y2-8y +1=0,则x2-y2=___..P 为等边△ABC 内一点,AP =3cm ,BP =4cm ,CP =5cm ,则四边形ABCP 的面积等于__cm2.B'N M A'QP O'G F E D C B A O 图③(满分10分).求证:对任意两两不等的三个数a ,b ,c ,222()()()()()()()()()a b c b c a c a b a c b c b a c a c b a b +-+-+-++------是常数.(满分15分).已知正整数n 可以表示为2011个数字和相同的自然数之和,同时也能表示为2012个数字和相同的自然数之和,试确定n 的最小值.(满分15分).如图,在△ABC 中,∠ABC =∠BAC =70°,P 为形内一点,∠PAB =40°,∠PBA =20°,求证:PA +PB =PC .2012年全国初中数学竞赛(海南赛区)初赛 试 卷(本试卷共4页,满分120分,考试时间:3月11日8:30——10:30)一、选择题(本大题满分50分,每小题5分) 1、下列运算正确的是( )A .x 2‧x 3=x 6B . 2x +3x =5x 2C .(x 2)3=x 6D . x 6÷x 2=x 32、有大小两种游艇,2艘大游艇与3艘小游艇一次可载游客57人,3艘大游艇与2艘小游艇一次可载游客68人,则3艘大游艇与6艘小游艇一次可载游客的人数为( ) A .129 B .120 C .108 D .963、实数a =20123-2012,下列各数中不能整除a 的是( ) A .2013 B .2012 C .2011 D .20104、如图1所示的两个圆盘中,指针落在每一个数所在的区域上的机会均等,则两个指针同时落在数“1”所在的区域上的概率是( )A .251B .252C .256D .25245、一辆公共汽车从车站开出,加速行驶一段时间后匀速行驶,过了一段时间,汽车到达下一个车站.乘客上下车后汽车开始加速,一段时间后又开始匀速行驶,下面可以近似地刻画出汽车在这段时间内的速度变化情况的图象是( ) P CBA图16、要使1213-+-x x 有意义,则x 的取值范围为 A .321 x ≤≤ B .321 <x ≤ C .321x <≤ D . 321<x<7、菱形的两条对角线之和为L 、面积为S ,则它的边长为( )A .S L 4212-B .S L 2212-C .S L 4221-D .2421L S -8、如图2,将三角形纸片ABC 沿DE 折叠,使点A 落在BC 边上的点F 处, 且DE ∥BC ,下列结论中,一定正确的个数是( )①△CEF 是等腰三角形 ②四边形ADFE 是菱形③四边形BFED 是平行四边形 ④∠BDF +∠CEF =2∠AA .1B .2C .3D .4 9、如图3,直线x =1是二次函数 y =ax 2+bx +c 的图象的对称轴,则有A .a +b +c =0B .b >a +cC .b =2aD .abc >010、铁板甲形状为直角梯形,两底边长分别为4cm ,10cm ,且有一内角为60°;铁板乙形状为等腰三角形,其顶角为45°,腰长12cm .在不改变形状的前提下,试图分别把它们从一个直径为8.5cm 的圆洞中穿过,结果是( )A .甲板能穿过,乙板不能穿过B .甲板不能穿过,乙板能穿过C .甲、乙两板都能穿过D .甲、乙两板都不能穿过二、填空题(本大题满分40分,每小题5分)11、x 与y 互为相反数,且3=-y x ,那么122++xy x 的值为__________. 12、一次函数y =ax +b 的图象如图4所示,则化简1++-b b a 得________.13、若x=-1是关于x 的方程a 2x 2+2011ax -2012=0的一个根,则a 的值为__________. 14、一只船从A 码头顺水航行到B 码头用6小时,由B 码头逆水航行到A 码头需8小时,则一块塑料泡沫从A 码头顺水漂流到B 码头要用______小时(设水流速度和船在静水中的速度不变).15、如图5,边长为1的正方形ABCD 的对角线相交于点O ,过点O 的直线分别交AD 、BC 于E 、F ,则阴影部分的面积是 .16、如图6,直线l 平行于射线AM ,要在直线l 与射线AM 上各找一点B 和C ,使得以A 、B 、C 为顶点的三角形是等腰直角三角形,这样的三角形最多能画_______个.图3 AB C D E F 图2图7A B C D E图5 F 图6 l17、如图7,△ABC 与△CDE 均是等边三角形,若∠AEB =145°,则∠DBE 的度数是________.18、如图8所示,矩形纸片ABCD 中,AB =4cm ,BC =3cm , 把∠B 、∠D 分别沿CE 、AG 翻折,点B 、D 分别落在对角线AC 的点B '和D '上,则线段EG 的长度是________.三、解答题(本大题满分30分,每小题15分)19、某市道路改造工程,如果让甲工程队单独工作,需要30天完成,如果让乙工程队单独工作,则需要60天方可完成;甲工程队施工每天需付施工费2.5万元,乙工程队施工每天需付施工费1万元.请解答下列问题:(1)甲、乙两个工程队一起合作几天就可以完成此项工程?(2)甲、乙两个工程队一起合作10天后,甲工程队因另有任务调离,剩下的部分由乙工程队单独做,请问共需多少天才能完成此项工程?(3)如果要使整个工程施工费不超过65万元,甲、乙两个工程队最多能合作几天? (4)如果工程必须在24天内(含24天)完成,你如何安排两个工程队施工,才能使施工费最少?请说出你的安排方法,并求出所需要的施工费.20、如图9,四边形ABCD 是矩形,点P 是直线AD 与BC 外的任意一点,连接PA 、PB 、PC 、PD .请解答下列问题:(1)如图9(1),当点P 在线段BC 的垂直平分线MN 上(对角线AC 与BD 的交点Q 除外)时,证明△PAC ≌△PDB ;(2)如图9(2),当点P 在矩形ABCD 内部时,求证:PA 2+PC 2=PB 2+PD 2;(3)若矩形ABCD 在平面直角坐标系xoy 中,点B 的坐标为(1,1),点D 的坐标为(5,3),如图9(3)所示,设△PBC 的面积为y ,△PAD 的面积为x ,求y 与x 之间的函数关系式.图9 (2)图8 B ' ED 'A B C DG图9(1) MN QA B C DP2012年全国初中数学竞赛(海南赛区)初赛试卷参考答案 一、选择题(本大题满分50分,每小题5分)7、提示:可设菱形的两条对角线长分别为,利用对角线互相垂直进行解答.9、分析:由函数的图象可知:当x=1时有a +b +c <0,当x=-1时有a-b +c >0,即a +c >b,即b <a +c ,函数的对称轴为12=-=ab x ,则b =-2a ,因为抛物线的开口向上,所以a >0,抛物线与y 轴的交点在负半轴,所以c <0,由b =-2a 可得b <0.所以abc >0,因而正确答案为D 10、分析:分别计算铁板的最窄处便可知,如图A,直角梯形,AD=4cm ,BC=10cm ,∠C=60°,过点A 过AE//CD ,交BC 于点E ,过点B 作BE ⊥CD 于点F ,可求得AB=36cm >8.5cm ,BE=35cm >8.5cm 铁板甲不能穿过,如图B,等腰三角形ABC 中,顶角∠A=45°,作腰上的高线BD ,可求得BD=26cm <8.5cm , 所以铁板乙可以穿过; 所以选择B二、填空题(本大题满分40分,每小题5分)11、 45- 12、a +1 13、 a 1=2012, a 2=-1 14、4815、41单位面积 16、3个 17、85° 18、1017、分析:易证△CEA 与△CDB 全等,从而有∠DBC=∠EAC ,因为,∠ABE+∠BAE=180°-145°=35°所以有∠EAC+∠EBC=120°-35°=85°, 所以∠EBD=∠EBC+∠DBC=85°18、分析:AB =4cm ,BC =3cm ,可求得AC=5cm ,由题意可知C B '=BC=3cm ,A B '=2cm 设BE=x ,则AE=4-x ,则有(4-x )2-x 2 =22,x =1.5cm ,即BE=DG=1.5cm ,过点G 作GF ⊥AB 于点F ,则 可求出EF=1 cm ,所以EG=103122=+三、解答题(本大题满分30分,每小题15分)19、本题满分15分,第(1)、(2)、(3)小题,每小题4分,第(4)小题3分. 解:(1)设甲、乙两个工程队一起合作x 天就可以完成此项工程,依题意得:1)601301(=+x ,解得:x =20 答:甲、乙两个工程队一起合作20天就可以完成此项工程.(2)设完成这项道路改造工程共需y 天,依题意得:16010301=+⨯y ,解得y =40 。