矩阵 计算习题及答案教学提纲
矩阵及其运算课后习题答案
![矩阵及其运算课后习题答案](https://img.taocdn.com/s3/m/b9b92ceffad6195f302ba647.png)
第二章 矩阵及其运算课后习题答案1.已知线性变换:⎪⎩⎪⎨⎧++=++=++=,323,53,22321332123211y y y x y y y x y y y x 求从变量321,,x x x 到变量321,,y y y 的线性变换.解由已知:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947xx x y x x x y x x x y 2.已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=,54,232,232133212311y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=,3,2,3323312211z z y z z y z z y 求从321,,z z z 到321,,x x x 的线性变换. 解 由已知⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有 ⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236zz z x z z z x z z z x3.设⎪⎪⎪⎭⎫⎝⎛--=111111111A ,,150421321⎪⎪⎪⎭⎫⎝⎛--=B 求.23B A A AB T 及- 解 A AB 23-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫⎝⎛--=1504213211111111113⎪⎪⎪⎭⎫⎝⎛---1111111112⎪⎪⎪⎭⎫ ⎝⎛-=0926508503⎪⎪⎪⎭⎫ ⎝⎛---1111111112⎪⎪⎪⎭⎫⎝⎛----=22942017222132⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=150421321111111111B A T⎪⎪⎪⎭⎫ ⎝⎛-=0926508504.计算以下乘积:(1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134; (2)()⎪⎪⎪⎭⎫⎝⎛1233,2,1; (3)()2,1312-⎪⎪⎪⎭⎫ ⎝⎛; (4)⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412; (5)⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321),,(x x x a a a a a a a a a x x x ; (6)⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎪⎭⎫⎝⎛=49635(2)()⎪⎪⎪⎭⎫ ⎝⎛123321)10()132231(=⨯+⨯+⨯=(3)()21312-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎪⎭⎫⎝⎛---=632142(4)⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876 (5)()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321332313232212131211321x x x a a a a a a a a a x x x ()333223113323222112313212111x a x a x a x a x a x a x a x a x a ++++++=⎪⎪⎪⎭⎫ ⎝⎛⨯321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=(6) ⎪⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎪⎭⎫⎝⎛---=90003400421025215.设⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫⎝⎛=2101B ,问: (1)BA AB =吗?(2)2222)(B AB A B A ++=+吗?(3)22))((B A B A B A -=-+吗? 解 (1)⎪⎭⎫⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B . 则⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA BA AB ≠∴ (2) ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫⎝⎛=2914148但=++222B AB A ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛43011288611483⎪⎭⎫ ⎝⎛=27151610 故2222)(B AB A B A ++≠+ (3) =-+))((B A B A =⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛10205222⎪⎭⎫⎝⎛9060 而 =-22B A =⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛430111483⎪⎭⎫ ⎝⎛7182故 22))((B A B A B A -≠-+6.举反列说明以下命题是错误的: 〔1〕假设02=A ,则0=A ;〔2〕假设A A =2,则0=A 或E A =; 〔3〕假设AY AX =,且0≠A ,则Y X =. 解 (1) 取⎪⎭⎫⎝⎛=0010A , 02=A ,但0≠A (2) 取⎪⎭⎫⎝⎛=0011A , A A =2,但0≠A 且E A ≠ (3) 取⎪⎭⎫⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫⎝⎛=1011Y . AY AX =且0≠A 但Y X ≠. 7.设⎪⎭⎫⎝⎛=101λA ,求k A A A ,,,32 . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫⎝⎛=12011011012λλλA ; ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A利用数学归纳法证明: ⎪⎭⎫ ⎝⎛=101λk A k当1=k 时,显然成立,假设k 时成立,则1+k 时⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1)1(01101101λλλk k A A A k k由数学归纳法原理知:⎪⎭⎫ ⎝⎛=101λk A k8.设⎪⎪⎪⎭⎫ ⎝⎛=λλλ001001A ,求kA .解 首先观察⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎪⎭⎫⎝⎛=222002012λλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A由此推测 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121)2(≥k用数学归纳法证明:当2=k 时,显然成立.假设k 时成立,则1+k 时,⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知: ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219.设B A ,为n 阶矩阵,且A 为对称矩阵,证明AB B T 也是对称矩阵. 证明 已知:A A T =则 AB B B A B A B B ABB T T T T TT T T===)()(从而 AB B T 也是对称矩阵.10.设B A ,都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =. 证明 由已知:A A T = B B T =充分性:BA AB =⇒A B AB TT=⇒)(AB AB T=即AB 是对称矩阵. 必要性:AB ABT=)(⇒AB A B T T =⇒AB BA =.11.求以下矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; (3)⎪⎪⎪⎭⎫⎝⎛---145243121; (4)⎪⎪⎪⎪⎭⎫⎝⎛n a a a 0021)0(21≠a a a n解 (1) ⎪⎭⎫⎝⎛=5221A , 1=A ..1 ),1(2 ),1(2 ,522122111=-⨯=-⨯==A A A A⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=*122522122111A A A A A . *-=A A A 11⎪⎭⎫ ⎝⎛--=1225(2) 01≠=A 故1-A 存在θθθθcos sin sin cos 22122111=-===A A A A从而 ⎪⎭⎫⎝⎛-=-θθθθcos sin sin cos 1A(3) 2=A , 故1-A 存在 024312111==-=A A A 1613322212-==-=A A A 21432332313-==-=A A A故 *-=A A A 11⎪⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎪⎭⎫⎝⎛=n a a a A 0021. 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 1001121112.解以下矩阵方程:(1) ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; (2) ⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--234311111012112X ; (3) ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; (4) ⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛021********0100001100001010X .解(1) ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛--=12642153⎪⎭⎫⎝⎛-=80232 (2) 1111012112234311-⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122 (3) 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4) 11010100001021102341100001010--⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛=X ⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎪⎭⎫⎝⎛---=20143101213.利用逆矩阵解以下线性方程组:(1) ⎪⎩⎪⎨⎧=++=++=++;353,2522,132321321321x x x x x x x x x (2)⎪⎩⎪⎨⎧=-+=--=--.0523,132,2321321321x x x x x x x x x解 (1) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2) 方程组可表示为 ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----012523312111321x x x故 ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛-----=⎪⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x 故有 ⎪⎩⎪⎨⎧===305321x x x14.设O A k =(k 为正整数), 证明:121)(--++++=-k A A A E A E . 证明 一方面, )()(1A E A E E --=-另一方面,由O A k=有)()()(1122k k k A A A A A A A E E -+--+-+-=-- ))((12A E A A A E k -++++=-故 )()(1A E A E ---))((12A E A A A E k -++++=-两端同时右乘1)(--A E就有121)(--++++=-k A A A E A E15.设方阵A 满足O E A A =--22,证明A 及E A 2+都可逆,并求1-A 及1)2(-+E A .证明 由O E A A =--22得E A A 22=-两端同时取行列式: 22=-A A即 2=-E A A ,故 0≠A . 所以A 可逆,而22A E A =+0222≠==+A A E A 故E A 2+也可逆.由O E A A =--22E E A A 2)(=-⇒E A E A A A 112)(--=-⇒)(211E A A -=⇒- 又由O E A A =--22E E A A E A 4)2(3)2(-=+-+⇒ E E A E A 4)3)(2(-=-+⇒11)2(4)3)(2()2(--+-=-++∴E A E A E A E A)3(41)2(1A E E A -=+∴-16.设A 为3阶矩阵,21=A ,求*13)2(A A --。
矩阵练习(带答案详解)(最新整理)
![矩阵练习(带答案详解)(最新整理)](https://img.taocdn.com/s3/m/919af1176137ee06eef91863.png)
一、填空题:1.若,为同阶方阵,则的充分必要条件是A B 22))((B A B A B A -=-+。
BAAB =2. 若阶方阵,,满足,为阶单位矩阵,则=。
n A B C I ABC =I n 1-CAB3. 设,都是阶可逆矩阵,若,则=。
A B n ⎪⎪⎭⎫ ⎝⎛=00A B C 1-C ⎪⎪⎭⎫ ⎝⎛--0011B A 4. 设A =,则=。
⎪⎪⎭⎫ ⎝⎛--11121-A ⎪⎪⎭⎫⎝⎛21115. 设, .则。
⎪⎪⎭⎫ ⎝⎛--=111111A ⎪⎪⎭⎫⎝⎛--=432211B =+B A 2⎪⎪⎭⎫ ⎝⎛--7317336.设,则=⎪⎪⎪⎭⎫⎝⎛=300020001A 1-A ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛310002100017.设矩阵,为的转置,则=.1 -1 32 0,2 0 10 1A B ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭T A A B A T⎪⎪⎪⎭⎫⎝⎛-1602228. ,为秩等于2的三阶方阵,则的秩等于 2 .⎪⎪⎪⎭⎫⎝⎛=110213021A B AB 二、判断题(每小题2分,共12分)1. 设均为阶方阵,则 (k 为正整数)。
……………( × )B A 、n kk k B A AB =)(2. 设为阶方阵,若,则。
……………………………(,,A B C n ABC I =111CB A ---=× )3. 设为阶方阵,若不可逆,则都不可逆。
……………………… ( × )B A 、n AB ,A B4. 设为阶方阵,且,其中,则。
……………………… ( B A 、n 0AB =0A ≠0B =× )5. 设都是阶矩阵,且,则。
……………………( C B A 、、n I CA I AB ==,C B =√ )6. 若是阶对角矩阵,为阶矩阵,且,则也是阶对角矩阵。
…( A n B n AC AB =B n × )7. 两个矩阵与,如果秩()等于秩(),那么与等价。
矩阵理论习题与答案
![矩阵理论习题与答案](https://img.taocdn.com/s3/m/1ef10965a4e9856a561252d380eb6294dc882241.png)
矩阵理论习题与答案矩阵理论习题与答案矩阵理论是线性代数中的重要内容之一,它在数学、工程、计算机科学等领域都有广泛的应用。
为了帮助读者更好地理解和掌握矩阵理论,本文将介绍一些常见的矩阵理论习题,并提供详细的答案解析。
一、基础习题1. 已知矩阵A = [[2, 3], [4, 5]],求A的转置矩阵。
答案:矩阵的转置是将其行和列互换得到的新矩阵。
所以A的转置矩阵为A^T = [[2, 4], [3, 5]]。
2. 已知矩阵B = [[1, 2, 3], [4, 5, 6]],求B的逆矩阵。
答案:逆矩阵是指与原矩阵相乘得到单位矩阵的矩阵。
由于B是一个2×3的矩阵,不是方阵,所以不存在逆矩阵。
3. 已知矩阵C = [[1, 2], [3, 4]],求C的特征值和特征向量。
答案:特征值是矩阵C的特征多项式的根,特征向量是对应于每个特征值的线性方程组的解。
计算特征值和特征向量的步骤如下:首先,计算特征多项式:det(C - λI) = 0,其中I是单位矩阵,λ是特征值。
解特征多项式得到特征值λ1 = 5,λ2 = -1。
然后,将特征值代入线性方程组 (C - λI)x = 0,求解得到特征向量:对于λ1 = 5,解得特征向量v1 = [1, -2]。
对于λ2 = -1,解得特征向量v2 = [1, -1]。
所以C的特征值为λ1 = 5,λ2 = -1,对应的特征向量为v1 = [1, -2],v2 = [1, -1]。
二、进阶习题1. 已知矩阵D = [[1, 2], [3, 4]],求D的奇异值分解。
答案:奇异值分解是将矩阵分解为三个矩阵的乘积,其中一个是正交矩阵,一个是对角矩阵。
计算奇异值分解的步骤如下:首先,计算D的转置矩阵D^T。
然后,计算D和D^T的乘积DD^T,得到一个对称矩阵。
接下来,求解对称矩阵的特征值和特征向量。
将特征值构成对角矩阵Σ,特征向量构成正交矩阵U。
最后,计算D^T和U的乘积D^TU,得到正交矩阵V。
上海高二数学矩阵及其运算(有详细答案)精品
![上海高二数学矩阵及其运算(有详细答案)精品](https://img.taocdn.com/s3/m/ae006c750a1c59eef8c75fbfc77da26925c59615.png)
上海⾼⼆数学矩阵及其运算(有详细答案)精品上海版⾼⼆上数学矩阵及其运算⼀.初识矩阵(⼀)引⼊:引例1:已知向量()1,3OP =,如果把OP 的坐标排成⼀列,可简记为13??;引例2:2008我们可将上表奖牌数简记为:512128363836232128?? ?;引例3:将⽅程组231324244x y mz x y z x y nz ++=??-+=??+-=?中未知数z y x ,,的系数按原来的次序排列,可简记为2332441m n ??- ? ?-??;若将常数项增加进去,则可简记为:2313242414m n ??- ? ?-??。
(⼆)矩阵的概念1、上述形如13?? ???、512128363836232128?? ? ? ???、2332441m n ?? ?- ? ?-??、2313242414m n ??- ? ?-??这样的矩形数表叫做矩阵。
2、在矩阵中,⽔平⽅向排列的数组成的向量()12,,n a a a 称为⾏向量;垂直⽅向排列的数组成的向量12n b b b ??称为列向量;由m 个⾏向量与n 个列向量组成的矩阵称为m n ?阶矩阵,m n ?阶矩阵可记做m n A ?,如矩阵13?? ???为21?阶矩阵,可记做21A ?;矩阵512128363836232128?? ?为33?阶矩阵,可记做33A ?。
有时矩阵也可⽤A 、B 等字母表⽰。
3、矩阵中的每⼀个数叫做矩阵的元素,在⼀个m n ?阶矩阵m n A ?中的第i (i m ≤)⾏第j (j n ≤)列数可⽤字母ij a 表⽰,如矩阵512128363836232128?? ?第3⾏第2个数为3221a =。
4、当⼀个矩阵中所有元素均为0时,我们称这个矩阵为零矩阵。
如000000??为⼀个23?阶零矩阵。
5、当⼀个矩阵的⾏数与列数相等时,这个矩阵称为⽅矩阵,简称⽅阵,⼀个⽅阵有n ⾏(列),可称此⽅阵为n 阶⽅阵,如矩阵512128363836232128?? ? ? ???、2332441m n ??- ? ?-??均为三阶⽅阵。
《线性代数》第二章矩阵及其运算精选习题及解答
![《线性代数》第二章矩阵及其运算精选习题及解答](https://img.taocdn.com/s3/m/a8d8fad233d4b14e85246855.png)
An
=
⎜⎜⎝⎛
0 C
⎜⎛ 1
B 0
⎟⎟⎠⎞
,
其中
C = (n) ,
B
=
⎜ ⎜ ⎜⎜⎝
0 M 0
0 L 0 ⎟⎞
2 M 0
L L
n
0
M −
⎟ ⎟ 1⎟⎟⎠
,
故 C −1 = ( 1 ) , n
⎜⎛1 0 L
0 ⎟⎞
B −1
=
⎜0
⎜ ⎜⎜⎝
M 0
12 M 0
L L
1
0⎟ (nM− 1) ⎟⎟⎟⎠
,
根据分块矩阵的逆矩阵公式
⎜⎛ 2 ⎜0
0 4
2⎟⎞ 0⎟
⎜⎝ 4 3 2⎟⎠
例 2.12 设 X(E − B −1 A)T BT = E , 求 X . 其中
⎜⎛1 −1 0 0 ⎟⎞
⎜⎛ 2 1 3 4⎟⎞
A
=
⎜ ⎜ ⎜⎜⎝
0 0 0
1 0 0
−1 1 0
0⎟ −11⎟⎟⎟⎠ ,
B
=
⎜ ⎜ ⎜⎜⎝
0 0 0
2 0 0
1 2 0
0⎟
0 8
⎟ ⎟⎟⎠
,
求B,
使 ABA −1
=
BA −1
+ 3E
.
解 根据 ABA −1 = BA−1 + 3E , 得到 (A − E )BA−1 = 3E
故 A − E, A 皆是可逆的, 并且
( ) [ ] B = 3(A − E )−1 A = 3(A − E )−1 A−1 −1 = 3 (A−1 )(A − E) −1 = 3(E − A−1 )−1
第二章 矩阵及其运算
矩阵-计算习题及答案
![矩阵-计算习题及答案](https://img.taocdn.com/s3/m/eba2f9fefbb069dc5022aaea998fcc22bcd14381.png)
1、选择题1〕下列变量中A是合法的.A. Char_1,i,jB.x*y,a.1C. X\y,a1234D. end, 1bcd 2〕下列C是合法的常量.A. 3e10B. 1e500C. -1.85e-56D. 10-23〕x=uint8<1.2e10>,则x所占的字节是D个.A. 1B. 2C. 4D. 84〕已知x=0:10,则x有B个元素.A. 9B. 10C. 11D. 125〕产生对角线元素全为1其余为0的2×3矩阵的命令是C.A. Ones<2,3>B. Ones<3,2>C. Eye<2,3>D. Eye<3,2>6〕a=123456789⎛⎫⎪⎪⎪⎝⎭,则a<:,end>是指C.A.所有元素B. 第一行元素C. 第三列元素D. 第三行元素7〕a=123456789⎛⎫⎪⎪⎪⎝⎭,则运行a<:,1>=[] 命令后C.A.a变成行向量B. a数组成2行2列C. a数组成3行2列D. a数组没有元素8〕a=123456789⎛⎫⎪⎪⎪⎝⎭,则运行命令mean<a>是B.A. 计算a的平均值B. 计算a每列的平均值C. 计算a每行的平均值D.a数组增加一列平均值9〕已知x是一个向量,计算ln<x>的命令是B.A. ln<x>B. log<x>C. Ln<x>D. lg10<x>10〕当a=2.4时,使用取整函数得到3,则该函数名是C.A.fixB. roundC. ceilD. floor11〕已知a=0:4,b=1:5,下面的运算表达式出错的是D.A. a+bB. a./bC. a'*bD. a*b12〕已知a=4,b=‘4’,下面说法错误的是C.A. 变量a比变量b占用的空间大B. 变量a、b可以进行加减乘除运算C. 变量a、b数据类型相同D. 变量b可以用eval计算13〕已知s=‘显示"hello〞’,则s 元素的个数是A.A. 12B. 9C. 7D. 1814〕运行字符串函数strncmp<'s1','s2',2>,则结果为B.A. 1B. 0C. trueD. fales15〕命令day〔now〕是指C.A. 按日期字符串格式提取当前时间B. 提取当前时间C. 提取当前时间的日期D. 按日期字符串格式提取当前日期16〕有一个2行2列的元胞数组c ,则c〔2〕是指D.A. 第1行第2列元素内容B. 第2行第1列元素内容C. 第1行第2列元素 D .第2行第1列元素17〕以下运算中哪个运算级别最高B.A. *B. ^C. ~=D. /18〕运行命令bitand 〔20,15〕的结果是C.A. 15B. 20C. 4D. 519〕使用检测函数isinteger 〔15〕的结果是B.A. 1B. 0C. trueD. fales20〕计算三个多项式s1、s2和s3的乘积,则算式为C.A. conv<s1,s2,s3>B. s1*s2*s3C. conv<conv<s1,s2>,s3>D. conv<s1*s2*s3> 以下写出MATLAB 命令序列,并给出结果2.复数向量a=2+3i,b=3-4i,计算a+b,a-b,c=a*b,d=a/b,并计算变量c 的实部、虚部、模和相角.3.用 from:step:to 的方式和linspace 函数分别得到0~4π步长为0.4π的变量x1,0~4π分成10个点的变量x2.4.输入矩阵a=123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭,使用全下标方式提取元素3,使用单下标方式提取元素8,取出后两行子矩阵块,使用逻辑矩阵提取1379⎛⎫ ⎪⎝⎭. 5.输入a 为3×3的魔方阵,b 为3×3的单位阵,将他们生成3×6的大矩阵c 、6×3的大矩阵d,将d 的最后一行提取生成小矩阵e.6.矩阵a=123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭用flipud 、fliplr 、rot90、diag 、triu 和tril 进行操作.并求其转置、秩、逆矩阵、矩阵的行列式值与三次幂.8.解线性方程组1234124123412342328368773225x x x x x x x x x x x x x x x -++=⎧⎪++=⎪⎨-++=⎪⎪+-+=⎩. 9.输入字符串变量a 为‘hello ’,将其每个字符后移4个,如‘h ’变为‘l ’,然后再逆序存入变量b.10 计算函数2()10sin(4)t f t e t =-,其中t X 围为0到20,步长为0.2,g 〔t 〕为f 〔t 〕大于0的部分,计算g 〔t 〕的值.11.矩阵a=123456789⎛⎫ ⎪ ⎪ ⎪⎝⎭,使用数组信息获取函数求其行列数、元素个数,是否为稀疏矩阵、是否为字符型.。
矩阵及其运算课后习题答案(最新整理)
![矩阵及其运算课后习题答案(最新整理)](https://img.taocdn.com/s3/m/d3e91517aa00b52acfc7caf2.png)
用数学归纳法证明:
当 k 2 时,显然成立. 假设 k 时成立,则 k 1时,
k
Ak 1
Ak
A
0
0
kk 1
k 0
k
(k 1) k 2 kk 1 k
2
0 0
1 0
0 1
k1 0 0
k 由数学归纳法原理知: Ak 0 0
kk 1
k 0
k(k 1) k2
2 kk 1
k
(k 1)k1
k 1 0
(k 1)k k1
2 (k 1)k1
k 1
9.设 A, B 为 n 阶矩阵,且 A 为对称矩阵,证明 BT AB 也是对称矩阵.
证明 已知: AT A
则
( ) ( ) BT AB T BT BT A T BT AT B BT AB
从而 BT AB 也是对称矩阵.
2 y3,
x3 4 y1 y2 5 y3,
y1 y2
3z1 z2 2z1 z3 ,
,
y3 z2 3z3,
求从 z1, z2 , z3 到 x1, x2 , x3 的线性变换.
解 由已知
x1 x2 x3
2 2 4
0 3 1
152
y1 y2 y2
2 2 4
0 3 1
y2 y2
故
y1 y2 y2
2 3 3
2 1 2
11 x1
53
x2 x3
7 6 3
4 3 2
9 7 4
y1 y2 y3
y1 y2
7x1 4x2 9x3 6x1 3x2 7x3
y3 3x1 2x2 4x3
2.已知两个线性变换
x1 x2
矩阵练习题及答案
![矩阵练习题及答案](https://img.taocdn.com/s3/m/03a65a95c0c708a1284ac850ad02de80d5d80653.png)
矩阵练习题及答案矩阵练习题及答案矩阵是线性代数中的重要概念,也是许多数学问题的基础。
通过练习矩阵题目,我们可以加深对矩阵的理解,提高解决问题的能力。
下面,我将为大家提供一些矩阵练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算以下矩阵的和:A = [2 4][1 3]B = [3 1][2 2]答案:A + B = [5 5][3 5]2. 计算以下矩阵的乘积:A = [2 3][4 1]B = [1 2][3 2]答案:A * B = [11 10][7 10]3. 计算以下矩阵的转置:A = [1 2 3][4 5 6]答案:A^T = [1 4][2 5][3 6]二、进阶练习题1. 已知矩阵 A = [2 1][3 4]求矩阵 A 的逆矩阵。
答案:A 的逆矩阵为 A^-1 = [4/5 -1/5] [-3/5 2/5]2. 已知矩阵 A = [1 2][3 4]求矩阵 A 的特征值和特征向量。
答案:A 的特征值为λ1 = 5,λ2 = -1对应的特征向量为 v1 = [1][1]v2 = [-2][1]3. 已知矩阵 A = [2 1][3 4]求矩阵 A 的奇异值分解。
答案:A 的奇异值分解为A = U * Σ * V^T其中,U = [-0.576 -0.817][-0.817 0.576]Σ = [5.464 0][0 0.365]V^T = [-0.404 -0.914][0.914 -0.404]三、实际应用题1. 一家工厂生产 A、B、C 三种产品,其销售量分别为 x1、x2、x3。
已知每天销售的总量为 100 个,且销售收入满足以下关系:2x1 + 3x2 + 4x3 = 3003x1 + 2x2 + 5x3 = 3204x1 + 3x2 + 6x3 = 380求解方程组,得到每种产品的销售量。
答案:解方程组得到 x1 = 30,x2 = 20,x3 = 50。
矩阵的运算与线性方程组练习题及解析
![矩阵的运算与线性方程组练习题及解析](https://img.taocdn.com/s3/m/44dc6cac18e8b8f67c1cfad6195f312b3169ebf3.png)
矩阵的运算与线性方程组练习题及解析在线性代数中,矩阵的运算是十分重要的一部分,同时也与线性方程组密切相关。
本文将为大家带来一些关于矩阵的运算和线性方程组的练习题,并给出详细的解析。
1. 矩阵的加法和减法题目:已知矩阵A = [1 2 3; 4 5 6],B = [7 8 9; 10 11 12],计算A +B和A - B。
解析:矩阵的加法和减法的计算规则是对应元素相加或相减。
根据给定的矩阵A和B,我们可以得到如下结果:A +B = [1+7 2+8 3+9; 4+10 5+11 6+12] = [8 10 12; 14 16 18]A -B = [1-7 2-8 3-9; 4-10 5-11 6-12] = [-6 -6 -6; -6 -6 -6]2. 矩阵的乘法题目:已知矩阵A = [1 2; 3 4],B = [5 6; 7 8],计算A * B和B * A。
解析:矩阵的乘法的计算规则是将第一个矩阵A的每一行与第二个矩阵B的每一列对应元素相乘,然后将结果相加。
根据给定的矩阵A和B,我们可以得到如下结果:A *B = [1*5+2*7 1*6+2*8; 3*5+4*7 3*6+4*8] = [19 22; 43 50]B * A = [5*1+6*3 5*2+6*4; 7*1+8*3 7*2+8*4] = [23 34; 31 46]3. 矩阵的转置题目:已知矩阵A = [1 2 3; 4 5 6],求矩阵A的转置。
解析:矩阵的转置是将矩阵的行和列交换得到的新矩阵。
根据给定的矩阵A,我们可以得到如下结果:A的转置 = [1 4; 2 5; 3 6]4. 线性方程组的求解题目:已知线性方程组:2x + y = 8x - y = 2解析:我们可以使用矩阵的方法来求解线性方程组。
将方程组的系数构成系数矩阵A,将方程组的常数构成常数矩阵B。
则方程组可以表示为AX = B的形式。
根据给出的方程组,我们可以得到如下结果:A = [2 1; 1 -1]B = [8; 2]为了求解方程组,我们可以使用矩阵的逆来计算X。
矩阵习题带答案
![矩阵习题带答案](https://img.taocdn.com/s3/m/c7b8145b2379168884868762caaedd3383c4b5f5.png)
矩阵习题带答案矩阵习题带答案矩阵是线性代数中的重要概念,广泛应用于各个领域。
掌握矩阵的运算和性质对于学习线性代数和解决实际问题都具有重要意义。
在这篇文章中,我们将提供一些矩阵习题,并附上详细的解答,帮助读者更好地理解和掌握矩阵的相关知识。
1. 习题一已知矩阵A = [1 2 3; 4 5 6; 7 8 9],求矩阵A的转置矩阵AT。
解答:矩阵A的转置矩阵AT即将A的行变为列,列变为行。
因此,矩阵A的转置矩阵为:AT = [1 4 7; 2 5 8; 3 6 9]2. 习题二已知矩阵B = [2 4; 1 3],求矩阵B的逆矩阵B-1。
解答:对于一个二阶矩阵B,如果其行列式不为零,即|B| ≠ 0,那么矩阵B存在逆矩阵B-1,且B-1 = (1/|B|) * [d -b; -c a],其中a、b、c、d分别为矩阵B的元素。
计算矩阵B的行列式:|B| = ad - bc = (2*3) - (4*1) = 6 - 4 = 2因此,矩阵B的逆矩阵为:B-1 = (1/2) * [3 -4; -1 2]3. 习题三已知矩阵C = [1 2 3; 4 5 6],求矩阵C的秩rank(C)。
解答:矩阵的秩是指矩阵中非零行的最大个数,也可以理解为矩阵的行向量或列向量的最大线性无关组的向量个数。
对于矩阵C,我们可以通过高斯消元法将其化为行简化阶梯形矩阵:[1 2 3; 0 -3 -6]可以看出,矩阵C中非零行的最大个数为1,因此矩阵C的秩为1。
4. 习题四已知矩阵D = [2 1; -1 3],求矩阵D的特征值和特征向量。
解答:对于一个n阶矩阵D,如果存在一个非零向量X,使得D*X = λ*X,其中λ为常数,则称λ为矩阵D的特征值,X为对应的特征向量。
首先,我们需要求解矩阵D的特征值,即求解方程|D - λI| = 0,其中I为n阶单位矩阵。
计算矩阵D - λI:[D - λI] = [2-λ 1; -1 3-λ]设置行列式等于零,得到特征值的方程式:(2-λ)(3-λ) - (1)(-1) = 0λ^2 - 5λ + 7 = 0解特征值的方程,得到两个特征值:λ1 = (5 + √(-11))/2λ2 = (5 - √(-11))/2由于特征值的计算涉及到虚数,这里不再继续计算特征向量。
《高等代数》 第一章矩阵 习题答案
![《高等代数》 第一章矩阵 习题答案](https://img.taocdn.com/s3/m/f051519451e79b8968022630.png)
第一章 矩阵习题一1.设有A 、B 、C 三类商品,它们去年和今年的价格如下表所示:单位:元试用矩阵表示上述表格. 解 所求的的矩阵为1002009050120150⎛⎫ ⎪ ⎪ ⎪⎝⎭2.写出下列线性方程组的系数矩阵与增广矩阵. (1) ⎩⎨⎧=-=-02132y x y x ;(2) ⎪⎪⎩⎪⎪⎨⎧=+=++=-52323203y x z y x z x.解 (1)系数矩阵为2312-⎛⎫ ⎪⎝⎭增广矩阵为231120-⎛⎫ ⎪⎝⎭(2)系数矩阵为103231320-⎛⎫ ⎪ ⎪ ⎪⎝⎭增广矩阵为103023123205-⎛⎫ ⎪ ⎪ ⎪⎝⎭3.写出矩阵()32)()1(⨯-+-=j i A j i 的完全形式. 解 234345A -⎛⎫=⎪--⎝⎭4.写出既是上三角形矩阵,又是下三角形矩阵的3阶矩阵的一般形式.解 所求的矩阵为000000a b c ⎛⎫ ⎪ ⎪ ⎪⎝⎭其中a,b,c 为任意数.习题二1.设矩阵,312010403,112112,012110321⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛-=C B A(1)计算C A 23-与3A;(2)验证()CB AB B C A +=+与 ()TAB TT=A B .解(1) 1233043230112010210213A C ⎛⎫⎛⎫ ⎪ ⎪-=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭369608033020630426⎛⎫⎛⎫ ⎪ ⎪=-- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭=369033256-⎛⎫⎪- ⎪ ⎪-⎝⎭323123123123011011011210210210A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=-=-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭771123201011256210⎛⎫⎛⎫ ⎪⎪=--- ⎪⎪ ⎪⎪-⎝⎭⎝⎭9221445612141⎛⎫⎪=--- ⎪ ⎪⎝⎭(2) 12330421()(011010)1221021311A C B ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪+=-+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭427210211240311⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭171513117⎛⎫⎪= ⎪ ⎪⎝⎭123213042101112010122101121311AB CB ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪⎪+=-+ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭⎝⎭7810701125463⎛⎫⎛⎫ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭171513117⎛⎫ ⎪= ⎪ ⎪⎝⎭故 ()CB AB B C A +=+1232178705()01112018142101154TTT AB ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪=-== ⎪ ⎪ ⎪⎪ ⎪⎝⎭ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭211231022117051201121112181411210310T TT T B A ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭故 ()TAB TT=A B2.求下列矩阵方程中的矩阵X :⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛---+-⎪⎪⎭⎫⎝⎛--00000011311232021132X . 解 移项得31121132202311X ---⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭方程两边同乘以13得3112111(2)2023113X ---⎛⎫⎛⎫=+ ⎪ ⎪--⎝⎭⎝⎭411622211433113()4043111131133133⎛⎫- ⎪----⎛⎫⎛⎫⎛⎫⎪=+== ⎪ ⎪ ⎪--- ⎪⎝⎭⎝⎭⎝⎭-⎪⎝⎭3.已知两个线性变换⎪⎪⎩⎪⎪⎨⎧++=++-=+=31332123115423222yy y x y y y x y y x ,⎪⎪⎩⎪⎪⎨⎧+-=+=+-=323312211323z z y z z y zz y , 求从321,,z z z 到321,,x x x 的线性变换.解 用矩阵乘法分别表示这两个已知的线性变换为112233201232415x y x y x y ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,112233*********y z y z y z -⎛⎫⎛⎫⎛⎫⎪ ⎪⎪= ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭从而111222333201310201310232201232201415013415013x z z x z z x z z ⎛⎫⎛⎫--⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123613124910116z z z -⎛⎫⎛⎫⎪⎪=- ⎪⎪ ⎪⎪--⎝⎭⎝⎭即 1123212331236312491016x z z z x z z z x z z z =-++=-+=--+4.计算下列矩阵乘积:(1) ;110217321134⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛- (2) ()⎪⎪⎪⎭⎫⎝⎛123321; (3) ()11312-⎪⎪⎪⎭⎫⎝⎛ ; (4)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-0431103143110412; (5) ()⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛321333231232221131211321x x x a a a a a a a a a x x x .解 (1)71431353201236211⎛⎫⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪-⎝⎭ (2) ()31232101⎛⎫ ⎪= ⎪ ⎪⎝⎭(3) ()22111111333-⎛⎫⎛⎫ ⎪⎪-=- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭(4) 132140016711341320540⎛⎫ ⎪--⎛⎫⎛⎫⎪= ⎪ ⎪ ⎪---⎝⎭⎝⎭⎪⎝⎭(5)()()111213111121311232122232123212223231323333132333a a a x a a a x x x x a a a x x x x a a a x a a a x a a a x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪ ⎪= ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()1111212313121222323131********x a x a x a x a x a x a x a x a x a x x x ⎛⎫ ⎪=++++++ ⎪ ⎪⎝⎭222111222333122112133113233223()()()a x a x a x a a x x a a x x a a x x =++++++++5.设⎪⎪⎭⎫ ⎝⎛=101λA , 证明⎪⎪⎭⎫ ⎝⎛=101λk A k ,其中k 为正整数. 证明 对k 用数学归纳法显然1k =时,结论成立.设当k n =时结论成立,即有101n n A λ⎛⎫= ⎪⎝⎭我们考虑1k n =+时的情形.由归纳假设,我们有1111(1)010101n nn n AA A λλλ++⎛⎫⎛⎫⎛⎫=== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭即1k n =+时的结论也是成立的.由归纳原理,⎪⎪⎭⎫ ⎝⎛=101λk A k对所有的正整数成立. 6.设⎪⎪⎭⎫⎝⎛-=θθθθcos sin sin cos A , 证明⎪⎪⎭⎫⎝⎛-=θθθθk k k k A k cos sin sin cos ,其中k 为正整数 .证明 对k 用数学归纳法.显然1k =时,结论成立. 设当k n =时结论成立,即有cos sin sin cos n n n A n n θθθθ-⎛⎫=⎪⎝⎭我们考虑1k n =+时的情形.由归纳假设,我们有1cos sin cos sin sin cos sin cos n n n n A A A n n θθθθθθθθ+--⎛⎫⎛⎫== ⎪⎪⎝⎭⎝⎭cos cos sin sin cos sin sin cos cos(1)sin(1)sin cos cos sin sin sin cos cos sin(1)cos(1)n n n n n n n n n n n n θθθθθθθθθθθθθθθθθθθθ---+-+⎛⎫⎛⎫==⎪⎪+-+++⎝⎭⎝⎭即1k n =+时的结论也是成立的.由归纳原理,⎪⎪⎭⎫⎝⎛-=θθθθk k k k A k cos sin sin cos对所有的正整数成立.7.如果BA AB =矩阵B 就称为与A 可交换.设(1)⎪⎪⎭⎫⎝⎛=1011A ; (2)⎪⎪⎪⎭⎫ ⎝⎛=213210001A ;(3)⎪⎪⎪⎭⎫ ⎝⎛=000100010A . 求所有与A 可交换的矩阵.解 (1)设与A 可交换的矩阵为a b B c d ⎛⎫=⎪⎝⎭则 1101a b a b b d AB c d cd ++⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 1101a b a a b BA c d c c d +⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪+⎝⎭⎝⎭⎝⎭由BA AB =,故a b b d a a b c d c c d +++⎛⎫⎛⎫= ⎪ ⎪+⎝⎭⎝⎭根据矩阵相等的定义,得a c ab d a bc cd c d+=⎧⎪+=+⎪⎨=⎪⎪=+⎩ 解之得0,c a b ==所以,与A 可交换的矩阵0a b B a ⎛⎫= ⎪⎝⎭其中,a b 为任意数.(2)设与A 可交换的矩阵为xy z B uv w g s t ⎛⎫ ⎪= ⎪ ⎪⎝⎭则 100012222312323232x y z x y z AB uv w u g v s w t g st x u g y v s z w t ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪==+++ ⎪⎪ ⎪ ⎪⎪ ⎪++++++⎝⎭⎝⎭⎝⎭100322012322312322xy z x z y z y z BA uv w u w v w v w g st g t s t s t +++⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==+++ ⎪⎪ ⎪ ⎪⎪ ⎪+++⎝⎭⎝⎭⎝⎭由BA AB =,故322222322323232322x y z x z y z y z u g v s w t u w v w v w x u g y v s z w t g t s t s t +++⎛⎫⎛⎫⎪ ⎪+++=+++ ⎪ ⎪ ⎪ ⎪+++++++++⎝⎭⎝⎭根据矩阵相等的定义,得322x x z y y z z y z =+⎧⎪=+⎨⎪=+⎩,232222u g u w v s v w w t v w +=+⎧⎪+=+⎨⎪+=+⎩,323323222x u g g ty v s s t z w t s t ++=+⎧⎪++=+⎨⎪++=+⎩解之得3110,,,,33222y z g w s w t v w u x v =====+=-+ 所以,与A可交换的矩阵为0033311222x B x vv w w w v w ⎛⎫⎪⎪=-+ ⎪ ⎪ ⎪+⎝⎭其中,,x v w 为任意的数.(3)设与A 可交换的矩阵为xy z B uv w g s t ⎛⎫ ⎪= ⎪ ⎪⎝⎭则 010*******0001000100000xy z uv w AB uv w gs t g s t x y z x y BA u v w u v g s t g s ⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫⎪⎪ ⎪== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭由BA AB =,故000000u v w xy g s t u v g s ⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭根据矩阵相等的定义,得0,,u g s v t x w y ======所以,与A可交换的矩阵为000x yz B xy x ⎛⎫⎪= ⎪ ⎪⎝⎭其中,,x y z 为任意的数.8.如果CA AC BA AB ==,,证明:A C B C B A )()(+=+;A BC BC A )()(=. 证明 因CA AC BA AB ==,,故()()A B C AB AC BA CA B C A +=+=+=+ ()()()()()()A BC AB C BA C B AC B CA BC A =====9.如果)(21E B A +=,证明:A A =2当且仅当E B =2. 证明 因为)(21E B A +=,故22211[()](2)24A B E B B E =+=++如果2A A =.即有211(2)()42B B E B E ++=+ 从而E B =2反之,如果E B =2,容易推出A A =2.10.证明:如果A 是实对称矩阵且0=2A ,那么0=A .证明 设111212122212n n n n nn a a a aa a A a a a ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭那么由T A A =,得21111121112112212221222222112122100000n ii n n nn n iT i n n nn nnnn n ni i a a a a a a a aa a a a a aA AA a a a a a a a ===⎛⎫ ⎪ ⎪⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎪ ⎪==== ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎪ ⎪⎝⎭∑∑∑根据矩阵相等的定义得222121110,0,,0n nni i ni i i i a a a ======∑∑∑但是A 为实对称矩阵,即所有的元素均为实数,所以120(1,2,,)i i in a a a i n ===== 从而0=A11.设A 、B 为n 阶矩阵,且A 为对称矩阵,证明AB B T也是对称矩阵. 证明 因为A 对称矩阵,故T A A =从而()()T T T T T T T B AB B A B B AB ==所以,AB B T也是对称矩阵.12.设A 、B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是BA AB =. 证明 因A 、B 都是n 阶对称矩阵,故T A A =,T B B =如果AB 是对称矩阵,那么()T T T AB AB B A BA ===反之,如果BA AB =,那么()()T T T T AB BA A B AB ===从而AB 是对称矩阵.13.设矩阵⎪⎪⎪⎭⎫ ⎝⎛--=567152431A , 试将A 表示为一个对称矩阵与一个反对称矩阵之和.解 511122157()5222117522T A A ⎛⎫ ⎪⎪ ⎪+=- ⎪⎪ ⎪-⎪⎝⎭为对称矩阵. 13022115()022235022TA A ⎛⎫- ⎪⎪ ⎪-=-⎪ ⎪ ⎪- ⎪⎝⎭为反对称矩阵.并且满足 51113102222571550222211735502222A ⎛⎫⎛⎫- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=-+- ⎪ ⎪⎪ ⎪ ⎪ ⎪--⎪ ⎪⎝⎭⎝⎭14.用待定系数法判定下列矩阵是否可逆,并且在矩阵可逆时求它的逆矩阵: (1)⎪⎪⎭⎫⎝⎛3243 ; (2) ⎪⎪⎭⎫ ⎝⎛10452 . 解 (1)设有矩阵a b c d ⎛⎫ ⎪⎝⎭使得34102301a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭那么由矩阵的乘法与矩阵相等的定义可以得到下列线性方程组341340230231a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 这个线性方程组有唯一解3,4,2,3a b c d ==-=-=从而3423a b c d -⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭容易验证3434341023232301a b c d -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭所以矩阵⎪⎪⎭⎫⎝⎛3243是可逆矩阵,且134342323--⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭(2)设有矩阵a b c d ⎛⎫⎪⎝⎭使得251041001a b c d ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭那么由矩阵的乘法与矩阵相等的定义可以得到下列线性方程组25125041004101a cb d ac bd +=⎧⎪+=⎪⎨+=⎪⎪+=⎩ 这个线性方程组无解,所以矩阵⎪⎪⎭⎫⎝⎛10452是不可逆矩阵. 15.证明:如果0=kA (k 为正整数),那么121()k I A I A A A ---=++++.证明 因0=kA ,故212121()()k k k k k I A I A A A I A A A A A A A I A I ----++++=++++-----=-=同理可得21()()k I A A A I A I -++++-=根据矩阵可逆的定义,矩阵I A -是可逆矩阵,且121()k I A I A A A ---=++++16. A,B 两个工厂生产M ,N ,P ,其年产量(单位:件)分别为200,300,400;150,200,250. 这三种产品的出厂单价(单位:万元)分别为:3,2,1. 求A,B 两个工厂的年度总产值.解: 分别A 、B 两个工厂生产M 、N 、P 三种产品的年产量为列构成矩阵⎪⎪⎪⎭⎫ ⎝⎛250200150400300200 , 以这三种产品的出厂单价为行的矩阵为 ()123.那么以A,B 两个工厂的年度总产值为行的矩阵为()()11001600250200150400300200123=⎪⎪⎪⎭⎫ ⎝⎛所以A,B 两个工厂的年度总产值分别为1600万元与1100万元.17.设矩阵⎪⎪⎭⎫ ⎝⎛=2011A ,求nA ,(n 为正整数). 解:⎪⎪⎭⎫⎝⎛+=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=21022022120112011A ⎪⎪⎭⎫ ⎝⎛++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛==321021023202221202212011AA A 一般地应有 ⎪⎪⎪⎭⎫⎝⎛=∑-=n 1n 0k k n 2021A 我们对n 用数学归纳法来证明该式. 显然n=1时结论成立. 假设n=l 时结论成立,即有⎪⎪⎪⎭⎫⎝⎛=∑-=n 1l 0k k l 2021A 现在我们考虑n=l+1时的情形.由归纳假设,我们有⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛==∑=+l l0k k l 1l 20212011AA A ⎪⎪⎪⎭⎫ ⎝⎛=+-+=∑1l 1)1l (0k k 2021 , ⎪⎪⎪⎭⎫⎝⎛=∑-=n 1n 0k k n 2021A 对所有正整数都成立.18.设矩阵⎪⎪⎪⎭⎫ ⎝⎛=100110011A ,求n A .解: ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛=100C 10C 21100210121100110011100110011A 12222⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==100C 10C 31100310331100210121100110011AA A 132323一般地应有 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100n 1021)-n(n n 1100C 10C n 1A 1n 2nn 我们对n 用数学归纳法来证明该式.显然n=2时结论成立. 假设n=k 时结论成立,即有⎪⎪⎪⎭⎫ ⎝⎛=100C 10C k 1A 1k 2k k .现在我们考虑n=k+1时的情形.由归纳假设,我们有⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==+100C 10C k 1100110011AA A 1k 2k k 1k⎪⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫ ⎝⎛++=+++100C 10C 1k 1100C 10C C 1k 111k 21k 11k 1k 2k 即n=l+1时结论也成立,由归纳原理,⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=100n 1021)-n(n n 1100C 10C n 1A 1n 2n n对所有大于1正整数都成立.19.设()m m m a a a f +++=- 110λλλ,A 是一个n n ⨯矩阵,定义 ()I a A a A a A f m m m +++=- 110.(1) ()12--=λλλf ,⎪⎪⎪⎭⎫ ⎝⎛-=011213112A ,(2) ()352+-=λλλf ,⎪⎪⎭⎫⎝⎛--=3312A . 试求()A f .解:(1) ()⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=--=10001000101121311201121311222I A A A f⎪⎪⎪⎭⎫⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛--=2123083151000100010112131121015211428 (2) ()⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--=100133312533122A f⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛--=30031515510121557⎪⎪⎭⎫ ⎝⎛=0000. 习题三1. 计算下列矩阵的乘积:(1) ⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛010110005110230002; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解:(1) ⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛OO =⎪⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛100310001001011000511023000221A A其中()()10521=⨯=A ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=1031011111232A . (2) 把乘积中的两个矩阵分别分块成⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛=2213000120010100121A I A A , ⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛---=212300032001210131B B I B . 那么 ⎪⎪⎭⎫⎝⎛O +=⎪⎪⎭⎫ ⎝⎛O ⎪⎪⎭⎫ ⎝⎛O=223111212221B A B B A A B B I A I A AB .而 ⎪⎪⎭⎫⎝⎛--+⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=+30321217303212131021211B B A⎪⎪⎭⎫ ⎝⎛-=4225, ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛=90342032301222B A .从而 ⎪⎪⎪⎪⎪⎭⎫⎝⎛---=9000340042102521AB .2. 求下列矩阵的逆矩阵:(1)⎪⎪⎪⎪⎪⎭⎫⎝⎛1200250000430011; (2)⎪⎪⎪⎪⎪⎭⎫⎝⎛n a a a21,其中021≠n a a a . 解:(1) ⎪⎪⎭⎫⎝⎛O O =⎪⎪⎪⎪⎪⎭⎫⎝⎛=211200250000430011A A A .1A 为可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-131411A ; 2A 为可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-522112A . 从而A 为可逆矩阵,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----52002100001300141A . 3. 设A 为n 阶矩阵,且满足:O =++I A A 2.求1-A .解:移项并整理得()I I A A =--及()I A I A =--,所以,A 为可逆矩阵,且 I A A--=-1.4. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=61318175********A ,求1-A . 解:⎪⎪⎭⎫⎝⎛O =⎪⎪⎪⎪⎪⎭⎫⎝⎛----=B C A A 16131817500230012, ⎪⎪⎭⎫ ⎝⎛=23121A 是可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=-231211A ; ⎪⎪⎭⎫ ⎝⎛--=6181B 是可逆矩阵,且⎪⎪⎭⎫ ⎝⎛--=212143B . 由例15 ⎪⎪⎭⎫⎝⎛-O =-----1111111B CA B A A . 经计算,得⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=---23123175212143111CA B ⎪⎪⎭⎫⎝⎛--=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=2275231222911, 从而 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=-2121224375002300121A .5. 已知A 为m 阶可逆矩阵,C 为n 阶可逆矩阵.试证⎪⎪⎭⎫⎝⎛O O =C A X 是可逆矩阵,并求1-X.解:设有分块矩阵⎪⎪⎭⎫⎝⎛=22211211X XX X D ,其中D 的分法使以下的分块乘法有意义, 并使得 ⎪⎪⎭⎫⎝⎛OO =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛O O =n mI I CX CX AX AX X X X X C A XD 121122112221112. 比较等式两边,得⎪⎪⎩⎪⎪⎨⎧=O =O ==nm I CX CX AX I AX 12112221由第一,二式得 O ==-22121,X A X , 由第三,四式得 1111,-=O =C X X . 容易验证也有 ⎪⎪⎭⎫ ⎝⎛OO =n mI I DX . 所以 ⎪⎪⎭⎫ ⎝⎛O O =---111A C X.6. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X ,其中()n i a i ,,2,10 =≠,求1-X .解:⎪⎪⎭⎫⎝⎛O O =⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-C A aa a a X n n 0000000000000000121, 由上题的结果,得 ⎪⎪⎭⎫⎝⎛O O =---111A C X但 ()11--=n a C ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=-----1112111000000n a a a A. 所以, ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=--------00000000000000000000001112121111n n n a a a a a X.。
线性代数 第一章矩阵 参考答案
![线性代数 第一章矩阵 参考答案](https://img.taocdn.com/s3/m/0b2ef6e481c758f5f71f670f.png)
0 A2
0 A1
0 I A11r1 , A21r2 I 0 I 0 0 I
0 A11
A2 1 0
P31 习题 1.4 1.按上课要求做,则此题中行阶梯形答案不唯一,行最简形和标准形答案唯一
1 1 1 (1) 0 2 1 0 0 0
法一
2 1 1 B ( A 2 I ) A ,求出 ( A 2 I ) 1 1 1 4 3 4 2 3 3 8 B 1 5 3 1 1 0 2 9 1 6 4 1 2 3 2 12
4.解: 4 X
4 0 0 4 8 (3) 2 14 2 (4) 3 11 5 11 5 4 10 1 1 0 1 7.解: AB ; BA 1 2 0 0 1 2
1 0 (2) 0 0 1 0 (3) 0 0 1 0 (4) 0 0
1 1 0 0 3 2 0 0 1 1 0 0
1 1 0 0 3 1 1 0 2 1 0 0
1 0 1 ,0 1 2 1 0 0 1 1 0 0 0 1 1 1 , 0 0 0 1 0 0 0 0 7 0 1 5 1 , 0 1 1 0 0 0 0 2 1 1 0 5 1 ,0 1 1 0 0 0 0 0 0 0
(法二)
A1 X1 X 2 的逆阵为 B ,则有 0 X 3 X4 A1 X 1 X 2 I 0 0 X X I 0 4 3
A21 。 0
I 0 r1 r2 A2 0 I 0 0 A21 1 所以 A 1 0 A1 A1 0
矩阵运算练习题及
![矩阵运算练习题及](https://img.taocdn.com/s3/m/26c06340e97101f69e3143323968011ca300f79c.png)
矩阵运算练习题及解答矩阵运算练习题及解答矩阵运算是线性代数中的重要内容之一,它在各个领域都有广泛的应用。
通过对矩阵的加法、乘法等基本运算进行练习,可以帮助我们更好地理解和掌握矩阵运算的相关概念和性质。
本文将为大家提供一些矩阵运算的练习题及其详细解答,以便读者巩固相关知识。
1. 矩阵加法设矩阵A、B分别为:A = [2 3 -1],B = [1 4 2]求矩阵A和B的和。
解答:两个矩阵的和等于对应元素相加。
根据题目给出的矩阵A和B,可以直接进行相加。
A +B = [2+1 3+4 -1+2] = [3 7 1]因此,矩阵A和B的和为[3 7 1]。
2. 矩阵乘法设矩阵A、B分别为:A = [1 2 3],B = [4 5 6]求矩阵A和B的乘积。
解答:两个矩阵相乘的结果可通过将矩阵A的每一行与矩阵B的每一列进行对应元素相乘并相加得到。
A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的乘积为[32]。
3. 转置矩阵设矩阵A为:A = [1 2 3; 4 5 6; 7 8 9]求矩阵A的转置。
解答:转置矩阵是将原矩阵的行变为列,并将列变为行得到的新矩阵。
根据题目给出的矩阵A,可以进行转置操作。
A的转置记为AT,且AT的第i行第j列元素等于A的第j行第i 列元素。
A的转置为:AT = [1 4 7; 2 5 8; 3 6 9]因此,矩阵A的转置为:[1 4 7; 2 5 8; 3 6 9]4. 矩阵的数量积设矩阵A、B分别为:A = [1 2 3],B = [4; 5; 6]求矩阵A和B的数量积。
解答:矩阵的数量积等于矩阵A的行向量与矩阵B的列向量的数量积,即矩阵A与矩阵B的乘积。
A ×B = [(1×4 + 2×5 + 3×6)] = [32]因此,矩阵A和B的数量积为[32]。
5. 矩阵的逆设矩阵A为:A = [1 2; 3 4]求矩阵A的逆。
(完整版)第一章行列式与矩阵的计算的练习(含答案)
![(完整版)第一章行列式与矩阵的计算的练习(含答案)](https://img.taocdn.com/s3/m/66c4ccd39f3143323968011ca300a6c30c22f18a.png)
(完整版)第一章行列式与矩阵的计算的练习(含答案)行列式及矩阵的计算(课堂练习)一、填空1.已知三阶方阵A 的行列式为3,则2A -= -242. 设12,01A -??= 1()32x g x x -=-+,则()g A =0800-??3.设,,αβγ为3维列向量,记矩阵(,,),(,,)A B αβγαββγγα==+++,若3,A B =则=,,,,6αβγβγα+=4.行列式11111111---x 的展开式中,x 的系数是 2 . 5.设???? ??=1201A 则=kA 1021k ??。
(k 为正整数). 6.设321,,ααα,21,ββ都是四维列向量,且四阶行列式1123,,,m αααβ=,1232,,,n αααβ=,则12312,,,2αααββ-=16m n +解:11231232,,,2,,,Dαααβαααβ=+-14412312322,,,(1),,,16m n αααβαααβ=+-=+7. 已知四阶行列式D 中第三列元素分别为1,3,-2,2,它们对应的余子式分别为3,-2,1,1,则行列式D =-3 .解:D =1×3+3×(-2)+(-2)×1+2×1=-3二、判断题1.设A 、B 均为n 阶方阵,则A B A B =.(× )2.设A 、B 均为n 阶方阵,则AB A B =. (√ )三、行列式计算(1)4333343333433334ΛΛΛΛΛΛΛΛΛ=n D 解:nD n c c c c c c +++13121M 43313343133341333313ΛΛΛΛΛΛΛΛΛ++++n n n n 11312r r r r r r n ---M 10100001033313ΛΛΛΛΛΛΛΛΛ+n =13+n (2)11111231149118271D --=--解:(范得蒙行列式)=(-1-3)(-1+2)(-1-1)(3+2)(3-1)(-2-1)=-240五、a 为何值时,线性方程组:-=++=++=++aax x x x ax x x x x a 322321321321有唯一解?解:2)1)(2(111111det -+==a a aa a A ,2-≠a 且1≠a 时,有唯一解.。
数学课程矩阵运算练习题及答案
![数学课程矩阵运算练习题及答案](https://img.taocdn.com/s3/m/c32a34e6ac51f01dc281e53a580216fc700a53da.png)
数学课程矩阵运算练习题及答案矩阵运算是数学中的一个重要概念,涉及到矩阵的相加、相减、相乘等操作。
通过练习题的方式,可以巩固和提升对矩阵运算的理解与应用能力。
以下是一些常见的矩阵运算练习题以及它们的答案,供大家参考。
1. 矩阵相加已知矩阵A = (1 2 3; 4 5 6; 7 8 9) 和矩阵B = (9 8 7; 6 5 4; 3 2 1),求A + B。
解答:将同一位置上的元素相加,得到:A +B = (1+9 2+8 3+7; 4+6 5+5 6+4; 7+3 8+2 9+1) = (10 10 10; 10 10 10; 10 10 10)2. 矩阵相减已知矩阵A = (1 2; 3 4) 和矩阵B = (5 6; 7 8),求A - B。
解答:将同一位置上的元素相减,得到:A -B = (1-5 2-6; 3-7 4-8) = (-4 -4; -4 -4)3. 矩阵相乘已知矩阵A = (2 1 -3; 0 -2 1) 和矩阵B = (4 -1; 3 2; -2 1),求A × B。
解答:矩阵A的行数与矩阵B的列数相等,因此可以进行矩阵相乘。
按照矩阵相乘的规则,计算得到:A ×B = (2×4+1×3-3×-2 2×-1+1×2-3×1; 0×4-2×3+1×-2 0×-1-2×2+1×1) = (15 -2; -7 -1)4. 矩阵数量乘法已知矩阵A = (2 4; 6 8),求2A。
解答:将矩阵A中的每个元素乘以2,得到:2A = (2×2 2×4; 2×6 2×8) = (4 8; 12 16)5. 矩阵的转置已知矩阵A = (1 2 3; 4 5 6; 7 8 9),求A的转置矩阵AT。
解答:将矩阵A的行与列互换得到其转置矩阵:AT = (1 4 7; 2 5 8; 3 6 9)6. 矩阵的逆已知矩阵A = (1 2; 3 4),求A的逆矩阵A-1。
矩阵的运算与性质练习题及解析
![矩阵的运算与性质练习题及解析](https://img.taocdn.com/s3/m/b8a9a8790812a21614791711cc7931b764ce7b45.png)
矩阵的运算与性质练习题及解析一、基础概念在矩阵的运算与性质练习题及解析中,首先需要了解矩阵的基本概念。
矩阵是由 m 行 n 列的数构成的一个长方形的数表。
表示为:A = [a_ij]其中,a_ij 表示第 i 行第 j 列的元素。
例如:A = [1 2 3][4 5 6]这是一个 2 行 3 列的矩阵,其中 a_11 = 1, a_12 = 2, a_13 = 3, a_21 = 4, a_22 = 5, a_23 = 6。
二、矩阵的运算1. 矩阵的加法矩阵的加法规则是对应位置的元素相加。
例如:A = [1 2]B = [3 4] A + B = [4 6][5 6] [7 8] [12 14]即 A + B = [a_11 + b_11 a_12 + b_12][a_21 + b_21 a_22 + b_22]2. 矩阵的数乘矩阵的数乘是指将矩阵的每个元素分别乘以一个数。
例如:A = [1 2] 2A = [2 4][3 4] [6 8]即 2A = [2a_11 2a_12][2a_21 2a_22]3. 矩阵的乘法矩阵的乘法是指两个矩阵按一定规则相乘得到一个新的矩阵。
规则是矩阵的行乘以另一个矩阵的列,并将结果相加。
例如:A = [1 2]B = [3 4] AB = [1*3+2*7 1*4+2*8] = [17 22][5 6] [7 8] [5*3+6*7 5*4+6*8] [47 58]即 AB = [a_11b_11+a_12b_21 a_11b_12+a_12b_22][a_21b_11+a_22b_21 a_22b_12+a_22b_22]三、矩阵的性质1. 矩阵的转置矩阵的转置是指将矩阵的行与列互换得到的新矩阵。
例如:A = [1 2 3] A^T = [1 4][4 5 6] [2 5][3 6]2. 矩阵的逆一个矩阵存在逆矩阵的条件是该矩阵为方阵且行列式不为零。
逆矩阵满足以下性质:A * A^(-1) = I,其中 I 是单位矩阵。
第25讲 矩阵的概念及运算(讲义 练习)(解析版)
![第25讲 矩阵的概念及运算(讲义 练习)(解析版)](https://img.taocdn.com/s3/m/d46778f179563c1ec4da71d2.png)
第25讲 矩阵的概念及运算知识点概要1.矩阵:n m ⨯个实数n j m i a ij ,,2,1;,,2,1, ==排成m 行n 列的矩形数表⎪⎪⎪⎪⎪⎭⎫⎝⎛=mn n m n n a a a a a a a a a A212221211211叫做矩阵。
记作n m A ⨯,n m ⨯叫做矩阵的维数。
矩形数表叫做矩阵,矩阵中的每个数叫做矩阵的元素。
2.线性方程组的系数矩阵、方程组的增广矩阵、行向量、列向量、单位矩阵。
⎩⎨⎧=+=+222111c y b x a c y b x a 3.线性方程组矩阵的三种变换: ①互换矩阵的两行;②把某一行同乘(除)以一个非零的数; ③某一行乘以一个数加到另一行。
4.矩阵运算:加法、减法及乘法(1)矩阵的和(差):记作:A+B (A-B ).运算律:加法交换律:A+B=B+A ;加法结合律:(A+B )+C=A+(B+C )(2)矩阵与实数的积:设α为任意实数,把矩阵A 的所有元素与α相乘得到的矩阵叫做矩阵A 与实数α的乘积矩阵,记作:αA.运算律:分配律:()B A B A γγγ+=+;A A A λγλγ+=+)(; 结合律:()()()A A A γλλγγλ==;(3)矩阵的乘积:设A 是k m ⨯阶矩阵,B 是n k ⨯阶矩阵,设C 为n m ⨯矩阵。
如果矩阵C 中第i 行第j 列元素ij C 是矩阵A 第i 个行向量与矩阵B 的第j 个列向量的数量积,那么C 矩阵叫做A 与B 的乘积,记作:C m×n =A m×k B k×n .运算律:分配律:AC AB C B A +=+)(,CA BA A C B +=+)(; 结合律:()()()B A B A AB γγγ==,()()BC A C AB =; 注意:矩阵的乘积不满足交换律,即BA AB ≠.换的目的是将线性方程阻系数矩阵变为单位矩阵,其扩充矩阵的最后一列就是方程组的解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵计算习题及答案
1、选择题
1)下列变量中 A 是合法的。
A. Char_1,i,j
B.x*y,a.1
C. X\y, a1234
D. end, 1bcd
2)下列 C 是合法的常量。
A. 3e10
B. 1e500
C. -1.85e-56
D. 10-2
3)x=uint8(1.2e10),则x所占的字节是 D 个。
A. 1
B. 2
C. 4
D. 8
4)已知x=0:10,则x有 B 个元素。
A. 9
B. 10
C. 11
D. 12
5)产生对角线元素全为1其余为0的2×3矩阵的命令是 C 。
A. Ones(2,3)
B. Ones(3,2)
C. Eye(2,3)
D. Eye(3,2)
6)a=
123
456
789
⎛⎫
⎪
⎪
⎪
⎝⎭
,则a(:,end)是指 C 。
A.所有元素
B. 第一行元素
C. 第三列元素
D. 第三行元素
7) a=
123
456
789
⎛⎫
⎪
⎪
⎪
⎝⎭
,则运行a(:,1)=[] 命令后 C 。
A.a变成行向量
B. a数组成2行2列
C. a数组成3行2列
D. a数组没有元素
8)a=
123
456
789
⎛⎫
⎪
⎪
⎪
⎝⎭
,则运行命令 mean(a)是 B 。
A. 计算a的平均值
B. 计算a每列的平均值
C. 计算a每行的平均值
D.a数组增加一列平均值
9)已知x是一个向量,计算 ln(x)的命令是 B 。
A. ln(x)
B. log(x)
C. Ln(x)
D. lg10(x)
10)当a=2.4时,使用取整函数得到3,则该函数名是 C 。
A.fix
B. round
C. ceil
D. floor
11)已知a=0:4,b=1:5,下面的运算表达式出错的是 D 。
A. a+b
B. a./b
C. a'*b
D. a*b
12)已知a=4,b=‘4’,下面说法错误的是 C 。
A. 变量a比变量b占用的空间大
B. 变量a、b可以进行加减乘除运算
C. 变量a、b数据类型相同
D. 变量b可以用eval计算
13)已知s=‘显示“hello”’,则s 元素的个数是 A 。
A. 12
B. 9
C. 7
D. 18
14)运行字符串函数strncmp('s1','s2',2),则结果为 B 。
A. 1
B. 0
C. true
D. fales
15)命令day(now)是指 C 。
A. 按日期字符串格式提取当前时间
B. 提取当前时间
C. 提取当前时间的日期
D. 按日期字符串格式提取当前日期
16)有一个2行2列的元胞数组c ,则c(2)是指 D 。
A. 第1行第2列元素内容
B. 第2行第1列元素内容
C. 第1行第2列元素 D .第2行第1列元素
17)以下运算中哪个运算级别最高 B 。
A. *
B. ^
C. ~=
D. /
18)运行命令bitand(20,15)的结果是 C 。
A. 15
B. 20
C. 4
D. 5
19)使用检测函数isinteger(15)的结果是 B 。
A. 1
B. 0
C. true
D. fales
20)计算三个多项式s1、s2和s3的乘积,则算式为 C 。
A. conv(s1,s2,s3)
B. s1*s2*s3
C. conv(conv(s1,s2),s3)
D. conv(s1*s2*s3)
以下写出MATLAB命令序列,并给出结果
2.复数向量a=2+3i,b=3-4i,计算a+b,a-b,c=a*b,d=a/b,并计算变量c的实部、虚部、模和相角。
3.用 from:step:to 的方式和linspace 函数分别得到0~4π步长为0.4π的变量x1,0~4π分成10个点的变量x2。
4.输入矩阵a=
123
456
789
⎛⎫
⎪
⎪
⎪
⎝⎭
,使用全下标方式提取元素3,使用单下标方式提取
元素8,取出后两行子矩阵块,使用逻辑矩阵提取
13
79
⎛⎫
⎪
⎝⎭。
5.输入a 为3×3的魔方阵,b 为3×3的单位阵,将他们生成3×6的大矩阵c 、6×3的大矩阵d ,将d 的最后一行提取生成小矩阵e 。
6.矩阵a=
123
456
789
⎛⎫
⎪
⎪
⎪
⎝⎭
用flipud、fliplr、rot90、diag
、triu和tril进行操作。
并求其转置、秩、逆矩阵、矩阵的行列式值及三次幂。
8.解线性方程组
1234
124
1234
1234
2328
36
87 73225
x x x x
x x x
x x x x
x x x x
-++=
⎧
⎪++=
⎪
⎨
-++=
⎪
⎪+-+=
⎩。
9.输入字符串变量a 为‘hello ’,将其每个字符后移4个,如‘h ’变为‘l ’,然后再逆序存入变量b 。
10 计算函数2()10sin(4)t f t e t =-,其中t 范围为0到20,步长为0.2,g (t )为f (t )大于0的部分,计算g (t )的值。
11.矩阵a=
123
456
789
⎛⎫
⎪
⎪
⎪
⎝⎭
,使用数组信息获取函数求其行列数、元素个数,是否为
稀疏矩阵、是否为字符型。