函数定义域值域经典习题及答案华为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复合函数定义域和值域练习题
一、 求函数的定义域
1、求下列函数的定义域:
⑴y =
(2
)01(21)111
y x x =
+-++-
2、设函数f x ()的定义域为[]01,,则函数f x ()2
的定义域为_ _ _;函数f x ()-2的定义域为________;
3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x
+的定义域为 。
4、 已知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取
值范围。
二、求函数的值域
5、求下列函数的值域:
⑴2
23y x x =+- ()x R ∈ ⑵2
23y x x =+- [1,2]x ∈ ⑶311x y x -=
+ ⑷31
1
x y x -=+ (5)x ≥
⑸ y =
三、求函数的解析式
1、 已知函数2
(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、 已知()f x 是二次函数,且2
(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、 已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _
()f x 在R 上的解析式为
5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且
1
()()1
f x
g x x +=
-,求()f x 与()g x 的解析表达式
四、求函数的单调区间
6、求下列函数的单调区间:
⑴ 2
23y x x =++
⑵y = ⑶ 261y x x =--
7、函数()f x 在[0,)+∞上是单调递减函数,则2
(1)f x -的单调递增区间是
8、函数236
x
y x -=+的递减区间是
;函数y =的递减区间是
五、综合题
9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3
)
5)(3(1+-+=
x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ;
⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(,
()g x =; ⑸2
1)52()(-=x x f , 52)(2-=x x f 。
A 、⑴、⑵
B 、 ⑵、⑶
C 、 ⑷
D 、 ⑶、⑸
10、若函数()f x = 3
44
2
++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( ) A 、(-∞,+∞) B 、(0,43] C 、(43,+∞) D 、[0, 4
3
)
11
、若函数()f x =R ,则实数m 的取值范围是( )
(A)04m << (B) 04m ≤≤ (C) 4m ≥ (D) 04m <≤
13
、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)
(2,)-∞-+∞ D 、{2,2}-
14、函数1
()(0)f x x x x
=+
≠是( ) A 、奇函数,且在(0,1)上是增函数 B 、奇函数,且在(0,1)上是减函数 C 、偶函数,且在(0,1)上是增函数 D 、偶函数,且在(0,1)上是减函数
15、函数22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪
=-<<⎨⎪≥⎩
,若()3f x =,则x =
17、已知函数21
mx n
y x +=+的最大值为4,最小值为 —1 ,则m = ,n =
18、把函数1
1
y x =+的图象沿x 轴向左平移一个单位后,得到图象C ,则C 关于原点对称的图象的解析式为
19、求函数12)(2
--=ax x x f 在区间[ 0 , 2 ]上的最值
20、若函数2
()22,[,1]f x x x x t t =-+∈+当时的最小值为()g t ,求函数()g t 当∈t [-3,-2]时的最值。
复合函数定义域和值域练习题 答 案
一、函数定义域:
1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1
{|220,,1}2
x x x x x -≤≤≠≠
≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32
-∞-+∞ 4、11m -≤≤
二、函数值域:
5、(1){|4}y y ≥- (2)[0,5]y ∈ (3){|3}y y ≠ (4)7
[,3)3
y ∈ (5)[3,2)y ∈- (6)1{|5}2
y y y ≠≠且 (7){|4}y y ≥ (8)y R ∈ (9)[0,3]y ∈ (10)[1,4]y ∈ (11)1{|}2
y y ≤ 6、2,2a b =±= 三、函数解析式:
1、2
()23f x x x =-- ; 2
(21)44f x x +=- 2、2
()21f x x x =-- 3、4()33
f x x =+
4
、()(1f x x =-
;(10)()(10)
x x f x x x ⎧≥⎪=⎨<⎪⎩ 5、21()1f x x =- 2()1x g x x =-
四、单调区间:
6、(1)增区间:[1,)-+∞ 减区间:(,1]-∞- (2)增区间:[1,1]- 减区间:[1,3] (3)增区间:[3,0],[3,)-+∞ 减区间:[0,3],(,3]-∞-
7、[0,1]
8、(,2),(2,)-∞--+∞ (2,2]- 五、综合题:C D B B D B
14
15、(,1]a a -+ 16、4m =± 3n = 17、1
2
y x =
- 18、解:对称轴为x a = (1)0a ≤时,min ()(0)1f x f ==- , max ()(2)34f x f a ==-
(2)01a <≤时,2
min ()()1f x f a a ==-- ,max ()(2)34f x f a ==- (3)12a <≤时,2
min ()()1f x f a a ==-- ,max ()(0)1f x f ==-
(4)2a >时 ,min ()(2)34f x f a ==- ,max ()(0)1f x f ==-
19、解:221(0)()1(01)22(1)t t g t t t t t ⎧+≤⎪
=<<⎨⎪-+≥⎩
(,0]t ∈-∞时,2
()1g t t =+为减函数
∴
在[3,2]--上,2
()1g t t =+也为减函数
∴
min ()(2)5g t g =-=, max ()(3)10g t g =-=