高数上期末试题及答案.

合集下载

大一上学期(第一学期)高数期末考试题(有答案)

大一上学期(第一学期)高数期末考试题(有答案)

其通解为
y C1e x C2 e2x
1, r2 2.
2
1
代入初始条件 y(0)
y (0) 1,得
C1
, C2 3
3
y
2 e
x
故所求曲线方程为:
3
五、解答题(本大题 10 分)
1 e2 x 3
y 15. 解:(1)根据题意,先设切点为 ( x0 , ln x0 ) ,切线方程:
ln x0
1
(x x0
x0 )
设 ( x) 1 x , ( x) 3 33 x,则当 x 1时( )
2.
1x
.
(A) ( x)与 (x) 是同阶无穷小,但不是等价无穷小; 是等价无穷小;
(B) ( x)与 (x)
(C) ( x) 是比 ( x) 高阶的无穷小; 无穷小 .
(D) ( x) 是比 (x) 高阶的
x
3.
F (x) 若
1
(1 q) f ( x) d x q f ( x)dx
0
q
1 [0, q ] 2 [ q,1]
q (1 故有:
q) f ( 1)
q (1
f ( 1) f ( 2)
q) f ( 2 )
0
q
1
f ( x) d x q f ( x )dx
0
0
证毕。
17.
x
F ( x) f ( t)dt , 0 x
证:构造辅助函数:
x 0, y 0 , y (0) 1 10. 解: u x7 7 x6dx du
原式
1 (1 u)
11
du
(
2 )du
7 u(1 u) 7 u u 1

高等数学上期末试卷(含答案)

高等数学上期末试卷(含答案)

一. 选择题:(每小题3分,共15分)1. 若当0x →时,arctan x x -与nax 是等价无穷小,则a = ( ) B A. 3 B.13 C. 3- D. 13- 2. 下列函数在[1,1]-上满足罗尔定理条件的是 ( )C A. ()f x x = B. 3()f x x =C. ()e e xxf x -=+ D. 1,10()0,01x f x x -≤≤⎧=⎨<≤⎩3. 如果()e ,xf x -=则(ln )d f x x x'=⎰ ( )B A. 1C x -+ B. 1C x+ C. ln x C -+ D. ln x C + 4.曲线y x=渐近线的条数是( ) C A. 1 B. 2 C. 3 D. 45. 设函数()f x 与()g x 在[,]a a -上均具有二阶连续导数,且()f x 为奇函数,()g x 为偶函数,则[()()]d aa f x g x x -''''+=⎰( ) DA. ()()f a g a ''+B. ()()f a g a ''-C. 2()f a 'D. 2()g a '二. 填空题:(每小题3分,共15分)1. 要使函数2232()4x x f x x -+=-在点2x =连续,则应补充定义(2)f = .142. 曲线2e x y -=在区间 上是凸的.(,22-序号3.设函数322(21)e ,x y x x x =+++则(7)(0)y =______________.77!2+4. 曲线231x t y t⎧=+⎨=⎩在2t =点处的切线方程是 . 37.y x =- 5.定积分11(cos x x x -+=⎰ .π2三.解下列各题:(每小题10分,共40分)1.求下列极限(1)22011lim .ln(1)x x x →⎡⎤-⎢⎥+⎣⎦. 解:原式=2240ln(1)lim x x x x→-+ …………..2分 2302211lim.42x xx x x →-+== ………….3分 (2)()22220e d lim e d xt xx t t t t-→⎰⎰.解:原式= ()222202e d e limext x x x t x --→⋅⎰………….3分 22000e d e =2lim2lim 2.1x t xx x t x--→→==⎰ …………..2分2. 求曲线0πtan d (0)4x y t t x =≤≤⎰的弧长.解:s x x == …………..5分ππ440sec d ln sec tan |ln(1x x x x ==+=+⎰ ………..5分 3. 设()f x 满足e ()d ln(1e ),x x f x x C =-++⎰求()d .f x x ⎰解:1(),1e xf x -=+ …………..4分 1e ()d d d 1e 1e xx xf x x x x ---=-=++⎰⎰⎰ …………..3分 ln(1e ).x C -=++ …………..3分4. 已知2lim e d ,xc x x x c x x x c -∞→+∞+⎛⎫= ⎪-⎝⎭⎰求常数.c 解:2lim e ,xc x x c x c →+∞+⎛⎫= ⎪-⎝⎭………….4分 221e d (24cxc c x x -∞=-⎰ …………. 4分 5.2c = …………. 2分四.解下列各题:(每小题10分,共30分)1. 设()f x 在[,]a b 上连续,且()0,f x >且1()()d d ,()xba xF x f t t t f t =-⎰⎰求证: (1)[,],()2;x a b F x '∀∈≥(2)()F x 在(,)a b 内恰有一个零点.证明:(1)1()()2,()F x f x f x '=+≥= ……3分 (2)()F x 在[,]a b 上连续 ……1分11()()d d d 0,()()a bb aaa F a f t t t t f t f t =-=-<⎰⎰⎰ ……2分1()()d d ()d 0,()b bb aba Fb f t t t f t t f t =-=>⎰⎰⎰ ……2分由零点定理,()F x 在(,)a b 内至少有一个零点. ……1分 又()F x 在[,]a b 上严格单调增,从而()F x 在(,)a b 内恰有一个零点.……1分2. 设直线(01)y ax a =<<与抛物线2y x =所围成图形的面积为1,S 它们与直线1x =围成图形的面积为2.S(1)确定a 的值,使12S S S =+取得最小值,并求此最小值; (2)求该平面图形绕x 轴旋转一周所得的旋转体的体积.解:22(0,0),(,)y ax a a y x=⎧⇒⎨=⎩ ……..2分 1220()d ()d a aS ax x x x ax x =-+-⎰⎰31,323a a =-+21()0,22S a a a '=-=⇒=唯一驻点()20,S a a ''=>最小值2(.26S = ……..4分1222222π[()()]d π[()()]d 22x V x x x x x x =-+-1π.30+=……..4分 3. 设()f x 在[0,1]上二次可微,且(0)(1)0,f f ==证明:存在(0,1),ξ∈使得()()0.f f ξξξ'''+=证明:令()(),F x xf x '=则()F x 在[0,1]上可微, ……..3分(0)(1)0,f f ==()f x 在[0,1]上可微,由罗尔定理存在(0,1),η∈使()=0f η'……..3分(0)()0,F F η==由罗尔定理存在(0,)(0,1),ξη∈⊂使()=0F ξ' ()()(),F x f x xf x ''''=+(0,1),()()=0.f f ξξξξ'''∴∈+ ……..4分。

大一上学期高等数学期末试题及解答

大一上学期高等数学期末试题及解答

Q( x) sin x , x
y
e
1 x
dx
s
in x
x
e
1 x
dx
dx
C
eln x sin x eln x dx C
x
1 x
sin x x
x dx
C
1 cos x C .
x
把y( ) 1代入通解,得 C 1.
故特解为
y 1 ( cos x 1).
x
四、计算题(每小题9分,共36分)
则f (ln x)定义域是 [1, e] .
知识点:复合函数的定义域
分析 0 ln x 1, 1 x e
一、 填空题(每小题3分,共15分) 2. 已知y x x ,则y _______ .
知识点:对数求导法
解 ln y x ln x , y =lnx 1, y
y xx (ln x 1).
( A) p 1,q 2; (B) p 2,q 3;
(C) p 2,q 1; (D) p 3,q 2 .
解: 特征方程为:r2 pr q 0 , 把特征根 r1 1 , r2 2 1 p q 0 分别代入特征方程,得 4 2 p q 0
解得
p 3,q 2 .
4. 求曲线y e x ( x 0)与y 0, x 0围成的
右边无限伸展的图形绕轴旋转一周所得立体的体积.
知识点: 反常积分,定积分的应用,旋转体的体积,
解 V + πy2dx + πe2xdx
0
0
π e2x 2
|0+
π. 2
五、解答题(每小题10分,共20分)
1. 在抛物线y x2 (0 x 1)上找一点P,使经过P的

高数上册期末试题及答案

高数上册期末试题及答案

高数上册期末试题及答案一、选择题1. 设函数f(x) = x^2 + 3x - 2,对于f(x)在区间[-2, 2]上的极值,以下说法正确的是()。

A. f(x)在x = 0处有极小值B. f(x)在x = 1处有极大值C. f(x)在x = -2处有极小值D. f(x)在x = 2处有极大值答案:C. f(x)在x = -2处有极小值2. 给定函数f(x) = x^3 + ax^2 + bx + c,若f(1) = 5,f'(1) = 3,f''(1) = 6,则a, b, c的值分别为()。

A. a = -3, b = -3, c = 4B. a = 2, b = -1, c = 4C. a = 3, b = 2, c = 1D. a = 1, b = -2, c = 3答案:C. a = 3, b = 2, c = 13. 设函数f(x) = x^3 - 3x^2 - 9x + 8,下面哪个集合是f(x)的定义域()。

A. RB. [-2, 1]C. [0, 3]D. [-∞, +∞]答案:A. R(实数集合)4. 函数f(x) = (x + 1) ln(x - 1)在(1, +∞)上的导函数为()。

A. ln(x - 1) + 1B. ln(x - 2) + 1C. q(x - 1) + 1D. ln(x - 1)答案:B. ln(x - 2) + 15. 函数y = f(x)的图像经过点(1, 2),且在点(1, 2)的切线的斜率为3,则f'(1)的值为()。

A. 1B. 2C. 3D. 4答案:C. 3二、计算题1. 求极限lim{x→0} [ (e^x - 1) / x ]。

答案:12. 求函数f(x) = x^4 - 4x^3的驻点和极值。

答案:驻点:x = 0, x = 3极小值:f(0) = 0极大值:f(3) = 273. 求不定积分∫(sin^3x + cos^3x)dx。

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案第一学期期末考试试卷(1)课程名称:高等数学(上)考试方式:闭卷完成时限:120分钟班级:学号:姓名:得分:一、填空(每小题3分,满分15分)1.lim (3x^2+5)/ (5x+3x^2) = 02.设 f''(-1) = A,则 lim (f'(-1+h) - f'(-1))/h = A3.曲线 y = 2e^(2t) - t 在 t = 0 处切线方程的斜率为 44.已知 f(x) 连续可导,且 f(x)。

0,f(0) = 1,f(1) = e,f(2) = e,∫f(2x)dx = 1/2ex,则 f'(0) = 1/25.已知 f(x) = (1+x^2)/(1+x),则 f'(0) = 1二、单项选择(每小题3分,满分15分)1.函数 f(x) = x*sinx,则 B 选项为正确答案,即当x → ±∞ 时有极限。

2.已知 f(x) = { e^x。

x < 1.ln x。

x ≥ 1 },则 f(x) 在 x = 1 处的导数不存在,答案为 D。

3.曲线 y = xe^(-x^2) 的拐点是 (1/e。

1/(2e)),答案为 C。

4.下列广义积分中发散的是 A 选项,即∫dx/(x^2+x+1)在区间 (-∞。

+∞) 内发散。

5.若 f(x) 与 g(x) 在 (-∞。

+∞) 内可导,且 f(x) < g(x),则必有 B 选项成立,即 f'(x) < g'(x)。

三、计算题(每小题7分,共56分)1.lim x^2(e^(2x)-e^(-x))/((1-cosx)sinx)lim x^2(e^(2x)-e^(-x))/((1-cosx)/x)*x*cosxlim x(e^(2x)-e^(-x))/(sinx/x)*cosxlim (2e^(2x)+e^(-x))/(cosx/x)应用洛必达法则)2.lim {arcsin(x+1) + arcsin(x-1) - 2arcsin(x)}/xlim {arcsin[(x+1)/√(1+(x+1)^2)] + arcsin[(x-1)/√(1+(x-1)^2)] - 2arcsin(x)/√(1+x^2)}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+x^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+x^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin(x/√(1+(x+1)^2)) + arcsin[(x-1)/√(1+(x-1)^2)] - arcsin(x/√(1+(x-1)^2))}lim {arcsin[(x+1)/√(1+(x+1)^2)] - arcsin[(x-1)/√(1+(x-1)^2)]} π/2 (应用洛必达法则)3.y = y(x) 由 x + y - 3 = 0 确定,即 y = 3 - x,因此 dy/dx = -1.4.f(x) = arctan(2x-9) - arctan(x-3) 的导数为 f'(x) = 1/[(2x-9)^2+1] - 1/[(x-3)^2+1],因此 f'(x)。

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案

高等数学上期末考试试题及参考答案一、选择题(每题5分,共25分)1. 函数 \( f(x) = \frac{1}{x^2 + 1} \) 的反函数\( f^{-1}(x) \) 的定义域为()A. \( (-\infty, 1) \cup (1, +\infty) \)B. \( [0, +\infty) \)C. \( (-\infty, 0) \cup (0, +\infty) \)D. \( (-1, 1) \)答案:C2. 设函数 \( f(x) = \ln(2x - 1) \),则 \( f'(x) \) 的值为()A. \( \frac{2}{2x - 1} \)B. \( \frac{1}{2x - 1} \)C. \( \frac{2}{x - \frac{1}{2}} \)D. \( \frac{1}{x - \frac{1}{2}} \)答案:A3. 设 \( f(x) = e^x + e^{-x} \),则 \( f''(x) \) 的值为()A. \( e^x - e^{-x} \)B. \( e^x + e^{-x} \)C. \( 2e^x + 2e^{-x} \)D. \( 2e^x - 2e^{-x} \)答案:D4. 下列函数中,哪一个函数在 \( x = 0 \) 处可导但不可微?()A. \( f(x) = |x| \)B. \( f(x) = \sqrt{x} \)C. \( f(x) = \sin x \)D. \( f(x) = \cos x \)答案:A5. 设 \( \lim_{x \to 0} \frac{f(x) - f(0)}{x} = 2 \),则 \( f'(0) \) 的值为()A. 1B. 2C. 0D. 无法确定答案:B二、填空题(每题5分,共25分)6. 函数 \( f(x) = \ln(x + \sqrt{x^2 + 1}) \) 的导数 \( f'(x) \) 为_________。

高等数学上学期期末考试试卷及答案四份

高等数学上学期期末考试试卷及答案四份

高等数学试卷(B 卷)答案及评分标准2004-2005年度第一学期科目: 高等数学I 班级: 姓名: 学号: 成绩:一、填空题(5153'=⨯')1、()3)2ln(--=x x x f 的定义域是_2、 2 )1sin 2sin (lim 0x =⋅+→xx x x 3、 e )31(lim 3=+∞→xx x e )31(lim 3=+∞→x x x4、如果函数x x a x f 3sin 31sin )(+=,在3π=x 处有极值,则2=a5、34d )1(sin cos 223=+⋅⎰-x x x ππ二、单项选择题(5153'=⨯')1、当0→x 时,下列变量中与2x 等价的无穷小量是( )A . x cos 1-B .2x x + C . 1-x e D . x x sin )ln(1+2、)A ()(' ,)(的是则下列极限中等于处可导在设a f a x x f =。

A .h h a f a f h )()(lim0--→ B .hh a f h a f h )()(lim 0--+→C .h a f h a f h )()2(lim 0-+→ D . hh a f h a f h 3)()2(lim 0--+→3、设在[]b a ,上函数)(x f 满足条件()0)(,0<''>'x f x f 则曲线()x f y =在该区间上( ) A. 上升且凹的 B. 上升且凸的 C. 下降且凹的 D. 下降且凸的4、设函数()x f 具有连续的导数,则以下等式中错误的是( )A.)(d )(d d x f x x f xb a =⎪⎭⎫ ⎝⎛⎰ B. x x f t t f x a d )(d )(d =⎪⎭⎫ ⎝⎛⎰ C. ()x x f x x f d )(d )(d=⎰ D. C t f t t f +='⎰)(d )(5、反常积分⎰∞+- 0d 2x xex ( )A. 发散B. 收敛于1C. 收敛于21D. 收敛于21-三、算题('488'6=⨯)1、求极限xxx x 30sin sin tan lim -→2、求22)2()ln(sin lim x x x -→ππ3、求曲线⎩⎨⎧==ty tx 2cos sin 在当4π=t 处的切线方程和法线方程4、已知函数0,sin >=x x y x ,计算xy d d5、求积分⎰x e x d6、求积分x x e ed ln 1⎰7、计算曲线π≤≤=x x y 0,sin 与x 轴围成的图形面积,并求该图形绕y 轴所产生的旋转体体积。

高数一期末试题及答案

高数一期末试题及答案

高数一期末试题及答案一、选择题(每题5分,共20分)1. 下列函数中,哪一个是奇函数?A. \( y = x^2 \)B. \( y = x^3 \)C. \( y = \sin(x) \)D. \( y = \cos(x) \)答案:C2. 极限 \( \lim_{x \to 0} \frac{\sin(x)}{x} \) 的值是多少?A. 0B. 1C. \( \frac{1}{2} \)D. \( \infty \)答案:B3. 微分方程 \( y'' - y = 0 \) 的通解是:A. \( y = e^x \)B. \( y = \sin(x) + \cos(x) \)C. \( y = e^{2x} \)D. \( y = x^2 \)答案:B4. 曲线 \( y = x^3 \) 在点 \( (1,1) \) 处的切线斜率是:B. 1C. 3D. 27答案:C二、填空题(每题5分,共20分)1. 设 \( f(x) = x^2 - 4x + 4 \),则 \( f'(x) =\_\_\_\_\_\_\_\_ \)。

答案:\( 2x - 4 \)2. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_\_\_\_ \)。

答案:\( x\ln(x) - x + C \)3. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 的交点坐标是\( \_\_\_\_\_\_\_\_ \)。

答案:\( (0,0) \) 和 \( (2,4) \)4. 函数 \( y = e^{3x} \) 的二阶导数是 \( \_\_\_\_\_\_\_\_ \)。

答案:\( 9e^{3x} \)三、计算题(每题15分,共30分)1. 计算定积分 \( \int_{0}^{1} (3x^2 - 2x + 1) dx \)。

\[\int_{0}^{1} (3x^2 - 2x + 1) dx = \left[ x^3 - x^2 + x\right]_{0}^{1} = (1 - 1 + 1) - (0 - 0 + 0) = 1\]2. 求函数 \( y = x^3 - 6x^2 + 9x + 1 \) 的极值。

高数(大一上)期末试题及答案

高数(大一上)期末试题及答案

第一学期期末考试试卷(1)课程名称: 高等数学(上) 考试方式: 闭卷 完成时限:120分钟班级: 学号: 姓名: 得分: . 一、填空(每小题3分,满分15分)1、xx x x 2sin 3553lim 2++∞→ 2、设A f =-'')1(,则=--'--'→hh f f h )12()1(lim 0 3、曲线⎩⎨⎧==-t tey e x 2在0=t 处切线方程的斜率为4、已知)(x f 连续可导,且2)2(,)1(,1)0(,0)(e f e f f x f ===>,='⎰10)2()2(dx x f x f5、已知21)(xe xf x+=,则='')0(f 二、单项选择(每小题3分,满分15分)1、函数x x x f sin )(=,则 ( )A 、当∞→x 时为无穷大B 、当∞→x 时有极限C 、在),(+∞-∞内无界D 、在),(+∞-∞内有界2、已知⎩⎨⎧≥<=1,ln 1,)(x x x e x f x ,则)(x f 在1=x 处的导数( )A 、等于0B 、等于1C 、等于eD 、不存在3、曲线xxe y -=的拐点是( )A 、1=xB 、2=xC 、),1(1-eD 、)2,2(2-e 4、下列广义积分中发散的是( )A 、⎰10sin x dxB 、⎰-101xdx C 、⎰+∞+02/31x dx D 、⎰+∞22ln xx dx5、若)(x f 与)(x g 在),(+∞-∞内可导,)()(x g x f <,则必有( ) A 、)()(x g x f -<- B 、)()(x g x f '<'C 、)(lim )(lim 0x g x f xx xx →→< D 、⎰⎰<0000)()(x x dx x g dx x f三、计算题(每小题7分,共56分)答题要求:写出详细计算过程1、求xx e e x x x x sin )cos 1()(lim 220---→2、求)arcsin(lim 2x x x x -++∞→3、设)(x y y =由03=-+xyy x 确定,求0|=x dy 。

高数上册期末考试题及答案

高数上册期末考试题及答案

高数上册期末考试题及答案一、选择题(每题4分,共20分)1. 函数f(x)=x^2+3x+2的导数是()。

A. 2x+3B. 2x+6C. x^2+3D. x+2答案:A2. 若函数f(x)在x=a处可导,则下列说法正确的是()。

A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处不连续D. f(x)在x=a处不一定连续答案:A3. 极限lim(x→0) (sin(x)/x)的值是()。

A. 0B. 1C. -1D. 不存在答案:B4. 函数y=ln(x)的不定积分是()。

A. x+CB. e^x+CC. ln(x)+CD. 1/x+C答案:D5. 以下哪个级数是发散的()。

A. 1+1/2+1/3+...B. 1-1/2+1/3-1/4+...C. 1/2+1/4+1/6+...D. 1/2^2+1/3^2+1/4^2+...答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^3-3x+1的二阶导数是________。

答案:6x-32. 函数f(x)=e^x的原函数是________。

答案:e^x+C3. 极限lim(x→∞) (1/x)的值是________。

答案:04. 函数y=x^2的不定积分是________。

答案:1/3x^3+C5. 函数f(x)=x^2+2x+1的极值点是________。

答案:x=-1三、解答题(每题10分,共40分)1. 求函数f(x)=x^3-6x^2+9x+1在区间[0,3]上的最大值和最小值。

答案:函数f(x)的导数为f'(x)=3x^2-12x+9,令f'(x)=0,解得x=1或x=3。

经检验,f(1)=-1为最小值,f(3)=1为最大值。

2. 求极限lim(x→2) [(x^2-4)/(x-2)]。

答案:lim(x→2) [(x^2-4)/(x-2)] = lim(x→2) [(x+2)(x-2)/(x-2)] = lim(x→2) (x+2) = 4。

期末高数试题及答案

期末高数试题及答案

期末高数试题及答案一、选择题(每题2分,共10分)1. 下列函数中,哪一个是周期函数?A. y = x^2B. y = sin(x)C. y = e^xD. y = ln(x)答案:B2. 函数f(x) = x^3 - 2x^2 + 3x - 4的导数是:A. 3x^2 - 4x + 3B. 3x^2 - 4x + 4C. 3x^2 + 4x - 3D. 3x^2 + 4x + 3答案:A3. 曲线y = x^2在x = 2处的切线斜率是:A. 0B. 4C. -4D. 2答案:B4. 定积分∫(0到1) x^2 dx的值是:A. 1/3B. 1/4C. 1/2D. 1答案:B5. 无穷级数∑(1/n^2)的和是:A. π^2/6B. eC. ln(2)D. 1答案:A二、填空题(每题3分,共15分)6. 若函数f(x) = 2x - 3,则f'(1) = 。

答案:-17. 函数y = ln(x)的原函数是:。

答案:xln(x) - x + C8. 曲线y = x^3 - 6x^2 + 11x - 6与x轴的交点个数是:。

答案:39. 若级数∑(-1)^n/n从n=1到无穷收敛,则其和S满足:S = 。

答案:ln(2)10. 函数y = e^x的泰勒展开式在x=0处的前三项是:y = 1 + x + 。

答案:x^2/2三、简答题(每题5分,共20分)11. 证明函数f(x) = x^3 + 2x - 5在实数范围内单调递增。

答案:首先求导f'(x) = 3x^2 + 2,由于3x^2 + 2 > 0对所有实数x成立,因此函数f(x)在实数范围内单调递增。

12. 计算定积分∫(1到2) (2x + 1) dx。

答案:首先求不定积分,得到F(x) = x^2 + x + C。

然后计算F(2) - F(1) = (2^2 + 2) - (1^2 + 1) = 4 + 2 - 1 - 1 = 4。

高等数学(上学期)期末考试试卷及答案

高等数学(上学期)期末考试试卷及答案

考试试卷答案课程名称: 高等数学 (A ) 课程所在学院: 理学院 一、填空题(每空2分,共20分)1. 设221)1(x x x x f +=+,则)(x f = 2()2f x x =- .2. 1lim sin x x x→∞= 0 . 3. 已知函数1(1),0(),0x x x f x a x ⎧⎪-≠=⎨⎪=⎩在0=x 处连续,则=a 1/e .4. 当0x →时,232x x +-与x 是 同阶 (填同阶或等价)无穷小.5. 函数()x f x xe =的带皮亚诺余项的n 阶麦克劳林公式为342()2!3!(1)!n n x x x x x x n ο++++++-. 6. d 212x e C +2.x e dx =7. 曲线42y ax x =-拐点的横坐标为1x =,则常数a =16. 8. 35425cos 32x xdx x x -=++⎰ 0 . 9. 若22()x f x dx x e C =+⎰,则()f x =222()x e x x +. 10. 方程2dyxy dx= 的通解是 2x yCe =.二、解答题(每题5分,共60分)1.求极限 0x → 00sin cos 1cos sin lim lim 21212x x x x x x x →→-++===解:原式2. 已知21lim ()01x x ax b x →∞⎡⎤+-+=⎢⎥+⎣⎦,求常数,a b .解: 221(1)()1()11x a x a b x bax b x x +--++--+=++ 由21lim ()01x x ax b x →∞⎡⎤+-+=⎢⎥+⎣⎦可得 10,0a a b -=+=,故1,1a b ==- 3. 设1ln 2arctan 1xy x x +=+-,求xy d d 及22d y dx . 解:241124[ln(1)ln(1)2arctan ]1111dy x x x dx x x x x'=+--+=++=+-+- 22d y dx =()()334224444(4)16111x x x x x'⋅-⎛⎫=-= ⎪-⎝⎭-- 4. 设063sin 33=+-+y x y x ,求.0=x dxdy解:把方程两边分别对x 求导,得,063cos 33322=+-+dxdy x dx dy y x (*) 故 .23cos 22+-=y x x dx dy 由原方程可得,0=x 时,0=y ,将0,0==y x 代入上式,即得 .210==x dxdy 5. 求极限1ln 0lim(cot )xx x +→解 1ln 011limln(cot )ln(cot )ln ln 0lim(cot )lim xx x x x xx x x e e+→++→→==201(csc )cot lim 11x x xxee +→--==.6. 设220()()x F x tf x t dt =-⎰,其中()f x 在0x =的某邻域内可导,且(0)0,(0)1f f '==,求4()limx F x x →. 解:2220222044300011()(()2)()22lim lim lim 4xu x t x x x x f u du f x x tf x t dt x x x=-→→→---⋅-===⎰⎰原式 2201()11lim (0)444x f x f x →'===7. 求不定积分dx ⎰ 解:332221==2x x C +原式8. 求不定积分解:655332666==6ln(1)1)()1x t dx t t dt dt t C C t t t t ====++=+++⎰⎰原式 9. 求定积分1arctan x xdx ⎰解:22211110000arctan arctan arctan arctan 222x x x x xdx xd x d x ==-⎰⎰⎰ 2110201111(arctan )24218242x dx x x x πππ=-=--=-+⎰ 10. 求反常积分2032dx x x +∞++⎰解:20001132(1)(2)12dx dx dx x x x x x x +∞+∞+∞==-++++++⎰⎰⎰ 01ln(1)ln(2)lnln 22x x x x +∞+∞+=+-+==+11. 求曲线()y f x =,使其切线在纵轴上的截距等于切点的横坐标.解:切线方程为()()Y y f x X x '-=-;当0X =,()()Y xf x f x '=-+由题意可得:()()x xf x f x '=-+;即11y y x'-=- 通解是 (ln )(ln )y x x C or y x x C =-+=+.12. 求初值问题()(0)1,(0)1x f e f x f f ''⎧=-⎨'==⎩.解:由题意,特征方程为210r +=,特征根为12,r i r i ==-,故对应齐次方程通解为12cos sin y C x C x =+;1λ=不是特征方程的根,故可设原方程有特解()x f x Ae *=,解得()12x f x e *=,故原方程的通解为()121cos sin 2x f x C x C x e =++;由(0)1,(0)1f f '==得本题解为()111cos sin 222x f x x x e =++.三、设)(x f 在区间[,]a b 上连续,且()0f x >,()(),[,]()x xabdtF x f t dt x a b f t =+∈⎰⎰. 证明:(1)()2F x '≥; (2)方程()0F x =在区间(,)a b 内有且仅有一个根.(5分). 证明:(1)1()()2()F x f x f x '=+≥;(2)()()()()a ab aba dtdt F a f t dt f t f t =+=-⎰⎰⎰;()()()()b b b a b a dt F b f t dt f t dt f t =+=⎰⎰⎰ 又()0f x >,所以()()0F a F b <,从而方程()0F x =在区间(,)a b 内有一个根. 又()20F x '≥>,是单调递增的,从而方程()0F x =在区间(,)a b 内仅有一个根. 四、设()f x 在[0,1]上连续,在(0,1)内可导,且(1)0f =,证明在(0,1)内存在一点ξ,使 ()()f f ξξξ'=-.(5分) 证明:令()()F x xf x =,则()F x 在[0,1]上连续,在(0,1)内可导,且因(1)0f =,则(0)0(1)F F == 即()F x 在[0,1]上满足罗尔定理的条件,则至少存在(0,1)ξ∈使()0F ξ'= 又()()()F x f x xf x ''=+,即()()0f f ξξξ'+=,即 ()()f f ξξξ'=-.五、设抛物线2y ax bx c =++通过点(0,0),且当[0,1]x ∈时,0y ≥.试确定,,a b c 的值,使得该抛物线与直线1,0x y ==所围图形的面积为4/9,且使该图形绕x 轴旋转而成的旋转体的体积最小. (10分)解:由于设抛物线2y ax bx c =++通过点(0,0),故0c =.且11222004;()9ax bxdx V ax bx dx π+==+⎰⎰;即有2241;()329523a b a b V ab π+==++;于是221444[2()()]5293393a a a V a π=+-+-且令1()053a V π'=+=.得唯一驻点53a =-,进而2b =. 所以,5,2,03a b c =-==.。

高数上册期末考试试题及答案

高数上册期末考试试题及答案

高数上册期末考试试题及答案一、选择题(每题2分,共20分)1. 函数f(x)=x^2+1在x=0处的导数是:A. 0B. 1C. 2D. 3答案:B2. 曲线y=x^3-2x在点(1,-1)处的切线斜率是:A. 0B. 1C. -1D. 2答案:D3. 若f(x)=sin(x)+cos(x),则f'(x)为:A. cos(x)-sin(x)B. sin(x)+cos(x)C. sin(x)-cos(x)D. cos(x)+sin(x)答案:A4. 定积分∫(0,π)sin(x)dx的值是:A. 0B. 1C. 2D. π答案:C5. 函数f(x)=ln(x)的定义域是:A. (-∞, 0)B. (0, +∞)C. (-∞, +∞)D. [0, +∞)答案:B6. 函数y=x^2-4x+4的最小值是:A. 0B. 1C. 4D. 8答案:A7. 函数f(x)=x^3-6x^2+9x的拐点是:A. x=1B. x=3C. x=0D. x=2答案:D8. 函数y=e^x的导数是:A. e^xB. xC. 1D. 0答案:A9. 函数f(x)=x^3+2x^2-5x+6的极值点是:A. x=-1B. x=1C. x=-2D. x=2答案:D10. 函数y=ln(x)的泰勒展开式在x=0处的前三项是:A. x-x^2/2+x^3/3B. x+x^2/2+x^3/3C. x-x^2/2+x^3/6D. x+x^2/2-x^3/3答案:A二、填空题(每题2分,共20分)1. 函数f(x)=x^2-3x+2在x=2处的导数值是________。

答案:12. 微分方程dy/dx+2y=x^2的通解是y=________。

答案:(x^2-x+C)e^(-2x)3. 函数y=sin(x)的原函数是________。

答案:-cos(x)+C4. 函数f(x)=x^3在区间[-1,1]上的最大值是________。

大一(第一学期)高数期末考试题及答案

大一(第一学期)高数期末考试题及答案

大一上学期高数期末考试一、单项选择题 (本大题有 4 小题 , 每题 4 分,共 16分)1. 设 f ( x )cos x ( x sin x ), 则 在 x0处 有() .( A ) f (0)2(B )f(0)1( C ) f (0)(D )f ( x )不行导 .2. 设 ( x)1 x, ( x ) 3 33 x ,则当 x 1时() 1 x.(A ) ( x)与 (x) 是同阶无量小,但不是等价无量小; (B ) ( x)与 (x)是等价无量小;(C ) ( x)是比(x)高阶的无量小;(D )( x)是比(x)高阶的无量小 .F ( x ) x ( 2t x ) f ( t ) dt3. 0, 此中 f ( x) 在 区 间 上 ( 1,1) 二阶可导且若f ( x ) 0 ,则() .(A )函数 F ( x)必在 x 0 处获得极大值;(B )函数 F ( x)必在 x 0 处获得极小值;(C )函数 F ( x) 在 x 0 处没有极值,但点 (0, F (0)) 为曲线 yF ( x) 的拐点;(D )函数F ( x) 在 x 0 处没有极值,点 (0, F (0)) 也不是曲线 yF ( x) 的拐点。

设 f ( x )是 连续 函 数, 且 f ( x )x21)4. f ( t )dt , 则 f ( x ) (x 2x 22(A ) 2(B )2(D ) x 2.(C )x 1二、填空题(本大题有 4 小题,每题25.lim ( 13 x ) sin xx06. 已知cos x是 f ( x ) 的一个原函数 ,x.4 分,共 16 分).则 f ( x )cos xd xxlim(cos 2 cos 2 2L cos 2 n 1 )7.nnnnn12x 2 arcsin x 1dx- 11 x28..2三、解答题(本大题有 5 小题,每题 8 分,共 40 分)9. 设函数 y y(x) 由方程 ex ysin( xy )1确立,求y ( x )以及1 x 710.求x(1 x 7 ) dx ..y (0) .设 f ( x )xex,x求 1 f ( x )dx .2 xx 2, 0 x1311.1lim f ( x)f (x)g( x )f ( xt ) dtA12.设函数 连续,,且xx, 为常数. 求Ag (x)并议论g ( x)在 x处的连续性 .y(1)113. 求微分方程xy2 y x ln x 知足 9的解.四、 解答题(本大题10 分),过点(01,),且曲线上任一点14. 已知上半平面内一曲线yy( x )( x 0) M ( x 0 , y 0 ) 处切线斜率数值上等于此曲线与x 轴、 y 轴、直线x x所围成面积的 2 倍与该点纵坐标之和,求此曲线方程 .五、解答题(本大题 10 分)15. 过坐标原点作曲线ylnx的切线,该切线与曲线yln x及 x 轴围成平面图形 D.(1) 求 D 的面积 A ;(2) 求 D 绕直线 x = e 旋转一周所得旋转体的体积V.六、证明题(本大题有 2 小题,每题 4 分,共 8 分)16. 设函 数 f ( x ) 在 0,1上 连 续 且单 调 递减 ,证 明对 随意 的 q [ 0,1] ,q1 f ( x ) d xq f ( x)dx.17. 设函数f ( x )在0,f ( x ) d xf ( x ) cos x dx 0上连续,且 0,0 .证明:在 0, 内起码存在两个不一样的点1 ,2,使f ( 1 ) f ( 2 ) 0.(提x F ( x )f ( x )dx示:设)解答一、单项选择题 (本大题有 4 小题, 每题 4 分, 共 16分)1、 D2、 A3、 C4、C二、填空题(本大题有4 小题,每题 4 分,共 16 分)5. e 61 ( cos x )2 c 3..6. 2 x .7.2. 8. 三、解答题(本大题有5 小题,每题 8 分,共 40 分) 9. 解:方程两边求导e x y (1 y ) cos( xy )( xyy) 0y ( x )e x yy cos(xy )exy x cos(xy )x0, y0 , y (0)110. 解:ux 7 7 x 6 dx du原式1 (1 u ) du 1 ( 12 )du 7 u(1 u) 7 u u 112ln | u 1|)c(ln | u |71ln | x 7|2ln |1 x 7 | C771f ( x )dxxe1 2x x 2dx11. 解:xdx33xd ( e x)12dx1 ( x 1)3xexex0 0cos2d (令 x1 sin )324 2e 3 112. 解:由f (0)0 ,知 g(0)0。

大一(第一学期)高数期末考试题及答案(完整版).doc

大一(第一学期)高数期末考试题及答案(完整版).doc

大一上学期高数期末考试一、单项选择题 (本大题有4小题, 每小题4分, 共16分) 1. )(0),sin (cos )( 处有则在设=+=x x x x x f .(A )(0)2f '= (B )(0)1f '=(C )(0)0f '= (D )()f x 不可导.2. )时( ,则当,设133)(11)(3→-=+-=x x x x xx βα.(A )()()x x αβ与是同阶无穷小,但不是等价无穷小; (B )()()x x αβ与是等价无穷小;(C )()x α是比()x β高阶的无穷小; (D )()x β是比()x α高阶的无穷小.3. 若()()()02xF x t x f t dt=-⎰,其中()f x 在区间上(1,1)-二阶可导且'>()0f x ,则( ).(A )函数()F x 必在0x =处取得极大值; (B )函数()F x 必在0x =处取得极小值;(C )函数()F x 在0x =处没有极值,但点(0,(0))F 为曲线()y F x =的拐点; (D )函数()F x 在0x =处没有极值,点(0,(0))F 也不是曲线()y F x =的拐点。

4.)()( , )(2)( )(1=+=⎰x f dt t f x x f x f 则是连续函数,且设(A )22x (B )222x+(C )1x - (D )2x +.二、填空题(本大题有4小题,每小题4分,共16分) 5. =+→xx x sin 2)31(lim .6. ,)(cos 的一个原函数是已知x f xx=⋅⎰x xxx f d cos )(则.7.lim(cos cos cos )→∞-+++=22221n n nnnn ππππ .8. =-+⎰21212211arcsin -dx xx x .三、解答题(本大题有5小题,每小题8分,共40分)9. 设函数=()y y x 由方程sin()1x ye xy ++=确定,求'()y x 以及'(0)y . 10. .d )1(177x x x x ⎰+-求11. . 求,, 设⎰--⎪⎩⎪⎨⎧≤<-≤=1 32)(1020)(dx x f x x x x xe x f x12. 设函数)(x f 连续,=⎰10()()g x f xt dt,且→=0()limx f x A x ,A 为常数. 求'()g x 并讨论'()g x 在=0x 处的连续性.13. 求微分方程2ln xy y x x '+=满足=-1(1)9y 的解.四、 解答题(本大题10分)14. 已知上半平面内一曲线)0()(≥=x x y y ,过点(,)01,且曲线上任一点M x y (,)00处切线斜率数值上等于此曲线与x 轴、y 轴、直线x x =0所围成面积的2倍与该点纵坐标之和,求此曲线方程. 五、解答题(本大题10分)15. 过坐标原点作曲线x y ln =的切线,该切线与曲线x y ln =及x 轴围成平面图形D.(1) 求D 的面积A ;(2) 求D 绕直线x = e 旋转一周所得旋转体的体积V .六、证明题(本大题有2小题,每小题4分,共8分)16. 设函数)(x f 在[]0,1上连续且单调递减,证明对任意的[,]∈01q ,1()()≥⎰⎰qf x d x q f x dx.17. 设函数)(x f 在[]π,0上连续,且0)(0=⎰πx d x f ,0cos )(0=⎰πdx x x f .证明:在()π,0内至少存在两个不同的点21,ξξ,使.0)()(21==ξξf f (提示:设⎰=xdxx f x F 0)()()解答一、单项选择题(本大题有4小题, 每小题4分, 共16分) 1、D 2、A 3、C 4、C二、填空题(本大题有4小题,每小题4分,共16分)5. 6e . 6.c x x +2)cos (21 .7. 2π. 8.3π.三、解答题(本大题有5小题,每小题8分,共40分) 9. 解:方程两边求导(1)cos()()0x y e y xy xy y +''+++= cos()()cos()x y x ye y xy y x e x xy +++'=-+0,0x y ==,(0)1y '=-10. 解:767u x x dx du == 1(1)112()7(1)71u du duu u u u -==-++⎰⎰原式 1(ln ||2ln |1|)7u u c =-++ 7712ln ||ln |1|77x x C =-++11. 解:1033()x f x dx xe dx ---=+⎰⎰⎰03()x xd e --=-+⎰⎰0232cos (1sin )x x xe e d x πθθθ----⎡⎤=--+-=⎣⎦⎰ 令3214e π=--12. 解:由(0)0f =,知(0)0g =。

高等数学(同济版)上册期末复习题(含答案)

高等数学(同济版)上册期末复习题(含答案)

高等数学(同济版)上册期末复习题(含答案)一、填空题1.lim(e^3x-cos2x)/(3sin2x-2x^2) = 12.曲线y=xe的拐点是(2,2e)3.设f(x)在x=0处可导且f(0)=0,则lim(x→0) [f(x)/x] =f'(0)4.曲线y=(1-cos2x)/π+x在(-1,1)处的切线方程为y=x+15.曲线y=2x/(x^2-1)有垂直渐近线x=±1和水平渐近线y=06.设f(u)可导,y=sin[f(e)],则dy=sin2[f(e)]·f'(e)·e dx7.∫e^x dx = 2(e^2+1)8.若f'(x)=-3,则lim(h→0) [(f(x+h)-f(x))/h] = -39.若∫xp dx收敛,则p的范围是p<-110.lim(x→∞) [(2x+3)/(x+1)] = e11.设∫f(x)dx=F(x)+c,则∫f(2x)dx=F(2x)/2+c12.设f(x)的一个原函数是x ln x,则∫x f(x)dx = x^2 ln x - ∫x dx + C13.设f(x)={x^2.x>1.-x。

x≤1},则∫f(x)dx = -1614.过点(1,3)且切线斜率为2的曲线方程为y=x^2+115.已知函数f(x)={xsinx。

x≠a。

A。

x=a},则当x→∞时,函数f(x)是无穷小;当a=1时,函数f(x)在x=1处连续,否则x=a为函数的第一类间断点。

16.已知∫f(x)dx=F(x)+c,则∫f(arcsin x)dx=F(arcsin x)+c17.当x→0时,(1+ax)^(-1)与1-cosx是等价无穷小,则a=2/318.f(x)={x^3sin(1/x)。

x≠0.0.x=0}是连续函数,则a=1/319.f(x)在[0,1]上连续,且f(1)=1,[f(x)]dx=1,则∫0^1 xf(x)f'(x)dx = -1/220.Φ(x)=∫xe^tdt,则Φ(1)=e-1,Φ'(1)=e2.曲线y=f(x)在点(2,f(2))处的切线平行于直线y=3x+1,则f'(2)=33.设f(x)=arctanx,则当x→+∞时,lim f(x)=π/25.函数y=x的导数为y'=x(lnx+1)6.∫0+∞ xe^(-x) dx=27.∫-1^1 (x+2)/(√(1+x^2)(2+x)) dx=19.f(x)=x的积分曲线中过(1,-1)的那条曲线的方程为y=x^2-2x11.设s为曲线y=xlnx与x=1,x=e及x轴所围成的面积,则s=(e^2+1)/213.曲线y=ln(e^x)的全部渐近线为y=1,x=0,x=-1/e15.曲线y=x^2与y^2=x所围图形绕y轴旋转一周所成的旋转体体积为(π/5)(7-2√6)16.点(1,1,1)到平面2x+y-2z+2=0的距离为(√14)/318.设向量a=2i-j+k,b=4i-2j+λk,则当λ=-10时,a⊥b;当λ=2,a//b。

高数a上册期末试题及答案

高数a上册期末试题及答案

高数a上册期末试题及答案一、选择题(每题5分,共20题)1. 设函数 $f(x) = \sqrt{3x-2}$,则其定义域为A. $(-\infty, \frac{2}{3}]$B. $\left[ \frac{2}{3}, \infty \right)$C. $[\frac{2}{3}, \infty)$D. $(-\infty, \frac{2}{3}) \cup [\frac{2}{3}, \infty)$答案:C2. 函数 $y = \sin^2 x + \cos^2 x$ 的值域为A. $(-\infty, 1]$B. $[0, 1]$C. $[1, \infty)$D. $[\frac{1}{2}, 1]$答案:B3. 设函数 $f(x) = e^x \ln x$,则 $f'(x) = $A. $e^x \ln x$B. $e^x \left( \frac{1}{x} + \ln x \right)$C. $e^x \left( \ln x - \frac{1}{x} \right)$D. $e^x \left( \frac{1}{x} - \ln x \right)$答案:B4. 若直线 $y = 3x + b$ 与抛物线 $y = ax^2 + bx + 1$ 相切,则 $a + b = $A. 2B. 3C. 4D. 5答案:D5. 函数 $f(x) = \frac{x-1}{\sqrt{x^2 + 1}}$ 的渐近线为A. $y = x - 1$B. $y = x + 1$C. $y = -x + 1$D. $y = -x - 1$答案:A6. 函数 $f(x) = \ln(1 + e^{2x})$ 的反函数为A. $f^{-1}(x) = \ln(x) - \ln(1 - x^2)$B. $f^{-1}(x) = \ln(x^2 - 1)$C. $f^{-1}(x) = \frac{e^x - 1}{2}$D. $f^{-1}(x) = \frac{1}{2} \ln(x) + \ln(1 - x)$答案:D7. 设函数 $f(x) = \arcsin (\sin x)$,则当 $x = \frac{5\pi}{6}$ 时,$f(x) =$A. $\frac{5\pi}{6}$B. $\frac{\pi}{6}$C. $\frac{\pi}{3}$D. $\frac{2\pi}{3}$答案:C8. 函数 $f(x) = \frac{\sin x}{\cos^2 x}$ 的最大值为A. 1B. $\sqrt{3}$C. 2D. $2\sqrt{3}$答案:D9. 函数 $f(x) = x^2 + 2x + 1$ 在区间 $[-1, 1]$ 上的最大值为A. 0B. 1C. 2答案:D10. 函数 $f(x) = \frac{x^2 - 1}{x^2 + 1}$ 的图像关于直线 $x = a$ 对称,则 $a = $A. 1B. 0C. -1D. 2答案:B11. 设 $\sin \alpha = \frac{1}{4}$,$\cos \beta = \frac{4}{5}$,且$\alpha$ 和 $\beta$ 都是第二象限角,则下列四个式子中成立的是A. $\sin (\alpha - \beta) = -\frac{3}{4}$B. $\sin (\alpha + \beta) = \frac{3}{8}$C. $\cos (\alpha - \beta) = \frac{1}{5}$D. $\cos (\alpha + \beta) = \frac{2}{5}$答案:C12. 如果点 $A(1, 2)$ 在抛物线 $y = -x^2 + 3x + k$ 上,那么 $k = $A. -3B. -5D. -9答案:B13. 设函数 $f(x) = x^3 - 3x^2 - 4x + 12$,则 $f'(x)$ 的零点有A. -2, 2B. -1, 3C. -4, 3D. -1, 4答案:A14. 设点 $P(x, y)$ 满足 $y^2 = px$,其中 $p > 0$ 是常数,则焦点所在的直线方程为A. $y = -\frac{p}{2}$B. $x = -\frac{p}{2}$C. $y = \frac{p}{2}$D. $x = \frac{p}{2}$答案:B15. 函数 $f(x) = x^3 - 3x + 1$ 在区间 $[0, 2\pi]$ 上的最小值为A. -1B. 0D. 2答案:A16. 设直线 $y = 2x + 1$ 与曲线 $y = x^2 + bx + c$ 相切,则 $b + c = $A. 0B. $\frac{1}{2}$C. 1D. 2答案:C17. 设函数 $f(x) = (1 - x^2) \cos x$,则 $f''(x)$ 的一个零点在A. $(0, \frac{\pi}{2})$B. $(0, \pi)$C. $(\pi, 2\pi)$D. $(\pi, 3\pi)$答案:B18. 设函数 $f(x) = \sin^2 x - \sqrt{3} \sin x \cos x + \cos^2 x$,则$f(x)$ 的最大值为A. 2B. $2\sqrt{2}$C. 3D. $2 + \sqrt{3}$答案:C19. 设函数 $f(x) = e^x$,$g(x) = x^2$,则 $f(x) \cdot g(x) = $A. $e^{x^2}$B. $x^2 e^x$C. $x^2 e^{x^2}$D. $x^2 + e^x$答案:B20. 设 $a > 0$,则 $\lim\limits_{x \to +\infty} \frac{x^a}{e^x}$ 的值为A. 0B. $\frac{1}{e}$C. 1D. $+\infty$答案:A二、计算题(每题10分,共4题)1. 求函数 $f(x) = \frac{2x^2 - 3x + 1}{x - 1}$ 的极限 $\lim\limits_{x\to 1} f(x)$.解:使用“分子分母可约”的性质,可将函数 $f(x)$ 化简为 $f(x) = 2x - 1$,则 $\lim\limits_{x \to 1} f(x) = \lim\limits_{x \to 1} (2x - 1) = 2(1) - 1 = 1$.答案:12. 求曲线 $y = e^x$ 与直线 $y = kx$ 相交的两个点的坐标,其中 $k > 0$ 是常数.解:将曲线 $y = e^x$ 和直线 $y = kx$ 代入方程中,得到 $e^x = kx$,然后可以使用迭代法或图像法求得相交点的坐标.答案:相交点的坐标为 $(x_1, e^{x_1})$ 和 $(x_2, e^{x_2})$,其中$x_1$ 和 $x_2$ 是满足方程 $e^x = kx$ 的两个解.3. 求曲线 $y = \sin x$ 与直线 $y = x$ 相交的点的个数,并说明理由.解:将曲线 $y = \sin x$ 和直线 $y = x$ 代入方程中,得到 $\sin x = x$,然后可以通过分析函数的周期性和图像来确定相交点的个数.答案:方程 $\sin x = x$ 的解存在无穷个,但相交点的个数取决于给定的区间. 在区间 $[0, \pi]$ 上,方程有一个解;在区间 $[2\pi, 3\pi]$ 上,方程又有一个解. 因此,相交点的个数是不确定的.4. 求函数 $y = x^2 + x$ 在区间 $[-2, 2]$ 上的最大值和最小值,并求出取得最大值和最小值的点.解:首先求导数 $y' = 2x + 1$,然后令 $y' = 0$,解得 $x = -\frac{1}{2}$,将 $x = -2, -\frac{1}{2}, 2$ 代入函数 $y = x^2 + x$,得到对应的 $y$ 值. 最大值为 $y = y_{\text{max}}$ 对应的点为 $(-\frac{1}{2},y_{\text{max}})$,最小值为 $y = y_{\text{min}}$ 对应的点为 $(-2,y_{\text{min}})$ 和 $(2, y_{\text{min}})$.答案:最大值为 $y_{\text{max}} = \frac{5}{4}$,取得最大值的点为 $(-\frac{1}{2}, \frac{5}{4})$;最小值为 $y_{\text{min}} = -2$,取得最小值的点为 $(-2, -2)$ 和 $(2, -2)$.三、证明题(每题20分,共2题)1. 证明函数 $f(x) = \frac{x^3}{3} - x^2 + 2x$ 的导数 $f'(x)$ 恒大于零.证明:求导数 $f'(x) = x^2 - 2x + 2$,我们可以通过判别式来判断 $f'(x)$ 的正负性.判别式为 $\Delta = (-2)^2 - 4(1)(2) = 4 - 8 = -4$,由于 $\Delta < 0$,所以判别式小于零,即 $f'(x)$ 的二次项系数小于零,说明二次项的系数是正的,从而导数 $f'(x)$ 恒大于零.证毕.2. 证明函数 $f(x) = x^3 - 3x^2 + 3$ 的图像关于直线 $x = 1$ 对称.证明:要证明函数的图像关于直线 $x = 1$ 对称,需证明对于任意$x$ 值,函数 $f(x)$ 和 $f(2 - x)$ 的函数值相等.将 $f(x) = x^3 - 3x^2 + 3$ 代入 $f(2 - x)$,得到 $f(2 - x) = (2 - x)^3 -3(2 - x)^2 + 3$,对其进行展开和化简得到 $f(2 - x) = (2 - x)^3 - 3(2 -x)^2 + 3 = x^3 - 3x^2 + 3 = f(x)$,即 $f(x) = f(2 - x)$,证明了函数的图像关于直线 $x = 1$ 对称.证毕.四、应用题(每题50分,共1题)1. 求函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值.解:求导函数 $f'(x) = 3x^2 + 2x - 3$,令 $f'(x) = 0$,求得驻点的 $x$ 坐标,然后将其代入原函数求得对应的 $y$ 坐标.求导的一阶导数方程为 $f'(x) = 3x^2 + 2x - 3 = 0$,通过求根公式求得 $x = -1$ 和 $x = \frac{1}{3}$,将其代入原函数 $f(x)$ 得到对应的$y$ 坐标.将 $x = -1$ 代入 $f(x)$,得到 $f(-1) = (-1)^3 + (-1)^2 - 3(-1) = -1 + 1+ 3 = 3$,将 $x = \frac{1}{3}$ 代入 $f(x)$,得到 $f(\frac{1}{3}) =(\frac{1}{3})^3 + (\frac{1}{3})^2 - 3(\frac{1}{3}) = \frac{1}{27} +\frac{1}{9} - 1 = 0$.因此,函数 $f(x) = x^3 + x^2 - 3x$ 的驻点及其对应的极值为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$.答案:驻点为 $(-1, 3)$ 和 $(\frac{1}{3}, 0)$,分别对应极大值和极小值.。

(完整版),期末高等数学(上)试题及答案,推荐文档

(完整版),期末高等数学(上)试题及答案,推荐文档

1、(本小题 3 分)
解: 原式
lim
x2
3x 6x2
2 12 18x
12
6x lim x 2 12 x 18
2
2、(本小题 3 分)
(1
x x2)2
dx
1 d(1 x2 ) 2 (1 x 2) 2
11 2 1 x2 c.
3、(本小题 3 分)
因为 arctan x
而 lim arcsin 1 0
lim
x
x
x
x
1
1
(10 )(11 )
x
x
10 11 21
(10 1 ) 2 x
6 10 11 7
2
16、( 本小题 10 分 )
解:
cos2x dx
1 sin x cosx
d( 1 sin 2x 1) 2
1 1 sin 2x 2
1 ln 1 sin 2x c
2
二、解答下列各题 (本大题共 2 小题,总计 13 分 ) 1、(本小题 5 分)

F ( 1) 1 0 , F (1) 1 0 .
22
由零点定理知存在
x1
1 [
,1]
,使
F ( x1 )
0.
2
由 F ( 0) 0 ,在 [ 0, x1] 上应用罗尔定理知,至少存在一点
(0, x1) ( 0,1) ,使 F ( ) f ( ) 1 0 ,即 f ( ) 1 …
第 7 页,共 7 页
9、(本小题 5 分)
3
求 x 1 x dx. 0
10、( 本小题 5 分 )
求函数 y 4 2 x
11、( 本小题 5 分 )

高等数学(上)期末考试试题及答案

高等数学(上)期末考试试题及答案

高等数学(上)期末考试试题一、 填空题(每小题3分,本题共15分)1、.______)31(lim 20=+→x x x 。

2、当k 时,⎪⎩⎪⎨⎧>+≤=00e )(2x k x x x f x 在0=x 处连续. 3、设x x y ln +=,则______=dydx 4、曲线x e y x-=在点(0,1)处的切线方程是 5、若⎰+=C x dx x f 2sin )(,C 为常数,则=)(x f 。

二、 单项选择题(每小题3分,本题共15分) 1、若函数x xx f =)(,则=→)(lim 0x f x ( ) A 、0 B 、1- C 、1 D 、不存在2、下列变量中,是无穷小量的为( ) A. )0(1ln +→x x B. )1(ln →x x C. )0(cosx →x D. )2(422→--x x x 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点4、下列无穷积分收敛的是( )A 、⎰+∞0sin xdx B 、dx e x ⎰+∞-02 C 、dx x ⎰+∞01 D 、dx x⎰+∞01 5、设空间三点的坐标分别为M (1,1,1)、A (2,2,1)、B (2,1,2)。

则AMB ∠=A 、3πB 、4πC 、2π D 、π 三、 计算题(每小题7分,本题共56分)1、求极限 xx x 2sin 24lim 0-+→ 。

2、求极限 )111(lim 0--→x x e x 3、求极限 2cos 102lim x dte x t x ⎰-→4、设)1ln(25x x e y +++=,求y '5、设)(x y f =由已知⎩⎨⎧=+=t y t x arctan )1ln(2,求22dx y d 6、求不定积分dx x x ⎰+)32sin(12 7、求不定积分 x x e x d cos ⎰8、设⎪⎪⎩⎪⎪⎨⎧≥+<+=011011)(x xx e x f x, 求 ⎰-20d )1(x x f四、 应用题(本题7分) 求曲线2x y =与2y x =所围成图形的面积A 以及A 饶y 轴旋转所产生的旋转体的体积。

(完整word版)高等数学(同济第六版)上册-期末试卷及答案

(完整word版)高等数学(同济第六版)上册-期末试卷及答案

高等数学(同济第六版)上册-期末试卷及答案一、填空题1.=-→x x e x x 2sin 2cos lim30 . 232.曲线x xe y -=的拐点是 .)2,2(2-e3.设)(x f 在0=x 处可导且,0)0(=f 则=→xx f x )(lim 0. )0(f ' 4.曲线x x y +-=22cos 1在)21,2(ππ+处的切线方程为 .1y x =+ 5.曲线122-=x x y 有垂直渐近线 和水平渐近线 . 1±=x ,1=y6.设)(u f 可导,)]([sin 2x e f y =,则=dy . dx e e f e f x x x ⋅'⋅)()]([2sin7.=⎰dx e x 40 . )1(22+e8. 若3)(0-='x f ,则=--+→hh x f h x f h )3()(lim000. 12-9. 若dx x p ⎰+∞1收敛,则p 的范围是 .1-<p 10.=+++∞→1)1232(lim x x x x. 11.设⎰+=c x F dx x f )()(,则⎰=dx x f )2( . c x F +)2(2112.设)(x f 的一个原函数是x x ln ,则⎰=dx x xf )( . c x x x ++ln 242213.设⎩⎨⎧≤>=0,0,)(2x x x x x f ,则⎰-=11)(dx x f . 61-14.过点)3,1(且切线斜率为x 2的曲线方程为 . 12+=x y15.已知函数⎪⎩⎪⎨⎧=≠=0,0,sin )(x a x x x x f ,则当→x ∞时,函数)(x f 是无穷小;当=a 时,函数)(x f 在0=x 处连续,否则0=x 为函数的第 类间断点. 1, 一16.已知⎰+=c x F dx x f )()(,则⎰=-dx x f x)(arcsin 112.c x F +)(arcsin17.当0→x 时,1)1(312-+ax 与x cos 1-是等价无穷小,则=a .2318.⎪⎩⎪⎨⎧=≠=⎰0,0,sin )(303x a x x dtt t x f x 是连续函数,则=a . 1 19.)(x f 在]1,0[上连续,且120(1)0,[()]1f f x dx ==⎰,则='⎰10)()(dx x f x xf .21- 提示:='⎰10)()(dx x f x xf ⎰⎰-=11021))(()()()()(x xf d x f x xfx df x xf⎰⎰⎰'--='+-=110210)()()()]()()[(dx x f x xf dx x f dx x f x x f x f ,移项便得.20.dx xe x x x ⎰=Φ02)(,则=Φ)1( . =Φ')1( . )1(21-e ,e 21.x dx x df 1)(2=,则=')(x f .x 21 提示:22221)(12)(xx f x x x f ='⇒=⋅' 22.曲线)(x f y =在点))2(,2(f 处的切线平行于直线13+=x y ,则=')2(f . 3 23.设x x f arctan )(=,且,00>x =-+→x x f x x f x )()(lim 000.)1(2100x x + 24.33ln2-+=xx y 的水平渐近线是 . 3-=y 25.函数x x y =的导数为 .)1(ln +x x x 26.=⎰+∞-dx xe x 02.21 27.=++⎰-dx xxx x )1sin (2211 . 1 28.广义积分=⎰+∞dx x 131 . 2129.x )x (f =的积分曲线中过)21,1(-的曲线的方程 ______.2x y=12-30.设S 为曲线x x y ln =与e x x ==,1及x 轴所围成的面积,则=s .)1(412+e31.⎰='dx x f )2( .c x f +)2(2132.曲线)1ln(x e y -=的渐近线为 . ex x y 1,0,1===33.曲线2x y =与x y =2所围图形绕y 轴旋转一周所成的旋转体体积 .π103 34.设022x 1,x 0f (x)0,x 0,f (x 1)dx x ,x 0-+<⎧⎪==+⎨⎪>⎩⎰= . 56二、选择题1. 设21cos ,01(),10x x f x xxx ⎧<<⎪=⎨⎪-<≤⎩,在0=x 处( ) A .A 连续,不可导 .B 连续,可导 .C 可导,导数不连续 .D 为间断点 2.曲线x y sin 2+=π在0=x 处的切线与x 轴正方向的夹角为( ) B2.πA 4.πB 0.C 1.D3.若032<-b a ,则0)(23=+++=c bx ax x x f ( ) B.A 无实根 .B 有唯一实根 .C 三个单实根 .D 重根 4.函数)(x f 在0x x =处取得极大值,则( ) D0)(.0='x f A 0)(.0<''x f B .C 0)(0='x f 0)(,0<''x f .D 0)(0='x f 或不存在5.设)(x f 的导函数为x sin ,则)(x f 的一个原函数为( ) Dx A sin 1.+ x x B sin .+ x C cos 1.+ x x D sin .- 6.设t t f cos )(ln =,则='⎰dt t f t f t )()(( ) A c t t t A +-sin cos . c t t t B +-cos sin . c t t t C ++)sin (cos . c t t D +sin . 7.设)(x f 连续,⎰=22)()(x dt t f x F ,则=')(x F ( ) C)(.4x f A )(.42x f x B )(2.4x xf C )(2.2x xf D8.下列广义积分收敛的是( ) Cdx x x A e⎰+∞ln . dx xx B e ⎰+∞ln 1. dx x x C e ⎰+∞2)(ln 1. dx x x D e ⎰+∞ln 1. 9.广义积分=+⎰+∞-0xx e e dx( ) C2.πA π.B 4.πC .D 发散10.下列函数中在区间]3,0[上不满足拉格朗日定理条件的是( ) C12.2++x x A )1cos(.x B + )1(.22x x C - )1ln(.x C +11.求由曲线x y ln =,直线)0(ln ,ln ,0>>===a b b y a y x 所围图形的面积为( )Cb a A -. 22.a b B - a b C -. a b D +. 12.已知1)()()(lim2-=--→a x a f x f ax ,则在a x =处 ( )BA .)(x f 导数存在且0)(≠'a fB .)(x f 取极大值C .)(x f 取极小值D .)(x f 导数不存在三、计算题1.)1sin cos ln (lim 220x x x x x +→ 21-2.41cos 0ln lim x tdt t xx ⎰→ 81-3.)11(lim 22--+∞→x x x 0 4. xx x 1)(cos lim +→ 21-e5. 2tan)1(lim 1xx x π-→π26. 求xx x x x ln 1lim 0-+→ 1解1 原式1lim lim 1ln )ln 1(lim 0ln 000====++=+++→→→e e x x x x x x x x x x x , 解2 原式ln ln 001lim =1,lim ln 0,1~ln ,0ln x x x xx x e x x e x x x x x ++→→-==∴-→Q ()7.设)(x f 为连续函数,计算⎰-→x a a x dt t f a x x )(lim 2)(2a f a 8.sin(ln )x dx ⎰ [sin(ln )cos(ln )]2xx x c -+9.dx x ⎰+π02cos 1 22 10.dx x a x a2202-⎰416a π 11.设xx y cos )(sin =,求y ' . ()]sin cos sin ln sin [)(sin 2cos xxx x x x+-12.设0cos 2ln 0=+⎰⎰x yttdt dt e ,求dy . dx x x 2cos 2-13.dx x x x ⎰+--84132 c x x x +-++-22arctan 2584ln 23214.设⎩⎨⎧-=-=)1()(3te f y t f x π,其中f 可导,且0)0(≠'f ,求0=t dx dy. 3 15.dx x x ⎰-π042sin sin 提示:原式1cos sin cos sin 022===⎰⎰dx x x dx x x ππ16.dx x ⎰-22)1(1 发散 17.dx e x ⎰-2ln 01 )41(2π- 18.⎰-12x x dxc x +1arccos 19.xdx x 4223cos )4(+⎰-ππ π23 20.dx x x⎰3ln 21ln (3)2x c + 21.dx e x x 22ln 03-⋅⎰ 11ln 242-+ 22.⎰+)1(2xx e e dx arctan x xe e c ---+ 23.设x 1)e (f x +=',求)x (f . ln x x c + 24.⎰--+1x 1x dx33221[(1)(1)]3x x c ++-+25.⎰+)x 1(x dx10101ln ln 110x x c -++ 26.已知)(x f 的一个原函数为lnx )sinx 1(+,求⎰'dx )x (f x . cos ln 1sin (1sin )ln x x x x x x ++-+ 27.dx x 1x1xln ⎰+- 211ln (1)21x x x c x-+-++ 28.dx x)1x (ln ⎰+1)x c +- 29.dx x a x a⎰-+02214π 30.设)(x f 在]1,0[上连续,单调减且取正值,证:对于满足10<<<βα的任何βα,有f (x)dx f (x)dx ββαβα>⎰⎰.00()()()()()()()()f x dx f x dx f x dx f x dx f x dxf x dx f x dx ββαββααααβαβαββαββα-=+-=+-⇒⎰⎰⎰⎰⎰⎰⎰提示:31.260sin 1lim3x t xx te tdt x e →⋅=⎰四、解答题1.求函数x e x y -⋅=的单调区间、极值及曲线的凹凸区间、拐点、渐近线.2.设1sin ,0()200x x f x x x ππ⎧≤≤⎪=⎨⎪<>⎩,或,求⎰=Φx dt t f x 0)()(在),(+∞-∞内的表达式.01()()(cos 1),021,xx x f t dt x x x ππ<⎧⎪⎪Φ==--≤≤⎨⎪>⎪⎩⎰,3.设)(x f 在),(+∞-∞内连续,证明()()()()xa d x t f t dt f x f a dx'-=-⎰. 4.设20,,0,2:;0,2,,2:2221<<=======a a x y x y D y x a x x y D(1)试求1D 绕x 轴旋转得旋转体体积1V ;2D 绕y 轴旋转得旋转体体积2V ; (2)问当a 为何值时+1V 2V 得最大值?并求该最值.)32(5451a V -=π,42a V π=,1=a ,+1(V π5129)max 2=V5.已知x x x f 22tan 2cos )(sin +=',求)(x f .提示:uu u u f x x x x f -+-='⇒-+-='121)(sin 1sin sin 21)(sin 2222,c x x x f +--=1ln )(26.设c y =与22x x y -=相交于第一象限(如图).(1)求使得Ⅰ与Ⅱ两区域面积相等的常数c ; (2)在(1)的情况下,求区域I 绕x 轴旋转的旋转体体积. 提示:III II III I II I s s s s ++=⇒=,202031)2(b b c dx x x cdx bb-=⇒-=⎰⎰,又22b b c -=, 43,23==⇒c b ,23,21243212==⇒⎪⎩⎪⎨⎧-==x x x x y y ,π24041=V . 7. 设直线b ax y +=与直线1,0==x x 及0=y 所围成的梯形面积为A ,求b a ,,使这块区域绕x 轴旋转所得体积最小.)0,0(≥≥b a提示:21220()(),3a V axb dx ab b ππ=+=++⎰1()2aA ax b dx b =+=+⎰,A b a ==,0时,体积最小. 8. 证明011302=+--⎰xx dxx 在区间)1,0(内有唯一的实根.提示:令0)1()0(113)(02<⋅⇒+--=⎰F F x dxx x F x,再证唯一性.9. 求dt e )t 2()x (f 2x 0t ⎰--=的最值. 21,1e -+最小值为最大值为 10. 0,x dt,t 1lnt )x (f x 1>+=⎰求)x 1(f )x (f +. 21(ln )2x 11. 证明211lim21=--→x x x . 分析: 当x ≠1时, |f (x )-A ||211|2---=x x =|x -1|. 12. 证明01lim =∞→xx . 分析: ||1|01||)(|x xA x f =-=-. ∀ε >0, 要使|f (x )-A |<ε , 只要ε1||>x .13. 当1→x 时,将下列各量与无穷小量1-x 进行比较.(1) ;233+-x x (2)ln ;x (3).11sin )1(--x x (1)233+-x x 是比1-x 较高阶的无穷小量; (2)ln x 是关于1-x 的等价无穷小量; (3) 11sin)1(--x x 与1-x 不能比较. 111sin )1(lim1--⋅-→x x x x 11sin lim 1-=→x x 不存在. 所以,11sin )1(--x x 与1-x 不能比较.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高等数学期末及答案一、 填空题(每小题3分,本题共15分)1、.______)31(lim 2=+→xx x 。

2、当k 时,⎪⎩⎪⎨⎧>+≤=00e)(2x k x x x f x 在0=x 处连续.3、设x x y ln +=,则______=dydx4、曲线x e y x-=在点(0,1)处的切线方程是5、若⎰+=C x dx x f 2sin )(,C 为常数,则=)(x f 。

二、 单项选择题(每小题3分,本题共15分)1、若函数xx x f =)(,则=→)(lim 0x f x ( )A 、0B 、1-C 、1D 、不存在 2、下列变量中,是无穷小量的为( )A. )0(1ln+→x xB. )1(ln →x xC. )0(cosx→x D. )2(422→--x x x 3、满足方程0)(='x f 的x 是函数)(x f y =的( ).A .极大值点B .极小值点C .驻点D .间断点 4、下列无穷积分收敛的是( )A 、⎰+∞sin xdx B 、dx e x ⎰+∞-02 C 、dx x ⎰+∞1D 、dx x⎰+∞01 5、设空间三点的坐标分别为M (1,1,1)、A (2,2,1)、B (2,1,2)。

则AMB ∠=A 、3π B 、4π C 、2πD 、π 三、 计算题(每小题7分,本题共56分)1、求极限 xx x 2sin 24lim-+→ 。

2、求极限 )111(lim 0--→x x e x 3、求极限 2cos 12limxdt e xt x ⎰-→4、设)1ln(25x x e y +++=,求y '5、设)(x y f =由已知⎩⎨⎧=+=ty t x arctan )1ln(2,求22dx yd 6、求不定积分 dx x x ⎰+)32sin(127、求不定积分x x exd cos ⎰8、设⎪⎪⎩⎪⎪⎨⎧≥+<+=011011)(x xx e x f x, 求⎰-2d )1(x x f四、 应用题(本题7分)求曲线2x y =与2y x =所围成图形的面积A 以及A 饶y 轴旋转所产生的旋转体的体积。

五、 证明题(本题7分)若)(x f 在[0,1]上连续,在(0,1)内可导,且0)1()0(==f f ,1)21(=f ,证明:在(0,1)内至少有一点ξ,使1)(='ξf 。

参考答案一。

填空题(每小题3分,本题共15分) 1、6e 2、k =1 . 3、xx+1 4、1=y 5、x x f 2cos 2)(= 二.单项选择题(每小题3分,本题共15分) 1、D 2、B 3、C 4、B 5、A 三.计算题(本题共56分,每小题7分) 1.解:x x x 2sin 24lim-+→81)24(2sin 2lim 21)24(2sin lim 00=++=++=→→x x x x x x x x 7分 2.解 :21lim 11lim )1(1lim )111(lim 0000=++=+--=---=--→→→→x x x x x x x x x x x x x x xee e e xe e e e x x e e x 7分3、解: 2cos 12limx dt e x tx ⎰-→ex xe xx 212sin lim 2cos0-=-=-→ 4、解: )111(1122xxx y ++++='……………………… …...4分211x+=……………………………………… …...7分5、解:t t t t dx dy 21121122=++= (4分)222232112()241d y t d dydxt dtt dt dx dxt t-+===-+ (7分) 6、解:C xd x dx x x ++=++-=+⎰⎰)32cos(21)332()32sin(21)32sin(12 (7分)7、 解:⎰⎰=xx e x x x e d cos d cos⎰+=sinxdx e cos x x e x ⎰+=x de sin cos x x e xdx cos sin cos x e x e x e x x x ⎰-+= C x x e x ++=)cos (sin8、解:⎰⎰⎰⎰--+==-011112d )(d )(d )(d )1(x x f x x f x x f x x f⎰⎰+++=-10011d 1d x x e x x1001)1ln(d )11(x x e e x x +++-=⎰- 2ln )1ln(101++-=-x e)1ln()1ln(11e e +=++=-四.应用题(本题7分)解:曲线2x y =与2y x =的交点为(1,1), 于是曲线2x y =与2y x =所围成图形的面积A 为31]3132[)(10210232=-=-=⎰x x dx x x AA 绕y 轴旋转所产生的旋转体的体积为:()πππ10352)(1052142=⎥⎦⎤⎢⎣⎡-=-=⎰y y dy y y V 五、证明题(本题7分)证明: 设x x f x F -=)()(, 2分显然)(x F 在]1,21[上连续,在)1,21(内可导, 且 021)21(>=F ,01)1(<-=F .零点定理知存在]1,21[1∈x ,使0)(1=x F . 4分 由0)0(=F ,在],0[1x 上应用罗尔定理知,至少存在一点)1,0(),0(1⊂∈x ξ使01)()(=-'='ξξf F ,即1)(='ξf … …7分2006-2007第一学期高数试题一、填空题(共5小题,每小题3分,共15分)1)函数()1arcsin3x f x -=的定义域为240x x ≤≤=或。

2)201cos3limx xx→-=92。

3)设xey x π=+,则y '=1ln x e exππ-+。

4)设()220xy a a x=≠+,dy =()22222a x dx ax-+。

5)若0,a <=arcsin xC a-+。

二、选择题(共5小题,每小题4分,共20分)1)极限lim 23x x →∞=+( D )A 、2B 、2-C 、2±D 、不存在2)下列函数()f x 在[]1,1-上适合罗尔中值定理条件的是( B )A 、()f x =、()2f x x x =C 、()arccos f x x =D 、()cot2xf x π=3)下列函数中,哪一个不是sin 2x 的原函数( C ) A 、2sin x B 、2cos x -C 、cos2x -D 、225sin 4cos x x +4)设222111ln ,ln ,P xdx Q xdx R ===⎰⎰⎰,则下列不等式正确的是( D )A 、P Q R <<B 、Q R P <<C 、R Q P <<D 、Q P R << 5)设()f x 在[],a b 上连续,则()ba d x f x dx dx ⎡⎤=⎢⎥⎣⎦⎰( A )A 、()baf x dx ⎰ B 、()()bf b af a -C 、()()()bax f b f a f x dx -+⎡⎤⎣⎦⎰D 、()()baf x dx xf x +⎰三、计算下列各题(共4题,每小题6分,共24分)1)计算极限sin cos 30lim x x xx e e x→- 解:原式sin cos cos 3320001sin cos sin 1lim lim lim 33x x x x xx x x e x x x x x ex x x -→→→--==== 2)设参数方程(ln sin x t y ⎧=⎪⎨⎪=⎩,求22d y dx解:sin dyt dxt==,22cos 1d y t dx t ==。

3)计算不定积分()12ln11xx dx x x+<-⎰解:原式()()()3222211212lnln 111111x x x x x x x dx x dx x x x x x x +--+=-=+-+-+--⎰⎰ ()()2212222ln 1111x x x x dx x x x x ⎛⎫+++=++ ⎪ ⎪-++-⎝⎭⎰ 2131ln2111x x x dx x x x +⎛⎫=+++ ⎪-+-⎝⎭⎰ ()()221ln3ln 1ln 11xx x x x C x+=++--+- 四、解答下列各题(共2题,每小题7分,共14分)1)在曲线21y x =+上求一点M ,使它到点()05,0M 的距离最小。

解:设曲线21y x =+上一点坐标为()2,1a a +,它到点()05,0M 的距离的平方为()()()22251f a a a =-++,我们只须在(),-∞+∞求()f a 得最小值()()()()()2322541461014410f a a a a a a a a a '=-++=+-=-++当1a =时,()0f a '=,此时,()f a 取最小值。

所求点为()1,22)设由cos ,0,0y x y x ===在第一象限围成的图形为D ,其面积为0S 。

又曲线()sin 0y a xa =>将D 分为左右两部分12,D D ,其面积分别为12,S S ,求a 的值使12:2:1S S =。

解:[]2200cos sin 1S xdx x ππ===⎰又因为1201S S S +==,12:2:1S S = 所以1221,33S S ==()arccot 102cos sin 3a S x a x dx ==-⎰[]()()cot 0sin cos sin cot cos cot arc ax a x arc a a arc a a =+=+-2512a a a =-=⇒=五、(本题8分)设())()()()1b x b f x x a x -=--有无穷间断点10x =,有可去间断点21x =,求,a b 之值。

解:因为10x =是无穷间断点,所以0x →时,()f x →∞,因此0a =,0,1b b ≠≠ 又因为21x =是可去间断点,而1x →时,()()10x a x --→,所以,当1x →时,有)()0b x b -→,因此2b =。

六、(本题9分)设()21020x e x f x x x ⎧-≠⎪=⎨⎪=⎩,讨论()(),f x f x '在0x =处的连续性。

解:因为()()2001lim lim20x x x e f x f x→→-===,所以()f x 在0x =处的连续。

相关文档
最新文档