区间信号控制资料

合集下载

区间信号自动控制PPT课件

区间信号自动控制PPT课件
三显示自动闭塞分区的最小长度,应满足列车的制动距离,其长度不应 小于1200m,但采用不大于8min运行间隔时间时,不得小于1000m。进站信 号机前方第一个闭塞分区长度,一般不大于1500m。
四显示自动闭塞在确定的运行间隔时间内按四个闭塞分区排列通过信号 机。四显示自动闭塞每个闭塞分区的长度,应满足速差制动所需的列车制动 距离。列车运行速度超过120km/h时,紧急制动距离由两个及其以上闭塞分 区长度来保证。
自动闭塞概述
为了充分发挥铁路线路的运输能力,在双线区段的每一条 线路上都能双方向运行列车,这样的自动闭塞称为双线双向自 动闭塞,正方向设置通过信号机,反方向运行的列车是按机车 信号的显示作为行车命令的,即此时以机车信号作为主体信号。
自动闭塞概述
⑵按通过信号机的显示制式 可分为三显示自动闭塞和四显示自动闭塞。
上节重点内容回顾
1、微机计轴设备的工作原理? 2、微机计轴设备的组成? 3、微机控制系统的组成?
第三章 自动闭塞
01
自动闭塞概述
02
区间通过信号机的设置
第三章 自动闭塞
重点:
1、自动闭塞的定义及原理。 2、自动闭塞的分类? 3、区间通过信号机的布置方法?
01
自动闭塞概述
自动闭塞概述
自动闭塞是根据列车运行及有关闭塞分区状态,自动变换通过信号机显示 而司机凭信号行车的闭塞方法。它将一个区间划分为若干小段,即闭塞分区, 在每个闭塞分区的起点装设通过信号机用以防护该闭塞分区。每个闭塞分区 内都装设轨道电路(或计轴器等列车检测设备),通过轨道电路将列车和通过 信号机的显示联系起来,根据列车运行及有关闭塞分区的状态使通过信号机 的显示自动变换。
自动闭塞概述
图2—2 三显示自动闭塞基本原理

区间信号自动控制-2.2

区间信号自动控制-2.2

上张 下张 首页 退出
甲站
发车
接车
乙站
接车
发车
FUA SGA BSA
BSA SGA FUA
乙站ZXJ吸起的同时,构通乙站闭塞电铃的励磁电路,使乙站 的闭塞电铃鸣响
上张 下张 首页 退出
甲站
发车
接车
乙站
接车
发车
FUA SGA BSA
BSA SGA FUA
甲站松开闭塞按钮(BSA)甲站的闭塞按钮继电器(BSAJ) 失磁落下
B2
ZXJ FXJ FUJ ZKJ XZJ TJJ TCJ JSBJ FSBJ DLJ
乙 B1

HDJ BSJ KTJ ZDJ FDJ GDJ FUAJ SGAJ BSAJ ZQ
B2
电铃
ZXJ FXJ FUJ ZKJ XZJ TJJ TCJ JSBJ FSBJ DLJ
上张 下张 首页 退出
甲站
发车
上张 下张 首页 退出
甲站
发车
接车
乙站
接车
发车
FUA SGA BSA
BSA SGA FUA
甲站ZXJ吸起的同时,构通甲站闭塞电铃的励磁电路,使甲站 的闭塞电铃鸣响
上张 下张 首页 退出
甲站
发车
接车
乙站
接车
发车
FUA SGA BSA
BSA SGA FUA
甲站ZXJ吸起后,利用先前已自闭的ZKJ第四组前接点,ZXJ第四组前 接点,GDJ第三组前接点构通甲站KTJ励磁电路,KTJ励磁吸起,并 且通过其第一组前接点自闭。
上张 下张 首页 退出
甲站
发车
接车
乙站
接车
发车
FUA SGA BSA

《区间信号自动控制》课程教学大纲概要

《区间信号自动控制》课程教学大纲概要

《区间信号自动控制》课程教学大纲(Automatic Control of Railway Wayside Signaling)一、课程目标1.任务和地位、知识要求: 本课程是为铁道信号专业开设的核心专业课之一, 该专业培养铁道信号专业领域中高级工程技术人才, 要求学生系统掌握铁道信号控制系统, 而区间信号自动控制系统对于保证行车安全, 提高区间通过能力、改善劳动条件等起着显著的作用, 它作为铁路信号现代化的重要基础设备, 在我国得到了迅速的发展。

本课程系统地阐述了区间闭塞系统的基本概念和基本原理, 通过继电半自动闭塞和自动闭塞典型制式的举例, 使学生加深对区间闭塞系统的理解和认识;对机车信号也进行相应的介绍。

本课程的主要预备课程有电路分析、电子线路和铁道信号基础设备及原理。

二、 2、能力要求:通过本课程的学习, 使学生对有关基本概念、基本知识、基本理论按“了解、掌握、重点掌握”三个层次进行。

“了解”即要求学生对这部分内容知道, 对其中所涉及到的内容理解;“掌握”即要求学生对这部分内容有较深入的理解, 并把握。

“重点掌握”即要求学生对这部分内容能够深入理解并熟练掌握, 同时能够灵活地进行分析和运用到实际中。

三、教学内容的基本要求和学时分配2.具体要求第一章区间闭塞系统研究和设计基础[目的要求] 通过本章的学习, 重点掌握区间闭塞的基本概念, 掌握区间闭塞的技术条件及基本方法。

[教学内容] 区间闭塞的基本概念、区间闭塞的技术条件及基本方法[重点难点] 区间闭塞的技术条件及基本方法[教学方法] 讲授[作业][课时] 6第二章半自动闭塞[目的要求] 通过本章的学习, 重点掌握单线继电半自动闭塞电路原理, 掌握其电路构成, 了解半自动闭塞的技术改造。

[教学内容] 半自动闭塞原理及设备、单线继电半自动闭塞电路的构成、半自动闭塞的技术改造[重点难点] 单线继电半自动闭塞结合电路原理[教学方法] 讲授[作业] 分析单线继电半自动闭塞电路原理[课时] 6第三章典型移频自动闭塞[目的要求] 通过本章的学习, 重点掌握移频自动闭塞的基本原理, 掌握控制电路, 了解新型自动闭塞。

《区间信号自动控制》实验教学大纲

《区间信号自动控制》实验教学大纲

《区间信号自动控制》实验教学大纲课程代码:RTSI2003课程名称:区间信号自动控制英文名称:Automatic Control on Railway Signal实验室名称:课程学时:54实验学时:6一、本课程实验教学目的与要求《区间信号自动控制》课程是为铁路信号专业开设的核心专业课之一,该专业培养铁路信号专业领域中高级工程技术人才,要求学生系统掌握铁路信号控制系统,而区间信号自动控制系统对于保证行车安全,提高区间通过能力、改善劳动条件等起着显著的作用,它作为铁路信号现代化的重要基础设备,在我国得到了迅速的发展。

本课程系统地阐述了区间闭塞系统的基本概念和基本原理,通过继电半自动闭塞和自动闭塞典型制式的举例,使学生加深对区间闭塞系统的理解和认识;对站内电码化、机车信号和自动停车装置也进行相应的介绍。

实验教学紧密结合课堂教学环节,通过实践教学强化学生其相关知识的理解和掌握,其中重点掌握目前使用ZPW2000A移频自动闭塞系统,包括其系统特点、系统组成(室内设备和室外设备)、工作原理、系统参数测试等二、主要仪器设备及所需台套数ZPW2000移频自动闭塞系统包括室内设备和室外设备及辅助测试工具四、考核方式1、实验报告:应撰写实验报告2、考核方式:实验课的考核方式:评定分数以预习准备程度及态度10%、实验过程60%、实验完成情况及成果30%核定成绩。

实验课成绩占课程总成绩的比例为20%。

五、实验教材、参考书1、教材:区间信号自动控制实验指导书. 苏州大学.2011.2、参考书:(1)区间信号与列车运行控制系统.董昱.中国铁道出版社.2008(2)新型移频自动闭塞. 林瑜筠. 中国铁道出版社,2001(3)区间信号图册.徐彩霞. 中国铁道出版社,2009。

区间信号自动控制课程设计概要

区间信号自动控制课程设计概要

1设计目的本次课程设计旨在通过回顾学过的区间相关知识设计并利用AutoCAD软件绘制区间信号设备平面布置图,区间移频柜设备布置图,区间综合柜设备布置图和通过信号机点灯电路。

熟练掌握公里标的含义,信号机的布置和命名,设备的配置和点灯电路等实际的高于课本的专业知识,为我们以后参加工作夯实基础。

2设计内容及要求绘制区间信号设备平面布置图,区间移频柜设备布置图,区间综合柜设备布置图和通过信号机点灯电路。

熟练掌握公里标的含义,信号机的布置和命名,设备的配置和点灯电路等专业知识。

设计原理:ZPW-2000A系统由调谐区、匹配变压器、补偿电容、传输电缆、发送器、接收器、衰耗盒、电缆模拟网络组成。

发送器用于产生高精度、高稳定移频信号源,系统采用N+1冗余设计,故障时通过FBJ接点转至“+1FS”。

接收器采用A、B双机并联,A主机输入接至A主机,并同时接入B主机;B 主机输入接至B主机,并同时接入A主机;A主机输出与B主机输出并联,动作A主机的执行对象;B主机的输出也是类似的。

调谐区由主轨和短小轨组成,主轨道信号传至本区段接收器,调谐区小轨道信号由运行前方相邻轨道电路接收器处理,并将处理结果形成小轨道电路轨道继电器执行条件(XG、XGH送至本轨道电路接收器,做为轨道继电器(GJ励磁的必要检查条件之一。

衰耗盘用于实现主轨道电路、小轨道电路的调整。

给出发送接收故障,轨道占用表示及发送,接收用+24电源电压,发送供出电压和接收GJ、XGJ测试条件。

正方向调整用a11~a23端子,反方向调整用c11~c23端子。

3设计图纸说明3.1区间信号平面布置图我设计的K14站中有16个闭塞分区,上行有九个闭塞分区,下行有九个闭塞分区。

在区间信号平面图的绘制中包括进站信号机、出站信号机和通过信号机的布置和命名,反向进站预告标的设置,各闭塞分区载频的配置,补偿电容的配置以及确定区间各区段的长度及命名。

如附图QJKS-01所示。

13.1.1区段长度的设置本次设计站绘制区间信号平面布置图分了18个区段,每个区段的划分以电气绝缘节为分界点,但是进出站的地方用机械绝缘隔开。

区间信号自动控制

区间信号自动控制

➢分路电阻:0.15Ω
➢分路电流:站内道岔大于1.6A、其它区段大 于0.8A
➢道床电阻:区间2.0Ω·km,站内道床电阻: 1.5Ω·km
采用移频键控FSK的调制方式,由27位数字编 码组成。
➢纠错码占6位:检查并纠正信号误读
➢坡度码占4位:坡度信息由整个闭塞分区情况平均 而得
➢目标距离占6位:可将目标距离分成64种情况
➢接收器:检查轨道电路空闲,区分不同载频的移频 信号,检查低频信号,提高轨道电路工作的可靠性
➢方向板:接收BIP的指令,改变发送器、接收器的 方向,从而实现双向运行
➢模拟电缆板:简化轨道电路的调整,同时使改变运 行方向的电路得以简化
➢调谐单元BU:对本区段的信号频率呈容性,该电容 与协调区钢轨和空心线圈的电感并联谐振,呈现较 高的阻抗,可减少对本区段信号的功率损耗。对相 邻区段信号频率串联谐振,呈现较高的阻抗,可以 阻止相邻区段的信号进入本区段,以此实现两相邻 轨道电路的电气隔离
➢速度码占8位:最多可代表256种
➢路网码:路网码决定列车如何理解速度码,不同类 型的速度码代表不同的路网码
ห้องสมุดไป่ตู้
通频常数的值越大,移频信号的频谱能量越 分散,带宽也就越宽,但边频所含的能量越多,抗 干扰性能越强:通频常数的值越小,移频信号的频 谱能量越集中,带宽也就越窄,但边频所含的能量 越小,抗干扰性能越弱。所以在保证带宽合适的前 提下选择尽可能大的调频常数
通过BU、SVAC和调谐区钢轨电感等参数 间的配合,把相邻的两个轨道电路区段信号 隔离,即完成“电气绝缘节”作用。为了保 证轨道电路的传输距离,UM2000无绝缘轨道 电路同UM71一样,也采用了在钢轨中间加装 补偿电容的方法来减弱电感的影响,但补偿 电容的节距要根据载频的轨道电路的实际长 度计算

区间信号控制资料课件

区间信号控制资料课件

区间信号控制是指通过控制列车在区间内的运行速度,确保列车安全、准时地通过区间的一种信号控制方式。
区间信号控制主要通过列车自动控制系统实现,包括列车自动防护(ATP)、列车自动控制(ATO)和列车自动监督(ATS)等子系统。
区间信号控制技术的历史可以追溯到20世纪初,最初采用的是机械信号机,后来逐渐发展为电气化信号机和计算机化的列车自动控制系统。
05
CHAPTER
未来区间信号控制技术的发展趋势与挑战
随着人工智能和大数据技术的发展,区间信号控制将更加智能化,能够实现自适应和自主学习。
智能化
自动化
集成化
安全性
自动化技术将进一步提高区间信号控制的效率和准确性,减少人为干预和错误。
未来区间信号控制技术将更加集成化,能够实现多系统、多功能的综合控制。
列车运行方向和速度的指示
轨道电路通过电流的传输和接收,检测列车的占用和空闲状态,以及列车的位置和运行方向。
列车位置和运行状态的检测
自动闭塞系统根据轨道电路的信息,自动控制列车的运行速度和间隔,确保列车安全、有序地运行。
列车运行速度和间隔的控制
控制系统接收和处理轨道电路、自动闭塞系统等设备的信息,根据列车运行情况发出控制指令,实现列车的自动化控制。
铁路运输区间信号控制系统概述:铁路运输区间信号控制系统是铁路运输系统的重要组成部分,用于确保列车在区间内的安全和高效运行。该系统通过列车与地面控制设备之间的信息交换,实现列车进路的控制、列车间隔的调整以及列车速度的监控等功能。
高速公路区间信号控制系统概述:高速公路区间信号控制系统是确保高速公路上车辆安全、高效行驶的重要设施之一。该系统通过在高速公路沿线设置一系列的交通信号设备和信息采集设备,实现对高速公路上车辆的实时监测和控制。

《区间信号自动控制》课件

《区间信号自动控制》课件

2
控制算法
研究不同的控制算法,如定时控制和感应控制,用于实现区间信号自动控制。
3
硬件控制
了解硬件控制技术,如控制器和执行器,用于实现区间信号自动控制。
区间信号自动控制的应用案例
交通安全
了解区间信号自动控制在交通安 全领域的应用,如信号灯控制和 交通流优化。
智能家居
探索区间信号自动控制在智能家 居中的应用,如智能照明和智能 温控。
制造业
了解区间信号自动控制在制造业 中的应用,如自动化生产线和机 器人控制。
区间信号自动控制的总结
1 优势和干预,以及不足,如系统稳定性 和成本。
2 未来发展方向
展望区间信号自动控制的未来发展方向,如人工智能的应用和系统集成的进一步发展。
3 结语
感谢大家参与本次《区间信号自动控制》的学习,希望您能在自己的领域中运用所学知 识。
《区间信号自动控制》PPT课件
# 区间信号自动控制 ## 简介 - 什么是区间信号自动控制? - 区间信号自动控制的基本原理 - 区间信号自动控制在生活中的应用 ## 区间信号自动控制的原理 - 区间信号的特点 - 区间信号自动控制系统的组成部分 - 区间信号自动控制系统的工作流程 ## 区间信号自动控制的实现 - 传感器控制技术 - 控制算法 - 硬件控制 ## 应用案例介绍 - 区间信号自动控制在交通安全中的应用 - 区间信号自动控制在智能家居中的应用
区间信号自动控制的基本原理
区间信号的特点
了解区间信号的特点,包括信号类型、时序和周期性。
系统组成部分
探索区间信号自动控制系统的组成部分,如传感器、控制算法和硬件设备。
工作流程
学习区间信号自动控制系统的工作流程,包括信号检测、数据处理和控制输出。

区间信号自动控制-6ppt课件

区间信号自动控制-6ppt课件

叠加方式站内轨道电路电码化
.
叠加方式站内轨道电路电码化
.
叠加方式站内轨道电路电码化
(2)正线反向接车进路电码化电路
反方向接车进路移频化 电路
.
叠加方式站内轨道电路电码化
(3)正线发车进路电码化电路
.
叠加方式站内轨道电路电码化
发车进路移频化电路
.
叠加方式站内轨道电路电码化
(3)正线发车进路电码化电路
当办理了正线反方向运行的进路时, 通过条件将发码和检测电 路的位置互换。
.
ZPW-2000A闭环电码化检测系统
2.侧线轨道电路电码化闭环检测系统
.
02
切换方式站内轨道电路电码化
.
切换方式站内轨道电路电码化
一、固定切换方式的站内电码化 固定切换方式是指在站内的每个轨道电路区段都分别
设置轨道发码继电器FMJ,平时FMJ处于落下状态,当列 车驶入本区段后,由于轨道继电器GJ落下而使本区段相应 的FMJ吸起,从而切断了原规定电路,并同时接入相应的 信号电码化设备FS实现对该区段的电码化.
.
ZPW-2000A闭环电码化检测系统
2)发码的切断 由于同时向各区段发码,列车出清的区段应及时停止发码,
以防后续列车冒进。因此,每个发码区段设 1 个切断发码继电器 QMJ。平时吸起,在每个区段的发码电路中接入其前接点,当列车 压入下一区段,本区段 QMJ 落下,切断该区段的发码。 3) 检测方向的切换
2、叠加方式站内轨道电路移频化 叠加方式站内轨道电路移频化电路如图所示,为占用式
发码方式,即列车占用本区段,轨道继电器落下,发码继电 器吸起,使移频轨道电路与原轨道电路相叠加,迎着列车发 码。待列车驶入下一区段,下一区段轨道继电器落下,下一 区段发码继电器吸起,断开本区段发码电路。列车出清本区 段,轨道继电器吸起,发码继电器落下,恢复原轨道电路。

区间信号自动控制-4.2

区间信号自动控制-4.2

衰耗盘
接收器 XG XGH GJ2
ZPW-2000A型无绝缘轨道电路移频自动闭塞
序号 1 2 3 4 5 6 7
设备
发送器 模拟网络盒 衰耗盒 接收器 无绝缘移频自动
型号
ZPW· F ZPW· PML1 ZPW· PS1 ZPW· J ZPW· G-2000A
序号 8 9 10 11 12 13 14
ZPW-2000A型无绝缘轨道电路移频自动闭塞
室外设备
5.传输电缆 采用SPT型铁路信号数字电缆,线径为Φ1.0mm,总长10km 6.引接线 采用3700mm、2000mm钢包铜引接线各两根构成。用于调谐单元、 空芯线圈、机械绝缘节空芯线圈等设备与钢轨间的连接。 7.扼流变压器 电力牵引区段,在每一个轨道电路区段起平衡一次牵引电流,也用作 轨道电路与贯通地线及架空回流线的连接。站内区段,采用带适配器的扼 流变压器。
2600-2 2598.7 Hz
ZPW-2000A型无绝缘轨道电路移频自动闭塞
3 接收器
轨道电路调整状态下:主轨道接收电压不小于240mV;主轨道继电器电 压不小于20V(1700Ω负载,无并机接入状态下);小轨道接收电压不小 于33mV;小轨道继电器或执行条件电压不小于20V(1700Ω负载,无并 机接入状态下)。
1700Hz 2000Hz 2300Hz 2600Hz
ZPW-2000A型无绝缘轨道电路移频自动闭塞
6 系统冗余方式
发送器采用N+1冗余,实行故障检测转换。 接收器采用成对双机并联运用。
ZPW-2000A型无绝缘轨道电路移频自动闭塞
系统基本工作原理
列车运行方向 : X 行
机车显示:L 地面显示:L 5G 1700-1 11.4Hz

区间信号自动控制

区间信号自动控制

区间信号自动控制是区间信号闭塞、自动控制、远程控制的总称区间:指车站之间或线路所中间的线路闭塞:用新号、或凭证保证列车按照空间间隔制运行的技术方法,称为行车闭塞法,简称闭塞。

闭塞类型:1、半自动闭塞:如:64d 64y 64f2、自动站间闭塞3、自动闭塞三种闭塞制式的不同特点1、半自动闭塞:(1)以出站信号机开放的绿灯作为占用区间的凭证(2)由继电器(17个)构成闭塞电路(3)两站之间的区间不设轨道电路(4)构成简单节约投资,因此使用广泛(5)缺点—区间无轨道电路,丢车时不安全!2、自动站间闭塞:(1)以出站信号机开放的绿灯作为占用区间的凭证(2)区间设有三段轨道电路—甲站JG 乙站JG 中间设一段25HG 相轨道电路(3)发车时,只有三段轨道电路,均空闭标准发车(4)到达时,只有三段轨道电路,均空闭才能制动取消闭塞(5)区间也可不设轨道电路采用机轴方式-既机轴自动站间闭塞3、自动闭塞:(1)不需要办理闭塞手续,只须确认,空闭即可办理区间发车进路(2)区间不再是一个比赛对象,而分为若干个闭塞分区,每个闭塞分区的入口处均设有通过信号机对该闭塞分区进行防护(3)每个闭塞分区均设有轨道电路(有绝缘、无绝缘)通过轨道作用实现自动闭塞,不需认为参与(4)好处,增强区通过能力,下率高,缺点:投资大第一章:半自动闭塞与自动站间闭塞第一节:概念半自动闭塞的基本概念:1)由人工办理闭塞手续2)由人工办理进站→开放出站信号机3)由列车关闭出站信号机,并使闭塞机转入闭塞状态半自动闭塞作用:1)甲→乙发车,区间空闲→站同意→才能开放出站信号机2)行车由甲站出发→闭塞机转入比赛状态3)列车到达乙站:车站值班员确认列车完整到达办理到达复员后,区间才能解除闭塞。

半自动闭塞特点:P4(1)(3)(4)2)采用三个不同极性脉冲构成允许发车信号甲站乙站田正极性脉冲自动回执信号曰同意接车信号KTJ↑田开通继电器半自动闭塞的技术要求:一、保证行车安全方面:①区间空闭②发车站发出请求发车信号1)出站信号机开放条件③收到自动回执信号④收到街车站同意接车信号KTJ↑→接通11线→构成电气集中开放信号条件2)当列车出发进入发车站轨道电路后,两站闭塞机构处于闭塞状态(BSJ↓)3)当列车到达街车站,进入并出清轨道电路区段,机车进路解锁并办理到达复员后,才能使双方的闭塞机复原(BSJ↑)4)闭塞机处于比赛时(BSJ↓)在接车站未办理到达复原或事故复原前,当发生错误,办理及故障时均不能使用闭塞机复原,更不能使发车站闭塞机开通。

区间信号自动控制题库

区间信号自动控制题库

区间信号自动控制题库区间信号自动控制是指在道路交通方面,根据车辆通过某一路段的密度和速度等信息,来动态控制交通信号的时长和相位,以提高道路通行效率和交通流量的现代化交通控制方式。

一、区间信号自动控制的基本原理区间信号自动控制的基本原理是根据道路上的车辆流量和速度等数据,通过传感器采集车辆信息并进行实时分析,然后根据交通信号配时模型和控制算法,自动调整信号灯的时长和相位。

具体来说,区间信号自动控制需要以下关键步骤:1. 数据采集:通过车辆传感器获取道路上车辆的数量、速度、车头时距等信息。

2. 数据处理:将采集到的数据进行处理和分析,得到交通流量、车辆间距、车速等指标。

3. 交通信号配时模型:根据交通信号的设计参数和实际道路情况,建立合理的信号配时模型。

4. 控制算法:根据交通信号配时模型,结合实时采集的数据,运用控制算法自动调整信号灯的时长和相位。

5. 信号输出:根据控制算法的结果,控制交通信号灯的变化,确保道路通行效率和交通流量的最优化。

二、区间信号自动控制的优势区间信号自动控制相比传统的固定时间信号控制有以下优势:1. 实时性强:区间信号自动控制能够及时获取道路上车辆信息,并根据实时数据动态调整信号配时,更准确地适应交通状况的变化。

2. 灵活性高:区间信号自动控制可以根据不同时间段和交通需求,灵活调整信号的时长和相位,以满足不同道路的要求,提高道路的通行能力。

3. 能耗低:由于区间信号自动控制是根据实际交通情况进行智能调整,避免了固定时间配时的资源浪费,使能耗大幅降低。

4. 通行效率高:通过准确的交通信息和智能的控制算法,区间信号自动控制能够使道路上的车流量最大化,并有效减少交通拥堵。

5. 适应性强:区间信号自动控制可以自动根据不同道路情况和交通需求进行调整,提供适应性强的交通控制方案。

三、区间信号自动控制的应用现状和前景目前,区间信号自动控制在城市交通中得到了广泛应用,并取得了一定的成效。

许多城市已经采用了区间信号自动控制系统,提高了道路通行能力和交通效率。

区间信号自动控制

区间信号自动控制

第一章闭塞和闭塞系统认知2. 什么是半自动闭塞?什么是自动站间闭塞?什么是自动闭塞?它们有什么不同?半自动闭塞:是用人工来办理闭塞及开放出站信号机,而由出发列车自动关闭出站信号机并实现区间闭塞的一种闭塞方式自动站间闭塞:在自动闭塞区段,配套计轴设备或长轨道电路,可自动地确认列车的完整到达,使区间闭塞设备自动复原,构成自动站间闭塞自动闭塞:是根据列车运行及有关闭塞分区状态,自动变换通过信号机显示而司机凭信号行车的闭塞方法不同:由定义可看出,半自动闭塞需要人工办理闭塞;自动站间闭塞可使区间闭塞设备自动复员但闭塞以整个区间为单位;自动闭塞则不需要人工干预,自动变换信号显示,并将区间划分为若干闭塞区间3. 简述半自动闭塞系统的技术特征,设备组成,基本原理和技术经济效益技术特征:①以出站信号机或线路所通过的信号机绿灯显示为列车占用区间的凭证②办理闭塞和到达复原时人工完成的,而实现闭塞有列车自动完成,整个过程半自动设备组成:半自动闭塞及,半自动闭塞用的轨道电路,操纵和表示设备及闭塞电源,闭塞外线(在控制电路中还包括车站的出站信号机的控制条件)基本原理:发车站要向区间发车,必须检查区间空闲,经两车站值班员同意,办理闭塞手续后区间内才能开通,发车站的出站信号机或线路所的通过喜好及才能开放;列车进入区间够,发车站的出站信号机或线路所的通过信号机自动关闭,而且在列车未到达接车站以前,向该区间发车用的所有信号机都不得开放;列车到达接车站,由车站值班员确认列车整列到达,办理到达复原后,使两站闭塞机复原技术经济效益:实践证明,几点半自动闭塞的经济效益很显着,具有设备简单,使用方便,维修容易,投资少,安装快等优点;从车安全程度提高,司机,车站值班员劳动条件改善,列车运行速度提高;但是,采用此技术,不能充分发挥铁路线路(尤其是双线)的通过能8.三显示自动闭塞和四县市自动闭塞有何异同?三显示自动闭塞的通过信号机有3种显示,能预告前方两个闭塞分区的状态,当通过信号机所防护的闭塞分区被列车站用时显示红灯;仅它所防护的闭塞分区空闲时显示黄灯;其运行前方有两个及以上的闭塞分区空闲时显示绿灯。

区间信号基础知识

区间信号基础知识

一、区间信号基本知识(一)概述1.闭塞的基本概念所谓区间,是指两个车站之间(或线路所、或最小运行间隔)的轨道线路。

相邻两站之间的区间称为站间区间,车站与线路所之间的区间叫做所间区间。

区间的界限是进站信号机柱或站界的中心线。

闭塞就是用信号或凭证保证前行列车和追踪列车之间必须保持一定距离运行的技术方法。

它是铁路上防止列车对撞或追撞(追尾)的方式,是铁路上保障安全的一个较主要的方法。

2.闭塞的发展早期的闭塞问题主要是防止列车对向相撞问题,随着铁路繁忙起来,为了提高运行效率,人们希望同一方向可以追踪列车。

因此要保证列车的安全,不仅要防止对向相撞问题,还要防止列车追尾。

最初采用的闭塞制式是时间间隔法,即前行列车和追踪列车之间必须保持一定的时间间隔的行车方法。

当先行列车出发后,经一定的时间,才允许后续列车出发。

由于先行列车可能在途中减速或因故停留在区间,有可能发生后续列车撞上前行列车的追尾事故。

故此方法很不可靠。

1842年英国人库克提出了空间间隔法。

空间间隔法是控制前行列车和追踪列车之间保持一定距离的行车方法。

一般以相邻两车站之间作为一个区间,或将区间的铁路线路划分为若干个独立的区间(称为“闭塞分区”),一个区间或一个闭塞分区同时至允许一列列车运行。

因为它能较好的保证行车安全而被广泛采用,逐步形成铁路区间闭塞制度。

行车闭塞制式大致经历了:电报或电话闭塞---路签或路牌闭塞---半自动闭塞---固定分区自动闭塞---准移动闭塞---移动闭塞的发展过程。

3.闭塞的分类1)从人工介入程度可以分为:①人工闭塞:包括电报或电话闭塞、路签或路牌闭塞。

它采用电气路签(牌)闭塞作为占用区间的凭证,相邻两站都设有电气路签(牌)机,非经两站同意,并办理一定手续,不能从中取出路签(牌);在取出一个路签(牌)后,不能取出二个。

这就保证了同时只有一列列车在区间内运行。

因为这种方法在交接凭证和检查区间状态都有要依靠人来完成,所以叫做人工闭塞,这种闭塞方法在我国已经很少采用。

区间信号自动控制-6-PPT

区间信号自动控制-6-PPT

叠加方式站内轨道电Байду номын сангаас电码化
1、隔离器 • 以移频信号叠加50HZ轨道电路信号为例,隔离器有两种,CLQ—I型和GL0—Ⅱ
型。 • CLQ—I型用于轨道电路发送端发码 • CLQ—Ⅱ型用于轨道电路接收端发码
叠加方式站内轨道电路电码化
• CLQ—I型为送端隔离器,如图所示,由电容、电感、变压器组成,用于 隔离 50Hz轨道电路发送端和移频发送电路。因两者频率不同,它们对 于C1、C2的阻抗也不相同,50Hz电源不向移频发送盘传送,而只传至 轨道。反之,移频信息也不送至50Hz电源,而只送至轨道。两者互不 影响。
站内轨道电路电码化,指的是非电码的轨道电路能根据运 行前方信号机的显示发送各种电码。对于移频轨道电路,电码 化就是移频化。
站内轨道电路电码化概述
站内轨道电路现状
我国铁路站内轨道电路通常采用25Hz相敏轨道电路或交流 连续 式轨道电路(480轨道电路),它们只有占用检查的功能, 既只能检查本区段是否有车占用或空闲,不能向机车信号车载 设备传递任何信息。如果站内轨道电路不进行电码化,列车在 站内运行时机车信号将中断工作,无法保证行车安全。
站内轨道电路电码化概述
站内轨道电路电码化概述
四、站内移频化电路组成及相关规定 在双线自动闭塞区段,站内移频化电路由四部分组成 一是转换开关电路,由传输继电器组成,用来验证轨道电路转发机车信号信息的 条件,并且控制向轨道发码及轨道电路的恢复时机。 二是信号、进路检查电路,由接车发码继电器和发车发码继电器电路构成,用以 检查列车是否冒进信号以及列车“直进”、“直出”进路,并予以记录供转换开 关电路使用。股道区段移频化时可不设该电路。 三是发码电路,由编码条件和码源移频发送盒组成,其作用是根据编码条件发出 不同的机车信号信息。 四是隔离器电路,由于站内电码化多采用叠加方式,轨道中同时传输两种信息。 隔离器的作用是保证两种信息源在传输过程中互不干扰。

铁路信号系统—区间信号闭塞系统

铁路信号系统—区间信号闭塞系统
因此,在一定条件下,必站开往区间的信号机。
出站信号机不能任意开放,它受半自动闭塞机的控制。只有当区间 空闲,经过办理手续后,出站信号机才能开放。还应注意,出站信 号机既要防护列车区间运行的安全,又要防护出发列车在站内运行 的安全。所以它既要受闭塞机的控制,又要受到车站联锁设备的控 制,即受到双重设备控制。
半自动闭塞
1.半自动闭塞设备 (3)专用轨道电路
专用轨道电路应设在车站进站信号机内方适当地点,用以 监督列车的出发和到达,并使双方闭塞机的接发车表示灯 有相应的表示。专用轨道电路的长度一般不少于25米。
半自动闭塞
2.半自动闭塞工作情况概述
半自动闭塞工作情况 现AB区间空闲,由A向B站发车。A站值班员用接在通信线路中的专用电话向B站联系请求发车,B站 值班员接受请求后,A站值班员可按下闭塞按钮,此时A站发车表示灯亮黄灯,B站的接车表示灯也亮 黄灯。B站值班员按压闭塞按钮,此时B站接车表示灯由黄灯变为绿灯,A站发车表示灯也由黄灯变为 绿灯。A站即可办理发车进路,开放出站信号机,列车从A站出发。当列车驶入轨道电路区段后,A站 发车表示灯由绿灯变为红灯,出站信号机自动关闭。B站接车表示灯也由绿灯变为红灯。此时A站出站 信号机不能再次开放,当然A站就不能再向B站发车了,由于区间处于闭塞,B站也不能向A站发车, 这也就保证了该区间只准许有一列列车运行。
自动闭塞设备虽然比较先进,但比其他闭塞设备的初期投资大得多,因 此,应当根据具体情况选用。在我国铁路上,复线区段多采用自动闭塞, 单线区段多采用半自动闭塞。
任务五 区间信号控制
目录
一半 自 动 闭 塞 二自 动 闭 塞
区间信号控制
概述
区间信号控制的目的是为了保证区间行车安全,提高区间通过能 力与行车速度。为达到该目的,在区间采用行车闭塞法,依靠闭 塞系统设备来具体实现。

区间信号自动控制-2.3

区间信号自动控制-2.3

乙站
HDJ TJJ
FXJ FBD
FDJ JBD
甲站向乙站请求发车的电路动作程序
半自动闭塞电路工作程序
一、正常办理
2、乙站同意甲站发车
甲站
乙站
GDJ KTJ ZXJ ZDJ
TJJ
BSJ JBD BSA ♂
半自动闭塞电路工作程序
一、正常办理
3、列车从甲站出发
甲站
乙站
TJJ BSJ KTJ
缓落
GDJ ZDJ ZXJ TCJ JBD GDJ
三、事故复原
根据继电半自动使用的方法的规定,只准在下列三种情况下使用事故复原。 1、闭塞机停电后恢复时
停电恢复后办理事故复原时的电路动作程序
半自动闭塞电路工作程序
三、事故复原
2、当列车到达接车站后,因轨道电路故障不能办理到达复原时
接车站轨道电路故障办理事故复原时的电路动作程序
电路工作原理
一、线路继电器电路 二、信号发送器电路 三、发车接收器电路 四、接车接收器电路 五、闭塞继电器电路 六、复原继电器电路 七、轨道继电器电路
无法检查区间占用状态 列车是否完整到达
定义
采用微机计轴设备检查区间空闲的站间闭塞 ZD型是指微机计轴设备与继电半自动闭塞组合而成 的站间闭塞。
计轴站间闭塞
原理
列车出发,通过进站信号机内方无岔区段上的电磁传感器时,车轮 的屏蔽作用改变了传感器接受磁头中磁场分布,接收磁头将磁场变化的 信息经通信电缆发送到计轴器,由微机进行识别判断并计算出站列车的 轴数; 列车到达临站后,设置接车站的传感器和计轴器以同样的方式计算
TJJ电路失磁条件
GDJ↓断开自闭电路 FUJ ↓→TJJ↓
电路工作原理
3、TCJ电路
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机动车制动距离经计算小于90米,所以道口 自动信号机的显示距离要求达到 100米。这 是对“禁止通行”信号而言的,而“允许通 行”信号要求更近些,达到50米即可。
23
3、道口接近段长度 目前,我国规定接近报警时间T为:单线或复 线区段的道口T>40秒。 根据列车接近报警时间和列车接近区段运行速度, 就可按下式求出接近区段的长度L(单位:米)。 3.6——km/h化为m/s的系数; v——列车在接近区段内运行的最 高速度,千米/小时; T——列车接近时分。 为了列车在道口的运行安全,按列车接近区段 内运行的最高速度来确定接近区段的长度,一 般为1200~1300米。 24
第三节 区间信号控制
学习要求: 深刻理解闭塞的定义;理解行车闭塞法的基 本含义与分类。 理解半自动闭塞与自动闭塞的定义、设备与 工作原理。 了解平交道口的信号控制。
1
一、概述
区间信号控制的目的是为了保证行车安全,提 高区间通过能力与行车速度。为达到该目的, 我们采用行车闭塞法,依靠闭塞设备来具体实 现。
20
1、道口安全防护设备的分类 1)道口自动通知:指当列车接近道口时,自 动发出报警通知,由道口看守员关闭手动栏杆。 2)道口自动通知与道口自动信号并用:用于 有人看守的道口。该设备比较完善,在铁路 运输和公路运输都比较繁忙的道口,要安装 此种道口设备。
3)道口自动信号:用于无人看守道口。当列车 接近道口时,自动地控制设在公路上的道口自动 信号机和室外音响设备,自动地使栏木关闭,列 车通过道口后,自动地使设备恢复原状。
12
目前,我国铁路上采用的自动闭塞主要有单线双向 自动闭塞(在线路两侧均设有通过色灯信号机)和 复线单向自动闭塞(每条线仅一侧信号机)两种。
单线双向自动闭塞
双线单向自动闭塞
13
(一)三显示自动闭塞
目前,我国铁路上广泛采用的是三显示自动闭塞,它 用红、黄、绿三种颜色的灯光来指示列车运行的不同 条件。
4
1 半自动闭塞设备
(1).闭塞机
采用半自动闭塞的区间两端车站上各设一台 闭塞机,一段专用轨道电路和出站信号机, 它们之间用通信线路相连接,用来控制出站 信号机并实现相邻车站之间办理闭塞。
闭塞机包括电源、继电器、操纵按钮、表示 灯和电铃等。
5
(2).出站信号机
出站信号机是指示列车能否由车站开往区间的 信号机。
10
三、自动闭塞
自动闭塞是由运行中的列车自动完成闭塞任务 的一种设备。将两个相邻车站之间的区间正线 划分成若干个小段——闭塞分区(其长度一般 为1200~1300米),每个分区的起点设置一架 通过色灯进行防护。

由于闭塞分区内钢轨装设轨道电路,因而能够 正确反映列车的运行情况和钢轨是否完整,并 及时传给通过信号机显示出来,向接近它的列 车指示运行条件,行车安全有了进一步的保证。 因为通过色灯信号机的显示是随着列车的运行 通过列车自动控制的,不需要人工操纵,所以 叫自动闭塞。
——前方闭塞分区有车占用; ——前方一个闭塞分区空闲; ——前方至少两个闭塞分区空闲。
14
当线路上的钢轨折断时,由于轨道电路断电,继电 器失磁释放衔铁,使信号机显示红灯所以能更好地 保证行车安全。 随着列车重量、速度和密度的不断增加,三显示自 动闭塞也已不能适应需要,在我国运输繁忙的铁路 线上,将逐步采用四显示自动闭塞。此外,在今后 修建的高速铁路上,也将采用这种闭塞方式。 (二)四显示自动闭塞
出站信号机不能任意开放,它受半自动闭塞 机的控制。只有当区间空闲,经过办理手续 后,出站信号机才能开放。
出站信号机既要防护列车区间运行的安全,又 要防护出发列车在站内运行的安全。所以它既 要受闭塞机的控制,又要受到车站联锁设备的 控制,即受到双重设备控制。
6
(3).专用轨道电路
专用轨道电路应设在车站进站信号机内方适 当地点,用以监督列车的出发和到达,并使 双方闭塞机的接发车表示灯有相应的表示。 专用轨道电路的长度一般不少于25米。
8
B站为接车站,接到A站已发车电话后,可将接 车进路办妥并开放进站信号机。当列车接近B站 驶入轨道电路区段时,B站发车表示灯与接车表 示灯均亮红灯,表示列车到达。B站值班员确认 列车完整到达并停妥后,将接车手柄恢复定位 (进站信号机恢复定位),拔出闭塞按钮,表 示灯即熄灭,B站闭塞设备复原。甲站铃响,闭 塞设备复原。就可以重新再办理发车了。 简要图示说明半自动闭塞的基本工作原理。
半自动闭塞示意图
7
2 半自动闭塞工作情况概述
现AB区间空闲,由A向B站发车。A站值班员用接在通信 线路中的专用电话向B站联系请求发车,B站值班员接受 请求后,A站值班员可按下闭塞按钮,此时A站发车表示 灯亮黄灯,B站的接车表示灯也亮黄灯。B站值班员按压 闭塞按钮,此时B站接车表示灯由黄灯变为绿灯,A站发 车表示灯也由黄灯变为绿灯。A站即可办理发车进路,开 放出站信号机,列车从A站出发。当列车驶入轨道电路区 段后,A站发车表示灯由绿灯变为红灯,出站信号机自动 关闭。B站接车表示灯也由绿灯变为红灯。此时A站出站 信号机不能再次开放,当然A站就不能再向B站发车了, 由于区间处于闭塞,B站也不能向A站发车,这也就保证 了该区间只准许有一列列车运行。
自动闭塞设备虽然比较先进,但比其他闭塞设备 的初期投资大得多,因此,应当根据具体情况选 用。在我国铁路上,复线区段应采用自动闭塞。
18
四、道口信号
铁路与公路平面交叉的地点称作道口(也称 平交道口)。
平交道口及平交道口事故
19
随着铁路和公路运量的增加,在道口处 发生的行车事故也不断增加。降低道口 事故发生率,提高道口安全防护设备率 是十分必要的。
列车在区间最好能一直在绿灯下运行,避免遇到黄 灯而影响速度。当采用三显示自动闭塞时,两列车 至少要间隔二个闭塞分区才能保证在绿灯下运行;
15
四显示就要间隔三个闭塞分区,其闭塞分区长度, 定为适应低速列车的制动距离,并在三显示自动闭 塞红、黄、绿三种灯光的基础上再增加一种黄绿显 示。
四显示自动闭塞能预告列车前方三个闭塞分区的 状态。要求高速列车按规定速度越过黄绿显示的通 过信号机后必须减速,以便能在显示红灯的信号机 前停车。而对于低速运行的列车来说,越过黄绿显 示的通过信号机时,则不必减速。实际上对于低速 列车来说黄绿显示的意义相当于绿灯显示,而对于 高速列车来说是将两个闭塞分区作为一个制动距离 来对待,将黄绿显示视为注意信号,在越过黄绿等 后准备在红灯前停车。这样可以解决线路上以不同 速度运行的列车的行车要求。 16
21
2、道口自动信号机的显示方式及距离
列车的制动距离比较大,一般机动车的制动距 离不超过100米,二者相差悬殊。这要求禁止 道口通行的信号显示,要求比公路道口信号机 的信号显示更加明显,且具有警觉性。
22
因此,禁止通行信号采用两个红色灯光交 替闪烁方式。既与一般公路、铁路信号有 区别,又有高度警觉的效果。允许通行信 号用一个月白灯光来表示 。灭灯时表示设 备故障,自动信号停用。
“为保证区间行车安全与效率,我们采取行 车闭塞法,运用闭塞设备办理闭塞。电气路 签(牌)闭塞、半自动闭塞和自动闭塞既指 闭塞设备,又指具体的闭塞方法。”
3
二、半自动闭塞
半自动闭塞是我国铁路广泛采用的一种闭塞方 式。采用半自动闭塞时,列车占用区间的行车 凭证是出站信号机(线路所为通过信号机)的 显示。
9
3 半自动闭塞的主要优缺点 采用半自动闭塞时,由于出站信号机受到 对方站闭塞机的控制,因而在保证行车安 全方面有一定的优越性。
但是,当铁路的运量不断增大,要求进一步 提高区间通过能力时,半自动闭塞也有它自 己的局限性;而且,当区间线路发生故障, 钢轨折断时,半自动闭塞设备也不能作出反 映并由故障导向安全。
四显示自动闭塞:
——前方闭塞分区有车占用; ——前方一个闭塞分区空闲; ——前方两个闭塞分区空闲; ——前方至少三个闭塞分区空闲。
17
(三)自动闭塞的主要优缺点
在自动闭塞区段中,相邻两个车站之间的正线 划分成许多闭塞分区,可以同时有两个以上的 同向列车占用,比其他闭塞制度提高了区间通 过能力。同时,由于轨道上全部装设了轨道电 路,当区间有列车占用或钢轨折断时,都可以 自动地使信号机显示停车信号,能够更好地保 证列车在区间内运行的安全。
行车闭塞法从时空上可分为:空间间隔法和时 间间隔法。空间间隔法是把铁路区段划分为若 干个区间,用区间把列车分隔开、规定在一区 间内同时只容许一趟列车运行,是我国铁路广 泛采用的闭塞方法。
2
行车闭塞法从设备上可分为(我国采用的闭 塞设备):电气路签(牌)闭塞、半自动闭 塞和自动闭塞。 在本章第一节的学习中,我们介绍过两个概 念:闭塞和闭塞方法。我们必须明晰行车闭 塞法、闭塞设备、闭塞、闭塞方法的区别与 联系。
相关文档
最新文档