数据管控规范

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1数据管理架构1.1数据管理平台功能蓝图

数据管理就是对交易中心现有的业务支撑系统的数据进行统一的数据管理、质量管控、并且通过标准的共享模式,实现核心数据统一存储,维护和使用的问题,提升交易中心现有数据的安全存储和高效使用等能力,并更加深入地进行数据挖掘等工作,为中心创造更多的价值。未来的数据管理平台将对中心现有系统的数据进行统一的数据的整合、数据的管控,并运用数据进行统一的服务管控来提升服务共享的水平,为中心的服务提供全方面的数据支撑。数据管理平台的功能蓝图如图所示:

数据整合域,是对现有业务系统的数据进行采集和清洗转换,并对

采集过程中的数据进行质量检测,来确保整合数据的准确性和可靠

性。

数据管控域,对采集到数据按照其不同的属性进行分类存储管控,对数据的质量、数据的安全以及信息的生命周期进行统一的管理,并对数据在使用过程的各种信息进行统计分析。

服务共享域,利用数据管理平台已有的数据资源,进行自定义的

数据服务配置,定制出符合要求的服务,进行相关服务流程的编排,

通过数据中心将服务进行发布。

服务管理域,主要是对提供的服务进行管理,包括服务应用的管理,

服务流程的管理以及服务监控。

1.2数据集成

数据整合就是将离散于各个业务系统中的数据进行集中化。数据整合阶段主要分为以下三个步骤执行:

数据类型识别

根据业务使用情况分析目前各个系统中的数据实体,其中哪些是主数据,哪些是非主数据但需要共享的数据,哪些是私有数据。数据类型会作为制定同步规则和清洗规则的重要依据。

数据同步规则确定

分析采集的各种数据需要达到的同步频率,从实时、准实时到天、月不等,针对不同的同步频率需求结合每次同步的数据量来选择同步方式,ETL(抽取-转化-加载)和ESB(企业服务总线)分别适用于不同场景。ETL 本身也有多种具体的技术手段来实现各种情况下的同步,如Hotplug、全表对比、时间戳等。在这里,将根据不同的数据类别和数据使用频度和需

求频度等情况,制定出相应的数据同步的机制,采用实时数据整合和批量数据整合两种方式进行数据的整合。

数据清洗规则确定

在进行数据整合过程中,由于不同系统中可能重复出现的数据,以及数据本身的缺失和错误等问题,为了避免由于不同系统中相同数据由于编码规则、格式之间的差异,在清洗过程中需要制定统一的数据清洗规则,对数据进行清洗和转换,确保数据管理平台中的数据能够保持一致性。

同时,在数据清洗的过程中,需要对采集数据的质量以及清洗后数据的质量进行检测。其中,在数据采集过程中,对采集的数据进行整合,确保采集的数据都能满足质量要求,能够通过正确的清洗和转换;对于转换完成的数据,通过再次的检测,保证转换数据的一致性和正确性,从而确保数据的准确行和权威性。

1.3数据管控

数据管控就是对于进行整合后的数据进行相关的管控,使其能够满足交易中心管理对于数据使用的各种需求。

1.3.1数据生命周期规划

数据生命周期规划,就是对数据从在各个应用系统的中产生,然后通过各种采集整合手段聚合到数据管理平台,直至最终通过建立各种主题数据仓库提供各种数据服务的整个过程进行规划,使数据能够满足各种业务的使用需要。

数据生命周期规划,把数据划分为以下3个域,分别保存不同阶段的数据:

ADB应用数据

数据管理平台数据仓库

核心功能为操作型应用

提供数据存储

和访问

提供领域内统一、

一致的数据视图,

包含MDM主数据管

1、存储数据管理平台

历史数据

2、为分析应用提供多

维数据基础

数据模型

应用自身的数

据模型共享数据模型

共享关系模型,多维分

析模型

数据存储类

型关系型数据库关系型数据库

关系型数据库、多维数

据库、或多维数据引擎

软件

数据内容

本应用需要的

所有细节信息运营共享信息

数据管理平台的所有

历史数据

支撑的应用实时应用

统一视图、准实时/

实时的数据访问

支撑分析型应用数据更新频

秒分钟到1天1天-1周

数据存储周

3-12个月3-12个月所有

ADB应用数据库

应用数据库主要是为交易中心主要的业务支撑系统和内部管理系统的应用提供数据存储和访问。在应用数据库只存储支撑本系统运行的数据资源,以满足本系统的使用要求。应用数据库的数据在进行日常业务处理的过程中,不断的进行更新,以便同实际的业务情况保持一致。

数据管理平台

应用数据库的数据,经过统一的清洗和转换后,进入数据管理平台进行统一的存储管理。在数据管理平台,将通过建立统一的数据视图,为各种数据服务提供数据。数据管理平台的数据更新根据不同的数据需求和应用系统的实际情况进行区分,通过实时的数据采集和批量数据采集两种方式进行。

数据仓库

数据仓库是为了满足某一特定的决策支持和联机分析而建立的结构化。交易中心在进行业务活动和内部管理的过程中形成了大量的数据资源,利用数据仓库,对已有的数据资源进行深入的挖掘和联机分析,即可以满足交易中心日常的数据查询要求;又可充分挖掘数据内涵的意义,为中心的各项业务决策提供良好的支持。例如,根据交易中心目前的使用要求,建立交易信息、企业信息、专家信息的主题数据仓库,为中心的各项活动提供业务支持。

1.3.2元数据管理

元数据是关于数据的数据,元数据主要用于在数据仓库里描述数据及其环境,它是在数据仓库建设过程中所产生的有关数据源定义,目标定义,

相关文档
最新文档