条件概率,全概率公式,贝叶斯公式
贝叶斯公式和全概率公式
贝叶斯公式和全概率公式贝叶斯公式是概率论中的重要公式,也就是所谓的贝叶斯定理。
贝叶斯定理是由十九世纪末英国数学家和统计家 Thomas Bayes 在 1763 年提出的,是概率论中最重要的原理之一,广泛应用于商业分析、医学诊断、决策分析、信息检索等多个领域中。
贝叶斯公式的公式表达形式为:<br/>P(A|B)=P(B|A)P(A)/P(B)其中,P(A|B)表示“在B条件下A的概率”,P(B|A)表示“在A条件下B的概率”,P(A)表示“A的概率”,P(B)表示“B的概率”。
从此公式中可以看到,贝叶斯公式通过将一个条件概率分解成两个条件概率的乘积,加以组合,使得概率计算变得更加简便容易。
贝叶斯公式也可以表述为一种胆怯结论,即根据已知的条件来推断未知的结果,而不是僵化地按照既定的规则来推断结果。
即可以通过已知的条件来推断未知的结果,而不是僵化地按照既定的规则来推断结果。
全概率公式是贝叶斯公式的推广,它的公式表达式如下:<br/> P(A)=ΣP(A|B_i)P(B_i)其中,P(A)表示A的概率,P(A|B_i)表示B_i条件下A的概率,P(B_i)表示B_i的概率。
从此公式中可以看到,全概率公式把一个概率分解成多个子概率的和,每个子概率都是一个条件概率,加以组合,使得概率计算更加简便容易。
全概率公式也可以表述为一种更加灵活的结论,即根据已知的概率来推断未知的结果,而不是僵化地按照既定的规则来推断结果。
即可以通过已知的概率来推断未知的结果,而不是僵化地按照既定的规则来推断结果。
因此可以看出,贝叶斯公式和全概率公式是概率论中重要的公式,它们可以帮助我们更加有效地推断出未知的结果,提高我们的决策质量,从而获得更好的结果。
条件概率 乘法公式 全概率公式 贝叶斯公式
称为全概率公式.
B2
A
B1
Bn1 Bn
B3
证 因为
A AS A( B1 B2 Bn )
B2
A
B1
Bn1 Bn
那么, 全概率公式和贝叶斯公式变为
P ( A) P ( A B ) P ( B ) P ( A B ) P ( B ),
P( A B )P(B ) P ( AB ) . P ( B A) P ( A) P ( A B ) P ( B ) P ( A B ) P ( B )
例5
某电子设备制造厂所用的元件是由三家
打破”.以B表示事件“透镜落下三次而未打破 ” .
因为B A1 A2 A3 , 故有 P ( B ) P ( A1 A2 A3 ) P ( A3 A1 A2 ) P ( A2 A1 ) P ( A1 ) 7 1 9 1 1 1 2 10 10
P ( B1 ) 0.3,
P ( B2 ) 0.5,
P ( B3 ) 0.2,
P ( A B1 ) 0.02, P ( A B2 ) 0.01, P ( A B3 ) 0.01, 故 P ( A) P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A B3 ) P ( B3 )
例4 设某光学仪器厂制造的透镜, 第一次落下 时打破的概率为1/2, 若第一次落下未打破, 第二次 落下打破的概率为7/10, 若前两次落下未打破, 第三 次落下打破的概率为9/10. 试求透镜落下三次而未 打破的概率.(积事件概率) 解 以Ai ( i 1,2,3,4)表示事件“透镜第 i次落下
1-5全概率公式贝叶斯公式
= 0.087.
即平均1000个具有阳性反应的人中大约只有 人 个具有阳性反应的人中大约只有87人 即平均 个具有阳性反应的人中大约只有 患有癌症. 患有癌症
课堂练习
社会调查把居民按收入分为高、 低三类, 社会调查把居民按收入分为高、中、低三类 调查结果是这三类居民分别占总户数的10%, 调查结果是这三类居民分别占总户数的 , 60%,30%,而银行存款在一万元以上的户数 , , 在这三类居民中分别为100 %,60%, 在这三类居民中分别为100 %,60%,5%. 1. 求存款在一万元以上的户数在全体居民中 的比率. 2. 若已知某户的存款在一万元以上,求该户 若已知某户的存款在一万元以上, 属中等收入家庭的概率. 属中等收入家庭的概率
= P( A B0 ) P( B0 ) + P( A B1 ) P( B1 ) + P( A B2 ) P( B2 )
≈ 0.94
P( AB1 ) P( A B1 ) P ( B1 ) = P( B1 A) = P( A) P ( A)
≈ 0.0848
i =1 n
全概率公式
证明 B = BΩ = B I ( A U A U L A ) 1 2 n
= BA1 U BA2 U L U BAn .
由 Ai A j = ∅ ⇒ ( BAi )( BA j ) = ∅
⇒ P ( B ) = P ( BA1 ) + P ( BA2 ) + L + P ( BAn ) ⇒ P ( B ) = P ( A1 ) P ( B | A1 ) + P ( A2 ) P ( B | A2 ) + L + P ( An ) P ( B | An )
A2
全概率公式贝叶斯公式推导过程
全概率公式贝叶斯公式推导过程Standardization of sany group #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...An-1) > 0 时,有:P(A1A2...An-1An)=P(A1)P(A2|A1)P(A3|A1A2)...P(An|A1A2...An-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足,B2....两两互斥,即 Bi∩ Bj= ,i≠j , i,j=1,2,....,且P(Bi)>0,i=1,2,....;∪B2∪....=Ω,则称事件组 B1,B2,...是样本空间Ω的一个划分设B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(Bi ),P(A|Bi)(i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A 的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...Bn,这样事件A就被事件AB1,AB2,...ABn分解成了n部分,即A=AB1+AB2+...+ABn, 每一Bi发生都可能导致A发生相应的概率是P(A|Bi),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(ABn)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|Bn)P(PBn)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
条件概率、全概公式、贝叶斯公式
P(AB 3 36 1 ) P(A| B) = = = 。 P(B ) 6 36 2 解法2: 解法 P(A| B) = 3 = 1。 6 2
在B发生后的 发生后的 缩减样本空间 中计算
设某种动物由出生算起活到20年以上的 例2: 设某种动物由出生算起活到 年以上的 概率为0.8,活到25年以上的概率为 年以上的概率为0.4。 概率为 ,活到 年以上的概率为 。问 现年20岁的这种动物 它能活到25岁以上的 岁的这种动物, 现年 岁的这种动物,它能活到 岁以上的 概率是多少? 概率是多少? 能活20年以上 能活25年以上 解:设A={能活 年以上 B={能活 年以上 设 能活 年以上}, 能活 年以上}, 所求为P(B|A) 。 所求为 依题意, 依题意, P(A)=0.8, P(B)=0.4, ,
“先抽的人当然要比后抽的人抽到的人机会大。” 先抽的人当然要比后抽的人抽到的人机会大。 先抽的人当然要比后抽的人抽到的人机会大
我们用A 表示“ 个人抽到入场券 个人抽到入场券” 我们用 i表示“第i个人抽到入场券”, i=1,2,3,4,5。 = 。 表示“ 个人未抽到入场券 个人未抽到入场券” 则 A “第i个人未抽到入场券”, 表示 i 显然,P(A1)=1/5,P( A)=4/5, 显然, , , 1= 也就是说, 也就是说, 个人抽到入场券的概率是1/5。 第1个人抽到入场券的概率是 。 个人抽到入场券的概率是
乙两厂共同生产1000个零件,其中 个零件, 例3: 甲、乙两厂共同生产 个零件 其中300 件是乙厂生产的。而在这300个零件中,有189个 个零件中, 件是乙厂生产的。而在这 个零件中 个 是标准件,现从这1000个零件中任取一个,问这 个零件中任取一个, 是标准件,现从这 个零件中任取一个 个零件是乙厂生产的标准件的概率是多少? 个零件是乙厂生产的标准件的概率是多少? 零件是乙厂生产}, 设B={零件是乙厂生产 , 零件是乙厂生产 A={是标准件 , 是标准件}, 是标准件 所求为P(AB)。 。 所求为
1.4条件概率及有关公式
23
贝叶斯公式在实际中有很多应用,它 可以帮助人们确定某结果(事件 B)发生 的最可能原因.
24
例 8 某一地区患有癌症的人占0.005,患者 对一种试验反应是阳性的概率为0.95,正常 人对这种试验反应是阳性的概率为0.04,现 抽查了一个人,试验反应是阳性,问此人是 癌症患者的概率有多大? 求解如下: 设 C={抽查的人患有癌症}, A={试验结果是阳性}, 则 C 表示“抽查的人不患癌症”.
设B1,B2,…,Bn互不相容, A Bi ,
i 1
n
P(B )P( A | B )
i 1 i i
n
( k 1,2,..., n)
P ( ABk ) 分析: P ( Bk | A) P ( A) P ( Bk ) P ( A | Bk ) 乘 法 公 式 n P ( Bi ) P ( A | Bi ) 全 概 率 公 式
5
分析: : n个样本点 B: m个样本点 AB: k个样本点 在B已发生的条件下,试验结果为m 中的一个, 这时A发生当且仅当AB中的 某一样本点发生,故 P ( AB ) k k / n P ( A | B) m m/n P( B) 相当于“缩小了样本空间”
6
条件概率的 性质: (1)非负性: 0≤P(A|B)≤1 (2) 规范性: P(|B)=1 (3)可列可加性:若Ak (k=1, 2, …)两两互 斥,则
(3)
11
推广到一般情形中: 若n个事件A1, A2, …, An满足条件: P(A1A2…Ak)>0 (k=1, 2, …, n1), 则: P(A1A2…An)=P(A1)P(A2|A1)P(A3|A1A2) … P(An|A1A2…An1)
1.3,1.4条件概率,全概率公式
C表示抽到的人有色盲症。
则
1 P( A) P( B) , P(C | A) 0.05, P(C | B) 0.0025 2
由Bayes公式有
P( A) P(C | A) 0.5 0.05 P( A | C ) P( A) P(C | A) P( B) P(C | B) 0.5 0.05 0.5 0.0025
2 1 3 2 2 , 5 4 5 4 5
P( A3 ) P( A3) P( A3 ( A1 A2 A1 A2 A1 A2 ))
P ( A1 A2 A3 ) P ( A1 A2 A3 ) P ( A1 A2 A3 )
P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 ) P ( A1 ) P ( A2 A1 ) P ( A3 A1 A2 )
i 1 n
全概率公式
证明 B B B ( A A A ) 1 2 n
BA1 BA2 BAn .
由 Ai A j ( BAi )( BAj ) P( B) P( BA1 ) P( BA2 ) P( BAn ) P( B) P( A1 ) P( B | A1 ) P( A2 ) P( B | A2 )
解
设A表示取得一等品,B表示取得合格品,则
(1)因为100 件产品中有 70 件一等品,所以 70 P( A) 0.7 100 因为95 件合格品中有 70 件一等品,所以 (2)方法1: 70 P( A B) 0.7368 95 方法2:
全概率公式、贝叶斯公式推导过程
全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥全概率公式、贝叶斯公式推导过程(1)条件概率公式设A,B是两个事件,且P(B)>0,则在事件B发生的条件下,事件A发生的条件概率(conditional probability)为:P(A|B)=P(AB)/P(B)(2)乘法公式1.由条件概率公式得:P(AB)=P(A|B)P(B)=P(B|A)P(A)上式即为乘法公式;2.乘法公式的推广:对于任何正整数n≥2,当P(A1A2...A n-1) > 0 时,有:P(A1A2...A n-1A n)=P(A1)P(A2|A1)P(A3|A1A2)...P(A n|A1A2...A n-1)(3)全概率公式1. 如果事件组B1,B2,.... 满足1.B1,B2....两两互斥,即B i ∩ B j = ∅,i≠j ,i,j=1,2,....,且P(B i)>0,i=1,2,....;2.B1∪B2∪....=Ω ,则称事件组B1,B2,...是样本空间Ω的一个划分设 B1,B2,...是样本空间Ω的一个划分,A为任一事件,则:上式即为全概率公式(formula of total probability)2.全概率公式的意义在于,当直接计算P(A)较为困难,而P(B i),P(A|B i) (i=1,2,...)的计算较为简单时,可以利用全概率公式计算P(A)。
思想就是,将事件A分解成几个小事件,通过求小事件的概率,然后相加从而求得事件A的概率,而将事件A进行分割的时候,不是直接对A进行分割,而是先找到样本空间Ω的一个个划分B1,B2,...B n,这样事件A就被事件AB1,AB2,...AB n分解成了n部分,即A=AB1+AB2+...+AB n, 每一B i发生都可能导致A发生相应的概率是P(A|B i),由加法公式得P(A)=P(AB1)+P(AB2)+....+P(AB n)=P(A|B1)P(B1)+P(A|B2)P(B2)+...+P(A|B n)P(PB n)3.实例:某车间用甲、乙、丙三台机床进行生产,各台机床次品率分别为5%,4%,2%,它们各自的产品分别占总量的25%,35%,40%,将它们的产品混在一起,求任取一个产品是次品的概率。
条件概率、全概率公式、贝叶斯公式
因为 P ( A) 0.8,
P ( B ) 0.4,
P ( AB ) P ( B ),
P ( AB ) 0.4 1 . 所以 P ( B A) 0.8 2 P ( A)
第二节 全概率公式
再回忆一下条件概率的定义:
P( AB ) P( B | A) P( A) 要求 P( A) 0 .
第三章
第三章 条件概率与事件的独立性
一、条件概率 二、全概率公式 三、贝叶斯公式 四、事件的独立性 五、伯努利实验和二项概率
第一节 条件概率
前面讲的概率问题没有什么附加条件,但 实际中可能会经常遇到许多有条件的概率 问题比如: (1)已知某人爱滋病检查为阳性,求他患爱 滋病的概率; (2)在摸奖中已知第一人已经或未摸到一等 奖,求第二人摸到一等奖的概率。 (3)人寿保险中常常会考虑:已知某人已经 活了x岁,求他能再活y岁的概率。
完备事件组(样本空间的一个划分) 定义1 设事件A1,A2,…,An为样本空间 的一组事件。 … A1 如果 A2 (1) Ai Aj= (i≠j); (2)
An
A3 …
A
i 1
n
i
则称A1,A2,…,An为样本空间的一 个划分。
定理 设试验E的样本空间为Ω, 设事件A1,A2,…,An为样本空间Ω的一 个划分, 且P(Ai)>0 (i =1,2, …,n). 则对任意事件B,有
古典概型
设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.
所求的概率称为在事件A 发生的条件下 事件B 发生的条件概率。记为 P B A
从而有
4 k AB P ( B | A) kA 7 k AB / n 4 /10 k A / n 7 /10
1.4条件概率、全概率公式、贝叶斯公式
P ( B1
|
A)
P(B1 ) P( A | B1 ) P(B1 ) P( A | B1 ) P(B2 ) P( A |
B2 )
0.55. P(B3 )
条件概率、全概率公式、贝叶斯公式
注
(1)PBi 称为“先验概率”, PBi | A 称为“后验概率”;
(2)贝叶斯公式——探求结果 A的发生由原因 Bi 所导致的概率;
为色盲,求此人是男性的概率?
解 设 A 表示“抽取的人为色盲”,B 表示“抽取的人为男性”,则
P( A) P(B) P( A | B) P(B) P( A | B)
3 5% 2 2.5% 4%.
5
5
P(B | A) ?
P(B | A) P( AB)
P(B)P(A| B)
3.
P( A) P(B) P( A | B) P(B) P( A | B) 4
4%,2%,4%. 试计算:(1)从总产品中任取一件是不合格产品
的概率;(2)从总产品中任取一件是不合格产品,那么这件产品
是由 1 号工厂生产的概率?
解 设 A 表示“从总产品中任取一件是不合格产品”,Bi (i 1, 2, 3) 表示“从总产品中任取一件是第 i 号工厂生产的”.
P( A) P(B1 ) P( A | B1 ) P(B2 ) P( A | B2 ) P(B3 ) P( A | B3 ) 45%4% 35%2% 20%4% 0.033.
PB
|
A
P( AB) P( A)
0.2 0.4
1, 2
(2) P B
|
A B
P
BA B PA B
P A
P B PB
P AB
条件概率相关公式
条件概率相关公式
条件概率是指在已知事件B发生的前提下,事件A发生的概率,用P(A|B)表示。
条件概率有以下公式:
1. 乘法公式:
当事件A和B都是独立事件时,P(A∩B) = P(A) * P(B)
当事件A和B不是独立事件时,P(A∩B) = P(A|B) * P(B)
2. 加法公式:
当事件A和B互不相交时,P(A∪B) = P(A) + P(B)
当事件A和B不互不相交时,P(A∪B) = P(A) + P(B) - P(A∩B)
3. 全概率公式:
设事件B1、B2、…、Bn为样本空间S的一个划分,即B1∪B2∪…∪Bn = S,且P(Bi) > 0,则对任意事件A,有:
P(A) = ∑(i=1)^nP(A|Bi)*P(Bi)
其中,P(A|Bi)代表在Bi发生的条件下,A发生的概率。
4. 贝叶斯公式:
设事件B1、B2、…、Bn为样本空间S的一个划分,即B1∪B2∪…∪Bn = S,且P(Bi) > 0,则对任意事件A,有:
P(Bi|A) = P(A|Bi)*P(Bi)/∑(j=1)^nP(A|Bj)*P(Bj)
其中,P(Bi|A)代表在A发生的条件下,Bi发生的概率。
1.5条件概率、全概率公式和贝叶斯公式.
木球, 3只塑料球; 红球中有2只木球, 1只塑料
球. 现从袋中任取1球, 假设每个球被取到的可
能性相同. 若已知取到的球是白球, 问它是木
球的概率是多少?
古典概型
设 A 表示任取一球,取得白球; B 表示任取一球,取得木球.
所求的概率称为在事件A 发生的条件下事件
B 发生的条件概率。记为 PB A
解 据题意,样本空间为 {(男,男),(男, 女),(女,男), (女, 女)}. 设A {已知一个是女孩}
{(男, 女),(女,男), (女, 女)}. B {另一个也是女孩}{(女, 女)}.
于是所求事件的概率为
P(B | A) P(AB) 1/ 4 1. P(A) 3/ 4 3
假 设 每 次 乡 试 , 范 进 考中 的 概 率 为0.3(非 常 小), 令Ai { 第i次 乡 试 未 考 中 } ,i 1,2, , 则 他 连 考 十次都不中的概率为 P( A1A2 A10 ) P( A1)P( A2 | A1) P( A10 | A1A2 A9 ) (1 0.3)10 0.0282.
10000小时未坏的概率为1 2,现有一只这种灯泡已经使
用了5000小时未坏,问它能用到10000小时的概率是多
少?
解 设B=“灯泡用到5000小时”,A=“灯泡用到10000小
时我们”知道用到10000小时的灯泡一定用了5000小时,
即
PB 3 , PA 1
4
2
A B, 所以AB=A, PAB PA
入场 券
5张同样的卡片,只有一张上写有“入场券”,其余的 什么也没写. 将它们放在一起,洗匀,让5个人依次抽 取.
“先抽的人当然要比后抽的人抽到的机会大. ”
《概率论》第1章§1.5 条件概率、全概率公式和贝叶斯公式
P( Bi ) 0, i 1, 2, , n
则称 {B1, B2, , Bn}为样本空间 S 的一个分划 将 P( A) 的计算分解到
B1, B2 , , Bn
B1 B2 B4 B3
A
Bn
上计算然后求和
第一章
事件与概率
§1.5 条件概率、全概率公式和贝叶斯公式
13/22
设 {B1, B2, , Bn} 为样本空间 S 的一个分划,即
S B1 B2 Bn
对任何事件 A 有
A AS AB1 AB2 ABn
于是
P( A) P( AB1 AB2 ABn ) P( AB1) P( AB2 ) P( ABn ) P( A | B1) P( B1) P( A | B2 ) P( B2 ) P( A | B n ) P( B n )
第一章
事件与概率
§1.5 条件概率、全概率公式和贝叶斯公式
P( | B)
P( A | B ) 0
3/22
设 P( B) 0, 有
对于任一事件 A有
对于必然事件 S 有
P( S | B) 1
设是 { Ak }两两不相容事件列,则有
P( Ak | B)
k 1 k 1
P( Ak | B)
条件概率是定义的,但条件概率的值通常是根 据实际问题中的具体意义确定的
第一章 事件与概率
§1.5 条件概率、全概率公式和贝叶斯公式
10/22
袋中有 1只红球、n 1只白球,依次将球一个个从 袋中取出. 求第 k 次 (k 1, 2, , n ) 取出红球的概率. 记 Ak { 第 k 次取到红球 } , ( k 1, 2, , n) 则所求概率为 pk P(( A1 是不是所求概率? P Ak ) Ak 1 Ak )
概率论-1-5条件概率,乘法公式,全概率公式,贝叶斯公式
P ( B) P ( Ai )P ( B|Ai )
i 1
1 1 1 2 1 1 8 3 5 3 5 3 15
将此例中所用的方法推广到一般的情形,就 得到在概率计算中常用的全概率公式.
2. 样本空间的划分及全概率公式
定义 设S为试验E的样本空间, B1 B1, B2,, Bn 为E的一组事件,若
注意P(AB)与P(A | B)的区别! 请看下面的例子
例4 甲、乙两厂共同生产1000个零件,其中 300 件是乙厂生产的. 而在这300个零件中,有189个是标准 件,现从这1000个零件中任取一个,问这个零件是乙厂 生产的标准件的概率是多少?
解 设B={零件是乙厂生产}, A={是标准件}
PBi PA | Bi
i 1
当 n=2 时,划分 B1, B2 可写成划分 B, B ,于是 P( A) P(B)P( A | B) P(B)P( A | B))
3. 全概率公式的理解
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想 是把一个未知的复杂事 件
样本空间中的任一事件 A ,恒有
n
PA PBi PA | Bi
i 1
证明 因为 A AS AB1 B2 Bn
AB1 AB2 ABn
并且 ABi AB j , i j ,所以
PA PAB1 PAB2 PABn
P n
B1
P
A
|
B1
PBn PA | Bn
解 记 Ai={球取自i号箱}, i=1,2,3;
B ={取得红球}
12 3
其中 A1、A2、A3两两互斥 B发生总是伴随着A1,A2,A3 之一同时发生,
13条件概率全概公式贝叶斯公式
打破的概率是 7 ,若前两次未打破 , 第三次落下打
破的概率是
9
10 ,试求透镜落下三次未打破的概率 .
10
解 设 Ai 透镜第 i 次落下打破,i 1,2,3 ,
B 透镜落下三次未打破 ,则 B A1A2 A3 .
PB PA1A2 A3 PA1 PA2 | A1 PA3 | A1A2
1
1 2
1
7 10
1
9 10
3 200
.
本题也可以先求 PB ,再由 PB 1 PB 求得 PB .
由于 B A1 A1 A2 A1 A2 A3 并 , 且 A1, A1A2 , A1A2 A3 为两两不相容事件, 故有
PB PA1 A1A2 A1A2 A3
PA1 PA1A2 PA1A2 A3
PB1 PA | B1 PBn PA | Bn n
PBi PA | Bi
i 1
n
PA PBi PA | Bi
i 1
全概率公式 .
全概率公式的基本思想是把一个未知的复杂事件 分解为若干个已知的简单事件再求解 , 而这些简单 事件组成一个互不相容事件组 ,使得某个未知事件 A 与这组互不相容事件中至少一个同时发生 ,故在 应用此全概率公式时 ,关键是要找到一个合适的 S 的一个划分.
我们还可以从另一个角度去理解 全概率公式.
某一事件A的发生有各种可能的原因 ,如果A 是由原因Bi (i=1,2,…,n) 所引起,则A发生的概率是
P(ABi)=P(Bi)P(A |Bi)
每一原因都可能导致A发生,故A发 生的概率是各原因引起A发生概率的总和, 即全概率公式.
由此可以形象地把全概率公式看成为“由原 因推结果”,每个原因对结果的发生有一定的“ 作用”,即结果发生的可能性与各种原因的“作 用”大小有关. 全概率公式表达了它们之间的关系
概率论 条件概率 全概率公式 贝叶斯公式
点的,而缩减为只包含40个样本点的 B=B. 35 P (C ) = P ( A B ) = = 0.875. 40
注 1 P ( A) = 0.85 P ( A B ).
B
A
2 P ( AB) = 0.35 P ( A B ).
P ( AB) : 以Ω为样本空间.
P ( A B ) : 以 B = B 为样本空间.
35 35 100 P ( AB ) 3 P( A B) = = = . 40 40 100 P ( B )
这是巧合吗?不是.
2. 定义1.8 (条件概率的定义)
设A,B是两个事件,且P(B) > 0, 则称 P ( AB) P( A B) = P( B) 为事件B发生的条件下,事件A发生的条件概率. 注 1 计算 P ( A B)的两种方法 :
且等于它们的总和: 出最终结果 . 义: n
i =1
P ( B ) = P ( Ai B ).
A2
B
An1
A1
An
A3
例3 甲、乙两个箱子,甲箱中装有两个白球,一 个黑球;乙箱中装有一个白球,两个黑球.现由甲 箱中任取一球放入乙箱,再从乙箱中任取一球, 问取到白球的概率是多少? 解 以A1表示事件“从甲箱中取出一个白球”, A2表示“从甲箱中取出一个黑球”这一事件, 以B表示“从乙箱中取出一个白球”这一事件, 则: A1 A2 = , A1 A2 = , 且
(1) 取出的一个为正品; A (2) 取出的一个为甲车床加工的零件; B (3) 取出的一个为甲车床加工的正品; AB
(4) 已知取出的一个为甲车床加工的零件,其为 正品. C
85 = = 0.85. (1) P ( A) 解 100 40 = 0.40. (2) P ( B) = 100 35 (3) P ( AB) = 100 = 0.35.
条件概率、全概率公式与贝叶斯公式
条件概率、全概率公式与贝叶斯公式一、背景一个随机事件的概率,确切地说,是指在某些给定的条件下,事件发生的可能性大小的度量.但如果给定的条件发生变化之后,该事件的概率一般也随之变化.于是,人们自然提出:如果增加某个条件之后,事件的概率会怎样变化的?它与原来的概率之间有什么关系?显然这类现象是常有的.[例1] 设有一群共人,其中个女性,个是色盲患者. 个色盲患者中女性占个. 如果={从中任选一个是色盲}, ={从中任选一个是女性},此时, .如果对选取规则附加条件:只在女性中任选一位,换一句话说,发生之后,发生的概率(暂且记为) 自然是.[例2] 将一枚硬币抛掷,观察其出现正反面的情况.设事件为“两次掷出同一面”,事件为“至少有一次为正面H”.现在来求已知事件已经发生的条件下事件发生的概率.这里,样本空间.易知此属于古典概型问题.已知事件已发生,有了这一信息,知道不可能发生,即知试验所有可能结果所成的集合就是.中共有3个元素,其中只有属于.于是,在发生的条件下,发生的概率为对于例1,已知容易验证在发生的条件下,发生的概率对于例2,已知容易验证发生的条件下,发生的概率对一般古典概型, 容易验证:只要,则在发生的条件下, 发生的概率,总是成立的.在几何概率场合,如果向平面上单位正方形内等可能任投一点,则当发生的条件下, 这时发生的概率为由此可知对上述的两个等可能性的概率模型,总有成立.其实,还可以验证, 这个关系式对频率也是成立的.于是,从这些共性中得到启发,引入下面的一般定义.二、条件概率若是一个概率空间,,若,则对于任意的,称为已知事件发生的条件下, 事件发生的条件概率.[例3] 一盒子中装有4只产品,其中有3只是一等品,1只是二等品.从中取产品两次,每次任取一只,作不放回抽样,设事件为“第二次取到的是一等品”,事件为“第一次取到的是一等品”,试求条件概率解:易知此属古典概型问题.将产品编号:1,2,3号为一等品,4号为二等品.以表示第一次、第二次分别取到第号、第号产品.试验E (取产品两次,记录其号码)的样本空间为={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4),(4,1),(4,2),(4,3)}={(1,2),(1,3),(1,4), (2,1),(2,3),(2,4), (3,1),(3,2),(3,4)}={(1,2),(1,3), (2,1),(2,3), (3,1),(3,2)}由条件概率公式得,[例4] 一个家庭中有两个小孩,已知其中有一个是女孩,问这时另一个小孩也是女孩的概率?(假定一个小孩是女孩还是男孩是等可能的)解:据题意样本空间为={(男,女),(男,男),(女,女),(女,男)}={已知有一个是女孩}={(男,女),(女,女),(女,男)}={另一个小孩也是女孩}={(女,女)}于是,所求概率为三、条件概率的性质(1)非负性:对任意的(2)规范性:(3)可列可加性:若为一列两两不相交的事件,有证明:(1) 因为所以(2)由于,所以(3)由于两两不相交,所以也必然两两不相交,所以四、乘法公式由条件概率的定义知: 设,则.于是,这就是概率的乘法公式.如果,同样有设且则证明因为,依条件概率的定义,上式的右边五、乘法公式的应用例子[例5] 设某光学仪器厂制造的透镜,第一次落下时打破的概率为1/2,若第一次落下时未打破, 第二次落下时打破的概率为7/10, 若前两次时未打破, 第三次落下时打破的概率为9/10,试求透镜落下三次而未打破的概率.解:以表示事件“透镜第次落下时打破”,以表示事件“透镜三次落下而未打破”. 因为,故有[例6] 设袋中装有只红球,只白球.每次自袋中任取一只球,观察其颜色后放回,并再放入只与所取出的那个球同色的球.若在袋中连续取球四次,试求第一、二次取到红球且第三、四次取到白球的概率.解:以表示事件“第次取到红球”,分别表示事件第三、四次取到白球.所求概率为[例7] (卜里耶模型)罐中有只黑球,只红球,随机地取一只之后,把原球放回,并加进与抽出的球同色之球只,再摸第二次,这样下去共摸次.问前次出现黑球,后面次出现红球概率是多少?解:以表示事件“第k次取到黑球”,表示事件“第次取到红球”,则由一般乘法公式,1. 在例7中,最后答案与黑球和红球出现的次数有关,而与出现的顺序无关.2.卜里耶模型被卜里耶用来描述传染病的数学模型.当时,它是有放回的摸球模型.当时,它是不放回的摸球模型.思考题: 在卜里耶模型中,取次,问正好出现次红球概率是多少?[例8] 一批产品共100件,对其进行抽样调查,整批产品看作不合格的规定是:在被检查的5件产品中至少有一件是废品.如果在该批产品中有5%是废品,试问该批产品被拒绝接收的概率是多少?解:设表示被检查的第件产品是正品.表示该批产品被接收.则且因此, 该批产品被拒绝接收的概率是0.23。
第一章4节 条件概率全概率公式与贝叶斯公式
第一章
事件与概率
设A、B是某随机试验中的两个事件,且
§5 条 件 概 率、全概率 公式和贝叶 斯公式
A 0 P
则
P AB BA P A P
称为在事件A已发生的条件下事件B的条件概率, 简称为B在A之下的条件概率。
3 1 , P B B A 在例 1 中,我们已求得 P 16 4 4 1 还可求得 , P P A AB 16 16
第一章
事件与概率
多个事件的乘法公式
§5 条 件 概 率、全概率 公式和贝叶 斯公式
设 A , A , , A 为 n 个随机事件,且 1 2 n
P A A A 0 1 2 n 1
则有
P A A A P A P A A 1 2 n 1 2 1
这就是n个事件的乘法公式.
所以,由Bayes公式,得 P D P A D P D A P D P A D P D P A D 0 . 0004 0 . 95 0 . 0004 0 . 95 0 . 9996 0 . 10
0 .0038
返回主目录
第一章
事件与概率
§1.5 条 件 概 率、全概 率公式和贝叶斯公式
目 录 索 引 一 二 条 件 概 率 乘 法 公式
§5 条 件 概 率、全概率 公式和贝叶 斯公式
三
全概率公式和贝叶斯公式
返回主目录
第一章
事件与概率
一 条件概率
§5 条 件 概 率、全概率 公式和贝叶 斯公式
条件概率是概率论中一个重要而实用的概念。 它所考虑的是事件 A 已经发生的条件下事件 B 发生的概率。 B S
条件概率全概率和贝叶斯公式
条件概率全概率和贝叶斯公式
条件概率是指在已知某一事件发生的条件下,另一事件发生的概率。
全概率公式是指在多个互不相交的事件中,计算某一事件的概率,需要将所有事件的概率加起来。
而贝叶斯公式是指在已知某一事件发生的条件下,另一事件的概率如何进行修正。
具体来说,条件概率可以表示为P(A|B),其中A和B分别是两
个事件,P(A|B)表示在事件B发生的情况下,事件A发生的概率。
全概率公式可以表示为
P(A)=P(B1)P(A|B1)+P(B2)P(A|B2)+...+P(Bn)P(A|Bn),其中B1~Bn
表示多个互不相交的事件,P(B1)~P(Bn)表示这些事件发生的概率。
贝叶斯公式可以表示为P(B|A)=P(A|B)P(B)/P(A),其中A和B
同样表示两个事件,P(A|B)表示在事件B发生的情况下,事件A发生的概率,P(B)表示事件B发生的概率,P(A)表示事件A发生的概率。
P(B|A)表示在已知事件A发生的情况下,事件B发生的概率。
贝叶斯公式可以用于更新先验概率,即在已知某些信息的情况下,通过新的证据来更新我们对某一事件的概率的估计。
条件概率、全概率公式和贝叶斯公式在实际应用中有广泛的应用,如在机器学习、数据分析、医学诊断等领域。
- 1 -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在实际问题中经常考虑在一个事 件发生的前提下另一个事件发生的概 率,这样就引入了条件概率的概念。 条件概率中同时考虑了两个事件, A与B. 在B发生的前提下考虑A发生的可能性的大小。 用记号P(A|B)表示。 合理的看法是P(A|B)与P(AB)成正比: 用公式表达如下 P(A/B), P(A/B)=kP(AB) 因为P(B/B)=1=kP(BB)=kP(B) 所以k=1/P(B) 得到P(A/B)= 当然有P(B)>0. 上面作为条件概率的定义。 容易证明,条件概率也满足概率定义中三条公理 所以条件概率也是概率。 条件概率的运算规律与、普通概率完全一样。 特别有: 例1.4.2 设一批产品中一,二,三等品各占 60%,30%,10%。从中随意抽取一件, 发现不是三等品,求此产品不是一等品 的概率。 解: 设Ai表示“取出的产品是i等品“,i=1, 2,3, 则:
例.1.4.4。 解:
全概率公式与贝叶斯公式.
全概率公式是一个计算复杂事件的概率的公式:
其基本想法是样本空间的划分的概念. ,
全概率公式可以理解为各个条件概 率的一种平均值。(加权平均,权重为 各种可能的可能性大小)。
贝叶斯公式: 是一个计算复杂的条件概率的公式:
注意到上式的特点,贝叶斯公式也叫逆概公式。
通常条件概率不是通过定义计算的。 而是用其它方法计算(或者是直接给 出)。其中一种常用的方法是缩减样本空 间。
乘法公式: P(AB)=P(A/B)P(Bபைடு நூலகம்=P(B/A)P(A)
使用乘法公式的注意事项: 1. 先发生的当条件 2. 简单的当条件 3. 用问题中已经知道(或者容易计算的)的为条件。
例1.4.3 已知P(A)=0.6,P(C)=0.2,P(AC)=0.1, P(B|)=0.7,A,求 解: