高二数学理科选修2-2期末测试题

合集下载

高二数学理科选修2-2、2-3综合练习题(含答案)

高二数学理科选修2-2、2-3综合练习题(含答案)

高二理科选修2-2、2-3综合练习题一、选择题1.已知|z |=3,且z +3i 是纯虚数,则z =( )A .-3iB .3iC .±3i D.4i 2.函数y=x 2cosx 的导数为( ) (A) y ′=2xcosx -x 2sinx(B) y ′=2xcosx+x 2sinx (C) y ′=x 2cosx -2xsinx(D) y ′=xcosx -x 2sinx3.若x 为自然数,且x<55,则(55-x)(56–x)…(68–x )( 69–x )= ( )A 、x x A --5569B 、1569x A -C 、1555x A -D 、1455x A -4.一边长为6的正方形铁片,铁片的四角截去四个边长均为x 的小正方形,然后做成一个无盖方盒,为使方盒的容积最大,x 应取( ) .A 、1B 、2C 、3D 、45、工人制造机器零件尺寸在正常情况下,服从正态分布2(,)N μσ.在一次正常实验中,取1000个零件时,不属于(3,3)μσμσ-+这个尺寸范围的零件个数可能为( ) A .3个 B .6个 C .7个 D .10个 6、用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设至少有两个钝角C.假设没有一个钝角D.假设没有一个钝角或至少有两个钝角7.4名学生被中大、华工、华师录取,若每所大学至少要录取1名,则共有不同的录取方法( ).A 、72种B 、36种C 、24种D 、12种8、随机变量ξ服从二项分布ξ~()p n B ,,且,200,300==ξξD E 则p 等于( )A. 32B. 31C. 1D. 09.若4)31(22+-=⎰dx x a ,且naxx )1(+的展开式中第3项的二项式系数是15,则展开式中所有项系数之和为( ) A .164-B .132C .164 D .112810.给出以下命题:⑴若 ,则f(x)>0; ⑵ ; ⑶f(x)的原函数为F(x),且F(x)是以T 为周期的函数,则 ; 其中正确命题的个数为( )(A)1 (B)2 (C)3 (D)0 二、填空题11、已知函数f(x) =32(6)1x ax a x ++++在R 上有极值,则实数a 的取值范围是 .12.观察下式1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,……,则可得出一般性结论:________13.已知X 的分布列如图,且,则a 的值为____14.对于二项式(1-x)1999,有下列四个命题:①展开式中T 1000= -C 19991000x999;②展开式中非常数项的系数和是1;③展开式中系数最大的项是第1000项和第1001项; ④当x=2000时,(1-x)1999除以2000的余数是1.其中正确命题的序号是__________. (把你认为正确的命题序号都填上)15.设)(x f 是定义在R 上的可导函数,且满足0)()('>+x xf x f .则不等式)1(1)1(2-->+x f x x f 的解集为____________.20sin 4xdx =⎰π()0ba f x dx >⎰0()()aa TTf x dx f x dx +=⎰⎰三、解答题16.(12分)已知1z i a b =+,,为实数.(1)若234z z ω=+-,求ω;(2)若2211z az b i z z ++=--+,求a ,b 的值.17、(12分) 20()(28)(0)xF x t t dt x =+->⎰.(1)求()F x 的单调区间; (2)求函数()F x 在[13],上的最值.18、(12分)已知数列{}n a 的前n 项和*1()n n S na n =-∈N .(1)计算1a ,2a ,3a ,4a ;(2)猜想n a 的表达式,并用数学归纳法证明你的结论.19、(12分)某次有奖竞猜活动中,主持人准备了A 、B 两个相互独立的问题, 并且宣布:观众答对问题A 可获奖金a 元,答对问题B 可获奖金2a 元;先答哪个题由观众自由选择;只有第一个问题答对,才能再答第二个问题,否则终止答题.设某幸运观众答对问题A 、B 的概率分别为31、14.你觉得他应先回答哪个问题才能使获得奖金的期望较大?说明理由.20、(13分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I卷选择题(共12小题,每小题5分,共60分)1.下列复数中,与5-2i共轭的是()。

A。

5+2i B。

5-2i C。

-5+2i D。

-5-2i2.已知f(x)=3x·sinx,则f'(1)=()。

A。

1/3+cos1 B。

11/3sin1+cos1 C。

3sin1-cos1 D。

sin1+cos13.设a∈R,函数f(x)=ex-ae-x的导函数为f'(x),且f'(x)是奇函数,则a为()。

A。

0 B。

1 C。

2 D。

-14.定积分∫1x(2x-e)dx的值为()。

A。

2-e B。

-e C。

e D。

2+e5.利用数学归纳法证明不等式1+1/2+1/3+…+1/(2n-1)<f(n)(n≥2,n∈N*)的过程中,由n=k变到n=k+1时,左边增加了()项。

A。

1项 B。

k项 C。

2k-1项 D。

2k项6.由直线y=x-4,曲线y=2x以及x轴所围成的图形面积为()。

A。

40/3 B。

13 C。

25/2 D。

157.函数f(x)=x^3-ax^2-bx+a^2在x=1处有极值10,则点(a,b)为()。

A。

(3,-3) B。

(-4,11) C。

(3,-3)或(-4,11) D。

不存在8.函数f(x)=x^2-2lnx的单调减区间是()。

A。

(0,1] B。

[1,+∞) C。

(-∞,-1]∪(0,1] D。

[-1,0)∪(0,1]9.已知f(x+1)=2f(x)/(f(x)+2),f(1)=1(x∈N*),猜想f(x)的表达式是()。

A。

f(x)=4/(2x+2) B。

f(x)=2^(12/(x+1)) C。

f(x)=(x+1)/2 D。

f(x)=(2x+1)/210.若f(x)=-1/(2x^2+bln(x+2))在(-1,+∞)上是减函数,则b的取值范围是()。

A。

[-1,+∞) B。

(-1,+∞) C。

高二理科数学选修2-2测试题及答案doc资料

高二理科数学选修2-2测试题及答案doc资料

高二理科数学选修2-2测试题及答案高二选修2-2理科数学试卷第I 卷 (选择题, 共60分)一、选择题(共12小题,每小题5分,共60分) 1、复数i-25的共轭复数是( ) A 、2+i B 、2-i C 、i --2 D 、i -2 2、 已知f(x)=3x ·sinx ,则'(1)f =( )A.31+cos1B. 31sin1+cos1C. 31sin1-cos1 D.sin1+cos13、设a R ∈,函数()x x f x e ae -=-的导函数为()'f x ,且()'f x 是奇函数,则a 为( ) A .0 B .1 C .2 D .-14、定积分dx e x x ⎰-1)2(的值为( )A .e -2B .e -C .eD .e +25、利用数学归纳法证明不等式1+12+13+ (1)2n -1<f(n) (n ≥2,n ∈N *)的过程中,由n =k 变到n=k +1时,左边增加了( )A .1项B .k 项C .2k -1项 D .2k 项6、由直线y= x - 4,曲线x y 2=以及x 轴所围成的图形面积为( ) A.340 B.13 C.225D.15 7、函数223)(a bx ax x x f +--=在1=x 处有极值10, 则点),(b a 为 ( ) (A ))3,3(- (B ))11,4(- (C ) )3,3(-或)11,4(- (D )不存在8、函数f(x)=x 2-2lnx 的单调减区间是( )A .(0,1]B .[1,+∞)C .(-∞,-1]∪(0,1]D .[-1,0)∪(0,1]9、 已知2()(1),(1)1()2f x f x f f x +==+ *x N ∈(),猜想(f x )的表达式( )A.4()22x f x =+; B.2()1f x x =+; C.1()1f x x =+; D.2()21f x x =+. 10、 若21()ln(2)2f x x b x =-++∞在(-1,+)上是减函数,则b 的取值范围是( )A. [1,)-+∞B. (1,)-+∞C. (,1]-∞-D. (,1)-∞-11、点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2y x =-的距离的最小值是( )(A) 1(C) 2 (D)12、对于R 上可导的任意函数f (x ),且'(1)0f =若满足(x -1)f x '()>0,则必有( )A .f (0)+f (2)< 2 f (1)B .f (0)+f (2)≥ 2 f (1)C .f (0)+f (2)> 2 f (1)D .f (0)+f (2)≤ 2 f (1)第Ⅱ卷 (非选择题, 共90分)二.填空题(每小题5分,共20分)13、设2,[0,1]()2,(1,2]x x f x x x ⎧∈=⎨-∈⎩,则20()f x dx ⎰=14、若三角形内切圆半径为r ,三边长为a,b,c 则三角形的面积12S r a b c =++(); 利用类比思想:若四面体内切球半径为R ,四个面的面积为124S S S 3,,S ,; 则四面体的体积V=15、若复数z =21+3i,其中i 是虚数单位,则|z |=______. 16、已知函数f(x)=x 3+2x 2-ax +1在区间(-1,1)上恰有一个极值点,则实数a 的取值范围 _____.三、解答题(本大题共70分)17、(10分)实数m 取怎样的值时,复数i m m m z )152(32--+-=是:(1)实数?(2)虚数?(3)纯虚数?18、(12分)已知函数3()3f x x x =-.(1)求函数()f x 在3[3,]2-上的最大值和最小值.(2)过点(2,6)P -作曲线()y f x =的切线,求此切线的方程.19、(12分)在各项为正的数列{}n a 中,数列的前n 项和n S 满足⎪⎪⎭⎫ ⎝⎛+=n n n a a S 121, ⑴求321,,a a a ;⑵由⑴猜想数列{}n a 的通项公式,并用数学归纳法证明你的猜想20、(12分)已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值(1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围21、(12分)已知函数32()23 3.f x x x =-+(1)求曲线()y f x =在点2x =处的切线方程; (2)若关于x 的方程()0f x m +=有三个不同的实根,求实数m 的取值范围. 22、(12分)已知函数()2af x x x=+,()ln g x x x =+,其中0a >. (1)若1x =是函数()()()h x f x g x =+的极值点,求实数a 的值;(2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立,求实数a 的取值范围.参考答案1、D2、B3、D4、A5、D6、A7、B8、A9、B 10、C 11、B 12、C 13、56 14、 23413S S ++1R (S +S ) 15、1 16、[-1,7)17.解:(1)当01522=--m m ,即3-=m 或5=m 时,复数Z 为实数;(3分)(2)当01522≠--m m ,即3-≠m 且5≠m 时,复数Z 为虚数;(7分) (3)当03-m ,01522=≠--且m m ,即3=m 时,复数Z 为纯虚数;(10分)18.解:(I )'()3(1)(1)f x x x =+-,当[3,1)x ∈--或3(1,]2x ∈时,'()0f x >,3[3,1],[1,]2∴--为函数()f x 的单调增区间当(1,1)x ∈-时,'()0f x <, [1,1]∴-为函数()f x 的单调减区间又因为39(3)18,(1)2,(1)2,()28f f f f -=--==-=-,所以当3x =-时,min ()18f x =- 当1x =-时,max ()2f x = …………6分(II )设切点为3(,3)Q x x x -o o o ,则所求切线方程为32(3)3(1)()y x x x x x --=--o o o o 由于切线过点(2,6)P -,326(3)3(1)(2)x x x x ∴---=--oo o o , 解得0x =o 或3x =o 所以切线方程为3624(2)y x y x =-+=-或即30x y +=或24540x y --= …………12分19 .解:⑴易求得23,12,1321-=-==a a a …………2分 ⑵猜想)(1*N n n n a n ∈--= …………5分 证明:①当1=n 时,1011=-=a ,命题成立②假设k n =时, 1--=k k a k 成立, 则1+=k n 时, )1(21)1(211111kk k k k k k a a a a S S a +-+=-=++++ )111(21)1(2111--+---+=++k k k k a a k k k a a k k -+=++)1(2111, 所以,012121=-+++k k a k a , k k a k -+=∴+11.即1+=k n 时,命题成立. 由①②知,*N n ∈时,1--=n n a n . …………12分20. 解:(1)32'2(),()32f x x ax bx c f x x ax b =+++=++由'2124()0393f a b -=-+=,'(1)320f a b =++=得1,22a b =-=-'2()32(32)(1)f x x x x x =--=+-,函数()f x 的单调区间如下表:所以函数()f x 的递增区间是(,)3-∞-与(1,)+∞,递减区间是2(,1)3-;…………6分(2)321()2,[1,2]2f x x x x c x =--+∈-,当23x =-时,222()327f c -=+ 为极大值,而(2)2f c =+,则(2)2f c =+为最大值,要使2(),[1,2]f x c x <∈-恒成立,则只需要2(2)2c f c >=+,得1,2c c <->或 …………12分21 解:(1)2()66,(2)12,(2)7,f x x x f f ''=-== ………………………2分∴曲线()y f x =在2x =处的切线方程为712(2)y x -=-,即12170x y --=;……4分 (2)记322()233,()666(1)g x x x m g x x x x x '=-++=-=-令()0,0g x x '==或1. …………………………………………………………6分'2m +. ………………………10分由()g x 的简图知,当且仅当(0),(1)0g g >⎧⎨<⎩即30,3220m m m +>⎧-<<-⎨+<⎩时,函数()g x 有三个不同零点,过点A 可作三条不同切线.所以若过点A 可作曲线()y f x =的三条不同切线,m 的范围是(3,2)--.…………12分22. 解:(1)解法1:∵()22ln a h x x x x=++,其定义域为()0 +∞,,∴()2212a h x x x'=-+.∵1x =是函数()h x 的极值点,∴()10h '=,即230a -=.∵0a >,∴a =经检验当a =1x =是函数()h x 的极值点,∴a =解法2:∵()22ln a h x x x x=++,其定义域为()0+∞,,∴()2212a h x x x'=-+.令()0h x '=,即22120a x x-+=,整理,得2220x x a +-=.∵2180a ∆=+>,∴()0h x '=的两个实根114x -=(舍去),214x -=,当x 变化时,()h x ,()h x '的变化情况如下表:依题意,11-=,即23a =,∵0a >,∴a =(2)解:对任意的[]12,1x x e ∈,都有()1f x ≥()2g x 成立等价于对任意的[]12,1x x e ∈,都有()min f x ⎡⎤⎣⎦≥()max g x ⎡⎤⎣⎦.当x ∈[1,e ]时,()110g x x'=+>.∴函数()ln g x x x =+在[]1e ,上是增函数.∴()()max 1g x g e e ==+⎡⎤⎣⎦.∵()()()2221x a x a a f x x x+-'=-=,且[]1,x e ∈,0a >. ①当01a <<且x ∈[1,e ]时,()()()20x a x a f x x +-'=>,∴函数()2a f x x x=+在[1,e ]上是增函数,∴()()2min 11f x f a ==+⎡⎤⎣⎦.由21a +≥1e +,得a,又01a <<,∴a 不合题意.②当1≤a ≤e 时,若1≤x <a ,则()()()2x a x a f x x+-'=<, 若a <x ≤e ,则()()()20x a x a f x x +-'=>. ∴函数()2a f x x x=+在[)1,a 上是减函数,在(]a e ,上是增函数.∴()()min 2f x f a a ==⎡⎤⎣⎦.由2a ≥1e +,得a ≥12e +,又1≤a ≤e ,∴12e +≤a ≤e .③当a e >且x ∈[1,e ]时,()()()2x a x a f x x +-'=<,∴函数()2a f x x x=+在[]1e ,上是减函数.∴()()2min a f x f e e e ==+⎡⎤⎣⎦.由2a e e+≥1e +,得a又a e >,∴a e >.综上所述,a 的取值范围为1,2e +⎡⎫+∞⎪⎢⎣⎭.。

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)

日照实验高中高二下学期期末复习数学练习二(选修2-2和2-3)1.已知i i Z+=+-21,则复数Z=A 、i 31+-B 、i 31-C 、i +3D 、i -32.大熊猫活到十岁的概率是0.8,活到十五岁的概率是0.6,若现有一只大熊猫已经十岁了,则他活到十五岁的概率是 A .0.8 B .0.75 C .0.6 D .0.483.若5250125(1)(1)(1)(1)x a a x a x a x +=+-+-+⋅⋅⋅+-,则0a =BA.1B.32C.-1D.-324.已知随机变量ξ服从正态分布()22N ,a ,且P(ξ<4)=0.8,则P(0<ξ<2)=A.0.6 B.0.4 C.0.3 D.0.25.有A 、B 两个口袋,A 袋装有4个白球,2个黑球;B 袋装有3个白球,4个黑球,从A 袋、B 袋各取2个球交换之后,则A 袋中装有4个白球的概率为(A )352(B )10532(C )1052(D )2186.设函数,)21()(10x x f -=则导函数)(x f '的展开式中2x 项的系数为 A .1440 B.-1440 C.2880 D.-28807.已知函数f(x)=x 2-ax +3在(0,1)上为减函数,函数g(x)=x 2-aln x 在(1,2)上为增函数,则a 的值等于 A .1 B .2 C .0 D. 2则根据表中的数据,计算随机变量2K 的值,并参考有关公式,你认为性别与是否喜爱打篮球之间有关系的把握有 A .97.5% B.99% C . 99.5% D.99.9%9.已知函数f(x)在R 上满足f(x)=2f(2-x)-x 2+8x -8,则曲线y =f(x)在点(1,f(1))处的切线方程是 A .y =2x -1 B .y =x C .y =3x -2 D .y =-2x +310.某人制定了一项旅游计划,从7个旅游城市中选择5个进行游览。

人教A版选修2-2高二数学期末试题-答案.docx

人教A版选修2-2高二数学期末试题-答案.docx

高中数学学习材料马鸣风萧萧*整理制作高二年级数学期终测试第Ⅰ卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷纸...相应位置上.题号 12 3 45 67解答 451 5 (1,1)(1,)-+∞30 126π 题号 89 1011 121314解答3﹣[,0]6π-(3,1)(3,)-+∞⎥⎦⎤⎢⎣⎡-0,22 ()102,12π15. 解:(1)A =(-∞,1)∪(2,+∞) ---------------------------------3分 x 2-(a +1)x +a ≤0,(x -1)(x -a )≤0 ----------------5分∵a >1 ∴1≤x ≤a ∴B =[1,a ] --------------------------7分 (2) C R A =[1,2] ∵(C R A )∪B =B ∴C R A ⊆B , 即[1,2]⊆[1,a ] ∴a ≥2, 即所求实数a 的取值范围为[2, +∞).16.解:(1)在ABC ∆中,因为3a =,26b =,2B A =,故由正弦定理得326sin sin 2=A A ,所以2sin cos 26sin 3=A A A 故6cos 3=A (2)由(1)知6cos 3=A ,所以23sin 1cos 3=-=A A ,又因为2B A =, 所以21cos cos 22cos 13==-=B A A ,从而222cos 1cos 3=-=B B在ABC ∆中,因为π++=A B C ,所以53sin sin()sin cos cos sin 9=+=+=C A B A B A B 所以由正弦定理得sin 5sin ==a Cc A17. 解:(Ⅰ)2()321g x x ax '=+- ……1分 由题意01232<-+ax x 的解集是⎪⎭⎫⎝⎛-1,31即01232=-+ax x 的两根分别是1,31-.将1=x 或31-代入方程01232=-+ax x 得1-=a . ()223+--=∴x x x x g . ……5分 (Ⅱ)由(Ⅰ)知:2()321g x x x '=--,(1)4g '∴-=,∴点(1,1)P -处的切线斜率k =(1)4g '-=, ……7分 ∴函数y=()x g 的图像在点(1,1)P -处的切线方程为:14(1)y x -=+,即450x y -+=. ……9分 (Ⅲ) (0,)P +∞⊆,2()()2f x g x '∴≤+即:123ln 22++≤ax x x x 对()+∞∈,0x 上恒成立 ……11分可得x x x a 2123ln --≥对()+∞∈,0x 上恒成立设()xx x x h 2123ln --=, 则()()()22'213121231x x x x x x h +--=+-=……12分 令()0'=x h ,得31,1-==x x (舍)当10<<x 时,()0'>x h ;当1>x 时, ()0'<x h ∴当1=x 时,()x h 取得最大值, ()x h m ax =-2 2-≥∴a . a ∴的取值范围是[)+∞-,2.18.解:(1)当0<x≤40,W =xR(x)-(16x +40)=-6x 2+384x -40;........ 2分 当x>40,W =xR(x)-(16x +40)=-40000x-16x +7360............4分 所以,W =26384400404000016736040.x x x x x x ⎧<≤⎪⎨>⎪⎩-+-,,--+,....................................6分(2)①当0<x≤40,W =-6(x -32)2+6104,所以W max =W(32)=6104;.............10分 ②当x>40时,W =-40000x-16x +7360, 由于40000x+16x≥24000016x x ⨯=1600,当且仅当40000x=16x ,即x =50∈(40,+∞)时,W 取最大值为5760...........14分 综合①②知,当x =32时,W 取最大值为6104..................16分 19.【答案】(1) 22143x y +=;(2)153解:(1)因为22c =,且12c a =,所以1c =,2a =.…………………………2分 所以23b =.…………………………4分所以椭圆C 的方程为22143x y +=.…………………………6分 (2)设点M 的坐标为()00,x y ,则2200143x y +=. 因为()1F 1,0-,24a c=,所以直线l 的方程为4x =.…………………………8分 由于圆M 与l 有公共点,所以M 到l 的距离04x -小于或等于圆的半径R .因为()2222100R F 1x y =M =++,所以()()22200041x x y -≤++,…………………………10分即2010150y x +-≥.又因为2200314x y ⎛⎫=- ⎪⎝⎭,所以2033101504x x -+-≥.…………12分 解得0423x ≤≤.…………………………14分 当043x =时,0153y =,所以()12F F max115152233S ∆M =⨯⨯=.……………………16分20.【答案】(1)不存在实数a ,使得f (x )在x =1处取极值;(2)a >-6;(3)上存在单调递增区间,转化为'()0f x ≥在[2,3]上恒成立,对'()f x 表达式中的分子配方,讨论分子的正负;第三问,先构造函数()()()h x f x g x =-,将存在x 0∈,使得f (x 0)<g (x 0)成立,转化为01[,]x e e∃∈,0min ()0h x ≤,求a 的范围,对()h x 求导,利用函数()h x 的正负判断函数的单调性,求函数的最小值,从而求出参数a 的取值范围.(3)法一:记F (x )=x -ln x (x >0),∴'()F x =1x x- (x >0), ∴当0<x <1时,'()F x <0,F (x )递减;当x >1时,'()F x >0,F (x )递增. ∴F (x )≥F (1)=1>0由f (x 0)≤g (x 0) 得:(x 0-ln x 0)a ≥x 20-2x 0 ………12分∴200002ln x x a x x -≥-,记22()ln x x G x x x -=-,x ∈[1e ,e ]∴22(22)(ln )(2)(1)(1)(2ln 2)()(ln )(ln )x x x x x x x x G x x x x x -------+==-- ∵x ∈[1e,e ],∴2-2ln x =2(1-ln x )≥0,∴x -2ln x +2>0∴x ∈(1e,1)时,'()G x <0,G (x )递减;x ∈(1,e )时,'()G x >0,G (x )递增 ∴G (x )min =G (1)=-1 ∴a ≥G (x )min =-1.故实数a 的取值范围为[-1,+∞). ………16分第Ⅱ卷21. 解:(1)设直线:1l x y +=上任意一点(,)M x y 在矩阵A 的变换作用下,变换为点(,)M x y ''' .由''01x m n x mx ny y y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,得x mx ny y y '=+⎧⎨'=⎩…………5分又点(,)M x y '''在l '上,所以1x y ''-=,即()1mx ny y +-= 依题意111m n =⎧⎨-=⎩,解得12m n =⎧⎨=⎩,1201A ⎡⎤∴=⎢⎥⎣⎦ …………10分21.C 解:(1) 把2cos()4πρθ=+化为直角坐标系中的方程为220x y x y +-+=(2) 把1314x t y t =+⎧⎨=--⎩化为普通方程为4310x y +-=∴圆心到直线的距离为110, ∴弦长为117221005-=; 22.解:.(1)设“在1次摸奖中,获得二等奖”为事件A ,则2111123223322264C C C +C C C 7()C C 30P A ==⋅. …………………………4分 (2)设“在1次摸奖中,获奖” 为事件B ,则获得一等奖的概率为223212264C C 1=C C 30P =⋅;获得三等奖的概率为221111323322322642C C +C C C C 7=C C 15P =⋅;所以17711()30301515P B =++=.……………8分 由题意可知X 的所有可能取值为0,1,2.21116(0)(1)15225P X ==-=,12111188(1)C (1)1515225P X ==-=,211121(2)()15225P X ===. 所以X 的分布列是X1 2()P X1622588225121225所以168812122()01222522522515E X =⨯+⨯+⨯=. ……………………………10分 23.解:(1)以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、 z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0), D 1(0,0,2). ∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴1122224(1,1,2)(,,)33333D F DE ==-=-,11224222(0,0,2)(,,)(,,)333333DF DD D F =+=+-=……………2分设(,,)x y z =n 是平面DFC 的法向量,则00DF DC ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴222033320x y z y ⎧++=⎪⎨⎪=⎩,,取x =1得平面FDC 的一个法向量(1,0,1)=-n , …………………………………3分 设(,,)x y z =p 是平面ED 1C 的法向量,则1100D F D C ⎧⋅=⎪⎨⋅=⎪⎩,,p p ∴2240333220x y z y z ⎧+-=⎪⎨⎪-=⎩,,取y =1得平面D 1EC 的一个法向量(1,1,1)=p , ……………4分∵(1,0,1)(1,1,1)0⋅=-⋅=n p ,∴平面DFC ⊥平面D 1EC . ……………………5分 (2)设(,,)x y z =q 是平面ADF 的法向量,则00DF DA ⋅=⋅=,,q q∴22203330x y z x ⎧++=⎪⎨⎪=⎩,,取y =1得平面ADF 的一个法向量(0,1,1)=-q , …………7分 设二面角A -DF -C 的平面角为θ,由题中条件可知π(,π)2θ∈,则cos θ=-||||||⋅⋅n qn q =-0011222++=-⨯,…………………………………………9分 ∴二面角A -DF -C 的大小为120°. ……………………………………10分。

人教A版选修2-2高二数学期末试题-答案.docx

人教A版选修2-2高二数学期末试题-答案.docx

高中数学学习材料唐玲出品高二年级数学期终测试第Ⅰ卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答卷纸...相应位置上.题号 12 3 45 67解答 451 5 (1,1)(1,)-+∞30 126π 题号 89 1011 121314解答3﹣[,0]6π-(3,1)(3,)-+∞⎥⎦⎤⎢⎣⎡-0,22 ()102,12π15. 解:(1)A =(-∞,1)∪(2,+∞) ---------------------------------3分 x 2-(a +1)x +a ≤0,(x -1)(x -a )≤0 ----------------5分∵a >1 ∴1≤x ≤a ∴B =[1,a ] --------------------------7分 (2) C R A =[1,2] ∵(C R A )∪B =B ∴C R A ⊆B , 即[1,2]⊆[1,a ] ∴a ≥2, 即所求实数a 的取值范围为[2, +∞).16.解:(1)在ABC ∆中,因为3a =,26b =,2B A =,故由正弦定理得326sin sin 2=A A ,所以2sin cos 26sin 3=A A A 故6cos 3=A (2)由(1)知6cos 3=A ,所以23sin 1cos 3=-=A A ,又因为2B A =, 所以21cos cos 22cos 13==-=B A A ,从而222cos 1cos 3=-=B B在ABC ∆中,因为π++=A B C ,所以53sin sin()sin cos cos sin 9=+=+=C A B A B A B 所以由正弦定理得sin 5sin ==a Cc A17. 解:(Ⅰ)2()321g x x ax '=+- ……1分 由题意01232<-+ax x 的解集是⎪⎭⎫⎝⎛-1,31即01232=-+ax x 的两根分别是1,31-.将1=x 或31-代入方程01232=-+ax x 得1-=a . ()223+--=∴x x x x g . ……5分 (Ⅱ)由(Ⅰ)知:2()321g x x x '=--,(1)4g '∴-=,∴点(1,1)P -处的切线斜率k =(1)4g '-=, ……7分 ∴函数y=()x g 的图像在点(1,1)P -处的切线方程为:14(1)y x -=+,即450x y -+=. ……9分 (Ⅲ) (0,)P +∞⊆,2()()2f x g x '∴≤+即:123ln 22++≤ax x x x 对()+∞∈,0x 上恒成立 ……11分可得x x x a 2123ln --≥对()+∞∈,0x 上恒成立设()xx x x h 2123ln --=, 则()()()22'213121231x x x x x x h +--=+-=……12分 令()0'=x h ,得31,1-==x x (舍)当10<<x 时,()0'>x h ;当1>x 时, ()0'<x h ∴当1=x 时,()x h 取得最大值, ()x h m ax =-2 2-≥∴a . a ∴的取值范围是[)+∞-,2.18.解:(1)当0<x≤40,W =xR(x)-(16x +40)=-6x 2+384x -40;........ 2分 当x>40,W =xR(x)-(16x +40)=-40000x-16x +7360............4分 所以,W =26384400404000016736040.x x x x x x ⎧<≤⎪⎨>⎪⎩-+-,,--+,....................................6分(2)①当0<x≤40,W =-6(x -32)2+6104,所以W max =W(32)=6104;.............10分 ②当x>40时,W =-40000x-16x +7360, 由于40000x+16x≥24000016x x ⨯=1600,当且仅当40000x=16x ,即x =50∈(40,+∞)时,W 取最大值为5760...........14分 综合①②知,当x =32时,W 取最大值为6104..................16分 19.【答案】(1) 22143x y +=;(2)153解:(1)因为22c =,且12c a =,所以1c =,2a =.…………………………2分 所以23b =.…………………………4分所以椭圆C 的方程为22143x y +=.…………………………6分 (2)设点M 的坐标为()00,x y ,则2200143x y +=. 因为()1F 1,0-,24a c=,所以直线l 的方程为4x =.…………………………8分 由于圆M 与l 有公共点,所以M 到l 的距离04x -小于或等于圆的半径R .因为()2222100R F 1x y =M =++,所以()()22200041x x y -≤++,…………………………10分即2010150y x +-≥.又因为2200314x y ⎛⎫=- ⎪⎝⎭,所以2033101504x x -+-≥.…………12分 解得0423x ≤≤.…………………………14分 当043x =时,0153y =,所以()12F F max115152233S ∆M =⨯⨯=.……………………16分20.【答案】(1)不存在实数a ,使得f (x )在x =1处取极值;(2)a >-6;(3)上存在单调递增区间,转化为'()0f x ≥在[2,3]上恒成立,对'()f x 表达式中的分子配方,讨论分子的正负;第三问,先构造函数()()()h x f x g x =-,将存在x 0∈,使得f (x 0)<g (x 0)成立,转化为01[,]x e e∃∈,0min ()0h x ≤,求a 的范围,对()h x 求导,利用函数()h x 的正负判断函数的单调性,求函数的最小值,从而求出参数a 的取值范围.(3)法一:记F (x )=x -ln x (x >0),∴'()F x =1x x- (x >0), ∴当0<x <1时,'()F x <0,F (x )递减;当x >1时,'()F x >0,F (x )递增. ∴F (x )≥F (1)=1>0由f (x 0)≤g (x 0) 得:(x 0-ln x 0)a ≥x 20-2x 0 ………12分∴200002ln x x a x x -≥-,记22()ln x x G x x x -=-,x ∈[1e ,e ]∴22(22)(ln )(2)(1)(1)(2ln 2)()(ln )(ln )x x x x x x x x G x x x x x -------+==-- ∵x ∈[1e,e ],∴2-2ln x =2(1-ln x )≥0,∴x -2ln x +2>0∴x ∈(1e,1)时,'()G x <0,G (x )递减;x ∈(1,e )时,'()G x >0,G (x )递增 ∴G (x )min =G (1)=-1 ∴a ≥G (x )min =-1.故实数a 的取值范围为[-1,+∞). ………16分第Ⅱ卷21. 解:(1)设直线:1l x y +=上任意一点(,)M x y 在矩阵A 的变换作用下,变换为点(,)M x y ''' .由''01x m n x mx ny y y y +⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦,得x mx ny y y '=+⎧⎨'=⎩…………5分又点(,)M x y '''在l '上,所以1x y ''-=,即()1mx ny y +-= 依题意111m n =⎧⎨-=⎩,解得12m n =⎧⎨=⎩,1201A ⎡⎤∴=⎢⎥⎣⎦ …………10分21.C 解:(1) 把2cos()4πρθ=+化为直角坐标系中的方程为220x y x y +-+=(2) 把1314x t y t =+⎧⎨=--⎩化为普通方程为4310x y +-=∴圆心到直线的距离为110, ∴弦长为117221005-=; 22.解:.(1)设“在1次摸奖中,获得二等奖”为事件A ,则2111123223322264C C C +C C C 7()C C 30P A ==⋅. …………………………4分 (2)设“在1次摸奖中,获奖” 为事件B ,则获得一等奖的概率为223212264C C 1=C C 30P =⋅;获得三等奖的概率为221111323322322642C C +C C C C 7=C C 15P =⋅;所以17711()30301515P B =++=.……………8分 由题意可知X 的所有可能取值为0,1,2.21116(0)(1)15225P X ==-=,12111188(1)C (1)1515225P X ==-=,211121(2)()15225P X ===. 所以X 的分布列是X1 2()P X1622588225121225所以168812122()01222522522515E X =⨯+⨯+⨯=. ……………………………10分 23.解:(1)以D 为原点,分别以DA 、DC 、DD 1所在直线为x 轴、y 轴、 z 轴建立如图所示空间直角坐标系,则A (1,0,0),B (1,2,0),C (0,2,0), D 1(0,0,2). ∵E 为AB 的中点,∴E 点坐标为E (1,1,0),∵D 1F =2FE ,∴1122224(1,1,2)(,,)33333D F DE ==-=-,11224222(0,0,2)(,,)(,,)333333DF DD D F =+=+-=……………2分设(,,)x y z =n 是平面DFC 的法向量,则00DF DC ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴222033320x y z y ⎧++=⎪⎨⎪=⎩,,取x =1得平面FDC 的一个法向量(1,0,1)=-n , …………………………………3分 设(,,)x y z =p 是平面ED 1C 的法向量,则1100D F D C ⎧⋅=⎪⎨⋅=⎪⎩,,p p ∴2240333220x y z y z ⎧+-=⎪⎨⎪-=⎩,,取y =1得平面D 1EC 的一个法向量(1,1,1)=p , ……………4分∵(1,0,1)(1,1,1)0⋅=-⋅=n p ,∴平面DFC ⊥平面D 1EC . ……………………5分 (2)设(,,)x y z =q 是平面ADF 的法向量,则00DF DA ⋅=⋅=,,q q∴22203330x y z x ⎧++=⎪⎨⎪=⎩,,取y =1得平面ADF 的一个法向量(0,1,1)=-q , …………7分 设二面角A -DF -C 的平面角为θ,由题中条件可知π(,π)2θ∈,则cos θ=-||||||⋅⋅n qn q =-0011222++=-⨯,…………………………………………9分 ∴二面角A -DF -C 的大小为120°. ……………………………………10分。

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )

高二数学下期期末理科考试题(选修2-2,选修2-3 )一、选择题(本大题共10小题,每小题5分,共50分)1、复数Z=2+i 在复平面内的对应点在( )A 第一象限B 第二象限C 第三象限D 第四象限2、定积分dx x +⎰1110的值为( ) A 1 B ln2 C2122- D 212ln 21- 3、10)1(xx +展开式中的常数项为( ) A 第5项 B 第6项 C 第5项或第6项 D 不存在4、设随机变量ξ服从B (21,6),则P (ξ=3)的值是( ) A 165 B 163 C 85 D 83 5、曲线232+-=x x y 上的任意一点P 处切线的斜率的取值范围是( )A ⎪⎪⎭⎫⎢⎣⎡+∞,33B ⎪⎪⎭⎫ ⎝⎛+∞,33C ()+∞-,3D [)+∞-,36、某班一天上午安排语、数、外、体四门课,其中体育课不能排在每一、每四节,则不同排法的种数为( )A 24B 22C 20D 127、将骰子(骰子为正方体,六个面分别标有数字1,2...,6)先后抛掷2次,则向上的点数之和为5的概率是( )A 154B 92C 91D 181 8、设函数()y f x =在定义域内可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为( )9、某个命题与正整数有关,若当n=k(*N k ∈)时该命题成立,那么可推得当n=k+1时该命题也成立,现已知当n=5时该命题不成立,那么可推得( )A 当n=6时,该命题不成立B 当n=6时,该命题成立C 当n=4时,该命题成立D 当n=4时,该命题不成立x y O 图1 x y O A x y O Bx y O C y OD x10、等比数列}{n a 中,4,281==a a ,函数))...()(()(821a x a x a x x x f ---=,则=)0(,f ( )A 62B 92C 122D 152二、填空题(本大题共5小题,每小题5分,共25分)11、已知231010-=x x C C ,则x= 。

高二下学期理科数学综合测试题选修2-2,2-3(带详细答案)

高二下学期理科数学综合测试题选修2-2,2-3(带详细答案)
故答案为: .
第16题答案
或 (其他化简式不扣分)
第16题解析
由题意, 时,左边为 ; 时,左边为 ;从而增加两项为 ,且减少一项为 ,故填写
第17题答案
(I) ;(II) .
第17题解析
(I) 由已知,则 在 上恒成立,
即 在 上恒成立,设 ,则 ,
由 得 ,∴ 当 时 , 单调递减,
当 时 , 单调递增,则 最小值为 ,从而 ;
∴实数k的取值范围是(-1,1).
第11题答案
A
第11题解析
可分为两类,第一类:甲、乙两个盒子恰有一个被选中,有 种;第二类:甲、乙两个盒子都被选中,有 种,所以共有12+4=16种不同的情况.
第12题答案
D
第12题解析
因为 所以 故 在 上为单调递减函数,又 所以 解得 .
第13题答案
24
第13题解析
第7题答案
C
第7题解析
即 由 对任意的 恒成立,知 对任意的 恒成立,令 ,只需 即可.由 得 或 (不符合题意舍去), 在 上单调递增,在 上单调递减, 在 上的最大值为 .故应选C.
第8题答案
C
第8题解析
令 ,可得 ,所以 ,所以 ,则展开式中常数项为 .
第9题答案
D
第9题解析
因为随机变量 ,所以正态曲线关于 对称,又 ,则 ,所以 ,所以 正确;随机变量 ,且 所以 解得 ,所以 也正确.
B.在犯错误的概率不超过 的前提下,认为“爱好游泳运动与性别无关”
C.有 以上的把握认为“爱好游泳运动与性别有关”
D.有 以上的把握认为“爱好游泳运动与性别无关”
7、已知函数 若 的最小值为 ,且 对任意的 恒成立,则实数 的取值范围是( )

人教A版选修2-2高二数学(理科)期末考试.docx

人教A版选修2-2高二数学(理科)期末考试.docx

2015年秋黄冈市高二数学(理科)期末考试一、选择题1.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )7816 6572 0802 6314 0702 4369 9728 01983204 9234 4935 8200 3623 4869 6938 7481A.08B.07C.02D.012.甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数;②甲同学的平均分比乙同学的平均分高;③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差.上面说法正确的是( ).A .③④B .①②④C .②④D .①③④3.当输入x=﹣4时,如图的程序运行的结果是( )A .7B .8C .9D .154.下列说法错误的是( ).A .若命题“p q ∧”为真命题,则“p q ∨”为真命题B .命题“若0m >,则方程20x x m +-=有实根”的逆命题为真命题C .命题“若22bc ac b a >>,则”的否命题为真命题D .若命题“q p ∨⌝”为假命题,则“q p ⌝∧”为真命题5.一名小学生的年龄和身高(单位:cm )的数据如下表:由散点图可知,身高y 与年龄x 之间的线性回归方程为^^8.8y x a =+,预测该学生10岁时的身高为( )A .154B .153C .152D .1516.“5≠a 且5-≠b ”是“0≠+b a ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分条件也非必要条件7.某校共有学生2000名,各年级男、女生人数如下表:如果从全校学生中随机抽取一名学生,抽到二年级女生的概率为0.19.现用分层抽样的方法在全校学生中分年级抽取64名学生参加某项活动,则应在三年级中抽取的学生人数为( )A 、24B 、18C 、16D 、128.已知双曲线22221x y a b -=)0,0(>>b a 的一个焦点与抛物线24y x =-的焦点重合,且双曲线的离心率为5,则此双曲线的方程为( )A .224515y x -= B .225514y x -= C .22154y x -= D .22154x y -= 9.如图,直三棱柱111ABC A B C -中,90BAC ∠=o ,2AB AC ==,16AA =,则1AA 与平面11AB C 所成的角为( )A BC 1B 1A 1CA .6πB .4πC .3πD .2π 9.如图,在平行六面体1111ABCD A B C D -中,底面是边长为1的正方形,若,6011︒=∠=∠AD A AB A 且31=AA ,则C A 1的长为( )A .5B .22C . 14D .1710. 已知:a ,b,c 为集合{}1,2,3,4,5A =中三个不同的数,通过如下框图给出的一个算法输出一个整数a ,则输出的数4a =的概率是( )A .38B .320C .310D .21 11.过原点的直线与双曲线22221x y a b-=)0,0(>>b a 交于N M ,两点,P 是双曲线上异于的一点N M ,,若直线NP MP 与直线的斜率都存在且乘积为45,则双曲线的离心率为( )A.23 B .49 C .45 D .2 12.椭圆2212516x y +=的左、右焦点分别为12,F F ,弦AB 过1F ,若△2ABF 的内切圆周长为π,A 、B 两点的坐标分别为11(,)x y 和22(,)x y ,则21y y -的值为( ) A.5 B.103 C.203D.53二、填空题 13.三进制数)3(121化为十进制数为 .14.若命题“x R ∃∈,使2(1)10x a x +-+<”是假命题,则实数a 的取值范围为 . 15.在区间[]4,2﹣上随机地取出一个数x ,若x 满足m x ≤的概率为65,则m =________. 16.以下五个关于圆锥曲线的命题中: ①双曲线221169x y -=与椭圆2214924x y +=有相同的焦点; ②以抛物线的焦点弦(过焦点的直线截抛物线所得的线段)为直径的圆与抛物线的准线是相切的。

高二理科数学选修22测试卷试题及含含版

高二理科数学选修22测试卷试题及含含版

⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 最新资料介绍⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯高二选修 2-2 理科数学试卷10、若12f (x)x b ln( x 2)在 (-1,+ ) 上是减函数,则b 的取值范围是()2第 I 卷 (选择题, 共 60 分)A . [ 1, ) B. ( 1, )C.( , 1]D. ( , 1)一、选择题(共 12 小题,每题5 分,共 60 分) 51、复数 的共轭复数是 ()2 iA 、 i2B 、 i 2C 、2 i D 、 2 i211、点 P 是曲线y x ln x上随意一点 ,则点 P 到直线y x 2 的距离的最小值是 ()(A) 1 (B)2(C) 2 (D) 2 2 2、 已知 f(x)=3x · sinx ,则f '(1)=( )f若知足( x - 1) f (x )>0,则必有()'(1) 0'(1) 012、对于 R 上可导的随意函数f (x ),且A .f (0)+ f (2) 2 f (1)B .f (0)+ f (2) 2 f (1)A. 1 3+cos1 B. 1 3sin1+cos1 C. 13sin1-cos1 D.sin1+cos1C . f (0)+ f (2) > 2 f ( 1) D.f (0)+ f (2)2 f (1)第Ⅱ卷(非选择题, 共 90 分)3、设a R ,函数 xxf xeae 的导函数为f ' x ,且 f ' x 是奇函数,则a 为( )二.填空题(每题5 分,共 20 分) A .0B.1C.2 D . -11x4、定积分(2x e )dx 的值为( )13、设f (x)x x 2, [0,1] 2, [0,1]2 x, x (1,2]2,则f ( x)dx =A . 2 eB. eC. eD. 2 e5、利用数学概括法证明不等式 1+1 1 + +⋯2 3 1*)的过程中,由n =k 变到 nn-1<f(n)(n ≥ 2,n ∈N2=k + 1时,左侧增添了 ()114、若三角形内切圆半径为r ,三边长为a ,b,c 则三角形的面积S (r a bc );2利用类比思想:若四周体内切球半径为R ,四个面的面积为S 1, S 2,S 3,S 4 ;k 1k-项 D 2. 项A 1B kC 2 .项.项.6、由直线y = x - 4,曲线y 2x 以及 x 轴所围成的图形面积为( )则四周体的体积V = 2,此中 i 是虚数单位,则|z |= ______.15、若复数 z =1+ 3i 16、已知函数 f(x) =x3+2x 2- ax +1 在区间(-1,1)上恰有一个极值点,则实数 a 的取值范围_____.3+2x 2- ax +1 在区间(-1,1)上恰有一个极值点,则实数 a 的取值范围_____.A.403C.25 2三、解答题(本大题共 70 分)7、函数322f (x) xaxbx a 在 x 1处有极值10,则点 (a, b)为()2是:17、(10 分)实数 m 取如何的值时,复数z m 3 (m 2m 15)i(1)实数?( 2)虚数?( 3)纯虚数?(A ) (3, 3) (B ) ( 4,1 1)(C ) (3, 3) 或 ( 4,1 1)(D )不存在8、函数 f(x) =x2-2lnx 的单一减区间是 ( )2-2lnx 的单一减区间是 ( )18、(12 分)已知函数3f ( x)x3x .A . (0,1]B .[1,+∞ )C .(-∞,- 1]∪(0,1]D .[-1,0)∪(0,1](1)求函数 f (x)在3 [ 3, ] 2上的最大值和最小值. 9、 已知2 f (x) f (x 1) , f(1) 1f (x) 2(x N *),猜想 f (x )的表达式()(2)过点 P(2, 6) 作曲线y f (x) 的切线,求此切线的方程.A.4 f (x) ; B.x2 22 1f (x); C.f (x)f (x) ; D.x 1 x 12 2x1.1⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 最新资料介绍⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯19、( 12 分)在各项为正的数列a 中, 数列的前 n 项和 S n 知足nSn1 2a n1 an,39又因为f ( 3) 18, f ( 1) 2, f (1)2, f ( ) ,28⑴求a 1, a , a ;23因此当 x 3时, f (x)18 当 x 1时, f (x)max2 ⋯ ⋯ ⋯⋯ 6 分min332Q( x ,x 3x ) ,则所求切线方程为y (x 3x ) 3(x 1)( x x ) (II )设切点为⑵由⑴猜想数列 a 的通项公式 , 并用数学概括法证明你的猜想 n因为切线过点 P (2, 6) ,3 26 (x3x ) 3(x 1)(2x ) ,20、( 12 分)已知函数3 2f ( x) x axbx c 在2x与 x 1时都获得极值3解得 x0 或 x 3 因此切线方程为y 3x 或y 6 24( x2) 即(1) 求 a,b 的值与函数 f (x) 的单一区间(2) 若对x [ 1,2] ,不等式2f (x) c 恒建立,求 c 的取值范围3x y 0 或 24 x y 54⋯ ⋯ ⋯⋯ 12 分21、( 12 分)已知函数3 2f ( x) 2x 3x3.(1)求曲线yf ( x) 在点 x 2处的切线方程;(2)若对于 x 的方程 f x m 0有三个不一样的实根,务实数m 的取值范围.19 . 解: ⑴易求得 a 1 1,a 2 2 1, a 33 2⋯ ⋯ ⋯ ⋯2 分22、( 12分)已知函数 f x x 2 a x, g x x ln x ,此中 a 0.*⑵猜想 an n 1(n N )n⋯ ⋯ ⋯ ⋯5 分(1)若 x 1是函数 h x f x g x 的极值点,务实数 a 的值; (2)若对随意的x 1,x 21,e ( e 为自然对数的底数)都有f x 1 ≥g x 2 建立,务实数a证明: ①当 n 1时, a 1 0 1, 命题建立1的取值范围.②假定n k 时, ak k 1k建立 ,参照答案11 11则n k 1时, )a S S (a ) (a则n k 1时,)k 1 1 k k 1 kak2 a 2k 1 k 1、D 2 、B 3 、D 4、A 5 、D 6 、A 7 、B 8 、A 9、 B 10、C 11、B 12 、C513、14、613R(S +S)15 、1 16、[-1,7)S S12 3 4121 1 1 1 1(a k ) ( k k (a k 1 )k ,1)1a 2 k 2 ak 1k 1 k 12 m17. 解:(1)当m 2 15 0 ,即m 3或m 5时,复数Z为实数;(3 分)2因此 , a k 2 ka 1 0, a k 1 k 1 k .1 k 12 m(2)当m 2 15 0,即m 3且m 5时,复数Z为虚数;(7 分)即n k 1时,命题建立. 由①②知,*n N时,a n n n 1. ⋯⋯⋯⋯12分(3)当m2 2m 15 0,且 m - 3 0,即m 3时,复数Z为纯虚数;(10 分)18. 解:(I ) f '( x) 3(x 1)( x 1) ,当x [ 3, 1)或3x (1, ]时, f '(x)0 ,23[ 3,1],[1, ]2为函数 f (x) 的单一增区间3 2 ' 220. 解:(1)f ( x) x ax bx c, f (x) 3x 2ax b' 2 12 4 1' (1) 3 2 0由 f a b , f a b 得a ,b 2( ) 03 9 3 2f x x x x x ,函数 f ( x) 的单一区间以下表:' ( ) 3 2 2 (3 2)( 1)当x ( 1,1)时, f '(x ) 0 ,[ 1,1]为函数 f (x) 的单一减区间2( , )3232( ,1)3(1, ) 2⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯f ' (x) 0 0 f (x) 极大值极小值解法 2:∵2ah x 2xln xx,其定义域为0,,因此函数 f (x) 的递加区间是( , 2)3 与(1, ),递减区间是2( ,1)3;⋯⋯⋯⋯ 6 分∴h x 22a12xx.(2) 3 1 2f (x) x x 2x c, x [ 1,2] ,当22x时,32 22f ( ) c3 272a 1令h x 0,即∵22x x21 8a 0 ,,整理,得 2 22x x a0 .2为极大值,而 f (2) 2 c ,则f (2) 2 c为最大值,要使恒建立,则只要要f (x) c , x [ 1,2]2 (2) 2c f c,得 c 1,或 c 2 ⋯⋯⋯⋯12 分21 1 8a∴h x 0的两个实根x (舍去),14当x变化时,h x ,h x 的变化状况以下表:21 1 8ax ,24x 0,x x2 x2,221 解:(1) 2f (x) 6x 6x, f (2) 12, f (2) 7, ⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分h x —0 +∴曲线y f (x) 在x 2处的切线方程为y7 12( x 2) ,即12x y 17 0;⋯⋯ 4 分h x 极小值3 2 2(2)记g(x) 2x 3x m 3,g (x) 6x 6x 6x( x 1)令g ( x) 0,x 0 或 1. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分则x, g ( x), g( x) 的变化状况以下表依题意,21 1 8a41,即2 3a ,x ( ,0) 0 (0,1) 1 (1, ) ∵a 0,∴a3 .g x0 0( )(2)解:对随意的 x 1, x 21,e 都有f x ≥1g x 建立等价于对随意的 2x x,e 都1,21g( x)极大 极小有 fx≥ming x.max当 x 0, g(x) 有极大值m 3; x 1,g (x) 有极小值m2.⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ 10 分由 g(x) 的简图知,当且仅当 g(0)g(1) 0,当 x [1, e ]时, g x 1 1 0.x∴函数 g x x ln x 在 1,e 上是增函数.m 30 2 0即, 3 m2时, m函数 g(x) 有三个不一样零点,过点A 可作三条不一样切线.因此若过点 A 可作曲线y f (x) 的三条不一样切线, m 的范围是 ( 3, 2) . ⋯ ⋯ ⋯ ⋯ 12 分2ah x 2xln xx12x xx 1 h x,其定义域为0,,23 a0 .g x g ee . max1∴f x12 a x ax a2 2xx∵x a x af x20 xe在[ 1 , ]上是增函数,①当 0 a 1且 x [1, e ]时,∴函数f xx 2a x,h 1 0∵是函数的极值点,∴,即22. 解:(1)解法 1:∵∴h x 22a∴ 2f x min f 1 1a .,且x 1,e ,a 0.∵a 0,∴a 3 .经查验当 a 3时,x 1是函数h x 的极值点,2由1 a ≥ e 1,得 a ≥e ,又0 a 1,∴a 不合题意.②当 1≤ a ≤e时,∴ a 3 .3⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯若1≤x < a ,则f x x a x a2x,若 a <x≤e,则f x x a x a2x.∴函数 f x x 2a x 在1,a 上是减函数,在a,e 上是增函数.∴ f x min f a2a .e 1由2a≥ e 1,得a ≥,2又1≤ a ≤ e ,∴ e 1 ≤ a ≤ e .2x a x a③当 a e且x [1,e]时,f x 2x2a∴函数 f x x 在1,e 上是减函数.x2a∴ f x f e e.mine2a由e ≥ e 1,得 a ≥ e ,e又 a e,∴ a e.e 1综上所述, a 的取值范围为,.2,4高二理科数学选修22测试卷试题及含含版料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新资5。

期末高二数学选修2-2、2-3测试题(含答案)

期末高二数学选修2-2、2-3测试题(含答案)

高二数学选修2-2、2-3期末检测试题命题:伊宏斌 命题人:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分.考试用时120分钟.第Ⅰ卷(选择题,共50分)一.选择题(本大题共10小题,每小题5分,共50分)1.过函数x y sin =图象上点O (0,0),作切线,则切线方程为 ( ) A .x y = B .0=y C .1+=x y D .1+-=x y 2.设()121222104321x a x a x a a x x x ++++=+++ ,则=0a ( )A .256B .0C .1-D .1 3.定义运算a cad bc b d=-,则ii 12(i 是虚数单位)为 ( ) A .3 B .3- C .12-i D .22+i4.任何进制数均可转换为十进制数,如八进制()8507413转换成十进制数,是这样转换的:()1676913818487808550741323458=+⨯+⨯+⨯+⨯+⨯=,十六进制数1444706165164163162)6,5,4,3,2(23416=+⨯+⨯+⨯+⨯=,那么将二进制数()21101转换成十进制数,这个十进制数是 ( )A .12B .13C .14D .155.用数学归纳法证明:“两两相交且不共点的n 条直线把平面分为)(n f 部分,则2)1(1)(++=n n n f 。

”在证明第二步归纳递推的过程中,用到)()1(k f k f =++ 。

( ) A .1-k B .k C .1+k D .2)1(+k k6.记函数)()2(x fy =表示对函数)(x f y =连续两次求导,即先对)(x f y =求导得)('x f y =,再对)('x f y =求导得)()2(x fy =,下列函数中满足)()()2(x f x f=的是( )7.甲、乙速度v 与时间t 的关系如下图,)(b a 是b t =时的加速度,)(b S 是从0=t 到b t =的路程,则)(b a 甲与)(b a 乙,)(b S 甲与)(b S 乙的大小关系是 ( )A .)()(b a b a 乙甲>,)()(b S b S 乙甲>B .)()(b a b a 乙甲<,)()(b S b S 乙甲<C .)()(b a b a 乙甲<,)()(b S b S 乙甲>D .)()(b a b a 乙甲<,)()(b S b S 乙甲< 8.如图,蚂蚁从A 沿着长方体的棱以 的方向行走至B ,不同的行走路线有( )A .6条B .7条C .8条D .9条9、等比数列{a }n 中,120143,9a a ==,122014(x)(x a )(x a )....(x )f x a =---,'(x)f 为函数(x)f 的导函数,则'(0)f =( )A 0B 10073C 20163D 3021310.设{}10,9,8,7,6,5,4,3,2,1=M ,由M 到M 上的一一映射中,有7个数字和自身对应的映射个数是 ( )A .120B .240C .710 D .360B第8题图第Ⅱ卷(非选择题 共100分)二.填空题(本大题4个小题,每小题5分,共25分) 11(15)如果5025001250(12)(1)(1)(1)x a a x a x a x +=+-+-++-,那么1349a a a +++= .12.设复数z 满足条件1z =,那么z i +取最大值时的复数z 为 . 13.已知数列{}a n 为等差数列,则有,02321=+-a a a 0334321=-+-a a a aa a a a a 123454640-+-+=类似上三行,第四行的结论为__________________________。

数学北师大版高中选修2-2高二数学(理科)选修2-2测试卷

数学北师大版高中选修2-2高二数学(理科)选修2-2测试卷

普通高中课程标准实验教材(选修2-2)数 学 综 合 测 试一. 选择题(本大题8小题,每题4分,共32分,每小题所给选项中只有一项符合题目要求)1. 一物体沿直线作匀速直线运动,其位移与时间的关系为62+=t s ,则在某时间段的平均速度与任一时刻的瞬时速度 ( )A )相等B )不等C )有时相等D )无法比较 2.复数i m m m )1(322-+-+ (m R ∈)为纯虚数,则 ( ) A )m=1,m=-3 B )m=1 C )m=-3 D )m=33.曲线)1,1(1323-+-=在点x x y 处的切线方程为 ( ) A )3x-y-4=0 B )3x+y-2=0 C )4x+y-3=0 D )4x-y-5=04.曲线y=cosx(0π≤≤x )与坐标轴所围成的面积是 ( ) A )0 B )1 C )2 D )35.下列在演绎推理中可以作为证明数列nn n a 1+=上是递增数列的大前题的有( )个 A )0 B )1 C )2 D )3 ①函数y=f(x)在对于区间(a,b )中任意两个数,1x ﹤2x 若21x x 都有)(1x f ﹤)(2x f 则函数为增函数,②函数y=f(x)在对于区间(a,b )中的导数)('x f ﹥0则函数为增函数,③数列{}n a 中若对任意正整数都有1+n a >n a 6.函数y=13++x ax 有极值的充要条件是 ( ) A )a >0 B )a <0 C )a ≥0 D )a ≤07.如图所示是函数y=f(x)的导函数y=)('x f 图象,则下列哪一个判断是正确的 ( ) A )在区间(-2,1)内y=f(x)为增函数B )在区间(1,3)内y=f(x)为减函数C )在区间(4,5)内y=f(x)为增函数D )当x=2时y=f(x)有极小值8.做一个底面为正三角形的体积为V 的直棱柱,要求其表面积最小,则底面边长为( ) A )3V B )32V C )34V D )23V二.填空题(本大题共6个小题,每小题4分,满分24分)9.=+⎰dx x x )23(2310.复数3+5i 的共轭复数为11.归纳推理,类比推理,演绎推理中从一般到特殊的推理过程的是 12.关于x 的方程033=--a x x 有三个不同的根,则a 的取值范围是 13.设n27的个位数为n a ,如,......9,.721==a a 则=2007a14.不等式 241)1ln(x x -+≤M 恒成立,则M 的最小值为三.解答题(本大题共4题,满分34分)15.已知a.b 都是正数,求证b a 11...++ 这2个数中至少有一个不小于2 (6分)16 已知函数b x a ax x x f ++-=2233132)((a >0) (8分) (1)当y=f(x)的极小值为1时求b 的值(2)若f(x)在区间[1,2]上是减函数,求a 的范围17.已知函数c bx ax x x f +++=23)(在131=-=x x 和处取得极值,(1)求a,b 的值及其单调区间,(2)若对x ∈[-1,2]不等式f(x)≤2c 恒成立,求c 的取值范围 (10)18.已知复数θθsin cos i Z +=(1)计算432,,Z Z Z ,(2)猜想n Z 并用数学归纳法证明(10)(备用公式Sin(α+β)=sin αcos β+cos αsin β cos(α+β)=cos αcos β-sin αsin β。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.设z =10i3+i,则z 的共轭复数为( ) A .-1+3i B .-1-3i C .1+3iD .1-3i2.若函数f (x )=e x cos x ,则此函数的图象在点(1,f (1))处的切线的倾斜角为( ) A .0 B .锐角 C.π2D .钝角3.用反证法证明命题“若函数f (x )=x 2+px +q ,那么|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”时,反设正确的是( )A .假设|f (1)|,|f (2)|,|f (3)|都不小于12B .假设|f (1)|,|f (2)|,|f (3)|都小于12C .假设|f (1)|,|f (2)|,|f (3)|至多有两个小于12D .假设|f (1)|,|f (2)|,|f (3)|至多有一个小于124.设a =⎠⎛01x -13d x ,b =1-⎠⎛01x 12d x ,c =⎠⎛01x 3d x ,则a ,b ,c 的大小关系( )A .a >b >cB .b >a >cC .a >c >bD .b >c >a5.由①y =2x +5是一次函数;②y =2x +5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是( )A .②①③B .③①②C .①②③D .②③①6.如图,我们知道,圆环也可以看作线段AB 绕圆心O 旋转一周所形成的平面图形,又圆环的面积S =π(R 2-r 2)=(R -r)×2π×R +r2,所以,圆环的面积等于以线段AB =R -r为宽,以AB 中点绕圆心O 旋转一周所形成的圆的周长2π×R +r2为长的矩形面积.请你将上述想法拓展到空间,并解决下列问题:若将平面区域M ={}(x ,y )|(x -d )2+y 2≤r 2(其中0<r<d)绕y 轴旋转一周,则所形成的旋转体的体积是( )A .2πr 2dB .2π2r 2dC .2πrd 2D .2π2rd 27.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 015的末四位数字为( ) A .3 125 B .5 625 C .0 625D .8 1258.下面给出了关于复数的四种类比推理:①复数的加减法运算,可以类比多项式的加减法运算法则;②由向量a 的性质|a |2=a 2,可以类比得到复数z 的性质:|z |2=z 2;③方程ax 2+bx +c =0,(a ,b ,c ∈R ,且a ≠0)有两个不同的实数根的条件是b 2-4ac >0,类比可得方程ax 2+bx +c =0,(a ,b ,c ∈C 且a ≠0)有两个不同的复数根的条件是b 2-4ac >0;④由向量加法的几何意义,可以类比得到复数加法的几何意义.其中类比得到的结论正确的是( ) A .①③ B .②④ C .②③D .①④9.设x >0,y >0,A =x +y 1+x +y ,B =x 1+x +y1+y,则A 与B 的大小关系为( )A .A >B B .A ≥BC .A <BD .A ≤B10.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )二、填空题(本大题共4小题,每小题5分,共20分) 11.若复数z 满足z +i =3+ii,则|z |=________.12.直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),则2a +b 的值为________. 13.我们把1,4,9,16,25,…这些数称作正方形数,这是因为这些数目的点可以排成一个正方形,如下图所示:第n 个正方形数是________.14.若O 为△ABC 内部任意一点,连接AO 并延长交对边于A ′,则AO AA ′=S 四边形ABOCS △ABC,同理连接BO ,CO 并延长,分别交对边于B ′,C ′,这样可以推出AO AA ′+BO BB ′+COCC ′=________;类似地,若O 为四面体ABCD 内部任意一点,连接AO ,BO ,CO ,DO 并延长,分别交相对的面于A ′,B ′,C ′,D ′,则AO AA ′+BO BB ′+CO CC ′+DODD ′=________.三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤) 15.(本小题满分12分)已知F (x )=1x-t (t -4)d t ,x ∈(-1,+∞).(1)求F (x )的单调区间; (2)求函数F (x )在[1,5]上的最值.16.(本小题满分12分)在△ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2.在四面体A -BCD 中,类比上述结论,你能得到怎样的猜想,并说明理由.17.(本小题满分12分)已知函数f (x )=x 3+ax 2-3x (a ∈R ). (1)若函数f (x )在区间[1,+∞)上是增函数,求实数a 的取值范围;(2)若x =13是函数f (x )的极值点,是否存在实数b ,使得函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点?若存在,请求出b 的取值范围;若不存在,试说明理由.18.(本小题满分14分)已知数列{a n }满足a 1=a ,a n +1=12-a n. (1)求a 2,a 3,a 4;(2)猜想数列{a n }的通项公式,并用数学归纳法证明.高中数学选修2-2综合测试题参考答案1.选D ∵z =10i3+i =10i (3-i )(3+i )(3-i )=1+3i ,∴z =1-3i.2.选D f ′(x )=e x ·cos x +e x ·(-sin x )=e x (cos x -sin x ).当x =1时,cos x -sin x <0,故f ′(1)<0,所以倾斜角为钝角.3.选B “|f (1)|,|f (2)|,|f (3)|中至少有一个不小于12”的反设为“|f (1)|,|f (2)|,|f (3)|都小于12”. 4.解析:选A 由题意可得a =⎠⎛01x -13d x =x 113-+-13+110=32x 2310=32;b =1-⎠⎛01x 12d x =1-x 323210=1-⎝⎛⎭⎫23-0=13;c =⎠⎛01x 3d x =x 4410=14.综上,a >b >c .5.选B 该三段论应为:一次函数的图象是一条直线(大前提),y =2x +5是一次函数(小前提),y =2x +5的图象是一条直线(结论).6.选B 平面区域M 的面积为πr 2,由类比知识可知:平面区域M 绕y 轴旋转一周得到的旋转体类似于为实心的车轮内胎,旋转体的体积等于以圆(面积为πr 2)为底,以O 为圆心、d 为半径的圆的周长2πd 为高的圆柱的体积,所以旋转体的体积V =πr 2×2πd =2π2r 2d .7.选D ∵55=3 125,56=15 625,57=8 125, 58=390 625,59=1 953 125,510=9 765 625,…∴5n (n ∈Z ,且n ≥5)的末四位数字呈周期性变化,且最小正周期为4,记5n (n ∈Z ,且n ≥5)的末四位数字为f (n ),则f (2 015)=f (502× 4+7)=f (7).∴52 015与57的末四位数字相同,均为8 125.8.选D ②中|z |2∈R ,但z 2不一定是实数.③中复数集不能比较大小,不能用b 2-4ac 来确定根的个数.9.选Cx 1+x +y 1+y >x 1+x +y +y1+x +y =x +y 1+x +y.10.选C 由函数f (x )在x =-2处取得极小值可知x <-2,f ′(x )<0,则xf ′(x )>0;x >-2,f ′(x )>0,则-2<x <0时,xf ′(x )<0,x >0时,xf ′(x )>0.11.解析:∵z =3+i i -i =(3+i )(-i )-i 2-i =-i 2-3i -i =1-4i ,∴z =1+4i.∴|z |=12+42=17.答案:1712.解析:∵直线y =kx +1与曲线y =x 3+ax +b 相切于点A (1,3),y =x 3+ax +b 的导数y ′=3x 2+a .∴⎩⎪⎨⎪⎧3=k ×1+13=13+a ×1+b , k =3×12+a ,解得a =-1,b =3,∴2a +b =1. 答案:113.解析:观察前5个正方形数,正好是序号的平方,所以第n 个正方形数应为n 2. 答案:n 214.解析:根据面积公式,在△ABC 中, AO AA ′=AA ′-OA ′AA ′=1-OA ′AA ′ =1-S △OBC S △ABC =S 四边形ABOC S △ABC ,所以AO AA ′+BO BB ′+CO CC ′=3-S △OBC +S △OAC +S △OABS △ABC=3-S △ABCS △ABC=2.根据体积分割方法,同理可得在四面体ABCD 中, AO AA ′+BO BB ′+CO CC ′+DODD ′=4-V O -ABD +V O -ACD +V O -ABC +V O -BCDV A -BCD=4-V A -BCDV A -BCD =3.答案:2 3 15.解:F(x )=1x⎰- (t 2-4t )d t =⎝⎛⎭⎫13t 3-2t 21x -=13x 3-2x 2-⎝⎛⎭⎫-13-2 =13x 3-2x 2+73(x >-1). (1)F ′(x )=x 2-4x ,由F ′(x )>0,即x 2-4x >0,得-1<x <0或x >4; 由F ′(x )<0,即x 2-4x <0,得0<x <4, ∴F (x )的单调递增区间为(-1,0)和(4,+∞), 单调递减区间为(0,4).(2)由(1)知F(x )在[1,4]上递减,在[4,5]上递增,∵F (1)=13-2+73=23,F (4)=13×43-2×42+73=-253,F (5)=13×53-2×52+73=-6,∴F (x )在[1,5]上的最大值为23,最小值为-253.16. 证明:如图所示,由射影定理AD 2=BD ·DC ,AB 2=BD ·BC ,AC 2=BC ·DC ,∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2, ∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC2.所以1AD 2=1AB 2+1AC2.猜想:类比AB ⊥AC ,AD ⊥BC 猜想四面体A -BCD 中,AB ,AC ,AD 两两垂直,AE ⊥平面BCD ,则1AE 2=1AB 2+1AC 2+1AD2.如图,连接BE 并延长交CD 于F ,连接AF .∵AB ⊥AC ,AB ⊥AD ,∴AB ⊥平面ACD .而AF ⊂平面ACD ,∴AB ⊥AF . 在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2.∴1AE 2=1AB 2+1AC 2+1AD2,故猜想正确. 17.解:(1)f ′(x )=3x 2+2ax -3, ∵f (x )在[1,+∞)上是增函数, ∴在[1,+∞)上恒有f ′(x )≥0, ∴-a3≤1,且f ′(1)=2a ≥0.∴a ≥0.故实数a 的取值范围为[0,+∞). (2)由题意知f ′⎝⎛⎭⎫13=0,即13+2a3-3=0, ∴a =4.∴f (x )=x 3+4x 2-3x .若函数g (x )=bx 的图象与函数f (x )的图象恰有3个交点,即方程x 3+4x 2-3x =bx 恰有3个不等实根.∵x =0是其中一个根,∴方程x 2+4x -(3+b )=0有两个非零不等实根.∴⎩⎪⎨⎪⎧Δ=16+4(3+b )>0,-(3+b )≠0.∴b >-7,且b ≠-3.∴满足条件的b 存在,其取值范围是(-7,-3)∪(-3,+∞). 18.解:(1)由a n +1=12-a n 可得a 2=12-a 1=12-a ,a 3=12-a 2=12-12-a =2-a3-2a,a 4=12-a 3=12-2-a 3-2a=3-2a 4-3a . (2)推测a n =(n -1)-(n -2)an -(n -1)a.下面用数学归纳法证明:①当n =1时,左边=a 1=a , 右边=(1-1)-(1-2)a 1-(1-1)a=a ,结论成立.②假设n =k 时等式成立,有a k =(k -1)-(k -2)ak -(k -1)a ,则当n =k +1时, a k +1=12-a k=12-(k -1)-(k -2)a k -(k -1)a=k -(k -1)a2[k -(k -1)a ]-[(k -1)-(k -2)a ]=k -(k -1)a(k +1)-ka.故当n =k +1时,结论也成立. 由①②可知,对任何n ∈N *都有a n =(n -1)-(n -2)a n -(n -1)a.。

【高二数学】选修2-2综合测试含答案解析

【高二数学】选修2-2综合测试含答案解析

选修2-2综合测试时间120分钟,满分150分.一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算:1+2i-2=( ) A .-1-12iB .-1+12iC .1+12iD .1-12i[答案] B [解析]1+2i -2=1+2i 1-2i +i 2=1+2i-2i =+2=-1+12i.2.用反证法证明命题“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除[答案] B[解析] “至少有一个”的否定为“一个也没有”.3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n n 2+3,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2D .13(k +1)[2(k +1)2+1] [答案] B[解析] 当n =k 时,左边=12+22+…+(k -1)2+k 2+(k -1)2+…+22+12,当n =k +1时,左边=12+22+…+(k -1)2+k 2+(k +1)2+k 2+(k -1)2+…+22+12,∴从n =k 到n =k +1,左边应添加的式子为(k +1)2+k 2.4.已知函数f (x )=1x +-x,则y =f (x )的图象大致为( )[答案] B[解析] 当x =1时,y =1ln 2-1<0,排除A ;当x =0时,y 不存在,排除D ;当x 从负方向无限趋近于0时,y 趋近于-∞,排除C.故选B.5.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为( )A .a 1a 2a 3…a 9=29B .a 1+a 2+…+a 9=29C .a 1a 2…a 9=2×9D .a 1+a 2+…+a 9=2×9[答案] D[解析] 由等差数列的性质知,a 1+a 9=a 2+a 8=…=2a 5,故D 成立.6.做直线运动的质点在任意位置x 处,所受的力F (x )=1-e -x,则质点从x 1=0,沿x 轴运动到x 2=1处,力F (x )所做的功是( )A .eB .1e C .2e D .12e[答案] B[解析] 由W =⎠⎛01(1-e -x )d x =⎠⎛011d x -⎠⎛01e -x d x =x |10+e -x |10=1+1e -1=1e .7.已知复数(x -2)+y i(x ,y ∈R )对应向量的模为3,则y x的最大值是( ) A .32B .33C. 3 D .12[答案] C[解析] 由|(x -2)+y i|=3,得(x -2)2+y 2=3, 此方程表示如图所示的圆C ,则y x的最大值为切线OP 的斜率. 由|CP |=3,|OC |=2,得∠COP =π3,∴切线OP 的斜率为3,故选C.8.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图像可能是( )[答案] C[解析] 本题考查导数的应用,函数的图象.由f (x )在x =-2处取极小值知f ′(-2)=0且在-2的左侧f ′(x )<0,而-2的右侧f ′(x )>0,所以C 项合适.函数、导数、不等式结合命题,对学生应用函数能力提出了较高要求.9.观察下列的图形中小正方形的个数,则第6个图中有________个小正方形,第n 个图中有________个小正方形( )A .28,n +n +2B .14,n +n +2C .28,n 2D .12,n 2+n2[答案] A [解析]根据规律知第6个图形中有1+2+3+4+5+6+7=28.第n 个图形中有1+2+…+(n +1)=n +n +2.10.给出定义:若函数f (x )在D 上可导,即f ′(x )存在,且导函数f ′(x )在D 上也可导,则称f (x )在D 上存在二阶导函数,记f ″(x )=(f ′(x ))′,若f ″(x )<0在D 上恒成立,则称f (x )在D 上为凸函数.以下四个函数在(0,π2)上不是凸函数的是( )A .f (x )=sin x +cos xB .f (x )=ln x -2xC .f (x )=-x 3+2x -1 D .f (x )=-x e -x[答案] D[解析] 若f (x )=sin x +cos x ,则f ″(x )=-sin x -cos x , 在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=ln x -2x ,则f ″(x )=-1x 2,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x 3+2x -1,则f ″(x )=-6x ,在x ∈(0,π2)上,恒有f ″(x )<0;若f (x )=-x e -x,则f ″(x )=2e -x-x e -x=(2-x )e -x. 在x ∈(0,π2)上,恒有f ″(x )>0,故选D.二、填空题(本大题共5小题,每小题5分,共25分) 11.(2014·北京理,9)复数(1+i 1-i )2=________.[答案] -1 [解析] 复数1+i1-i =+2-+=2i2=i , 故(1+i 1-i )2=i 2=-1. 12.用数学归纳法证明34n +1+52n +1能被14整除时,当n =k +1时,对于34(k +1)+1+52(k +1)+1应变形为________. [答案] 34·34k +1+52·52k +1[解析] n =k 时,34k +1+52k +1能被14整除,因此,我们需要将n =k +1时的式子构造为能利用n =k 的假设的形式.34(k +1)+1+52(k +1)+1=34·34k +1+52·52k +1+34·52k +1-34·52k +1=34(34k +1+52k +1)+(52-34)52k +1,便可得证.13.在△ABC 中,D 是BC 的中点,则AD →=12(AB →+AC →),将命题类比到四面体中去,得到一个类比命题:____________________________________________________________________________________________________________________________________.[答案] 在四面体A -BCD 中,G 为△BCD 的重心,则AG →=13(AB →+AC →+AD →)14.已知函数f (x )=x 3-ax 2+3ax +1在区间(-∞,+∞)内既有极大值,又有极小值,则实数a 的取值范围是________________.[答案] (-∞,0)∪(9,+∞)[解析] 由题意得y ′=3x 2-2ax +3a =0有两个不同的实根,故Δ=(-2a )2-4×3×3a >0,解得a <0或a >9.15.如图为函数f (x )的图像,f ′(x )为函数f (x )的导函数,则不等式x ·f ′(x )<0的解集为________.[答案] (-3,-1)∪(0,1)[解析] x ·f ′(x )<0⇔⎩⎪⎨⎪⎧x >0,f x ,或⎩⎪⎨⎪⎧x <0,f x∵(-3,-1)是f (x )的递增区间, ∴f ′(x )>0的解集为(-3,-1). ∵(0,1)是f (x )的递减区间, ∴f ′(x )<0的解集为(0,1).故不等式的解集为(-3,-1)∪(0,1).三、解答题(本大题共6小题,共75分,前4题每题12分,20题13分,21题14分) 16.(2015·山东青岛)已知复数z 1=i(1-i)3. (1)求|z 1|.(2)若|z |=1,求|z -z 1|的最大值.[解析] (1)|z 1|=|i(1-i)3|=|i|·|i-1|3=2 2. (2)如图所示,由|z |=1可知,z 在复平面内对应的点的轨迹是半径为1,圆心为O (0,0)的圆.而z 1对应着坐标系中的点Z 1(2,-2),所以|z -z 1|的最大值可以看成是点Z 1(2,-2)到圆上的点的距离的最大值.由图知|z -z 1|max =|z 1|+r (r 为圆的半径)=22+1.17.设函数f (x )=kx 3-3x 2+1(k ≥0). (1)求函数f (x )的单调区间;(2)若函数f (x )的极小值大于0,求k 的取值范围. [解析] (1)当k =0时,f (x )=-3x 2+1,∴f (x )的单调增区间为(-∞,0),单调减区间为(0,+∞). 当k >0时,f ′(x )=3kx 2-6x =3kx (x -2k).∴f (x )的单调增区间为(-∞,0),(2k,+∞),单调减区间为(0,2k).(2)当k =0时,函数f (x )不存在极小值. 当k >0时,由(1)知f (x )的极小值为f (2k )=8k 2-12k2+1>0,即k 2>4, 又k >0,∴k 的取值范围为(2,+∞).18.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数: ①sin 213°+cos 217°-sin13°cos17°; ②sin 215°+cos 215°-sin15°cos15°; ③sin 218°+cos 212°-sin18°cos12°; ④sin 2(-18°)+cos 248°-sin(-18°)cos48°; ⑤sin 2(-25°)+cos 255°-sin(-25°)cos55°. (1)试从上述五个式子中选择一个,求出这个常数;(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论. [解析] 解法一: (1)选择(2)式,计算如下:sin 215°+cos 215°-sin15°cos15° =1-12sin30°=1-14=34.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α)=sin 2α+(cos30°cos α+sin30°sin α)2-sin α(cos30°cos α+sin30°sin α) =sin 2α+34cos 2α+32sin αcos α+14sin 2α-32sin αcos α-12sin 2α=34sin 2α+34cos 2α=34. 解法二: (1)同解法一.(2)三角恒等式为sin 2α+cos 2(30°-α)-sin αcos(30°-α)=34.证明如下:sin 2α+cos 2(30°-α)-sin αcos(30°-α) =1-cos2α2+1+cos 60°-2α2-sin α(cos30°cos α+sin30°sin α)=12-12cos2α+12+12(cos60°cos2α+sin60°sin2α)-32sin αcos α-12sin 2α =12-12cos2α+12+14cos2α+34sin2α-34sin2α-14(1-cos2α) =1-14cos2α-14+14cos2α=34.19.设a >0且a ≠1,函数f (x )=12x 2-(a +1)x +a ln x .(1)当a =2时,求曲线y =f (x )在(3,f (3))处切线的斜率; (2)求函数f (x )的极值点. [解析] (1)由已知得x >0.当a =2时,f ′(x )=x -3+2x ,f ′(3)=23,所以曲线y =f (x )在(3,f (3))处切线的斜率为23.(2)f ′(x )=x -(a +1)+a x=x 2-a +x +ax=x -x -ax.由f ′(x )=0,得x =1或x =A . ①当0<a <1时,当x ∈(0,a )时,f ′(x )>0,函数f (x )单调递增; 当x ∈(a,1)时,f ′(x )<0,函数f (x )单调递减; 当x ∈(1,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =a 时f (x )的极大值点,x =1是f (x )的极小值点. ②当a >1时,当x ∈(0,1)时,f ′(x )>0,函数f (x )单调递增; 当x ∈(1,a )时,f ′(x )<0,函数f (x )单调递减; 当x ∈(a ,+∞)时,f ′(x )>0,函数f (x )单调递增. 此时x =1是f (x )的极大值点,x =a 是f (x )的极小值点.综上,当0<a <1时,x =a 是f (x )的极大值点,x =1是f (x )的极小值点;当a >1时,x =1是f (x )的极大值点,x =a 是f (x )的极小值点.20.(2014·广东理)设数列{a n }的前n 项和为S n ,满足S n =2na n +1-3n 2-4n ,n ∈N *,且S 3=15.(1)求a 1,a 2,a 3的值; (2)求数列{a n }的通项公式.[解析] (1)a 1=S 1=2a 2-3×12-4×1=2a 2-7①a 1+a 2=S 2=4a 3-3×22-4×2=4(S 3-a 1-a 2)-20=4(15-a 1-a 2)-20,∴a 1+a 2=8②联立①②解得⎩⎪⎨⎪⎧a 1=3a 2=5,∴a 3=S 3-a 1-a 2=15-8=7,综上a 1=3,a 2=5,a 3=7.(2)由(1)猜想a n =2n +1,以下用数学归纳法证明: ①由(1)知,当n =1时,a 1=3=2×1+1,猜想成立; ②假设当n =k 时,猜想成立,即a k =2k +1, 则当n =k +1时,a k +1=2k -12k a k +6k +12k=2k -12k ·(2k +1)+3+12k=4k 2-12k +3+12k=2k +3=2(k +1)+1这就是说n =k +1时,猜想也成立,从而对一切n ∈N *,a n =2n +1.21.如图,某地有三家工厂,分别位于矩形ABCD 的顶点A ,B 及CD 的中点P 处,已知AB =20 km ,CB =10 km ,为了处理三家工厂的污水,现要在矩形ABCD 的区域上(含边界),且与A ,B 等距离的一点O处建造一个污水处理厂,并铺设排污管道AO ,BO ,OP ,设排污管道的总长为y km.(1)设∠BAO =θrad ,将y 表示成θ的函数关系式; (2)确定污水处理厂的位置,使三条排污管道的总长度最小.[解析] (1)延长PO 交AB 于点Q ,则PQ 垂直平分AB .若∠BAO =θrad ,则OA =AQcos ∠BAO =10cos θ,故OB =10cos θ. 又OP =10-10tan θ,所以y =OA +OB +OP =10cos θ+10cos θ+10-10tan θ.故所求函数关系式为y =20-10sin θcos θ+10(0≤θ≤π4).(2)y ′=-10cos θ·cos θ--10sin θ-sinθcos 2θ=θ-cos 2θ.令y ′=0,得sin θ=12.因为0≤θ≤π4,所以θ=π6.当θ∈[0,π6)时,y ′<0,则y 是关于θ的减函数;当θ∈(π6,π4]时,y ′>0,则y 是关于θ的增函数,所以当θ=π6时,y min =20-10×1232+10=(103+10).故当点O 位于线段AB 的中垂线上,且距离AB 边1033km 处时,三条排污管道的总长度最小.。

高二数学理科选修2-2测试题(带答案)(最新整理)

高二数学理科选修2-2测试题(带答案)(最新整理)

ak +1 =Sk 1 Sk
( ak1 2
1 ak 1
1) ( ak 2
1 ak
1) =
ak+ 1 2
+
1ak+ 1
2k + 1 .
所以 ak2+1 + 2 2k + 1ak+1 - 2 = 0
ak+1 = 2(k + 1) + 1 - 2(k + 1) - 1 所以当 n = k + 1时猜想也成立.综上可知,猜想对一切 n Î N+ 都成立.
(x a)2 ( y b)2 (z c)2 r2 .
6.已知 f x 2x 13 2a 3a ,若 f 1 8 ,则 f 1
x
A.4
B.5
C. - 2
D. - 3
7.若函数 f x ln x ax 在点 P 1,b 处的切线与 x 3y 2 0 垂直,则 2a b 等于
18.已知 a b c, 求证: 1 1 4 . ab bc ac
{ 19.已知数列
an } 的前
n 项和
Sn
满足:
Sn
an2
2an 2an
2
,且 an
0, n N.
{ (1)求 a1, a2 , a3; (2)猜想 an } 的通项公式,并用数学归纳法证明
21. 设函数 f x xekx k 0
10.函数 f x 的定义域为 a,b ,导函数 f x 在 a,b 内的图像如图所示,则函数 f x 在 a,b 内有极小值点
1
A.1 个
B.2 个
C.3 个
D.4 个
11.已知 a1 1, an1 an 且 an1 an 2 2 an1 an 1 0 ,计算 a2 , a3 ,猜想 an 等于

(完整版)高二数学理科选修2-2期末测试题

(完整版)高二数学理科选修2-2期末测试题

A 、(2,0)-B 、(,2)(1,0)-∞-⋃-C 、(,2)(0,)-∞-⋃+∞D 、(2,1)(0,)--⋃+∞9.a 为实数,若复数 是纯虚数,则= .(2)3i z a =-+i1ia a ++10.函数,求函数的单调减区间为 极小值为()ln f x x x x=-()f x 11.(为常数)在上有最小值,则在上的最大值32()3f x x x a =++a [33]-,3[33]-,()f x 是12.曲线所围成的封闭图形的面积s=y =2y x =13.已知复数在复平面内对应的点分别为12,Z Z (2,1),(,3)A B a -(1)若12Z Z a-=(2)复数对应的点在二、四象限的角平分线上,求a 的值。

12z Z Z =⋅14.观察以下5个等式:-1=-1-1+3=2-1+3-5=-3-1+3-5+7=4-1+3-5+7-9=-5……(1)写出第6个等式,并猜想第n 个等式(n∈N *)(2)用数学归纳法证明上述所猜想的第n 个等式(n∈N *)成立。

15.已知三次函数过点(3,0),且f(x)在点()()32,,f x x bx cx d a b c R =+++∈(0,f (0))处的切线恰好是直线y=0(1)求函数的解析式;()f x (2)设g (x )=9x+m-1,若y=f(x)-g(x)在[-2,1]上有两个零点,求实数m 的范围。

16.已知函数()2x f x e ax =+-(1)若,求函数f(x)在区间的最小值1a =-[1,1]-(2)求函数f(x)在的单调区间(0,)+∞(3)若函数在单调递增,求实数a 的的取值范围。

xax f x h +=)()(),0(+∞。

求是高中高二理科数学选修2-2综合测试(二)(含答案)

求是高中高二理科数学选修2-2综合测试(二)(含答案)

求是高中高二理科数学选修2-2综合测试(二)一、选择题:(本大题共10小题,每小题5分,共50分)1.观察按下列顺序排列的等式:9011⨯+=,91211⨯+=,92321⨯+=,93431⨯+=,…,猜想第*()n n ∈N 个等式应为( )A.9(1)109n n n ++=+B.9(1)109n n n -+=- C.9(1)101n n n +-=- D.9(1)(1)1010n n n -+-=-2.曲线2x y =在(1,1)处的切线方程是( )A. 230x y ++=B. 032=--y xC. 210x y ++=D. 012=--y x3.定义运算a bad bc c d =- ,则符合条件1142i i z z -=+ 的复数z 为( )A.3i - B.13i + C.3i + D.13i -4.用反证法证明命题“三角形的内角至多有一个钝角”时,假设正确的是( )A.假设至少有一个钝角 B .假设至少有两个钝角C.假设没有一个钝角 D.假设没有一个钝角或至少有两个钝角5.曲线3πcos 02y x x ⎛⎫= ⎪⎝⎭≤≤与x 轴以及直线3π2x =所围图形的面积为( ) A.4 B.2 C.52 D.36.平面几何中,有边长为a 的正三角形内任一点到三边距离之和为定值2a ,类比上述命题,棱长为a 的正四面体内任一点到四个面的距离之和为( )7.复数z=534+i,则z 是( ) A .25 B .5 C .1 D .78.一个机器人每一秒钟前进一步或后退一步,程序设计师设计的程序是让机器人以先前进3步,然后再后退2步的规律移动.如果将机器人放在数轴的原点,面向正的方向在数轴上移动(1步的距离为1个单位长度).令()P n 表示第n 秒时机器人所在位置的坐标,且记(0)0P =,则下列结论中错误的是( )A.(3)3P =B.(5)1P = C.(2007)(2006)P P > D.(2003)(2006)P P <9.如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数A. 13(,)x xB. 24(,)x xC.46(,)x xD.56(,)x x10.设*211111()()123S n n n n n n n =+++++∈+++N ,当2n =时,(2)S =( ) A.12 B.1123+ C.111234++ D.11112345+++ 二、填空题:本大题共7小题,每小题4分,共28分.把答案填在题中横线上. 11.=---⎰dx x x )2)1(1(10212.设12541...i i i Z +++=,12542...i i i Z ⋅⋅⋅=,则1Z ,2Z 关系为13.已知32()3f x x x a =++(a 为常数),在[33]-,上有最小值3,那么在[33]-,上()f x 的最大值是 ______________14.已知223+,338+,4415+,5524+,…,由此你猜想出第n 个数为_______________ 15.关于x 的不等式20()mx nx p m n p R -+>∈、、的解集为(1 2)-,,则复数m pi +所对应的点位于复平面内的第________象限.16、函数x x x f cos 2)(+= )20(π,∈x 的单调递减区间为 17.仔细观察下面图形:图1是一个水平摆放的小正方体木块,图2,图3是由这样的小正方体木块叠放而成的,按照这样的规律放下去,至第七个叠放的图形中,小正方体木块总数就是三、解答题:本大题共5小题,共72分.解答应写出文字说明,证明过程或演算步骤.18.(本小题14分)已知等腰梯形OABC 的顶点A B ,在复平面上对应的复数分别为12i +、26i -+,且O 是坐标原点,OA BC ∥.求顶点C 所对应的复数z .19.(本小题14分) 20()(28)(0)xF x t t dt x =+->⎰. (1)求()F x 的单调区间;(2)求函数()F x 在[13],上的最值.20.(本小题15分)设()y f x =是二次函数,方程()0f x =有两个相等的实根,且()22f x x '=+.(1)求()y f x =的表达式;(2)若直线(01)x t t =-<<把()y f x =的图象与两坐标轴所围成图形的面积二等分,求t 的值.21.(本小题14分)某宾馆有50个房间供游客居住,当每个房间定价为每天180元时,房间会全部住满;房间单价增加10元,就会有一个房间空闲,如果游客居住房间,宾馆每间每天需花费20元的各种维护费用。

新课标高二数学理期末(选修2—2)

新课标高二数学理期末(选修2—2)

普通高中课程标准实验教科书——数学选修2—2[人教版]高中学生学科素质训练新课标高二数学同步测试—(期末测试题2—2)说明:本试卷分第一卷和第二卷两部分,第一卷74分,第二卷76分,共150分;答题时间120分钟.一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分). 1.已知函数)()1ln()(2x f x x x f '++=则是( )A .奇函数B .偶函数C .非奇非偶函数D .既是奇函数也是偶函数2.设x ,R y ∈,则0xy >是||||||y x y x +=+成立的( )A .充分条件,但不是必要条件;B .必要条件,但不是充分条件;C .充分且必要条件;D .既不充分又不必要条件. 3. 112-+⎛⎝ ⎫⎭⎪i i 的值等于( )A .1B .-1C .iD .-i4.使复数a bi a b +()、不同时为零等于它的共轭复数的倒数的充要条件是 ( )A . ()a b +=21 B . a b 221+=C . a b 221-=D . ()a b -=215.椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,则椭圆的离心率e 为( )A .1010B .1717 C .13132 D .3737 6.如果用C ,R 和I 分别表示复数集,实数集和纯虚数集,其中C 为全集,那么有( ) A .C R I =B . R I ={}0C . I C R C U =D . R I =φ7.长方体ABCD —A 1B 1C 1D 1中,E 、F 分别为C 1B1,D1B1的中点,且AB=BC,AA1=2AB,则CE 与BF 所成角的余弦值是( )A .1010B .10103 C .3434 D .34345 8.设F 1、F 2为双曲线42x -y 2=1的两焦点, 点P 在双曲线上, 当△F 1PF 2面积为1时,21PF PF ⋅的值为( ) A .0 B .1 C .2 D .219.如果复数Z ai Z =+-<322满足条件||,那么实数a 的取值范围是 ( )A .(,)-2222B .(,)-22C .(,)-11D .(,)-3310.已知复数 Z a bi Z b ai a b 12=+=-+,(其中、都是实数,且ab ≠0),在复平面内,Z 1、Z 2所对应的点与原点组成的三角形是 ( )A .锐角三角形B .直角三角形C .等腰直角三角形D .等边三角形 二、填空题:请把答案填在题中横线上(每小题6分,共24分). 11.若Z C Z Z Z ∈-=-==,||,||,21134且则复数.12.若=∈≠≠++++=∈≠≠-*),1,0(,.......321*,,1,012N n x x nx x x S N n x x n n 则 . 13.平面直角坐标系下直线的方程为)0(,022≠+=++B A C By Ax ,请类比空间直角坐标系下平面的方程为 .14.椭圆x 2+22ay =1(0<a<1)上离顶点A(0, a)距离最远的点恰好是另一个顶点A ′(0, - a), 则a的取值范围是三、解答题:解答应写出文字说明、证明过程或演算步骤(共76分).15.(12分)已知命题P :复数22lg(22)(32)z m m m m i =--+++对应的点落在复平面的第二象限;命题Q :以m 为首项,公比为q 的等比数列的前n 项和极限为2.若命题“P且Q ”是假命题,“P 或Q ”是真命题,求实数m 的取值范围.16.(12分)(1) 设x ≤1,求一个正常数a ,使得x ≤331ax +; (2)设i x ≤1,033231=+++n x x x ,求证:n x x x +++ 21≤3117.(12分)用数学归纳法证明等式对所以n ∈N*均成立.nn n n n 212111211214131211+++++=--++-+-18.(12分)设函数ax x x f -+=1)(2,其中0>a .(I )解不等式1)(≤x f ;(II )证明:当1≥a 时,函数)(x f 在区间),0[+∞上是单调函数.19.如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直. 点M在AC 上移动,点N 在BF 上移动,若CM=BN=)20(<<a a .(Ⅰ)求MN 的长;(Ⅱ)当a 为何值时,MN 的长最小;(Ⅲ)当MN 长最小时,求面MNA 与面MNB 所成的二面角α的大小.20.(14分)椭圆的中心是原点O ,它的短轴长为22,相应于焦点F (c ,0)(0>c )的准线l 与x 轴相交于点A ,|OF|=2|FA|,过点A 的直线与椭圆相交于P 、Q 两点. (Ⅰ)求椭圆的方程及离心率;(Ⅱ)若0=⋅,求直线PQ 的方程;(Ⅲ)设λ=(1>λ),过点P 且平行于准线l 的直线与椭圆相交于另一点M , 证明:λ-=.参考答案一、 1.B ; 2.A 3.;答案:B分析:111-+==-i i ii()∴-+⎛⎝ ⎫⎭⎪=-=-11122i i i另解:原式()()=-+=-=-1122122i i ii故选B . 4.B 5.A .6.答案:D .分析:由复数概念,如下图,R I =φ故选D .; 7.D ; 8.A ;9.答案:D . 分析:由题意, |()|,322+-<ai 得122+<a ,解得,-<<33a因此本题应选D .10. 二、11.±7i ;12.21)1()1(1x nx x n n n -++-+;解析:当x ≠1时,∵,两边都是关于x 的函数,求导得即.13.)0(,0222≠++=+++C B A D Cz By Ax 14.⎪⎪⎭⎫⎢⎣⎡122, 三、15.解:命题P 有:22lg(22)0 320 m m m m ⎧--<⎪⎨++>⎪⎩①②由①得:202211311m m m m <--<⇒+<-<<-或 由②得:232021m m m m ++>⇒<->-或由上得满足P 的m的取值范围是:13m <<或11m -<< 对命题Q ,有:21mq=- 又110q q -<<≠且 得:04m <<且2m ≠又命题“P 且Q ”是假命题,“P 或Q ”是真命题,则m 的范围是(1,3)(0,2)13][3,4)-⋃⋃⋃ 16.解:⑴ x ≤331ax +可化为1333+-x ax ≥0,令)(x f =1333+-x ax , 392-=ax x f )(',由0=)('x f 得,ax 31±=)(1f =3a-2≥0,)(1-f =-3a+4≥0,∴32≤a ≤34, ①∴a31∈[-1,1],13133131331+⋅-⋅⋅=aa a a af )(≥0,即a ≥34 ②由①、②得,34=a . 从而当x ≤1时,1333+-x ax =2121))((-+x x ≥0,即x ≤331ax +. ⑵ 由⑴知,对i x ≤1,有i x ≤33431i x +,(i=1,2,…,n ) 将这n 个式子求和,得n x x x +++ 21≤31. 17.证明:i)当n=1时,左式=21211=-,右式=21111=+, ∴ 左式=右式,等式成立. ii)假设当n=k(k ∈N)时等式成立, 即kk k k k 212111211214131211+++++=--++-+-, 则当n=k+1时,)1(21)1(13)1(12)1(11)1(1221121413121)22111(1213121221121)212111(221121)211214131211(221121211214131211++++++++++++++=++++++++++=+-++++++++=+-+++++++=+-++--++-+-=+-++--++-+-k k k k k k k k k k k k k k k k k k k k k k k k k k k k k即n=k+1时,等式也成立,由i) ii)可知,等式对n ∈N 均成立.小结:在利用归纳假设论证n=k+1等式成立时,注意分析n=k 与n=k+1的两个等式的差别.n=k+1时,等式左边增加两项,右边增加一项,而且右式的首项由11+k 变为21+k .因此在证明中,右式中的11+k 应与-221+k 合并,才能得到所证式.因而,在论证之前,把n=k+1时等式的左右两边的结构先作一分析是有效的.由例1可以看出,数学归纳法的证明过程中,要把握好两个关键之处:一是f(n)与n 的关系;二是f(k)与f(k+1)的关系.18.解1:(I )分类讨论解无理不等式(略).(II )作差比较(略).解2:a x x x f -+='1)(2(i )当1≥a 时,有a x x≤<+112,此时0)(<'x f ,函数)(x f 在区间),(+∞-∞上是单调递减函数.但1)0(=f ,因此,当且仅当0≥x 时,1)(≤x f .(ii )当10<<a 时,解不等式0)(<'x f ,得21aa x -<,)(x f 在区间]1,(2aa --∞上是单调递减函数.解方程1)(=x f ,得0=x 或212aa x -=,∵221210aa aa -<-<,∴当且仅当2120aa x -≤≤时,1)(≤x f ,综上,(I )当10<<a 时,所给不等式的解集为:⎭⎬⎫⎩⎨⎧-≤≤2120|a a x x ; 当1≥a 时,所给不等式的解集为:{}0|≥x x .(II )当且仅当1≥a 时,函数)(x f 在区间),0[+∞上时单调函数. 19.向量法)解析:如图,建立空间直角坐标系B-xyz ,则A (1,0,0),C (0,0,1),E (0,1,0),F (1,1,0), (I )a 2+=+= )1,0,1(2)1,0,0(-+=a )21,0,2(a a -=BF a BN 2=)0,2,2(a a = -=∴)12,2,0(-=aa ,)20(122<<+-=a a a(II )由(I)知:122+-=a a 21222+⎪⎪⎭⎫ ⎝⎛-=a 所以当22=a 时,MN 的长最小,此时MN=22. (III )由(II )知,当MN 的长最小时,22=a ,此时M 、N 分别是AC 、BF 的中点.取MN 的中点G ,连结AG 、BG ,易证∠AGB 为二面角A-MN-B 的平面角.∵点)21,0,21(M ,点)0,21,21(N ,∴点)41,41,21(G∴)41,41,21(--=,)41,41,21(---=,∴31,cos -=>=<GB GA ,∴故所求二面角)31arccos(-=α= π-31arccos20.(Ⅰ)解:由题意,可设椭圆的方程为)2(12222>=+a y a x .由已知得⎪⎩⎪⎨⎧-==-).(2,2222c c a c c a 解得2,6==c a 所以椭圆的方程为12622=+y x ,离心率36=e .(Ⅱ)解:由(1)可得A (3,0).设直线PQ 的方程为)3(-=x k y .由方程组⎪⎩⎪⎨⎧-==+)3(,12622x k y y x 得062718)13(2222=-+-+k x k x k 依题意0)32(122>-=∆k ,得3636<<-k .设),(),,(2211y x Q y x P ,则13182221+=+k k x x , ① A B CDEFMNGyxz136272221+-=k k x x . ② 由直线PQ 的方程得)3(),3(2211-=-=x k y x k y .于是 ]9)(3[)3)(3(2121221221++-=--=x x x x k x x k y y . ③ ∵0=⋅,∴02121=+y y x x . ④. 由①②③④得152=k ,从而)36,36(55-∈±=k . 所以直线PQ 的方程为035=--y x 或035=-+y x . (Ⅲ)证明:),3(),,3(2211y x y x -=-=.由已知得方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=+=-=-.126,126,),3(3222221212121y x y x y y x x λλ 注意1>λ,解得λλ2152-=x . 因),(),0,2(11y x M F -,故),1)3((),2(1211y x y x -+-=--=λ),21(),21(21y y λλλλ--=--=. 而),21(),2(222y y x λλ-=-=,所以FQ FM λ-=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-2巩固练习
1.给出下列四个命题:(1)若z C ∈,则02≥z ;(2)2i 1虚部是2i ;
(3)若,i i a b a b >+>+则;(4)若12,z z ,且12z z ,则12,z z 为实数;
其中正确命题....的个数为 ( ) A.1个 B.2个 C.3个 D.4个 2.复数(1i)(2i)b (b 是实数)表示的点在第四象限,则b 的取值范围是( )
A.b <12-
B.b >12-
C.1
2-< b < 2 D.b < 2
3.定义运算
a b ad bc c d
=- ,则符合条件
1142i i
z z -=+ 的复数z 为( )
A .3i -
B .13i +
C .3i +
D .13i -
4.有一段“三段论”推理是这样的:对于可导函数()f x ,如果0()0f x '=,那么0x x = 是函数()f x 的极值点;因为函数3
()f x x =在0x =处的导数值(0)0f '=,所以,0x =是函数
3()f x x =的极值点.以上推理中( )
A 、大前提错误
B 、小前提错误
C 、推理形式错误
D 、结论正确
5.已知()()3
2213a f x x a x
=+-+,若()18f '-=,则()1f -=( )
A .4
B .5
C .2
D .3
6.用数学归纳法证明1+12+13+…+1
2n -1
<n(n ∈N *,n>1)时,第一步应验证不等式( ) A 、1+12<2 B 、1+12+13<3 C 、1+12+13+14<3 D 、1+12+13
<2
7.若函数()ln f x x ax =-在点()1,P b 处的切线与320x y +-=垂直,则2a b +=( ) A .2 B .0 C . 1 D .2
8、已知在R 上可导的函数()f x 的图象如图所示,则不等式()()0f x f x ⋅'<的解集为( )。

A 、(2,0)-
B 、(,2)(1,0)-∞-⋃-
C 、(,2)(0,)-∞-⋃+∞
D 、(2,1)(0,)--⋃+∞ 9.a 为实数,若复数(2)
3i z
a
是纯虚数,则
i
1i
a a = .
10.函数()ln f x x x x =-,
求函数()f x 的单调减区间为 极小值为
11.32()3f x x x a =++(a 为常数)在[33]-,上有最小值3,则在[33]-,上()f x 的最大值是
12.曲线y =与2y x =所围成的封闭图形的面积s=
13.已知复数12,Z Z 在复平面内对应的点分别为(2,1),(,3)A B a -
(1)若12Z Z a -=的值。

(2)复数12z Z Z =⋅对应的点在二、四象限的角平分线上,求a 的值。

14.观察以下5个等式:
-1=-1 -1+3=2 -1+3-5=-3 -1+3-5+7=4 -1+3-5+7-9=-5
……
(1)写出第6个等式,并猜想第n 个等式(n∈N *)
(2)用数学归纳法证明上述所猜想的第n 个等式(n∈N *)成立。

15.已知三次函数()()32,,f x x bx cx d a b c R =+++∈过点(3,0),且f(x)在点(0,f (0))处的切线恰好是直线y=0 (1)求函数()f x 的解析式;
(2)设g (x )=9x+m-1,若y=f(x)-g(x)在[-2,1]上有两个零点,求实数m 的范围。

16.已知函数()2x f x e ax =+-
(1)若1a =-,求函数f(x)在区间[1,1]-的最小值 (2)求函数f(x)在(0,)+∞的单调区间 (3)若函数x
a
x f x h +=)()(在),0(+∞单调递增,求实数a 的的取值范围。

相关文档
最新文档