数学:指数函数教案五苏教版必修

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.2.2 指数函数(3) 宿迁市马陵中学 范金泉 教学目标:

进一步理解指数函数及其性质,能运用指数函数模型,解决实际问题.

教学重点:

用指数函数模型解决实际问题.

教学难点:

指数函数模型的建构.

教学过程:

一、情境创设

1.某工厂今年的年产值为a 万元,为了增加产值,今年增加了新产品的研发,预计从明年起,年产值每年递增15%,则明年的产值为 万元,后年的产值为 万元.若设x 年后实现产值翻两番,则得方程 .

二、数学建构

指数函数是常见的数学模型,也是重要的数学模型,常见于工农业生产,环境治理以及投资理财等. 递增的常见模型为y =(1+p %)x (p >0);递减的常见模型则为y =(1—p %)x (p >0).

三、数学应用

例1 某种放射性物质不断变化为其他,每经过一年,这种物质剩留的质量是原来的84%,写出这种物质的剩留量关于时间的函数关系式.

例2 某医药研究所开发一种新药,据检测:如果

成人按规定的剂量服用,服药后每毫升血液中的含药量为y (微克),与服药后的

A (1,8) y O t

B (7,1)

C

时间t(小时)之间近似满足如图曲线,其中OA是线段,曲线ABC是函数y=ka t的图象.试根据图象,求出函数y=f(t)的解析式.

例3某位公民按定期三年,年利率为2.70%的方式把5000元存入银行.问三年后这位公民所得利息是多少元?

例4某种储蓄按复利计算利息,若本金为a元,每期利率为r,设存期是x,本利和(本金加上利息)为y元.

(1)写出本利和y随存期x变化的函数关系式;

(2)如果存入本金1000元,每期利率为2.25%,试计算5期后的本利和.

(复利是把前一期的利息和本金加在一起作本金,再计算下一期利息的一种计算利息方法)

小结:银行存款往往采用单利计算方式,而分期付款、按揭则采用复利计算.这是因为在存款上,为了减少储户的重复操作给银行带来的工作压力,同时也是为了提高储户的长期存款的积极性,往往定期现年的利息比再次存取定期一年的收益要高;而在分期付款的过程中,由于每次存入的现金存期不一样,故需要采用复利计算方式.比如“本金为a元,每期还b元,每期利率为r”,第一期还款时本息和应为a (1+p%),还款后余额为a(1+p%)—b,第二次还款时本息为(a(1+p%)—b)(1+p%),再还款后余额为(a(1+p%)—b)(1+p%)—b=a(1+p%)2—b(1+p%)—b,……,第n 次还款后余额为a(1+p%)n—b(1+p%)n1—b(1+p%)n2—……—b.这就是复利计算方式.例52000~20,我国国内生产总值年平均增长7.8%左右.按照这个增长速度,画出从2000年开始我国年国内生产总值随时间变化的图象,并通过图象观察到我国年国内生产总值约为2000年的多少倍(结果取整数).

练习:

1.(1)一电子元件去年生产某种规格的电子元件a个,计划从今年开始的m年内,每年生产此种规格电子元件的产量比上一年增长p%,试写出此种规格电子元件的年产量随年数变化的函数关系式;(2)一电子元件去年生产某种规格的电子元件的成本是a元/个,计划从今年开始的m年内,每年生

产此种规格电子元件的产量比上一年下降p%,试写出此种规格电子元件的单件成本随年数变化的函数关系式.

2.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为两个),经3小时后,这种细菌可由1个分裂成个.

3.我国工农业总产值计划从2000年到翻两番,设平均每年增长率为x,则得方程.

四、小结:

1.指数函数模型的建立;

2.单利与复利;

3.用图象近似求解.

五、作业:

课本P55—3,10.

相关文档
最新文档