多元统计分析主成分分析(1)

合集下载

《多元统计分析》课件

《多元统计分析》课件

采用L1正则化,通过惩罚项来选择最重要 的自变量,实现特征选择和模型简化。
比较
应用场景
岭回归适用于所有自变量都对因变量有影 响的情况,而套索回归更适用于特征选择 和模型压缩。
适用于数据集较大、自变量之间存在多重 共线性的情况,如生物信息学数据分析、 市场细分等。
主成分回归与偏最小二乘回归
主成分回归
适用于自变量之间存在多重 共线性的情况,同时要求高 预测精度,如金融市场预测 、化学计量学等。
06 多元数据的典型相关分析
典型相关分析的基本思想
01
典型相关分析是一种研究多个 随机变量之间相关性的多元统 计分析方法。
02
它通过寻找一对或多个线性组 合,使得这些线性组合之间的 相关性达到最大或最小,从而 揭示多个变量之间的关系。
原理
基于最小二乘法原理,通过最小化预 测值与实际值之间的平方误差来估计 回归系数。
应用场景
适用于因变量与自变量之间存在线性 关系的情况,如预测房价、股票价格 等。
注意事项
需对自变量进行筛选和多重共线性诊 断,以避免模型的不稳定性和误差。
岭回归与套索回归
岭回归
套索回归
是一种用于解决多重共线性的回归方法, 通过引入一个小的正则化项来稳定系数估 计。
层次聚类
01
步骤
02
1. 将每个数据点视为一个独立的集群。
2. 计算任意两个集群之间的距离或相似度。
03
层次聚类
01 3. 将最相近的两个集群合并为一个新的集群。 02 4. 重复步骤2和3,直到满足终止条件(如达到预
设的集群数量或最大距离阈值)。
03 应用:适用于探索性数据分析,帮助研究者了解 数据的分布和结构。

主成分分析

主成分分析

1 主成分分析定义在许多实际问题中,我们经常用多个变量来刻画某一事物,但由于这些变量之间往往具有相关性,很多变量带有重复信息,这样就给分析问题带来了很多不便,同时也使分析结论不具有真实性和可靠性,因此,人们希望寻找到少量几个综合变量来代替原来较多的变量,使这几个综合变量能较全面地反映原来多项变量的信息,同时相互之间不相关。

主成分分析正是满足上述要求的一种处理多变量问题的方法。

主成分分析(Principal Component Analysis,PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。

又称主分量分析。

2 主成分分析基本思想主成分分析是考察多个变量间相关性的一种多元统计方法。

它是研究如何通过少数几个主分量来解释多个变量间的内部结构。

也就是说,从原始变量中导出少数几个主分量,使它们尽可能多地保留原始变量的信息,且彼此间互不相关。

主成分分析的应用目的可以被简单归结为两句话:数据的压缩、数据的解释。

它常被用来寻找判断某种事物或现象的综合指标,并且给综合指标所包含的信息以适当的解释,从而更加深刻的揭示事物的内在规律。

但是在实际应用中,主成分分析更多的只是一种达到目的的中间手段,而并非目的本身,它往往会被作为许多大型研究的中间步骤,在对数据进行浓缩后继续采用其他多元统计方法以解决实际问题。

主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。

假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p维空间中加以考察,这是比较麻烦的。

为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。

多元统计分析知识点 多元统计分析课件

多元统计分析知识点 多元统计分析课件

多元统计分析(1)题目:多元统计分析知识点研究生专业指导教师完成日期 2013年 12月目录第一章绪论 (1)§1.1什么是多元统计分析 ....................................................................................................... 1 §1.2多元统计分析能解决哪些实际问题 ............................................................................... 2 §1.3主要内容安排 ................................................................................................................... 2 第二章多元正态分布 .. (2)§2.1基本概念 ........................................................................................................................... 2 §2.2多元正态分布的定义及基本性质 .. (8)1.(多元正态分布)定义 ................................................................................................ 9 2.多元正态变量的基本性质 (10)§2.3多元正态分布的参数估计12(,,,)p X X X X '= (11)1.多元样本的概念及表示法 (12)2. 多元样本的数值特征 ................................................................................................ 123.μ和∑的最大似然估计及基本性质 (15)4.Wishart 分布 (17)第五章 聚类分析 (18)§5.1什么是聚类分析 ............................................................................................................. 18 §5.2距离和相似系数 . (19)1.Q —型聚类分析常用的距离和相似系数 ................................................................ 20 2.R 型聚类分析常用的距离和相似系数 ...................................................................... 25 §5.3八种系统聚类方法 (26)1.最短距离法 .................................................................................................................. 27 2.最长距离法 .................................................................................................................. 30 3.中间距离法 .................................................................................................................. 32 4.重心法 .......................................................................................................................... 35 5.类平均法 ...................................................................................................................... 37 6.可变类平均法 .............................................................................................................. 38 7.可变法 .......................................................................................................................... 38 8.离差平方和法(Word 方法) (38)第六章判别分析 (39)§6.1什么是判别分析 ............................................................................................................. 39 §6.2距离判别法 (40)1、两个总体的距离判别法 (40)2.多总体的距离判别法 (45)§6.3费歇(Fisher)判别法 (46)1.不等协方差矩阵两总体Fisher判别法 (46)2.多总体费歇(Fisher)判别法 (51)§6.4贝叶斯(Bayes)判别法 (58)1.基本思想 (58)2.多元正态总体的Bayes判别法 (59)§6.5逐步判别法 (61)1.基本思想 (61)2.引入和剔除变量所用的检验统计量 (62)3.Bartlett近似公式 (63)第一章绪论§1.1什么是多元统计分析在自然科学、社会科学以及经济领域中,常常需要同时观察多个指标。

厦门大学《应用多元统计分析》第06章__主成分分析

厦门大学《应用多元统计分析》第06章__主成分分析
一种是椭圆的长轴与短轴的长度相等,即椭圆变成圆,第一主 成分只含有二维空间点的约一半信息,若仅用这一个综合变量, 则将损失约50%的信息,这显然是不可取的。造成它的原因是, 原始变量X1和X2的相关程度几乎为零,也就是说,它们所包含 的信息几乎不重迭,因此无法用一个一维的综合变量来代替。
另一种是椭圆扁平到了极限,变成y1轴上的一条线,第一主成 分包含有二维空间点的全部信息,仅用这一个综合变量代替原 始数据不会有任何的信息损失,此时的主成分分析效果是非常 理想的,其原因是,第二主成分不包含任何信息,舍弃它当然 没有信息损失。
矩阵表示形
式为:
Y1 Y2
cos sin
sin cos
X1 X2
TX
(6.2)
其中, T为旋转变换矩阵,它是正交矩阵,即有 T T1
或 TT I 。
易见,n个点在新坐标系下的坐标Y1和Y2几乎不相关。称它 们为原始变量X1和X2的综合变量,n个点y1在轴上的方差达 到最大,即在此方向上包含了有关n个样品的最大量信息。
i 1
性质 3 主成分 Yk 与原始变量 X i 的相关系数为
(6.20) (6.21)
(Yk , Xi )
k ii
tki
并称之为因子负荷量(或因子载荷量)。
(6.22)
证明:事实上
(Yk , Xi )
Cov(Yk , Xi ) Cov(TkX, eiX)
D(Yk )D(Xi )
k ii
其中的 ei (0, , 0,1, 0, , 0) ,它是除第 i 个元素为 1 外其他元
素均为 0 的单位向量。而
Cov(TkX, eiX) TkΣei ei(ΣTk ) ei(kTk ) keiTk ktki

多元统计分析第七章主成分分析习题答案

多元统计分析第七章主成分分析习题答案

7.1 设随机变量12X(X ,X )'=的协差阵为21,12⎡⎤∑=⎢⎥⎣⎦试求X的特征根和特征向量,并写出主成分。

解:先求X的特征根λ,λ满足方程:21012-λ=-λ,即2(2)10-λ-=,因此两个特征根分别为123, 1.λ=λ=设13λ=对应的单位特征向量为()1121a ,a ',则()1121a ,a '满足:1121a 110a 110-⎛⎫⎡⎤⎛⎫= ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取1121a a ⎛⎛⎫ = ⎪ ⎝⎭ ⎝,其对应主成分为:112F X X 22=+;设21λ=对应的单位特征向量为()1222a ,a ',则()1222a ,a '满足:1222a 110a 110⎛⎫⎡⎤⎛⎫=⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取1222a a ⎛⎫⎛⎫ ⎪= ⎪ ⎝⎭- ⎝,其对应的主成分为:212F 22=-.7.2设随机变量123X (X ,X ,X )'=的协差阵为120250,002-⎡⎤⎢⎥∑=-⎢⎥⎢⎥⎣⎦试求X的主成分及主成分对变量X的贡献率。

解:先求X的特征根λ,λ满足方程:12025002-λ---λ=-λ,即()2(2)610-λλ-λ+=,因此三个特征根分别为1235.8284,2,0.1716λ=λ=λ=设1 5.8284λ=对应的单位特征向量为()112131a ,a ,a ',则它满足:1121314.828420a 020.82840a 000 3.8284a 0--⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥--=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥-⎣⎦⎝⎭⎝⎭,故可以取 112131a 10.38271a 2.41420.92392.6131a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=-=- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 112F 0.3827X 0.9239X =-,其贡献率为5.828472.86%5.828420.1716=++;设22λ=对应的单位特征向量为()122232a,a ,a ',则它满足:122232120a 0230a 0000a 0--⎡⎤⎛⎫⎛⎫ ⎪ ⎪⎢⎥-= ⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取122232a 0a 0a 1⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,其对应主成分为: 23F X =,其贡献率为225%5.828420.1716=++;设30.1716λ=对应的单位特征向量为()132333a ,a ,a ',则它满足:1323330.828420a 02 4.82840a 000 1.8284a 0-⎡⎤⎛⎫⎛⎫⎪ ⎪⎢⎥-=⎪ ⎪⎢⎥ ⎪ ⎪⎢⎥⎣⎦⎝⎭⎝⎭,故可以取132333a 10.92391a 0.41420.38271.0824a 00⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,其对应主成分为: 312F 0.9239X 0.3827X =+,其贡献率为0.17162.14%5.828420.1716=++.7.3 设随机变量12X (X ,X )'=的协差阵为14,4100⎡⎤∑=⎢⎥⎣⎦试从∑和相关阵R出发求出总体主成分,并加以比较。

主成分分析方法

主成分分析方法

主成分分析方法在经济问题的研究中,我们常常会遇到影响此问题的很多变量,这些变量多且又有一定的相关性,因此我们希望从中综合出一些主要的指标,这些指标所包含的信息量又很多。

这些特点,使我们在研究复杂的问题时,容易抓住主要矛盾。

那么怎样找综合指标?主成分分析是将原来众多具有一定相关性的指标重新组合成一组新的相互无关的综合指标来代替原来指标的统计方法,也是数学上处理降维的一种方法. 一. 主成分分析法简介主成分分析是将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法,又称主分量分析。

在实际问题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。

但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。

人们自然希望变量个数较少而得到的信息较多。

在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。

主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映问题的信息方面尽可能保持原有的信息。

信息的大小通常用离差平方和或方差来衡量。

主成分分析的基础思想是将数据原来的p 个指标作线性组合,作为新的综合指标(P F F F ,,,21 )。

其中1F 是“信息最多”的指标,即原指标所有线性组合中使)var(1F 最大的组合对应的指标,称为第一主成分;2F 为除1F 外信息最多的指标,即0),cov(21 F F 且)var(2F 最大,称为第二主成分;依次类推。

易知P F F F ,,,21 互不相关且方差递减。

实际处理中一般只选取前几个最大的主成分(总贡献率达到85%),达到了降维的目的。

主成分的几何意义:设有n 个样品,每个样品有两个观测变量,,21X X 二维平面的散点图。

n 个样本点,无论沿着1X 轴方向还是2X 轴方向,都有较大的离散性,其离散程度可以用1X 或2X 的方差表示。

主成分分析

主成分分析

主成分分析法主成分分析是多元统计分析的一个分支。

20世纪30年代,由于费希尔、霍特林、许宝禄及罗伊等人的一系列奠基工作,多元统计分析成为应用数学的一个重要分支。

主成分分析法是处理多元变量数据的一种数学方法,它从众多的观测变量中找出几个相互独立的因素来解释原有的变量,这些因素称为主成分。

通过主成分分析法的数学处理,可以将互相间有联系的多变量复杂系统简化成几个可以解释这些变量的综合因素,这样可以清楚的解释系统的本质及相互间的关系。

抽取抽取综合因素及如何定义要按综合因素与原变量的关系而定,即按综合和因素对变量的影响程度,称为变量在综合因素上的“负荷”。

最终还可以计算出受测样本在综合因素上的水平,称为主成分分析。

主成分分析发广泛应用于复杂系统的相互比较研究中。

设一个系统共有P个指标表示,而且这P个指标中可能有些指标互相有影响。

主成分分析法就是要用几个综合因素反映原来几个指标的信息,而且这些因素又是相互无关的。

一基本原理现实生活中,人们常常遇到多指标问题。

在大多数情况下,不同指标之间具有一定的相关性,这就增加了分析处理问题的难度。

于是统计学家们就设法将指标重新组合成一组相互独立的少数几个综合指标来代替原有指标,并且反映原有指标的主要信息。

这种将多指标化为少数独立的综合指标的方法就称为主成分分析法。

主成分分析(Principal Component Analysis,PCA),首先是由英国的皮尔生(Karl Pearosn)对非随机变量引入的,而后美国的数理统计学家霍特林在1933年将此法推广到随即向量的情形。

主成分分析法的降维思想从一开始就很好的为综合评价提供了有力的理论和技术支持。

主成分分析是研究如何将多指标问题转化为较少的综合指标的一种重要统计方法,它能将高维空间的问题转化到低维空间去处理,使问题变得比较简单、直观,而且这些较少的综合指标之间互不相关,又能提供原有指标的绝大部分信息。

主成分分析除了降低多变量数据系统的维度外,同时还简化了变量系统的统计数字特征。

多元统计分析主成分分析

多元统计分析主成分分析

第主 成 分
二分 析 的
章基 本 概 念
定义与目的
定义
主成分分析是一种降维技术,通过线 性变换将多个具有相关性的变量转化 为少数几个互不相关的综合变量,这 些综合变量称为主成分。
目的
简化数据结构,降低维度,揭示隐藏在 数据中的模式和关系,同时保留原始数 据中的大部分变异信息。
原理与步骤
原理与步骤
02 03
碎石图(Scree Plot)
一种可视化工具,用于辅助确定主成分的数量。通过观察特征值 的变化趋势,可以判断哪些特征值对应的主成分具有较大的解释 力度,从而决定保留的主成分数量。
解释性原则
根据实际问题的需求和背景知识,选择能够解释数据变异性、反 映主要结构或关系的主成分。
第主 成 分
四分 析 的
转换数据
将原始数据转换为新的主成分坐 标系,得到主成分得分。
结果解释与讨论
结果解释
通过主成分分析,我们提取了三个主成分,这三个主成分分别代表了用户购买的商品类别、购买频率和购买金额。这 三个主成分解释了原始数据方差的80%。
结果讨论
通过主成分分析,我们可以更好地理解用户购买行为的特点和规律。例如,我们可以发现某些商品类别对用户购买行 为的影响较大,而有些商品类别的影响较小。此外,我们还可以发现购买频率和购买金额对用户购买行为的影响程度 不同。这些结果可以为电商平台的营销策略提供有价值的参考信息。
因子分析
识别潜在因子
主成分分析可以用于识别潜在的因子,这些因子可能对数据的解释有重要影响。通过主 成分分析,可以确定这些因子的数量和性质,从而更好地理解数据的内在结构。
解释变量间的关系
主成分分析可以帮助解释变量间的关系,通过将多个变量转化为少数几个主成分,可以 更好地理解变量间的相互作用和依赖关系。

主成分分析发明人

主成分分析发明人

PCA就能够提供一幅比较低维度的图像,这副图像即为在讯息最多的点上原对象的一个‘投影’。

这样就可以利用少量的主成分使得数据的维度降低了。

PCA跟因子分析密切相关,并且已经有很多混合这两种分析的统计包。

而真实要素分析则是假定底层结构,求得微小差异矩阵的特征向量。

PCA的数学定义是:一个正交化线性变换,把数据变换到一个新的坐标系统中,使得这一数据的任何投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推[4]。

定义一个n ×m的矩阵, X T为去平均值(以平均值为中心移动至原点)的数据,其行为数据样本,列为数据类别(注意,这里定义的是X T而不是X)。

则X的奇异值分解为X = WΣV T,其中m ×m矩阵W是XX T的本征矢量矩阵,Σ是m ×n的非负矩形对角矩阵,V是n ×n的X T X的本征矢量矩阵。

据此,当m < n− 1时,V在通常情况下不是唯一定义的,而Y则是唯一定义的。

W是一个正交矩阵,Y T是X T的转置,且Y T的第一列由第一主成分组成,第二列由第二主成分组成,依此类推。

为了得到一种降低数据维度的有效办法,我们可以把X映射到一个只应用前面L个向量的低维空间中去,W L:where with the rectangular identity matrix.X的单向量矩阵W相当于协方差矩阵的本征矢量C = X X T,在欧几里得空间给定一组点数,第一主成分对应于通过多维空间平均点的一条线,同时保证各个点到这条直线距离的平方和最小。

去除掉第一主成分后,用同样的方法得到第二主成分。

依此类推。

在Σ中的奇异值均为矩阵XX T的本征值的平方根。

每一个本征值都与跟它们相关的方差是成正比的,而且所有本征值的总和等于所有点到它们的多维空间平均点距离的平方和。

PCA提供了一种降低维度的有效办法,本质上,它利用正交变换将围绕平均点的点集中尽可能多的变量投影到第一维中去,因此,降低维度必定是失去讯息最少的方法。

多元统计分析与主成分分析的关系与应用

多元统计分析与主成分分析的关系与应用

多元统计分析与主成分分析的关系与应用多元统计分析和主成分分析是统计学中两个重要的技术手段,它们在数据分析和统计建模中具有广泛的应用。

本文将探讨多元统计分析与主成分分析的关系以及它们在实际问题中的应用。

一、多元统计分析与主成分分析的关系多元统计分析是一种综合运用多种统计学方法和技术,研究多个变量之间关系的分析方法。

它旨在通过对大量的数据进行整合和分析,揭示不同变量之间的潜在结构和规律。

而主成分分析则是多元统计分析中常用的技术之一。

主成分分析(Principal Component Analysis,简称PCA)是一种通过降维的方法来简化数据集的技术。

它的基本思想是通过线性组合将原始数据变换为一组新的变量,这些新变量称为主成分,它们能够尽量保留原始数据的信息。

主成分分析通过将原始数据投影到主成分上,实现数据维度的压缩和去除冗余信息。

在多元统计分析中,主成分分析被广泛应用于数据预处理、变量选择和模型建立等环节。

通过主成分分析,可以将原始的高维数据转化为少数几个主成分,从而降低数据的维度,减少模型的复杂度,同时保留了原始数据中的主要信息,有助于提取数据的潜在结构和进行更有效的数据分析。

二、主成分分析的应用1. 数据可视化主成分分析可以帮助我们对高维数据进行可视化分析。

通过将数据投影到低维的主成分上,我们可以将原始数据在二维或三维空间中进行可视化展示。

这样可以更直观地观察数据之间的关系,发现异常值和聚类结构,为后续的模型建立提供重要的参考。

2. 数据预处理在建立统计模型之前,通常需要对数据进行预处理。

主成分分析可以作为一种预处理方法,通过去除原始数据中的冗余信息和噪声,减少数据维度,提高模型的建模效率和精度。

主成分分析还可以用于数据的标准化和归一化,使得不同变量之间具有可比性,更好地满足模型的要求。

3. 变量选择在众多的变量中选择对目标变量具有显著影响的变量是建立高效模型的关键一步。

主成分分析可以通过计算各个主成分的贡献率或者变量的负荷量,来评估每个变量对数据的影响程度。

主成分分析---多元统计分析(人大何晓群)PPT课件

主成分分析---多元统计分析(人大何晓群)PPT课件

2020/5/8
中国人民大学六西格玛-质量管理研究中心
目录 上页 下页 返回 结束
55
§5.1.1 主成分分析的基本思想
既然研究某一问题涉及的众多变量之间有一定的相关性, 就必然存在着起支配作用的共同因素,根据这一点,通过 对原始变量相关矩阵或协方差矩阵内部结构关系的研究, 利用原始变量的线性组合形成几个综合指标(主成分), 在保留原始变量主要信息的前提下起到降维与简化问题的 作用,使得在研究复杂问题时更容易抓住主要矛盾。一般 地说,利用主成分分析得到的主成分与原始变量之间有如 下基本关系:
对 X进行线性变换,可以形成新的综合变量,用 Y表示, 也就是说,新的综合变量可以由原来的变量线性表示,即满 足下式:
Y1 u11X1 u12X2 u1p Xp Y2 u21X1 u22X2 u2p Xp Yp up1X1 up2X2 uppXp
(5.1)
2020/5/8
中国人民大学六西格玛-质量管理研究中心
1.每一个主成分都是各原始变量的线性组合;
2.主成分的数目大大少于原始变量的数目
2020/5/8
中国人民大学六西格玛-质量管理研究中心
目录 上页 下页 返回 结束
66
§5.1.1 主成分分析的基本思想
3.主成分保留了原始变量绝大多数信息
4.各主成分之间互不相关
通过主成分分析,可以从事物之间错综复杂的 关系中找出一些主要成分,从而能有效利用大量 统计数据进行定量分析,揭示变量之间的内在关 系,得到对事物特征及其发展规律的一些深层次 的启发,把研究工作引向深入。
2020/5/8
中国人民大学六西格玛-质量管理研究中心
目录 上页 下页 返回 结束
33
§5.1 主成分分析的基本思想与理论

多元统计分析填空和简答(一)

多元统计分析填空和简答(一)

1.多元分析研究的是多个随机变量及其相互关系的统计总体。

2.多元统计中常用的统计量有:样本均值、样本方差、样本协方差和样本相关系数。

3.协方差和相关系数仅仅是变量间离散程度的一种度量,并不能刻画变量间可能存在的关联程度。

4.人们通过各种实践,发现变量之间的相互关系可以分成相关和不相关两种类型。

5.总离差平方和可以分解为回归离差平方和和剩余离差平方和两个部分,各自的自由度为p 和n-p-1,其中回归离差平方和在总离差平方和中所占比重越大,则线性回归效果越显著。

7.偏相关系数是指多元回归分析中,当其他变量固定后,给定的两个变量之间的的相关系数。

8.Spss中回归方程的建模方法有一元线形回归、多元线形回归、岭回归、多对多线形回归等。

9.主成分分析是通过适当的变量替换,使新变量成为原变量的综合变量,并寻求相关性的一种方法。

10.主成分分析的基本思想是:设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。

11.主成分的协方差矩阵为对角矩阵。

12.主成分表达式的系数向量是相关系数矩阵的特征向量。

13.原始变量协方差矩阵的特征根的统计含义是原始数据的相关系数。

14.原始数据经过标准化处理,转化为均值为0 ,方差为1 的标准值,且其协方差矩阵与相关系数矩阵相等。

15.样本主成分的总方差等于1 。

16.变量按相关程度为,在相关性很强程度下,主成分分析的效果较好。

17.在经济指标综合评价中,应用主成分分析法,则评价函数中的权数为方差贡献度。

19.因子分析是把每个原始变量分解为两部分因素,一部分是公共因子,另一部分为特殊因子。

20.变量共同度是指因子载荷矩阵中第i行元素的平方和。

21.公共因子方差与特殊因子方差之和为 1 。

22.聚类分析是建立一种分类方法,它将一批样哂或变量按照它们在性质上的亲疏程度进行科学的分类。

23.Q型聚类法是按样品进行聚类,R型聚类法是按变量进行聚类。

主成分分析法

主成分分析法

主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。

依次类推,I 个变量就有I个主成分。

1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。

)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。

■ 系数lij的确定原则(单击展开显示)① zi与zj(i≠j;i,j=1,2,…,m)相互无关;② z1是x1,x2,…,xP的一切线性组合中方差最大者,z2是与z1不相关的x1,x2,…,xP的所有线性组合中方差最大者;……;zm是与z1,z2,……,zm-1都不相关的x1,x2,…,xP的所有线性组合中方差最大者。

■主成分分析的数学特征(单击展开显示)2. 主成分分析的计算步骤① 计算相关系数矩阵② 计算特征值与特征向量③ 计算主成分贡献率及累计贡献率④ 计算主成分载荷。

主成分分析

主成分分析

主成分分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。

在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。

这些涉及的因素一般称为指标,在多元统计分析中也称为变量。

因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。

在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。

主成分分析正是适应这一要求产生的,是解决这类题的理想工具。

主成分分析法是一种数学变换的方法, 它把给定的一组相关变量通过线性变换转成另一组不相关的变量,这些新的变量按照方差依次递减的顺序排列。

在数学变换中保持变量的总方差不变,使第一变量具有最大的方差,称为第一主成分,第二变量的方差次大,并且和第一变量不相关,称为第二主成分。

依次类推,I 个变量就有I个主成分。

这种方法避免了在综合评分等方法中权重确定的主观性和随意性,评价结果比较符合实际情况;同时,主成份分量表现为原变量的线性组合,如果最后综合指标包括所有分量,则可以得到精确的结果,百分之百地保留原变量提供的变差信息,即使舍弃若干分量,也可以保证将85%以上的变差信息体现在综合评分中,使评价结果真实可靠。

是在实际中应用得比较广的一种方法。

由于其第一主成份(因子)在所有的主成分中包含信息量最大,很多学者在研究综合评价问题时常采用第一主成分来比较不同实体间的差别。

综上所述,该方法的优点主要体现在两个方面:1.权重确定的客观性;2.评价结果真实可靠。

1.主成分分析的基本原理主成分分析:把原来多个变量划为少数几个综合指标的一种统计分析方法,是一种降维处理技术。

)记原来的变量指标为x1,x2,…,xP,它们的综合指标——新变量指标为z1,z2,…,zm(m≤p),则z1,z2,…,zm分别称为原变量指标x1,x2,…,xP的第一,第二,…,第m 主成分,在实际问题的分析中,常挑选前几个最大的主成分。

多元统计分析的重点和内容和方法

多元统计分析的重点和内容和方法

一、什么是多元统计分析❖多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广。

❖多元统计分析是研究多个随机变量之间相互依赖关系以及内在统计规律的一门统计学科。

二、多元统计分析的内容和方法❖1、简化数据结构(降维问题)将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等❖2、分类与判别(归类问题)对所考察的变量按相似程度进行分类。

(1)聚类分析:根据分析样本的各研究变量,将性质相似的样本归为一类的方法。

(2)判别分析:判别样本应属何种类型的统计方法。

例5:根据信息基础设施的发展状况,对世界20个国家和地区进行分类。

考察指标有6个:1、X1:每千居民拥有固定电话数目2、X2:每千人拥有移动电话数目3、X3:高峰时期每三分钟国际电话的成本4、X4:每千人拥有电脑的数目5、X5:每千人中电脑使用率6、X6:每千人中开通互联网的人数❖3、变量间的相互联系一是:分析一个或几个变量的变化是否依赖另一些变量的变化。

(回归分析)二是:两组变量间的相互关系(典型相关分析)❖4、多元数据的统计推断点估计参数估计区间估计统 u检验计参数 t检验推 F检验断假设相关与回归检验卡方检验非参秩和检验秩相关检验❖1、假设检验的基本原理小概率事件原理❖ 小概率思想是指小概率事件(P<0.01或P<0.05等)在一次试验中基本上不会发生。

反证法思想是先提出假设(检验假设H0),再用适当的统计方法确定假设成立的可能性大小,如可能性小,则认为假设不成立;反之,则认为假设成立。

❖ 2、假设检验的步骤 (1)提出一个原假设和备择假设❖ 例如:要对妇女的平均身高进行检验,可以先假设妇女身高的均值等于 160 cm (u=160cm )。

这种原假设也称为零假设( null hypothesis ),记为 H 0 。

多元统计分析——基于R 语言 PPT课件-主成分分析

多元统计分析——基于R 语言 PPT课件-主成分分析

5.2 总体主成分及其性质
5.2.4 由相关阵求主成分时主成分性质的简单形式
我们将由相关阵得到的主成分的性质总结如下:
(1) 的协方差矩阵为对角阵;
(2)
性质
σ
= ()
= () = () = =

σ= () ;
(3) 第个主成分的方差占总方差的比例,即第个主成分的方差贡献率
④各主成分之间互不相关
5.1 主成分分析的基本原理
5.1.2 主成分分析的基本理论
设对某一事物的研究涉及p个指标,分别用, , … , 表示,这p个指标构成的p维随机向量为
= (, , … , )′。设随机向量X的均值为μ,协方差矩阵为Σ
对进行线性变换,可以形成新的综合变量,用表示,也就是说,新的综合变量可以由
(1) = ′,即为阶正交阵;
(2)的分量之间互不相关,即() = (, , … , );
(3)的个分量按方差由大到小排列,即 ≥ ≥ ⋯ ≥
5.2 总体主成分及其性质
5.2.2 主成分的性质
定义5.1
称 =

+ +⋯+
σ
= ,



=
5.2 总体主成分及其性质
5.2.1 从协方差矩阵出发求解主成分
设随机向量 = (, , … , )′的协方差矩阵为, , , … , ( ≥ ≥ ⋯ ≥ )
为的特征根, , , … , 为矩阵Σ各特征根对应的标准正交特征向量,则第个主成
=1
性质5


=1
=1
1
2
2
෍ , =
෍ = 1

5.2 总体主成分及其性质
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3. 求特征根所对应的单位特征向量 4. 写出主成分的表达式
例1 下面是8 个学生两门课程的成绩表
语文 x 1 100 90 70 70 85 55 55 45
数学 x 2 65 85 70 90 65 45 55 65
对此进行主成分分析。
1. 求样本均值和样本协方差矩阵
X xx127617..255
3 1.56
(a 1,a 12,a 13)1 (0 .5,0 .6 4,0 .2 7)1 (a 1,2 a 2,2 a 3)2 (0 .8, 0 1 .3, 0 3 .4)8 (a 1,3 a 2,3 a 3)3 (0 .0,0 .3 8, 0 5 .5)3
4. 由此我们可以写出三个主成分的表达式:
S1302..3314 18.75
2. 求解特征方程 S I =0
S1302..3314 18.75
32.43 10.13 10.13 18.570
(3.2 4 3 )1 (.8 5 7 ) 1.0 1 2 3 0
化简得:251 .9050.0 9 0 07

S 17.12 21.11

30.00 32.58 55.53
2. 求解协方差矩阵的特征方程 SI 0
46.67 17.12 30.00 17.12 21.11 32.58 0 30.00 32.58 55.53
3.解得三个特征值 和对应的单位特征向量:
1 98.15 2 23.60
F 1 0 . 5 ( x 1 1 6 . 2 ) 6 0 . 4 ( x 1 2 2 7 . 3 ) 0 7 . 7 ( x 3 5 1 . 2 )1 F 2 0 . 8 ( x 1 1 1 . 2 ) 6 0 . 3 ( x 2 1 3 7 . 3 ) 0 7 . 4 ( x 3 8 5 . 2 )1 F 3 0 . 0 ( x 1 1 3 . 2 ) 6 0 . 8 ( x 1 2 5 7 . 3 ) 0 7 . 5 ( x 3 3 5 . 2 )1
i j
pp

aia jsij Va(Xr)
i1 j1
V(a k1 X r) k2 V(a 1 X r ) 最大
所以如果不对 1 加以限制,问题就变得无意义。 因此限制 1 为单位向量。
满足如下的条件: 每个主成分的系数平方和为1。即
a1 2 ia2 2i a2 p i 1
平移、旋转坐标轴 x 2
F
1
主 成 分 分 析 的 几 何 解
F2

• •• •
• •
•••
•••
• •• •••••••••••••••• ••••
•• •

• • •• •
•• • •


•• •
•• •
•• • • • • •

•• •



• ••
• • ••

•• • •

•• •
ห้องสมุดไป่ตู้
•• •
解得: 137.9,82132
3.求特征值所对应的单位特征向量
S1302..3314 18.75

1 所对应的单位特征向量(S1)10,其中
1


a11 a 21

1 (302 .1.4 3 a3 113 (1 7.98 8 ).a5171 317.09.8 1 )a 3 a2 21 1 0 0
主成分之间相互独立,即无重叠的信息。即 C ( F , F ) o 0 , i j , v i , j 1 , 2 , , p
ij
主成分的方差依次递减,重要性依次递减,即
V ( F 1 ) a V ( r F 2 ) a V r ( F p ) ar
平移、旋转坐标轴
5.主成分的含义 通过分析主成分的表达式中原变量前的系数来解释 各主成分的含义。
第一主成分F1是 x 1 和 x 2 的加权和,表示该生成绩
的好坏。 第二主成分F2表示学生两科成绩的均衡性
6. 比较主成分重要性
第一主成分F1的方差为 1 37.89
方差贡献率
112Va(F V 1r) a(V F1r)a(F2 r)373.987.9183274.16%
a121a2211 解得 ( a11,a21)= (0.88,0.47)
2 所对应的单位特征向量(S2)20,其中

2



12 22

1 (302 .1.4 3 a3121(3 1)a2 81.52 71103.1 )a 3 a22 22 2 0 0
第二主成分F2的方差为 2 132
方差贡献率为 122371 .98 31232 2.5 8% 4 主成分F1和F2的方差总和为 12 37 .9 8 13 521 .90
原变量 x 1和 x 2 的方差总和为s 1 1s2 23.4 2 1 3.5 8 5 7.9 10
F1 a11X1a21X2 ap1Xp 1X F2 a12X1a22X2 ap2Xp 2X

Fp a1pX1a2pX2 appXp pX
p
p
p
Va(rX)Va(r aiXi) ai2sii 2 aiajsij
i1
i1
i, j1
问题的答案是:X的协方差矩阵S 的第二大特征根 2
所对应的单位特征向量即为 是F2的方差。
a12,a22
。并且

2

推导
求解主成分的步骤:
1. 求样本均值 X(x1,x2)和样本协方差矩阵S; 2. 求S的特征根
求解特征方程 SI 0 ,其中I是单位矩阵,
解得2个特征根 1,212
最大
问题的答案是:X的协方差矩阵S 的最大特征根
对应的单位特征向量即为 a11,a21 。并且 1
1 所
就是
F1的方差。
推导
同样,F2可以表示为 F 2 a 1( x 2 1 x 1 ) a 2( x 2 2 x 2 )
寻找合适的单位向量 (a12,a22) ,使F2与F1独立, 且使F2的方差(除F1之外)最大。
总方差保持不变
例2 下表是10位学生的身高 x 1 、胸围x 2、体重 x 3
的数据。
身高x1(cm)
149.5 162.5 162.7 162.2 156.5 156.1 172.0 173.2 159.5 157.7
胸围x2(cm)
69.5 77.0 78.5 87.5 74.5 74.5 76.5 81.5 74.5 79.0
很显然,识辨系统在一个低维空间要比 在一个高维空间容易得多。
§2 数学模型与几何解释
假设我们所讨论的实际问题中,有p个 指标,我们把这p个指标看作p个随机变量, 记为X1,X2,…,Xp,主成分分析就是要把这p
个指标的问题,转变为讨论 m 个新的指标F1,
F2,…,Fm(m<p),按照保留主要信息量的 原则充分反映原指标的信息,并且相互独立。
心化的变量,即F1和F2 的样本均值都为零。
因此F1可以表示为
F 1 a 1 ( x 1 1 x 1 ) a 2 ( x 1 2 x 2 )
关键是,寻找合适的单位向量 (a11,a21) ,使F1的 方差最大。
V ( F 1 a ) a 1 r 2 s 1 1 1 a 2 2 s 2 1 2 2 a 1 a 2 1 s 1 12 (a11 a21)ss1211 ss1222aa1211
F1
F2
F3
i
i
t
F1
1
F2
0
1
F3
0
0
1
i 0.995 -0.041 0.057
l
Δi -0.056 0.948 -0.124 -0.102 l
t -0.369 -0.282 -0.836 -0.414 -0.112 1
主成分分析的基本思想
主成分分析就是把原有的多个指标转化成 少数几个代表性较好的综合指标,这少数几个指 标能够反映原来指标大部分的信息(85%以上), 并且各个指标之间保持独立,避免出现重叠信息。 主成分分析主要起着降维和简化数据结构的作用。
X11 X12 X1p
X X21
X22

X2
p


Xn1 Xn2 Xnp
X 1X 2 X p
其中
X 1 i
X
i


X 2i
X ni
这种由讨论多个指标降为少数几个综合指 标的过程在数学上就叫做降维。主成分分析通 常的做法是,寻求原指标的线性组合Fi。
a122a2221
解得: (a 1,2 a 2)2( 0 .4,0 7 .8)8
4. 得到主成分的表达式
第一主成分:F 1 0 .8 ( x 1 8 7 .2 ) 1 0 5 .4 ( x 2 7 6 .5 )7 第二主成分:F 2 0 .4 ( x 1 7 7 .2 ) 1 0 5 .8 ( x 2 8 6 .5 )7

x 1


••
• •

§3 主成分的计算
先讨论二维情形
X11 X12
X


X 21
X n1
X 22
Xn2

ˆ
X1
X2
求主成分F1和F2。
观察图,我们已经把主成分F1和F2 的坐标原点放在
平均值 x1,x2 所在处,从而使得F1和F2 成为中
主成分分析
•主成分分析的基本思想 •主成分的计算 •主成分的性质 •主成分分析的应用 •主成分回归
相关文档
最新文档