第06章光的干涉习题答案
光的干涉试题及答案
光的干涉试题及答案一、选择题1. 光的干涉现象是指:A. 光波的叠加B. 光波的衍射C. 光波的反射D. 光波的折射答案:A2. 以下哪个条件是产生光的干涉的必要条件?A. 光波的频率相同B. 光波的振幅相同C. 光波的传播方向相同D. 光波的相位差恒定答案:D3. 杨氏双缝干涉实验中,干涉条纹的间距与以下哪个因素无关?A. 双缝间的距离B. 光的波长C. 屏幕与双缝的距离D. 观察者与屏幕的距离答案:D二、填空题1. 在光的干涉中,当两列波的相位差为0时,光强增强,这种现象称为________。
答案:相长干涉2. 光的干涉条纹的间距可以通过公式________计算得出。
答案:Δx = (λL) / d三、简答题1. 请简述光的干涉现象是如何产生的?答案:光的干涉现象是由两列或多列光波在空间某点相遇时,由于光波的相位差,导致光强在某些区域增强,在另一些区域减弱,从而形成明暗相间的干涉条纹。
2. 光的干涉实验中,如何改变干涉条纹的间距?答案:可以通过改变光源的波长、改变双缝间的距离或者改变屏幕与双缝之间的距离来改变干涉条纹的间距。
四、计算题1. 已知杨氏双缝干涉实验中,双缝间的距离d=0.5mm,屏幕与双缝之间的距离L=1.5m,光的波长λ=600nm,求干涉条纹的间距。
答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (0.5×10^-3 m) = 1.8×10^-4 m2. 如果在上述实验中,将双缝间的距离增加到1.0mm,求新的干涉条纹间距。
答案:Δx = (λL) / d = (600×10^-9 m × 1.5m) / (1.0×10^-3 m) = 9.0×10^-4 m。
大学物理光的干涉习题答案
2.光程 . 的介质中通过几何路程L (1)光在折射率为 n 的介质中通过几何路程 ) 所引起的相位变化, 所引起的相位变化,相当于光在真空中 通过nL的路程所引起的相位变化。 通过 的路程所引起的相位变化。 的路程所引起的相位变化
δ (2)光程差引起的相位变化为 ∆ϕ = 2π ) λ 为光程差, 其中 δ 为光程差, λ 为真空中光的波长
4π
e
λ
n2e
上下面的反射皆无半波损失
n3
练习39 填空题 练习
n1
1. 上表面反射有半波损失
n
e
δ = 2ne + λ / 2 = 3e + λ / 2
2.
n1 < n2 < n3
上下面的反射皆有半波损失 δ = 2n2e = 2.6e
n1
n3
n2
e
3. 上表面反射有半波损失 反射增强 透射增强 即反射减弱
λ1
2
2 在这两波长之间无其它极大极小, 在这两波长之间无其它极大极小, 所以 k1 = k2 = k
得:
λ 2 : δ = 2 n′e = 2 k 2 ( λ 2 ) 对 λ1
2 2 k + 1 2λ 2 7 = = k λ1 3 k λ1 3 × 700 e= = = 78.6(nm) 2n′ 2 × 1.34
λ 5500 4n2 = = (A) 2k 2k k
λ
显然在白光范围内不可能产生反射加强。 显然在白光范围内不可能产生反射加强。 不可能产生反射加强
练习40 选择题 练习 1. D 相邻条纹的高差
2n 两滚柱的直径不变,即总高差不变, 两滚柱的直径不变,即总高差不变, 则条纹数不变。 则条纹数不变。 λ 2. C 比较劈尖条纹间距 l = 2n sin θ 或牛顿环暗环半径差 ∆r = rk +1 − rk
光的干涉(答案)
光的干涉(参考答案)一、选择题1. 【答案】AB【解析】A .肥皂膜因为自重会上面薄而下面厚,因表面张力的原因其截面应是一个圆滑的曲面而不是梯形,A 正确;B .薄膜干涉是等厚干涉,其原因为肥皂膜上的条纹是前后表面反射光形成的干涉条纹,B 正确;C .形成条纹的原因是前后表面的反射光叠加出现了振动加强点和振动减弱点,形成到破裂的过程上面越来越薄,下面越来越厚,因此出现加强点和减弱点的位置发生了变化,条纹宽度和间距发生变化,C 错误;D .将肥皂膜外金属环左侧的把柄向上转动90︒,由于重力,表面张力和粘滞力等的作用,肥皂膜的形状和厚度会重新分布,因此并不会跟着旋转90°;D 错误。
2. 【答案】D【解析】从薄膜的上下表面分别反射的两列光是相干光,其光程差为△x =2d ,即光程差为薄膜厚度的2倍,当光程差△x =nλ时此处表现为亮条纹,故相邻亮条纹之间的薄膜的厚度差为12λ,在图中相邻亮条纹(或暗条纹)之间的距离变大,则薄膜层的厚度之间变小,因条纹宽度逐渐变宽,则厚度不是均匀变小。
选项D 正确。
3. 【答案】D【解析】【分析】本题考查折射定律以及双缝干涉实验。
【详解】由双缝干涉条纹间距的公式Lx d λ∆=可知,当两种色光通过同一双缝干涉装置时,波长越长条纹间距越宽,由屏上亮条纹的位置可知12λλ>反射光经过三棱镜后分成两束色光,由图可知M 光的折射角大,又由折射定律可知,入射角相同时,折射率越大的色光折射角越大,由于12λλ>则12n n <所以N 是波长为λ1的光出射位置,故D 正确,ABC 错误。
故选D 。
4. 【答案】C【解析】解:因为路程差即(膜的厚度的两倍)是半波长的偶数倍,振动加强,为亮条纹,路程差是半波长的奇数倍,振动减弱,为暗条纹。
所以人从同侧看,可看到亮条纹时,同一高度膜的厚度相同,则彩色条纹水平排列,因竖直放置的肥皂薄膜受到重力的作用,下面厚,上面簿,形状视如凹透镜,因此,在薄膜上不同的地方,来自前后两个面的反射光所走的路程差不同,导致上疏下密,故C 正确,ABD 错误。
《光的干涉》答案
第6章 光的干涉一、选择题1(C),2(A),3(C),4(B),5(A),6(B),7(B),8(C),9(C),10(D) 二、填空题(1). 使两缝间距变小;使屏与双缝之间的距离变大. (2). N D (3). 0.75(4). λ3,33.1 (5). )2(L λ (6). 113(7). d 0 d 0-λ (8). r 12/r 22 (9). 2(n – 1)h (10).)(212N N L+λ三、计算题1. 在双缝干涉实验中,波长λ=550 nm 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D =2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1 nm = 10-9 m)解:(1) ∆x =20 D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2 设不盖玻璃片时,此点为第k 级明纹,则应有r 2-r 1=k λ 所以 (n -1)e = k λk =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处2. 在双缝干涉实验中,单色光源S 0到两缝S 1和S 2的距离分别为l 1和l 2,并且l 1-l 2=3λ,λ为入射光的波长,双缝之间的距离为d ,双缝到屏幕的距离为D (D >>d ),如图.求:(1) 零级明纹到屏幕中央O 点的距离. (2) 相邻明条纹间的距离.解:(1) 如图,设P 0为零级明纹中心 则 D O P d r r /012≈- (l 2 +r 2) - (l 1 +r 1) = 0∴ r 2 – r 1 = l 1 – l 2 = 3λ∴ ()d D d r r D O P /3/120λ=-= (2) 在屏上距O 点为x 处, 光程差λδ3)/(-≈D dx 明纹条件 λδk ±= (k =1,2,....)()d D k x k /3λλ+±=屏在此处令k =0,即为(1)的结果.相邻明条纹间距d D x x x k k /1λ=-=+∆3. 在折射率n =1.50的玻璃上,镀上n '=1.35的透明介质薄膜.入射光波垂直于介质膜表面照射,观察反射光的干涉,发现对λ1=600 nm 的光波干涉相消,对λ2=700 nm 的光波干涉相长.且在600 nm 到700 nm 之间没有别的波长是最大限度相消或相长的情形.求所镀介质膜的厚度.(1 nm = 10-9 m)解:设介质薄膜的厚度为e ,上、下表面反射均为由光疏介质到光密介质,故不计附加程差。
光的干涉习题答案
学号 班级 姓名 成绩第十六章 光的干涉(一)一、选择题1、波长mm 4108.4-⨯=λ的单色平行光垂直照射在相距mm a 4.02=的双缝上,缝后m D 1=的幕上出现干涉条纹。
则幕上相邻明纹间距离是[ B ]。
A .0.6mm ;B .1.2 mm ;C .1.8 mm ;D . 2.4 mm 。
2、在杨氏双缝实验中,若用一片透明云母片将双缝装置中上面一条缝挡住,干涉条纹发生的变化是[ C ]。
A .条纹的间距变大;B .明纹宽度减小;C .整个条纹向上移动;D .整个条纹向下移动。
3、双缝干涉实验中,入射光波长为λ,用玻璃薄片遮住其中一条缝,已知薄片中光程比相同厚度的空气大2.5λ,则屏上原0级明纹处[ B ]。
A .仍为明条纹;B .变为暗条纹;C .形成彩色条纹;D .无法确定。
4、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取的办法是[ B ]。
A .使屏靠近双缝; B .使两缝的间距变小; C .把两个缝的宽度稍微调窄; D .改用波长较小的单色光源。
5、在双缝干涉实验中,单色光源S 到两缝S 1、S 2距离相等,则中央明纹位于图中O 处,现将光源S 向下移动到S ’的位置,则[ B ]。
A .中央明纹向下移动,条纹间距不变;B .中央明纹向上移动,条纹间距不变;C .中央明纹向下移动,条纹间距增大;D .中央明纹向上移动,条纹间距增大。
二、填空题1、某种波长为λ的单色光在折射率为n 的媒质中由A 点传到B 点,相位改变为π,问光程改变了2λ , 光从A 点到B 点的几何路程是 2nλ 。
2、从两相干光源s 1和s 2发出的相干光,在与s 1和s 2等距离d 的P 点相遇。
若s 2位于真空中,s 1位于折射率为n 的介质中,P 点位于界面上,计算s 1和s 2到P 点的光程差 d-nd 。
3、光强均为I 0的两束相干光相遇而发生干涉时,在相遇区域内有可能出现的最大光强是04I ;最小光强是 0 。
光的干涉参考答案
光的干涉参考解答一 选择题1.如图示,折射率为n 2厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为n 1和n 3,已知n 1<n 2<n 3,若用波长为λ的单色平行光垂直入射到该薄膜上,则从薄膜上、下两表面反射的光束之间的光程差是 (A )2n 2e (B )2n 2e -2λ (C )2n 2e -λ (D )2n 2e -22n λ[A ][参考解]:两束光都是在从光疏介质到光密介质的分界面上反射,都有半波损失存在,其光程差应为δ=(2n 2e +2λ)-2λ= 2n 2e 。
2.如图,S 1、S 2是两个相干光源,它们到P 点的距离分别为r 1和r 2,路径S 1P 垂直穿过一块厚度为t 1,折射率为n 1的介质板,路径S 2P 垂直穿过一块厚度为t 2,折射率为n 2的另一介质板,其余部分可看作真空,这两条路径光的光程差等于 (A )(r 2+ n 2t 2)-(r 1+ n 1t 1)(B )[r 2+ (n 2-1)t 2] -[r 1+ (n 1-1)t 1] (C )(r 2-n 2t 2)-(r 1-n 1t 1) (D )n 2t 2-n 1t 1[ B ]3.如图,用单色光垂直照射在观察牛顿环的装置上,当平凸透镜垂直向上缓缓平移而离开平面玻璃板时,可以观察到环状干涉条纹 (A )向右移动 (B )向中心收缩 (C )向外扩张 (D )静止不动[ B ][参考解]:由牛顿环的干涉条件(k 级明纹)λλk ne k =+22 ⇒ nk e k 2)21(λ-= 可知。
4.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传到B ,若A 、B 两点的相位差是3π,则此路径AB 的光程差是 (A )1.5λ (B )1.5n λ (C )3λ (D )1.5λ/n[ A ][参考解]:由相位差和光程差的关系λδπϕ2=∆可得。
3S 1PS 空气二 填空题1.如图所示,波长为λ的平行单色光斜入射到距离为d 的双缝上,入射角为θ,在图中的屏中央O 处(S 1O=S 2O ),两束相干光的相位差为λθπsin 2d 。
光的干涉习题答案
j
j
j
1
2
2!j
j4
4!
略去高次项,有:1
(1
2!j2 )
4h
即: 2
j 2h
(这里应取 号)
500 107 10 104
j
2h
2 0.25
3.2 102 0.032 (rad ) 1.8
依②题意(同上)有:22hh
光的干涉习题答案
作业:
教材 p88:2,3;p89:6,9; p90;14,15
练习题 1、当牛顿环干涉仪中透镜与玻璃之间充以某种液体
介质时,第十条明纹的直径由0.0140m变为 0.0127m。求液体的折射率。 2、牛顿环装置放在n=1.33的透明液体中,(玻璃 的折射率大于1.33),R=300cm,=650nm,求 (1)从中心向外数第十个明环处液体的厚度h10。 (2)第十个明环的半径。 3、用铯(Cs)原子制成的铯原子钟能产生中心频 率等于9300 MHz、频宽为50 Hz的狭窄谱线.求 谱线宽度△λ和相干长度.
h
h j 1
h j
(
j
1)
1 2
2
j 1
n2 n2 sin2 i
2
1
1
22
n2 n2 sin2 i
2
1
1
2 n2 n2 sin2 i
2
1
1
若认为薄膜玻璃片的厚度可以略去不计的情况下,
n n 1 , 又因 i i' 60o ,则
1
光的干涉(有答案)
光的⼲涉(有答案)光的⼲涉⼀、⼲涉的相关知识点1、双缝⼲涉:由同⼀光源发出的光经双缝后,在屏上出现明暗相间的条纹.⽩光的双缝⼲涉的条纹是中央为⽩⾊条纹,两边为彩⾊条纹,单⾊光的双缝⼲涉中相邻亮条纹间距离为Δx = Δx =l dλ 2、薄膜⼲涉:利⽤薄膜(如肥皂液薄膜) 前后两⾯反射的光相遇⽽形成的.图样中同⼀条亮(或暗)条纹上所对应的薄膜厚度相同⼆、双缝⼲涉1、⼀束⽩光在真空中通过双缝后在屏上观察到的⼲涉条纹,除中央⽩⾊亮纹外,两侧还有彩⾊条纹,其原因是 ( )A .各⾊光的波长不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同B .各⾊光的速度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同C .各⾊光的强度不同,因⽽各⾊光分别产⽣的⼲涉条纹的间距不同D .上述说法都不正确答案 A解析⽩光包含各种颜⾊的光,它们的波长不同,在相同条件下做双缝⼲涉实验时,它们的⼲涉条纹间距不同,所以在中央亮条纹两侧出现彩⾊条纹,A 正确.2、 (2011·北京·14)如图所⽰的双缝⼲涉实验,⽤绿光照射单缝S 时,在光屏P 上观察到⼲涉条纹.要得到相邻条纹间距更⼤的⼲涉图样,可以 ( )A .增⼤S1与S 2的间距B .减⼩双缝屏到光屏的距离C .将绿光换为红光D .将绿光换为紫光答案 C解析在双缝⼲涉实验中,相邻两条亮纹(或暗纹)间的距离Δx =l dλ,要想增⼤条纹间距可以减⼩两缝间距d ,或者增⼤双缝屏到光屏的距离l ,或者换⽤波长更长的光做实验.由此可知,选项C 正确,选项A 、B 、D 错误.3、双缝⼲涉实验装置如图所⽰,绿光通过单缝S 后,投射到具有双缝的挡板上,双缝S 1和S 2与单缝的距离相等,光通过双缝后在与双缝平⾏的屏上形成⼲涉条纹.屏上O 点距双缝S 1和S 2的距离相等,P 点是距O 点最近的第⼀条亮条纹.如果将⼊射的单⾊光换成红光或蓝光,讨论屏上O 点及其上⽅的⼲涉条纹的情况是 ( )A.O点是红光的亮条纹B.O点不是蓝光的亮条纹C.红光的第⼀条亮条纹在P点的上⽅D.蓝光的第⼀条亮条纹在P点的上⽅答案AC解析O点处波程差为零,对于任何光都是振动加强点,均为亮条纹,故B错;红光的波长较长,蓝光的波长较短,根据Δx=ldλ可知,C正确.4、关于光的⼲涉现象,下列说法正确的是()A.在波峰与波峰叠加处,将出现亮条纹;在波⾕与波⾕叠加处,将出现暗条纹B.在双缝⼲涉实验中,光屏上距两狭缝的路程差为1个波长的某位置,将出现亮纹C.把⼊射光由黄光换成紫光,两相邻亮条纹间的距离变窄D.当薄膜⼲涉的条纹是等间距的平⾏线时,说明薄膜的厚度处处相等答案BC解析在波峰与波峰叠加处,或在波⾕与波⾕叠加处,都是振动加强区,将出现亮条纹,选项A错误;在双缝⼲涉实验中,出现亮纹的条件是光屏上某位置距两狭缝的路程差为波长的整数倍,出现暗纹的条件是光屏上某位置距两狭缝的路程差为半波长的奇数倍,选项B正确;条纹间距公式Δx=ldλ,λ黄>λ紫,选项C正确;薄膜⼲涉实验中的薄膜是“楔形”空⽓膜,选项D错误.5、关于光的⼲涉,下列说法中正确的是()A.在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是不等的B.在双缝⼲涉现象⾥,把⼊射光由红光换成紫光,相邻两个明条纹间距将变宽C.只有频率相同的两列光波才能产⽣⼲涉D.频率不同的两列光波也能产⽣⼲涉现象,只是不稳定答案 C解析在双缝⼲涉现象⾥,相邻两明条纹和相邻两暗条纹的间距是相等的,A错误;由条纹间距Δx=ldλ,⼊射光的波长越长,相邻两个明条纹间距越⼤,因此,把⼊射光由红光换成紫光,相邻两个明条纹间距将变窄,B错误;两列光波产⽣⼲涉时,频率必须相同,C正确,D错误.6、如图所⽰,⼀束复⾊光由真空射向半圆形玻璃砖的圆⼼,经玻璃砖后分为两束单⾊光a、b,则()A.玻璃中a光波长⼤于b光波长B.玻璃中a光折射率⼤于b光折射率C .逐渐增⼤⼊射⾓i ,a 光⽐b 光先发⽣全反射D .利⽤同⼀双缝⼲涉实验装置,a 光产⽣的⼲涉条纹间距⽐b 光⼤ad7、在双缝⼲涉实验中,双缝到光屏上P 点的距离之差Δr =0.6 µm ;分别⽤频率为f 1=5.×1014 Hz 和f 2=7.5×1014 Hz 的单⾊光垂直照射双缝,则P 点出现明、暗条纹的情况是A .⽤频率为f 1的单⾊光照射时,出现明条纹B .⽤频率为f 2的单⾊光照射时,出现明条纹C .⽤频率为f 1的单⾊光照射时,出现暗条纹D .⽤频率为f 2的单⾊光照射时,出现暗条纹答案 AD解析根据c =λf ,可得两种单⾊光波长分别为:λ1=c f 1=3×1085×1014m =0.6 µm λ2=c f 2=3×1087.5×1014m =0.4 µm 与题给条件(Δr =0.6 µm)⽐较可知Δr =λ1=32λ2,故⽤频率为f 1的光照射双缝时,P 点出现明条纹;⽤频率为f 2的光照射双缝时,P 点出现暗条纹.8、如图所⽰,在双缝⼲涉实验中,S 1和S 2为双缝,P 是光屏上的⼀点,已知P 点与S 1、S 2距离之差为2.1×10-6 m ,分别⽤A 、B 两种单⾊光在空⽓中做双缝⼲涉实验,问P 点是亮条纹还是暗条纹?(1)已知A 光在折射率为1.5的介质中波长为4×10-7 m ;(2)已知B 光在某种介质中波长为3.15×10-7 m ,当B 光从这种介质射向空⽓时,临界⾓为37°;(3)若让A 光照射S 1,B 光照射S 2,试分析光屏上能观察到的现象.解析 (1)设A 光在空⽓中波长为λ1,在介质中波长为λ2,由n =c v =λ1λ2,得λ1=nλ2=1.5×4×10-7 m =6×10-7 m 根据路程差Δr =2.1×10-6m ,所以N 1=Δr λ1=2.1×10-66×10-7=3.5 由此可知,从S 1和S 2到P 点的路程差是波长λ1的3.5倍,所以P 点为暗条纹.(2)根据临界⾓与折射率的关系sin C =1n 得n =1sin 37°=53由此可知,B 光在空⽓中波长λ3为:λ3=nλ介=53×3.15×10-7 m =5.25×10-7 m 路程差Δr 和波长λ3的关系为:N 2=Δr λ3=2.1×10-65.25×10-7=4 可见,⽤B 光做光源,P 点为亮条纹.(3)若让A 光和B 光分别照射S 1和S 2,这时既不能发⽣⼲涉,也不发⽣衍射,此时在光屏上只能观察到亮光.答案 (1)暗条纹 (2)亮条纹 (3)见解析9、如图所⽰,在双缝⼲涉实验中,已知SS 1=SS 2,且S 1、S 2到光屏上P 点的路程差Δr =1.5×10-6 m. (1)当S 为λ=0.6 µm 的单⾊光源时,在P 点处将形成______条纹.(2)当S 为λ=0.5 µm 的单⾊光源时,在P 点处将形成______条纹.(均选填“明”或“暗”)答案 (1)暗 (2)明解析 (1)当λ=0.6 µm =0.6×10-6 m 时, Δr =1.5×10-6 m =212λ.在P 点处将形成暗条纹. (2)当λ=0.5 µm =0.5×10-6 m 时,Δr =1.5×10-6 m =3λ,在P 点处将形成明条纹10、如图所⽰,a 、b 为两束不同频率的单⾊光,以45°的⼊射⾓射到玻璃砖的上表⾯,直线OO ′与玻璃砖垂直且与其上表⾯交于N 点,⼊射点A 、B 到N 点的距离相等,经玻璃砖上表⾯折射后两束光相交于图中的P 点,则下列说法正确的是 ( )A .在真空中,a 光的传播速度⼤于b 光的传播速度B .在玻璃中,a 光的传播速度⼩于b 光的传播速度C .同时增⼤⼊射⾓(⼊射⾓始终⼩于90°),则a 光在下表⾯先发⽣全反射D .对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽答案 D解析各种光在真空中的光速相同,选项A 错误;根据题图,⼊射⾓相同,a 光的折射⾓较⼤,所以a 光的折射率较⼩,由光在介质中的光速v =c n得,a 光在介质中的传播速度较⼤,选项B 错误;根据临界⾓公式C =arcsin 1n可知,a 光的临界⾓较⼤,b 光在下表⾯先发⽣全反射,选项C 错误;a 光的折射率较⼩,波长较长,根据公式Δx =l dλ可知,对同⼀双缝⼲涉装置,a 光的⼲涉条纹⽐b 光的⼲涉条纹宽,选项D 正确.三、薄膜⼲涉11、劈尖⼲涉是⼀种薄膜⼲涉,其装置如图7甲所⽰.将⼀块平板玻璃放置在另⼀平板玻璃之上,在⼀端夹⼊两张纸⽚,从⽽在两玻璃表⾯之间形成⼀个劈形空⽓薄膜.当光垂直⼊射后,从上往下看到的⼲涉条纹如图⼄所⽰,⼲涉条纹有如下两个特点:图7(1)任意⼀条明条纹或暗条纹所在位置下⾯的薄膜厚度相等;(2)任意相邻明条纹或暗条纹所对应的薄膜厚度差恒定.现若在图甲装置中抽去⼀张纸⽚,则当光垂直⼊射到新劈形空⽓薄膜后,从上往下观察到的⼲涉条纹将如何变化?答案见解析解析光线在空⽓膜的上下表⾯上反射,并发⽣⼲涉,形成⼲涉条纹,设空⽓膜顶⾓为θ,d 1、d 2处为两相邻明条纹,如图所⽰,则两处光的路程差分别为Δx 1=2d 1,Δx 2=2d 2,因为Δx 2-Δx 1=λ,所以d 2-d 1=12λ. 设条纹间距为Δl ,则由⼏何关系得d 2-d 1Δl =tan θ,即Δl =λ2tan θ.当抽去⼀张纸⽚时,θ减⼩,Δl 增⼤,即条纹变疏.12、甲所⽰,在⼀块平板玻璃上放置⼀平凸薄透镜,在两者之间形成厚度不均匀的空⽓膜,让⼀束单⼀波长的光垂直⼊射到该装置上,结果在上⽅观察到如图⼄所⽰的同⼼内疏外密的圆环状⼲涉条纹,称为⽜顿环,以下说法正确的是 ( )A .⼲涉现象是由于凸透镜下表⾯反射光和玻璃上表⾯反射光叠加形成的B .⼲涉现象是由于凸透镜上表⾯反射光和玻璃上表⾯反射光叠加形成的C .⼲涉条纹不等间距是因为空⽓膜厚度不是均匀变化的D .⼲涉条纹不等间距是因为空⽓膜厚度是均匀变化的答案 AC解析由于在凸透镜和平板玻璃之间的空⽓形成薄膜,所以形成相⼲光的反射⾯是凸透镜的下表⾯和平板玻璃的上表⾯,故A 正确,由于凸透镜的下表⾯是圆弧⾯,所以形成的薄膜厚度不是均匀变化的,形成不等间距的⼲涉条纹,故C 正确,D 错.。
光的干涉习题(附答案)
π
S1
S2
3λ 4
4. 用波长为 λ 的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。若使凸 透镜慢慢向上垂直移动距离 d, 移过视场中某固定观察点的条纹数等于 2d/λ 。
5. 空气中两块玻璃形成的空气劈形膜, 一端厚度为零, 另一端厚度为 0.005 cm, 玻璃折射率为 1.5,空气折射率近似为 1。如图所示,现用波长为 600 nm 的 单色平行光, 沿入射角为 30°角的方向射到玻璃板的上表面, 则在劈形膜上形 成的干涉条纹数目为 144 。
6. 维纳光驻波实验装置示意如图。MM 为金属反射镜,NN 为涂有极薄感光层 的玻璃板。MM 与 NN 之间夹角 φ=3.0×10-4 rad,波长为 λ 的平面单色光通过 NN 板垂直入射到 MM 金属反射镜上,则反射光与入射光在相遇区域形成光 驻波, NN 板的感光层上形成对应于波腹波节的条纹。 实验测得两个相邻的驻 波波腹感光垫 A、B 的间距 1.0 mm,则入射光的波长为 6.0×10-4 mm 。
8. 如图所示,折射率为 n2,厚度为 e 的透明介质薄膜的上、下方透明介质的折 射率分别为 n1 和 n3,且 n1<n2<n3,若用波长为 λ 的单色平行光垂直入射到该 薄膜上,则从薄膜上下两表面反射的光束之间的光程差为 2长为 λ 的单色平行光垂直照射两个劈尖上,两劈尖角分别为 θ1 和 θ2,折射 率分别为 n1 和 n2, 若两者分别形成的干涉条纹的明条纹间距相等, 则 θ1, θ2, n1,n2 之间的关系为 n1θ1= n2θ2 。
2h c arcsin 0.1 5.7 o arcsin 2hf
11. 油船失事,把大量石油(n=1.2)泄漏在海面上,形成一个很大的油膜。试求: (1)如果你从飞机上竖直地向下看油膜厚度为 460nm 的区域,哪些波长的 可见光反射最强? (2 ) 如果你戴了水下呼吸器从水下竖直的向上看这油膜同 一区域,哪些波长的可见光透射最强?(水的折射率为 1.33) 答:因为在油膜上下表面反射光都有半波损失, (1)反射光干涉加强:2nd=k
光的干涉习题答案
第五章 光的干涉5-1 波长为589.3nm 的钠光照射在一双缝上,在距双缝200cm 的观察屏上测量20个条纹共宽3cm ,试计算双缝之间的距离。
解:由题意,条纹间距为:cm e15.0203==∴双缝间距为:m e D d 391079.015.0103.589200--⨯≈⨯⨯==λ1.5mm ,观察屏离小孔的垂直距离为1m ,若所用光源发出波长1λ=650nm 和2λ=532nm 的两种光波,试求两光波分别形成的条纹间距以及两组条纹的第8级亮纹之间的距离。
解:对于1λ=650nm 的光波,条纹间距为:m d D e 339111043.0105.1106501---⨯≈⨯⨯⨯==λ 对于2λ=532nm 的光波,条纹间距为:m d D e 339221035.0105.1105321---⨯≈⨯⨯⨯==λ∴两组条纹的第8级条纹之间的距离为: m e e x 3211064.0)(8-⨯=-=∆5-3 一个长40mm 的充以空气的气室置于杨氏装置中的一个小孔前,在观察屏上观察到稳定的干涉条纹系,继后抽去气室中的空气,注入某种气体,发现条纹系移动了30个条纹。
已知照射光波波长为656.28nm ,空气折射率为1.000276,试求注入气体的折射率n g 。
解:气室充入空气和充气体前后,光程的变化为: D n g )000276.1(-=∆δ而这一光程变化对应于30个波长:λδ30=∆∴λ30)1(=-D n g000768.1000276.110401028.6563039=+⨯⨯⨯=--g n5-4 在菲涅耳双面镜干涉实验中,光波长为600nm ,光源和观察屏到双面镜交线的距离分别为0.6m 和1.8m ,双面镜夹角为10-3rad ,求:(1)观察屏上的条纹间距;(2)屏上最多能看到多少亮条纹?解:如图所示,S 1S 2的距离为:αsin 2l d=∴条纹间距为:αλλsin 2)(l q l d D e +== ∵α角很小∴mmm l q l e 2.1102.1106.0210600)8.16.0(2)(339=⨯=⨯⨯⨯⨯+=+≈---αλ屏上能产生条纹的范围,如图阴影所示mmmq qtg y 6.3108.12223=⨯⨯=≈=-αα∴最多能看到的亮条纹数为:32.16.3===e y n5-5 在如图所示的洛埃镜实验中,光源S 1到观察屏的距离为2m ,光源到洛埃镜面的垂直距离为2.5mm 。
光的干涉习题答案与解法(2010111)
光的干涉习题、答案与解法一. 选择题1.真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为π,则此路径AB 的光程(B ) A 、 λ5.0; B 、 n λ5.0; C 、 n λ5.0; D 、 λ. 参考解法:δλπϕ2=∆ 其中δ为光程差2.单色平行光垂直照射在薄膜上,经上下两表面反射的两束光发生干涉,如图,若薄膜的厚度为e ,且321n n n <<,1λ为入射光在1n 中的波长,则两束反射光的光程差为(A )A e n 22B 11222n e n λ-C 2212n e n λ-D 22212n e n λ-3.若一双缝装置的两个缝分别被折射率为1n 和2n 的两块厚度均为e 的透明介质所遮盖,此时由双缝分别到屏上原中央极大处的两束光的光程差为(B )A 0 ;B e n n e n n )()(2112--或 ;C e n n )(12+ ;D 无法确定。
参考解法:()e n n e n e n 1212-=-=δ 或()e n n e n e n 2121-=-=δ4.在双缝干涉实验中,若双缝所在的平面稍微向下平移,其他条件不变,则屏上的干涉条纹( A )A 向下平移,且间距不变B 向上平移,且间距不变C 不移动,但间距改变 C 向上平移,且间距改变1n 2n 3n 1入射光2反射光1反射光e参考解法:nl 2λθ=当θ不变时,l 保持不变。
5.用劈尖干涉法检测工件表面的缺陷,当波长为λ的单色光平行光垂直入射时,若观察到的干涉条纹如图,每一条纹弯曲部分的顶点恰好与其右边条纹的直线部分的连线相切,则表面与条纹弯曲部分出对应的部分(B )A 凸起,且高度为4λ;B 凸起,且高度为2λ;C 凹陷,且高度为2λ;D 凹陷,且高度为4λ. 参考解法:Hll=2λ2λ=H6.如图,用单色光垂直照射在观察牛顿还得装置上。
当平凸镜垂直向下缓慢平移而接近平面玻璃时,可以观察到这些环状干涉条纹(C ) A 向右平移; B 向中心收缩;C 向外扩张;D 静止不动;E 向左平移. 参考解法:由等厚干涉定义得知,当平凸镜垂直向下缓慢平移时,环状干涉条纹向外扩张。
《光的干涉》选择题解答与分析
6光的干涉6.1光程、光程差1.在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中(A) 传播的路程相等,走过的光程相等. (B) 传播的路程相等,走过的光程不相等. (C) 传播的路程不相等,走过的光程相等.(D) 传播的路程不相等,走过的光程不相等.答案:(C)参考解答:光在空气中和在玻璃中的传播速度不同,所以在相同的时间内传播的路程不相等;而介质的折射率,uc n=光程=介质的折射率⨯几何路程,t c t u uc ∆=∆⋅=与介质无关,所以在相同的时间内,一束波长为λ的单色光在空气中和在玻璃中走过的光程相等。
实际上光程概念的引入,就是为便于计算光通过不同介质时的位相变化。
对所有错误选择,进入下面的讨论。
1.1怎么理解光程的物理意义?参考解答:若光在折射率为n 的介质中通过了几何路程r ,则其光程是nr 。
光程实际上是把光在介质中通过的路程按相位变化相同折合为真空的路程。
即nrr nλπλπ22=其中,n λ——介质中的波长; λ——真空质中的波长。
理解光程的物理意义可从下面两个方面(1) 从相位差上理解:介质中几何路程r 包含完整波的数目n r λ/(介质中的波数)与真空中几何路程nr 包含的完整波的数目λ/nr (真空中的波数)相同,所以二者产生相同的相位差。
(2) 从时间上理解:设介质中的光速为u ,真空中光速为c 。
光在介质中通过几何路程r 的时间u r /与在真空中通过几何路程nr 的时间c nr /相同。
即有cnr nc r u r ==/。
进入下一题2. 在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π,则此路径AB 的光程为 (A) 1.5 λ. (B) 1.5 λ/ n . (C) 1.5 n λ. (D) 3 λ.答案:(A)参考解答:利用相位差与光程的公式:λδ2πΔ=φ,有 nn λδππ23=.得n n λδ5.1=,注意有:nn λλ=, 所以λδ5.1=.引入光程的好处在于:计算光经不同介质传播时对应的位相变化,统一用真空中的波长,不必考虑介质中波长的不同。
光的干涉(解析版)
第3节光的干涉一、光的双缝干涉1.如图所示是研究光的双缝干涉的示意图,挡板上有两条狭缝S1、S2,由S1和S2发出的两列波到达屏上时会产生干涉条纹。
已知入射激光的波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记作第0号亮条纹,由P向上数,与0号亮条纹相邻的亮条纹为1号亮条纹,与1号亮条纹相邻的亮条纹为2号亮条纹,则P1处的亮条纹恰好是10号亮条纹.设直线S1P1的长度为r1,S2P1的长度为r2,则r2-r1等于()A.9.5λB.10λC.10.5λD.20λ【答案】B【详解】由题设可知,从中央亮条纹P算起,P1点处是第10号亮条纹的位置,表明缝S1、S2到P1处的距离差r2-r1为波长的整数倍,且刚好是10个波长,B正确。
故选B。
2.双缝干涉实验装置如图所示,双缝间距离为d,双缝到光屏的距离为L,调整实验装置使光屏上见到清晰的干涉条纹。
关于该干涉条纹及改变条件后其变化情况,下列叙述中正确的是()A.屏上所有暗线都是从双缝中出来的两列光波的波谷与波谷叠加形成的B.若将光屏向右平移一小段距离,屏上仍有清晰的干涉条纹C.若只减小双缝间距d,屏上两相邻明条纹间距离变小D.若只改用频率较大的单色光,屏上两相邻明条纹间距离变大【答案】B【详解】A.从双缝中出来的两列光波的波谷与波峰叠加形成暗线,故A错误;B.根据双缝干涉条纹的间距公式Lxd λ∆=可知将光屏向右平移一小段距离,屏上仍有清晰的干涉条纹,故B 正确;C.根据双缝干涉条纹的间距公式Lxd λ∆=可知,若只减小双缝间距d,屏上两相邻明条纹间距离变大,故C 错误;D.频率变大,波长变短,根据间距公式可知条纹间距变短,故D错误;故选B。
二、薄膜干涉3.关于光在竖直的肥皂液薄膜上产生的干涉条纹,下列说法正确的是()A.干涉条纹是光在薄膜前、后两个表面反射,形成的两列光波叠加的结果B.若明暗相间的条纹相互平行,说明薄膜的厚度是均匀的C.用紫光照射薄膜产生的干涉条纹间距比红光照射时的间距大D.薄膜上的干涉条纹基本上是竖直的【答案】A【详解】A.干涉条纹是光在薄膜前、后两个表面反射,形成的两列光波叠加的结果,故A正确;B.若明暗相间的条纹相互平行,说明肥皂液薄膜的厚度变化是均匀的,故B错误;C.由于紫光的波长比红光的小,故用紫光照射薄膜产生的干涉条纹间距比红光照射时的间距小,故C错误;D.薄膜上的干涉条纹基本上是水平的,故D错误。
关于光的干涉的习题与答案
关于光的干涉的习题与答案
光的干涉习题与答案
光的干涉是光学中非常重要的一个现象,它揭示了光波的波动性质。
在干涉现象中,光波会相互叠加,形成明暗条纹,从而产生干涉图样。
下面我们来看一些关于光的干涉的习题与答案。
习题一:两束相干光波在空气中相遇,它们的波长分别为600nm和450nm,求它们的相位差。
解答:相位差可以用公式Δφ=2πΔx/λ来计算,其中Δx为两束光波的光程差,λ为光波的波长。
由于光程差Δx=0,所以相位差Δφ=0。
习题二:在双缝干涉实验中,两个狭缝间距为0.2mm,波长为500nm的光波垂直入射到狭缝上,求干涉条纹的间距。
解答:干涉条纹的间距可以用公式dλ/D来计算,其中d为狭缝间距,λ为光波的波长,D为观察屏到狭缝的距离。
代入数据可得,间距为0.1mm。
习题三:在双缝干涉实验中,两个狭缝间距为0.1mm,波长为600nm的光波垂直入射到狭缝上,观察屏到狭缝的距离为2m,求干涉条纹的间距。
解答:代入数据可得,间距为0.3mm。
通过以上习题与答案,我们可以看到光的干涉现象在实际问题中的应用。
对于学习光学的同学来说,掌握光的干涉原理和计算方法是非常重要的。
希望大家能够通过练习,加深对光的干涉现象的理解,提高解决实际问题的能力。
第06章光的干涉习题答案-推荐下载
解:由于油膜前后表面反射光都有半波损失,所以光程差为 2ne ,而膜厚又是均
匀的,
反射相消的条件是 : 2ne (2k 1) 2
解:令单色光的波长为 ,由为明条纹需要满足的条件
r2
r
1
d
可知, dy 0.2 103 6.0 103 0.6 106 m 600nm
kD
2 1.0
y D
k
6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折 射率为 6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的
y4
r2
k
r1
r1
D d
yd D
yd D
4
2k
(2)明条纹的宽度就是两相邻暗纹的间距:
y
2 k
1 1
D d
500 103 1.2 103
k
1
2
D 2d
4
y明
500 103 1.2 103
2k
589.3109
k 17 , k k 5 12
。。。。。。
2
因油膜干涉的效果主要是增透或者是显色,,反射光最小, k 最小,对于油膜厚度最
即取 k 3
e
(2k
1) 1 2
2n
2 3 1 500nm
06光的干涉二解答
600 k 3 2(l2 l1 ) 2 (700 600)
3 700 nm d 7.78 10 4 mm 2 1.35
l1
n
n
光的干涉(二)
第十一章 光学
2.用波长l=500 nm的单色光作牛顿环实验,测得第k 个暗环半径rk=4 mm, 第k +10个暗环半径rk+10=6 mm, 求平凸透镜的凸面的曲率半径R. 解:牛顿环暗环半径 rk
图a 图b A
3l ek 2 2
l
光的干涉(二)
第十一章 光学
2.折射率分别为n1和n2的两块平板玻璃构成空气劈 尖,用波长为l的单色光垂直照射.如果将该劈尖装置 浸入折射率为n的透明液体中,且n2>n>n1,则劈尖厚 度为e的地方两反射光的光程差的改变量是________.
n1 , n2 n0 1
n
n1
ek (2k 1)l (4n)
(k 1,2,...)
e1 650 (4 1.33) 122nm
ek
x
x l 2 3mm
光的干涉(二)
第十一章 光学
4. 用波长为500 nm 的单色光垂直照射到由两块光学 平玻璃构成的空气劈形膜上.在观察反射光的干涉现 象中,距劈形膜棱边l = 1.56 cm的A处是从棱边算起的 第四条暗条纹中心. (1) 求此空气劈形膜的劈尖角q; (2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反 射光的干涉条纹,A处是明条纹还是暗条纹?(3) 在第 (2)问的情形从棱边到A处的范围内共有几条明纹?几 条暗纹? 解:n > n0,下表面发生半波损失 2nek l 2
(B) 2n2e - l1/(2n1) (D) 2n2e - n2l1/2.
光的干涉习题答案
光学干涉测量技术
利用光的干涉现象测量长度、角 度、表面粗糙度等物理量,具有 高精度和高灵敏度。
光学干涉滤镜
利用光的干涉现象制作出的滤镜, 可以实现对特定波长的光进行过 滤或增强。
光学干涉仪
利用光的干涉现象测量光学元件 的表面形貌、折射率等参数,广 泛应用于光学研究和制造领域。
02 光的干涉原理
光的波动理论
光的干涉习题答案
目录
• 光的干涉现象 • 光的干涉原理 • 光的干涉实验 • 光的干涉习题解析 • 光的干涉理论的发展
01 光的干涉现象
光的干涉现象定义
1 2
光的干涉现象
当两束或多束相干光波在空间某一点叠加时,由 于光波的相互加强或减弱,形成明暗相间的干涉 条纹的现象。
相干光波
频率相同、振动方向相同、相位差恒定的光波。
题目:一束单色光垂直入射到一对相互平行的狭缝上, 光通过狭缝后形成的光斑可看作是什么图形?
解析:根据光的干涉原理,当单色光垂直入射到一对相 互平行的狭缝上,光通过狭缝后形成的光斑是圆形干涉 图样。
进阶习题解析
题目
如何通过双缝干涉实验验证光的波动性?
答案
通过观察干涉条纹的形状和分布,可以证明光具有波动性 。
光的波动理论。
20世纪初,爱因斯坦提出光的 量子理论,解释了光的干涉现象
的微观机制。
光的干涉理论在现代物理学中的应用
光的干涉理论在光学、 量子力学和凝聚态物 理学等领域有广泛应 用。
在量子力学中,光的 干涉被用于研究量子 纠缠和量子计算等前 沿领域。
在光学中,光的干涉 被用于制造高精度光 学仪器和检测技术。
光的干涉理论的前沿研究
01
目前,光的干涉理论的前沿研究主要集中在量子光 学和量子信息领域。
(完整版)6光的干涉习题详解
(完整版)6光的⼲涉习题详解练习六:第0页共7页练习六光的⼲涉(全册74页第21页)习题六⼀、选择题1.如图所⽰,在杨⽒双缝⼲涉实验中,设屏到双缝的距离D =2.0m ,⽤波长λ=500nm 的单⾊光垂直⼊射,若双缝间距d 以0.2mm ?s -1的速率对称地增⼤(但仍满⾜d << D ),则在屏上距中⼼点x =5cm 处,每秒钟扫过的⼲涉亮纹的条数为 [ ] (A )1条;(B )2条;(C )5条;(D )10条。
答案:D解:缝宽为d 时,双缝⾄屏上x 处的光程差为dx Dδ=。
所以当d 增⼤时,光程差改变,引起⼲涉条纹移动。
若⼲涉条纹移动N 条,则对应的光程差改变为N δδδλ'?=-=,依题意,经1s ,光程差的改变量为:()λδN Dxd D x d =-+=2.0 由此可解出N =10。
2.在双缝⼲涉实验中,若单⾊光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹中⼼位于图中O 处,现将光源S 向下移动到⽰意图中的S ' 位置,则 [ ](A )中央明条纹向下移动,且条纹间距不变;(B )中央明条纹向上移动,且条纹间距增⼤;(C )中央明条纹向下移动,且条纹间距增⼤;(D )中央明条纹向上移动,且条纹间距不变。
答案:D解:条纹间距与参数d 、D 和λ有关,⽽与光源的竖直位置⽆关。
但光源下移时,在原O 点处两光程差不再为0,⽽且光程差为0处必在O 点上⽅,即中央明纹向上移动。
3.如图所⽰,波长为λ的平⾏单⾊光垂直⼊射在折射率为n 2的薄膜上,经上下两个表⾯反射的两束光发⽣⼲涉。
若薄膜厚度为e ,⽽且n 1 > n 2 > n 3,则两束反射光在相遇点的位相差为 [ ](A )24/n e πλ;(B )22/n e πλ;(C )24/n e ππλ+;(D )24/n e ππλ-+。
答案:A解:三层介质折射率连续变化,故上下两光之间⽆附加程差。
(完整版)光的干涉练习题及答案
(完整版)光的干涉练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。
【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。
【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。
图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。
由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。
【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )是明的,圆环是等距离的; 是明的,圆环是不等距离的;是暗的,圆环是等距离的; 是暗的,圆环是不等距离的。
【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。
【答案】:B6、若把牛顿环装置(都是用折射率为的玻璃制成的)由空气搬入折射率为的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。
【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。
【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第6章 光的干涉6.1 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为500D mm =,双缝的间距 1.2d mm =,求:⑴第4级明条纹到中心的距离;⑵第4级明条纹的宽度.解:(1)明纹的条件:21ydr r k Dλ∆=-≈=D y kdλ⇒=明 (0,1, 2.....)k =±± 暗纹的条件:()21212yd r r k D λ∆=-≈=+()212D y k dλ⇒=+暗 (0,1,2..k =±± 第4级明条纹得到中心的距离:394435001044589.3109.8101.210D D y k m d d λλ----⨯==⨯=⨯⨯⨯=⨯⨯ (2)明条纹的宽度就是两相邻暗纹的间距: ()()2112122D D Dy k k d d dλλλ∆=++-+=⎡⎤⎣⎦394350010589.310 2.45101.210m ----⨯=⨯⨯=⨯⨯ 6.2 在杨氏双缝实验中,用钠光灯为光源.已知光波长589.3nm λ=,屏幕距双缝的距离为600D mm =,问⑴ 1.0,10d mm d mm ==两种情况相邻明条纹间距分别为多大?⑵若相邻条纹的最小分辨距离为0.065mm ,能分清干涉条纹的双缝间距最大是多少?解:(1)相邻两条强度最大值的条纹顶点间的距离为1i j r y y y dλ+∆=-=0600d r mm ==由此可知,当 1.0d mm =时39360010589.3101.010y ---⨯⨯⨯∆=⨯ 0.3538mm ≈当10d mm =时39360010589.3101010y ---⨯⨯⨯∆=⨯0.03538mm ≈(2)令能分清干涉条纹的双缝间距最大为d ,则有390360010589.310 5.440.06510r d mm y λ---⨯⨯⨯===∆⨯6.3 用白光作光源观察杨氏双缝干涉.设两缝的间距为d ,缝面与屏距离为D ,试求能观察到的清晰可见光谱的级次?解:白光波长在390~750范围,为明纹的条件为sin d k θλ=±在θ=0处,各种波长的光波程差均为零,所以各种波长的零级条纹在屏上0x =处重叠形成中央白色条纹.中央明纹两侧,由于波长不同,同一级次的明纹会错开,靠近中央明纹的两侧,观察到的各种色光形成的彩色条纹在远处会重叠成白色条纹最先发生重叠的是某一级的红光r λ ,和高一级的紫光v λ,因此从紫光到清晰可见光谱的级次可由下式求得:(1)r v k k λλ=+因而: 3901.08750390v r vk λλλ===--由于k 只能取整数,因此从紫光到红光排列清晰可见的光谱只有正负各一级6.4 在杨氏双缝干涉实验中,入射光的波长为λ,现在S2缝上放置一片厚度为d ,折射率为n 的透明介质,试问原来的零级明纹将如何移动?如果观测到零级明纹移到了原来的k 级明纹处,求该透明介质的厚度.解:(1)原来的零级明纹将向S2那方移动。
(2)如果观察到的零级条纹移动到了原来的k 级明纹处则 ()1n d k λ∆=-=()1k d n λ=-6.5 在双缝干涉实验中,双缝间距0.20d mm =,缝屏间距 1.0D m =,若第二级明条纹离屏中心的距离为6.0mm ,试计算此单色光的波长.解:令单色光的波长为λ,由为明条纹需要满足的条件21yr r dk Dλ∆=-≈= 可知,3360.210 6.0100.6106002 1.0dy m nm kD λ---⨯⨯⨯≈==⨯=⨯ 6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折射率为6.6 一束平面单色光垂直照射在厚度均匀的薄油膜上,油膜覆盖在玻璃上,油膜的折射率为1.30,玻璃的折射率为1.50,若单色光的波长可由光源连续可调,可观察到500nm 与700nm 这两个波长的单色光在反射中消失.试求油膜层的厚度.解:由于油膜前后表面反射光都有半波损失,所以光程差为2ne ∆=,而膜厚又是均匀的,反射相消的条件是 :2(21)2ne k λ=+1λ反射消失在k 级,2λ反射消失在k '级则有 []122(21)2122nd k k λλ'=+=+715k k '+=因k 和k '应为正整数,则3k =,12k k '=-= 10k =,37k k '=-= 17k =,512k k '=-=。
因油膜干涉的效果主要是增透或者是显色,,反射光最小,k 最小,对于油膜厚度最小,即取3k =()1(21)231500267322 1.32k nm e nm n λ+⨯+==⨯≈⨯6.7 利用等厚干涉可测量微小的角度.折射率 1.4n =的劈尖状板,在某单色光的垂直照射下,量出两相邻明条纹间距0.25l cm =,已知单色光在空气中的波长700nm λ=,求劈尖顶角θ.解:相长干涉的条件为022nd j λλ+=相邻两条纹对应的薄膜厚度差为02012d d d nλ'∆=-=对于劈尖板, 1.4n =,则02012 1.4d d d λ'∆=-=⨯条纹间距x ∆与相应的厚度变化之间的关系为02019422.870010102.80.2510d d d x l rad λθθθ---'∆=-=∆==⨯==⨯⨯6.8 用波长为680nm 的单色光,垂直照射0.12L m =长的两块玻璃片上,两玻璃片的一边互相接触,另一边夹着一块厚度为0.048h mm =云母片,形成一个空气劈尖.求: ⑴两玻璃片间的夹角?⑵相邻明条纹间空气膜的厚度差是多少?⑶相邻两暗条纹的间距是多少?⑷在这0.12m 内呈现多少条明纹?解:(1)两玻璃间的夹角为330.048100.4100.12h tg L θθ--⨯≈===⨯ (2)相邻两亮条纹对应的薄膜厚度差为122 22k ne k e nλλλ⎛⎫- ⎪⎝⎭+=⇒=971680103.410221k k e e e m n λ--+⨯∆=-===⨯⨯ (3)条纹间距与相应厚度变化之间的关系73tan 3.4100.850.410ele l mmθθθ--∆≈=∆∆⨯∆===⨯ (4)在这0.12m 内呈现的明条纹数为 222 2nd nd K k λλλλ++=⇒=当0.048d mm =时,141k =说明在这0.12 m 内呈现了141条明条纹6.9. 用500nm λ=的平行光垂直入射到劈形薄膜的上表面上,从反射光中观察,劈尖的棱边是暗纹.若劈尖上面介质的折射率1n 大于薄膜的折射率 1.5n =.求:⑴膜下面介质的折射率2n 与n 的大小关系;⑵第10级暗纹处薄膜的厚度?⑶使膜的下表面向下平移一微小距离e ∆,干涉条纹有什么样的变化?若 2.0e m μ∆=,原来的第10条暗纹处将被哪级暗纹占据?解:(1) (2)因为空气膜的上下都是玻璃,求反射光的光程差时应计入半波损失,0d =处(棱)反射光相消,是暗条纹,从棱算到地10条暗纹之间有9各整条纹间隔,膜厚是2λ的9倍, 9 2.252d um λ=⨯=(3)使膜的下表面向下平移一微小距离e ∆后,膜上表面向上平移,条纹疏密不变,整体向棱方向平移,原来地10条暗纹处的膜厚增加e ∆,干涉级增加 : /82k e λ∆=∆=因此原来的第10条暗纹被第18条暗纹代替6.10. 白光垂直照射在空气中的厚度为0.40m μ的玻璃片上,玻璃的折射率为1.5.试问在可见光范围内(400700nm nm ),哪些波长的光在反射中加强?哪些波长的光在透射中加强?解:(1)反射光加强的条件是:2,(0,1, 2....)2ne k k λλ∆=+==±±421nek λ=- 当14234254271,44 1.50.4 2.442, 1.50.40.8343, 1.50.40.48544, 1.50.40.3437k ne um umne k um um ne k um umne k um umλλλλ===⨯⨯====⨯⨯====⨯⨯====⨯⨯= 在白光范围内2480,nm λ=反射光加强透射光加强的条件是:2,(0,1, 2....)ne k k λ∆===±± 2nekλ=当 1231, 1.22,6003,400k umk nm k nmλλλ======在白光范围内600,400nm nm λλ==时,透射光加强。
6.11. 当牛顿环装置中的透镜与玻璃之间的空间充以液体时,第十个亮环的直径由21 1.4010d m -=⨯变为22 1.2710d m -=⨯,求液体的折射率?解:牛顿环干涉中,干涉条纹是以接触点为中心的同心圆环22ne k λλ∆=+= 122k e n ⎛⎫- ⎪⎝⎭⇒= 明环半径为r ==原来透镜与玻璃板之间是空气,11n =,10r ===充液体后的折射率2n10r '==()()2222101022221010 1.410 1.221.2710r d n r d --⨯===≈''⨯ 因此液体的折射率为1.226.12. 利用迈克耳逊干涉仪可测量单色光的波长,当可移动平面镜M1移动距离0.322mm 时,观察到干涉条纹移动数为1024条,求所用单色光的波长?解:移动平面镜后光程差变化为0.032n d mm δ=∆=320.644106291024n dN nm λ-∆⨯==≈6.13. 反折射率为 1.632n =的玻璃片放入迈克耳逊干涉仪的一条光路中,观察到有150条干涉条纹向一方移过.若所用单色光的波长为500nm λ=,求此玻璃片的厚度. 解:设玻璃的厚度为 d放入玻璃片的光路中光程差变化为d ∆962150500102 2.30102 1.632n d NNd n λλ--∆=⨯⨯∆===⨯⨯通过玻璃片的光程计算1122sin sin n i n i =得到光线在玻璃片中的折射角11221sin sin arcsin()37.81.632n i n i ==≈。
所以光线在玻璃片的路程cos37.8dd '=1(1)cos37.8d d ∆=-68.6510d m -⇒=⨯。