五年级行程问题:多次相遇、追及问题
五年级奥数思维多人多次的相遇与追及
多人多次的相遇与追及【知识导学】本讲我们要学习多个对象之间的行程问题.在本讲的学习中,大家一定要重视线段图的作用.本讲行程问题最大的特点就是“繁”——人多、车多、过程多.怎么解决这样复杂的问题呢?首先,必须有勇气,只要有勇气,你就敢面对这样的问题,积极开动脑筋去想;其次,必须有耐心,只要有耐心,你就能动手去画图,细致地分析每一组数量关系,再花上些时间,题目自然能够搞定.一、从不同的角度想问题,同一段路程通过不同的角度去分析,会有不同的发现.二、两人的运动时间相同时,他们的路程倍数关系就等于速度倍数关系.【例题精讲】【例1】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时7千米,铛铛的速度为每小时5千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.叮叮的速度为每小时6千米,铛铛的速度为每小时4千米.出发3小时后,叮叮与铛铛相遇.又过了1小时,咚咚也与铛铛相遇.请问:咚咚的速度是多少?【例2】甲、乙两辆汽车的速度分别为每小时52千米和每小时40千米,两车同时从A地出发到B地去.出发6小时后,甲车遇到一辆迎面开来的卡车.又过了1小时,乙车也遇到了这辆卡车.请问:这辆卡车的速度是多少?【及时巩固】叮叮、咚咚两人从A地,铛铛从B地同时出发,相向而行.铛铛出发5小时后遇到叮叮,6小时后遇到咚咚.已知叮叮每小时行2千米,咚咚每小时行1.6千米,请问:铛铛每小时能行多少千米?【例3】A、B两城相距48千米,甲、乙两人从A城,丙从B城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时4千米、2千米、2千米.请问:出发多长时间后,甲正好在乙和丙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A出发往B走,另外两人从B出发往A走.已知A、B两地相距28千米,老贺、老刘和老郭分别以每小时1千米、2千米、3千米的速度前进.那么在出发后多久,老郭正好在老贺与老刘的中点?【例4】A、B 两城相距 48 千米,甲、乙两人从A 城,丙从B 城同时出发,相向而行.甲、乙、丙三人的速度分别是每小时 4 千米、2 千米、 2 千米.请问:出发多长时间后,丙正好在甲和乙的中点?【及时巩固】老贺、老刘和老郭同时出发,其中老刘从A 出发往B 走,另外两人从B 出发往A 走.已知A、B 两地相距 28 千米,老贺、老刘和老郭分别以每小时 1 千米、2 千米、3 千米的速度前进.那么在出发后多久,老刘正好在老郭与老贺的中点?【例5】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 3 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时,甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A地时,甲离B地有多远?【及时巩固】甲、乙、丙三人步行的速度相同,骑车的速度也相同,骑车的速度是步行速度的 2 倍.现在甲从A 地向B 地行进,乙、丙两人从B 地向A 地前行.三人同时出发,出发时甲、乙步行,丙骑车.甲走了 6 千米时遇到丙,丙将车给甲骑,自己改为步行,三人仍按原来的方向继续前进.试问:甲骑车行多少千米后遇到乙?甲、乙相遇时,甲将车给乙骑,两人仍按原来的方向继续前进.试问:乙骑车到达A 地时,甲离B 地有多远?【课后作业】1. 北京和唐山之间的铁路长 210 千米,甲、乙两辆列车分别从北京和唐山同时出发,甲车的速度是每小时 57 千米,乙车的速度是每小时 90 千米.在甲车出发时,同时有一辆列车丙也从北京开出,车速为每小时 120 千米,那么当乙、丙相遇时,列车甲距离唐山多少千米?2. 甲、乙两人同时从A 骑车出发前往B 地,其中甲的速度为 12 米/ 秒,乙的速度为8 米/ 秒.出发后 10 分钟,甲遇到了迎面走来的丙,又过了 2 分 40 秒,乙也遇到了丙.那么丙的速度等于多少?3. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老郭正好在老贺与老刘的中点?4. 老贺、老郭和老刘同时出发,分别以每小时 1 千米、3 千米、1 千米的速度前进.其中老贺从A 出发往B 走,另外两人则从B 出发往A 走.已知A、B 两地相距 36 千米,那么在出发后多久,老贺正好在老郭与老刘的中点?5. 甲、乙两人从A 出发,丙从B 出发,三人出发时间相同,且相向而行.在出发时,甲和丙的速度相同,而乙是他们的 4 倍.当甲前进了 5 千米时,乙、丙两人相遇,而且两人相遇之后速度大小相互交换但方向保持不变.当甲、丙相遇时,两人也相互交换速度,但方向保持不变,那么当乙到达B 点时,甲在距离B 点多少千米的地方?。
奥数——行程、多次相遇和追及问题
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?例题精讲【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
五年级奥数.行程 .多人相遇和追及问题
二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:=⨯路程和速度和相遇时间;=⨯路程差速度差追及时间;多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.【例 1】有甲、乙、丙3人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙、丙两人从西村同时出发相向而行,在途中甲与乙相遇6分钟后,甲又与丙相遇. 那么,东、西两村之间的距离是多少米?【巩固】 一条环形跑道长400米,甲骑自行车每分钟骑450米,乙跑步每分钟250米,两人同时从同地同向出发,经过多少分钟两人相遇?例题精讲知识框架多人相遇和追及问题【例 2】在公路上,汽车A、B、C分别以80km/h,70km/h,50km/h的速度匀速行驶,若汽车A从甲站开往乙站的同时,汽车B、C从乙站开往甲站,并且在途中,汽车A在与汽车B相遇后的两小时又与汽车C相遇,求甲、乙两站相距多少千米?【巩固】甲、乙、丙三人每分分别行60米、50米和40米,甲从B地、乙和丙从A地同时出发相向而行,途中甲遇到乙后15分又遇到丙.求A,B两地的距离.【例 3】小王的步行速度是4.8千米/小时,小张的步行速度是5.4千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10.8千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后5分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【巩固】甲、乙、丙三人行路,甲每分钟走60米,乙每分钟走65米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过1分钟与甲相遇,求东西两镇间的路程有多少米?【例 4】甲、乙、丙三人行路,甲每分钟走80米,乙每分钟走90米,丙每分钟走100米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过5分钟与甲相遇,求东西两镇间的路程有多少米?【巩固】小王的步行速度是5千米/小时,小张的步行速度是6千米/小时,他们两人从甲地到乙地去.小李骑自行车的速度是10千米/小时,从乙地到甲地去.他们3人同时出发,在小张与小李相遇后30分钟,小王又与小李相遇.问:小李骑车从乙地到甲地需要多少时间?【例 5】甲、乙两车的速度分别为 52 千米/时和 40 千米/时,它们同时从A地出发到B地去,出发后 6 时,甲车遇到一辆迎面开来的卡车,1 时后乙车也遇到了这辆卡车。
五年级奥数.行程 .多次相遇和追及问题(word文档良心出品)
多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
多次追及问题公式和相遇问题公式
多次追及问题公式和相遇问题公式在我们学习数学的旅程中,多次追及问题和相遇问题就像是两个调皮的小精灵,时不时地跳出来给我们一些挑战。
今天咱们就来好好聊聊这两个让人又爱又恨的小家伙。
先来说说多次追及问题公式。
多次追及问题啊,简单说就是两个或多个物体在不同的起点,按照不同的速度运动,然后一个追着另一个跑,跑了好几次。
这时候就需要用到专门的公式来计算它们什么时候能追上。
比如说,有甲、乙两个人,甲在前面跑,速度是V1,乙在后面追,速度是 V2。
他们一开始相距 S 米。
第一次追上的时候,所用的时间 t1 就可以用公式 t1 = S / (V2 - V1) 来计算。
那如果是多次追及呢?假设第一次追上之后,又出现新的情况,比如甲、乙到达某个地点后又重新出发,这时候就要根据新的初始条件和速度来计算下一次追上的时间。
我记得有一次,我在公园里散步,看到两个小朋友在玩追逐游戏。
小男孩跑在前面,小女孩在后面紧追不舍。
小男孩跑得挺快,速度大概每秒 3 米,小女孩速度每秒 4 米。
一开始小男孩领先小女孩 5 米。
小女孩一边跑一边喊:“等等我,我马上就追上你!”这场景就像我们数学里的追及问题。
我在旁边看着,心里默默计算,按照这个速度和距离,小女孩大概 5 秒钟就能追上小男孩。
果不其然,没一会儿小女孩就得意地抓住了小男孩的衣角,开心地笑了起来。
再讲讲相遇问题公式。
相遇问题就是两个物体从不同的地方出发,朝着对方前进,然后在途中相遇。
假设甲从 A 地出发,速度是 V3,乙从 B 地出发,速度是 V4,两地相距 L 米。
那么他们相遇所用的时间 t 可以用公式 t = L / (V3 + V4) 来计算。
就像有一次我坐火车,火车在途中会经过一些小站。
我从车窗往外看,看到一辆汽车在平行的公路上行驶。
火车的速度我大概能感觉到,汽车的速度通过它和路边树木的相对移动也能估算个大概。
我就在想,如果火车和汽车一直这样开下去,它们在某个点会不会相遇呢?这其实就是一个相遇问题。
五年级奥数.行程 .多次相遇和追及问题
多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
多次相遇追及问题及详解
行程问题:多次相遇、追及问题1、五年级行程问题:多次相遇、追及问题------难度:中难度甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶;已知甲车的速度是25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米;求A,B两地的距离分析:多次相遇问题,最好把全程分成分数去考虑甲乙的速度比是25:15=5:3,第一次相遇两车共行了一个全程,其中乙行了;第三次两车共行了5个全程,乙行了5× = 个全程,第四次相遇两车共行了7个全程,乙行了7× = 个全程,两次路程差是个全程,所以AB两地相距200千米2、六年级行程问题:多次相遇、追及问题------难度:中难度甲、乙二人分别从A﹑B两地同时相向而行,乙的速度是甲的,二人相遇后继续行进,甲到B地,乙到A地后立即返回;已知二人第二次相遇到地点距第一次相遇的地点是20千米,那么,A﹑B两地相距多少千米分析:第一次相遇,甲乙的路程和是一个全程,甲行的路程是全程的,乙行了全程的,第二次相遇,甲乙的路程和是3个全程,此时甲行了×3= 个全程,两次相遇的距离是个全程,即20千米,所以AB的距离是20÷=50千米;3、五年级行程问题:多次相遇、追及问题------难度:高难度A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次分析:在第一次相遇与第一次追上之间,乙在100-80=20分钟内所走的路程恰等于线段FA的长度再加上线段AE的长度,即等于甲在80+100分钟内所走的路程,因此,乙的速度是甲的9倍=180÷20,则BF的长为AF的9倍,所以,甲从A到B,共需走80×1+9=800分钟,乙第一次追上甲时,所用的时间为100分钟,且与甲的路程差为一个AB全程.从第一次追上甲时开始,乙每次追上甲的路程差就是两个AB全程,因此,追及时间也变为200分钟,所以,在甲从A到B的800分钟内,乙共有4次追上甲,即在第100分钟,300分钟,500分钟和700分钟.4、五年级行程问题:多次相遇、追及问题-----难度:高难度快车与慢车分别从甲、乙两地同时开出,相向而行,经过5小时相遇;已知慢车从乙地到甲地用12.5小时,慢车到甲地停留1小时后返回,快车到乙地停留2小时后返回,那么两车从第一次相遇到第二次相遇共需多长时间分析:慢车相遇后经过12.5-5=7.5小时到甲地,13.5小时后从甲地返回;所以甲乙的速度比是7.5:5=3:2;因为两车第一次相遇时共行甲、乙两地的一个单程,第二次相遇时共行三个单程,所以若两车都不停留,则第一次相遇到第二次相遇需10小时;现在慢车停留1时,快车停留2小时,所以第一次相遇后11小时两车间的距离还需快车再行1小时;这段距离两车需行3÷3+2=0.6小时;从第一次相遇到第二次相遇共需11.6小时;5、六年级行程问题:多次相遇、追及问题------难度:高难度A、B两地间的距离是950米.甲、乙两人同时由A地出发往返锻炼.甲步行每分走40米,乙跑步每分行150米,40分后停止运动.甲、乙二人第几次迎面相遇时距B地最近,距离是多少米分析:方法一:不用比例甲40分钟行了40×40=1600米,即甲还没有返回到A地,第一次相遇,甲乙行了两个全程,行了950×2÷150+40=10分,甲距离B地950-10×40=550米,第二次相遇,乙比甲多行了2个全程,距B地950-950×2÷150-40×40≈200米,第三次相遇,甲乙共行了4个全程,距B地950-950×4÷150+40×40=150米,第四次相遇,乙比甲多行了4个全程,甲行了950×4÷159-40×40=1.8米,距B地1.8-950=431.8米;所以第三次相遇近;方法二:用比例,把全程分成19份,那么每次相遇的点占全程的积分之几就一目了然了;略。
五年级行程多人相遇多次相遇学生版
行程多人相遇多次相遇知识要点一、重点内容1.学会画图解行程题2.能够利用柳卡图解决多次相遇和追及问题3.能够利用比例解多人相遇和追及问题4.能够将学过的简单相遇和追及问题进行综合运用5.根据题意能够画出多人相遇和追及的示意图6.能将复杂的多人相遇问题转化多个简单相遇和追及环节进行解题。
二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N米。
2. 第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;常见多次相遇与追及问题1. (难度等级 ※)甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?(难度等级 ※※)上午8点8分,小明骑自行车从家里出发,8分钟后,爸爸骑摩托车去追他,在离家4千米的地方追上了他.然后爸爸立即回家,到家后又立刻回头去追小明,再追上小明的时候,离家恰好是8千米,这时是几点几分?多次相遇追及的解题关键 几个全程 多人相遇追及的解题关键 路程差 三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
二是多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
五年级奥数.行程. 多次相遇和追及问题 (A级 ).学生版
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
五年级行程问题:多次相遇、追及问题三
好好学习,天天向上五年级行程问题:多次相遇、追及问题三
五年级行程问题:多次相遇、追及问题三
难度:中难度
A、B两地间有条公路,甲从A地出发,步行到B地,乙骑摩托车从B地出发,不停地往返于A、B两地之间,他们同时出发,80分钟后两人第一次相遇,100分钟后乙第一次追上甲,问:当甲到达B地时,乙追上甲几次?
答案详解见下页
五年级行程问题:多次相遇、追及问题三讲解:
解答:由上图容易看出:在第一次相遇与第一次追上之间,乙在100-80=20(分钟)内所走的路程恰等于线段FA的长度再加上线段AE的长度,即等于甲在(80+100)分钟内所走的路程,因此,乙的速度是甲的9倍幸福像花儿一样,学习像溪水一般。
五年级奥数行程多次相遇和追及问题B级学生版
、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“ 路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1.两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2.同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具一一柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求MSDC模块化分级讲义体系五年级奥数.行程.多次相遇与追及问题(B级)•学生版Page 1 of 17数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
(I三例题精讲【例1】甲、乙两车同时从A地出发,不停的往返行驶于 A B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距60千米的两地同时相向而行,6时后相遇。
如果二人的速度各增加1千米/ 时,那么相遇地点距前一次相遇地点1千米。
问:甲、乙二人的速度各是多少?MSDC模块化分级讲义体系五年级奥数.行程.多次相遇与追及问题(B级).学生版Page 2 of 17【例2】如图,甲和乙两人分别从一圆形场地的直径两端点同时开始以匀速按相反的方向绕此圆形路线运动,当乙走了100米以后,他们第一次相遇,在甲走完一周前60米处又第二次相遇.求此圆形场地的周长.【巩固】A B是圆的直径的两端,甲在A点,乙在B点同时出发反向而行,两人在C点第一次相遇,在D 点第二次相遇.已知C离A有75米,D离B有55米,求这个圆的周长是多少米?【例3】甲、乙两车分别同时从A B两地相对开出,第一次在离A地95千米处相遇•相遇后继续前进到达目的地后又立刻返回,第二次在离B地25千米处相遇•求A B两地间的距离是多少千米?MSDC模块化分级讲义体系五年级奥数.行程.多次相遇与追及问题(B级).学生版Page 3 of 17【巩固】甲、乙二人以均匀的速度分别从A、B两地同时出发,相向而行,他们第一次相遇地点离A地4千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B地3千米处第二次相遇,求两次相遇地点之间的距离•【例4】A B两地相距2400米,甲从A地、乙从B地同时出发,在A B间往返长跑。
五年级奥数.行程-.多次相遇和追及问题
多次相遇与追及问题一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A地出发,不停的往返行驶于A,B两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C地。
问:甲车的速度是乙车的多少倍?【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
奥数——行程、多次相遇和追及问题综述
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………, ………………;第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………, ………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求知识框架多次相遇与追及问题数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?例题精讲【巩固】甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
【五年级应用题】多人多次相遇及追及问题
2. 同地同向出发:第 1 次相遇,共走 2 个全程;
第 2 次相遇,共走 4 个全程;
第 3 次相遇,共走 6 个全程;
…………
第 N 次相遇,共走 2N 个全程;
3、多次相遇的解题关键:分析走了几个全程
6、快、中、慢3辆车同时从同一地点出发,沿同一公路追赶前面的一个骑车人.这3辆车分别用6分钟、10分钟、12分钟追上骑车人.现在知道快车每小时走24千米,中车每小时走20千米,那么,慢车每小时走多少千米?
7、甲、乙、丙三人,甲每分钟走40米,丙每分钟走60米,甲、乙两人从A、B地同时出发相向而行,他们出发15分钟后,丙从B地出发追赶乙。此后甲、乙在途中相遇,过了7分钟甲又和丙相遇,又过了63分钟丙才追上乙,那么A、B两地相距多少米?
6、甲、乙、丙三车同时从A地沿同一公路开往B地,途中有个骑摩托车的人也在同方向行进,这三辆车分别用7分钟、8分钟、14分钟追上骑摩托车人。已知甲车每分钟行1000米,丙车每分钟行800米,求乙速车的速度是多少米每分?
7、有甲乙丙三人,甲每分钟走100米,乙每分钟走80米,丙每分钟走75米.现在甲从东村,乙丙两人从西村同时出发相向而行,在旅途中甲与乙相遇六分钟以后,甲又与丙相遇,东西两村的距离是多少米呢?
8、李华步行以每小时4千米的速度从学校出发到20.4千米处的冬令营报到。半小时后,营地老师闻讯前往迎接,每小时比李华多走1.2千米。又过了1.5小时,张明从学校骑车去营地报到。结果三人同时在途中某地相遇。问骑车人每小时行驶多少千米?
9、一列长110米的火车以每小时30千米的速度向北缓缓驶去,铁路旁一条小路上,一位工人也正向北步行。14时10分时火车追上这位工人,15秒后离开。14时16分迎面遇到一个向南走的学生,12秒后离开这个学生。问:工人与学生将在14时____分相遇?
五年级奥数.行程. 多次相遇和追及问题 (A级 ).学生版
一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程; 第3次相遇,共走5个全程; …………, ………………; 第N 次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N 米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程; 第3次相遇,共走6个全程; …………, ………………; 第N 次相遇,共走2N 个全程; 3、多人多次相遇追及的解题关键多次相遇追及的解题关键 几个全程 多人相遇追及的解题关键 路程差三、解多次相遇问题的工具——柳卡知识框架多次相遇与追及问题柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
奥数——行程、多次相遇和追及问题
精心整理但只1.第2第3第N2.第2第3…………,………………;第N 次相遇,共走2N 个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出多次相遇与追及问题全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别【例 2】【巩固】【例 3】【巩固】【例 4】【巩固】.【例 5】.【巩固】【例 6】2001次相遇地点之间的距离.【巩固】 甲、乙二人以均匀的速度分别从A 、B 两地同时出发,相向而行,他们第一次相遇地点离A 地7千米,相遇后二人继续前进,走到对方出发点后立即返回,在距B 地3千米处第二次相遇,求第三次相遇时共走了多少千米.【例 7】A 、B 两地相距2400米,甲从A 地、乙从B 地同时出发,在A 、B 间往返长跑。
甲每分钟跑300米,乙每分钟跑240米,在30分钟后停止运动。
甲、乙两人在第几次相遇时A 地最近?最近距离是多少米?【巩固】 A 、B 两地相距950米。
甲、乙两人同时由A 地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第_____次迎面相遇时距B 地最近。
例题精讲【例 8】甲、乙两车分别从A ,B 两地出发,并在A ,B 两地间不断往返行驶。
【五年级应用题】多人多次相遇及追及问题
要点 第一是:两人同地背向运动,从第一次相遇到下一次相遇共行一个全程;
第二是:同地、同向运动时,甲追上乙时,甲比乙多行1全程
例1、
【练习1】
【练习2】
【练习3】
例2、
【练习4】
【练习5】【练习6】例、【练习7】【练习8】
【练习9】
【练习10】
【练习11】
【练习12】
【练习13】
4、甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。有一辆迎面开来的卡车分别在他们出发后5时、6时、8时先后与甲、乙、丙三辆车相遇。求丙车的速度是多少千米每小时?
5、甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上乙。甲和丙的速度比是多少?
10、甲、乙、丙三人沿湖边一固定点出发,甲按顺时针方向走,乙与丙按逆时针方向走.甲第一次遇到乙后又走了1分15秒遇到丙,再过3分45秒第二次遇到乙.已知甲、乙的速度比是3 :2,湖的周长是600米,求丙的速度是多少米每?.
姓名:分数:时间:分钟
1、甲、乙、丙三人行路,甲每分钟走50米,乙每分钟走60米,丙每分钟走70米,甲乙从东镇去西镇,丙从西镇去东镇,三人同时出发,丙与乙相遇后,又经过2分钟与甲相遇,求东西两镇间的路程有多少米?
10、甲从A地出发前往B地,1小时后,乙、丙两人同时从B地出发前往A地,结果甲和丙相遇在C地,甲和乙相遇在D地.已知甲和乙的速度相同,丙的速度是乙的1.5倍,A、B两地之间的距离是220千米,C、D两地之间的距离是20千米.求丙的速度是多少千米每小时?
8、铁路旁的一条与铁路平行的小路上,有一行人与骑车人同时向南行进,行人速度为3.6千米/时,骑车人速度为10.8千米/时,这时有一列火车从他们背后开过来,火车通过行人用22秒,通过骑车人用26秒,这列火车的车身总长是多少米?
多次相遇和追及问题含答案
多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两名同学在周长为300米圆形跑道上从同一地点同时背向练习跑步,甲每秒钟跑3.5米,乙每秒钟跑4米,问:他们第十次相遇时,甲还需跑多少米才能回到出发点?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】 从开始到两人第十次相遇的这段时间内,甲、乙两人共跑的路程是操场周长的10倍,为300103000⨯=米,因为甲的速度为每秒钟跑3.5米,乙的速度为每秒钟跑4米,所以这段时间内甲共行了 3.5300014003.54⨯=+米,也就是甲最后一次离开出发点继续行了200米,可知甲还需行300200100-=米才能回到出发点.【答案】100米【巩固】 甲乙两人在相距90米的直路上来回跑步,甲的速度是每秒3米,乙的速度是每秒2米.如果他们同时分别从直路两端出发,10分钟内共相遇几次?【考点】行程问题【难度】☆☆ 【题型】解答【解析】 17【答案】17【例 2】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
小学数学行程问题之多人多次相遇和追及问题含答案
多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。
如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
好好学习,天天向上五年级行程问题:多次相遇、追及问题
五年级行程问题:多次相遇、追及问题
难度:中难度
甲、乙两车分别从A,B两地出发,并在A,B两地间不断往返行驶。
已知甲车的速度是25千米/时,乙车的速度是15千米/时,甲、乙两车第三次相遇地点与第四次相遇地点相差100千米。
求A,B两地的距离?
讲解:
解答:解题思路:多次相遇问题,最好把全程分成分数去考虑
【分析】甲乙的速度比是25:15=5:3,第一次相遇两车共行了一个全程,其中乙行了
请看下一页
幸福像花儿一样,学习像溪水一般。