异步电动机动态数学模型的建模与仿真 αβ讲解

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录

1异步电动机动态数学模型的性质 (1)

2异步电动机的三相数学模型 (2)

2.1假设条件与模型 (2)

2.2异步电动机三相动态模型的数学表达式 (2)

3 坐标变换 (5)

3.1坐标变换的基本思路 (5)

3.2 三相-两相变换(3/2变换) (5)

4 αβ坐标系上以ω-i s-ψs 为状态变量的状态方程 (7)

5模块实现 (8)

5.1 3/2 transform 模块 (8)

5.2 2/3 transform 模块 (8)

5.4整体模块 (10)

5.5 仿真参数设置 (11)

6 仿真结果 (12)

总结 (14)

参考文献 (15)

摘要

异步电动机又称感应电动机,是由气隙旋转磁场与转子绕组感应电流相互作用产生电磁转矩,从而实现机电能量转换为机械能量的一种交流电机。异步电动机按照转子结构分为两种形式:有鼠笼式、绕线式异步电动机。它具有非线性、强耦合、多变量的性质,要获得高动态调速性能,必须从动态模型出发,分析异步电动机的转矩和磁链控制规律,研究高性能异步电动机的调速方案。本课程设计是基于Matlab的按定子磁链定向的异步电动机控制仿真,通过模型的搭建,使得异步电动机能够以图形数据的方式进行仿真模拟将要实施的定子磁链设计,查看仿真后的各种波形。而本身异步电动机三相原始动态模型相当复杂,分析和求解这组非线性方程十分困难所以就通过坐标变换的方法予以简化。

关键词:异步电动机Matlab 坐标变换

异步电动机动态数学模型的建模与仿真

1异步电动机动态数学模型的性质

电磁耦合是机电能量转换的必要条件,电流与磁通的乘积产生转矩,转矩与磁通的乘积得到感应电动势,无论是直流电动机,还是交流电动机均如此,但由于交、直流电动机结构和工作原理的不同,其表达式差异很大。

他励式直流电动机的励磁绕组和电枢绕组相互独立,励磁电流和电枢电流单独可控,若忽略对励磁的电枢反应或通过补偿绕组抵消之,则励磁和电枢绕组各自产生的磁动势在空间相差π/2,无交叉耦合。气隙磁通由励磁绕组单独产生,而电磁转矩正比于磁通与电枢电流的乘积。不考虑弱磁调速时,可以在电枢合上电源以前建立磁通,并保持励磁电流恒定,这样就可认为磁通不参与系统的动态过程。因此,可以只通过电枢电流来控制电磁转矩。

在上述假定条件下,直流电动机的动态数学模型只有一个输入变量——电枢电压,和一个输出变量——转速,可以用单变量的线性系统来描述,完全可以应用线性控制理论和工程设计方法进行分析和设计。而交流电动机的数学模型则不同,不能简单地采用同样的方法来分析和设计交流调速系统,这是由于以下几个原因:

(1)异步电动机变压变频调速时需要进行电压和频率的协调控制,有电压和频率两种独立的输入变量。在输出变量中,除转速外,磁通也是一个输出变量,这是由于异步电动机输入为三相电源,磁通的建立和转速变化是同时进行的,为了获得良好的动态性能,也需要对磁通施加控制。因此,异步电动机是一个多变量系统。

(2)直流电动机在基速以下运行时,容易保持磁通恒定,可以视为常数。异步电动机无法单独对磁通进行控制,电流乘磁通产生转矩,转速乘磁通产生感应电动势,在数学模型中含有两个变量的乘积项。因此,即使不考虑磁路饱和等因素,数学模型也是非线性的。

(3)三相异步电动机定子三相绕组在空间互差2π/3,转子也可等效为空间互差2π/3的三相绕组,各绕组间存在交叉耦合,每个绕组都有自己的电磁惯性,再考虑运动系统的机电惯性,转速和转角的积分关系等,动态模型是一个高阶系统。

综上所述,异步电机的动态数学模型是一个高阶、非线性、强耦合的多变量系统。

2异步电动机的三相数学模型

2.1假设条件与模型

在研究异步电动机的多变量非线性数学模型时,常作如下的假设:

(1)忽略空间谐波,设三相绕组对称,在空间互差2π/3电角度,所产生的磁动势沿气隙周围按正弦规律分布。

(2)忽略磁路饱和,各绕组的自感和互感都是恒定的。

(3)忽略铁心损耗。

(4)不考虑频率变化和温度变化对绕组电阻的影响。

无论电机转子是绕线型还是笼型的,都将它等效成三相绕线转子,并折算到定子侧,折算后的定子和转子绕组匝数都相等。这样,实际电机绕组就等效成图2-1所示的三相异步电机的物理模型。

图2-1三相异步电动机的物理模型

在图2-1中,定子三相绕组轴线A、B、C在空间是固定的,转子绕组轴线a、b、c以角转速 随转子旋转。如以A轴为参考坐标轴,转子a轴和定子A轴间的电角度θ为空间角位移变量。规定各绕组电压、电流、磁链的正方向符合电动机惯例和右手螺旋定则。

2.2异步电动机三相动态模型的数学表达式

异步电动机的动态数学模型由磁链方程、电压方程、转矩方程和运动方程组成,其中磁链方程和转矩方程为代数方程,电压方程和运动方程为微分方程。

(1)磁链方程为:

A A AA AB

AC Aa Ab Ac B B BA BB BC Ba Bb Bc C C CA

CB CC Ca Cb Cc aA aB aC aa ab ac a a bA bB bC ba bb bc b b cA cB

cC

ca

cb

cc c c i L L L L L L i L L L L L L i L

L L L L L L L L L L L i L L L L L L i L L L L L L i ψψψψψψ⎡⎤⎡⎤

⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥

⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢

⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦

(2-3) 式中,L 是6×6电感矩阵,其中对角线元素AA L 、BB L 、CC L 、aa L 、bb L 、cc L 是各有关绕组的自感,其余各项则是绕组间的互感。

(2)电压方程:

111A A A

B B B

C C C

d U ri dt

d U ri dt d U ri dt ψψψ⎧

=+⎪⎪

=+⎨⎪

=+⎪⎩ (2-1) 方程中,A U 、B U 、C U 为定子三相电压;A i 、B i 、C i 为定子三相电流;A ψ、B ψ、C

ψ为定子三相绕组磁链;1r 为定子各相绕组电阻。

三相转子绕组折算到定子侧后的电压方程为:

222a a a

b b b

c c c

d U r i dt

d U r i dt d U r i dt ψψψ⎧

=+⎪⎪

=+⎨⎪

=+⎪⎩ (2-2)

方程中,a U 、b U 、c U 为转子三相电压;a i 、b i 、c i 为转子三相电流;a ψ、b ψ、c ψ为转子三相绕组磁链;2r 为转子各相绕组电阻。

(3)电磁转矩方程:

12T e p L T n i i θ

∂=

∂ (2-4)

相关文档
最新文档