综述SLS工艺

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综述SLS工艺

【摘要】:介绍了选择性激光烧结技术的原理、特点及其研究发展状况 ,简述了选择性激光烧结的工艺过程、应用、发展和研究现况。最后 ,总结了选择性激光烧结技术的发展前景【关键词】:快速成形选择性激光烧结烧结粉末

1.SLS简介

20世纪90年代开始,随着世界经济竞争的日益激烈化和全球化,产品制造商们越来越需要以最短的时间制造出符合人们消费需求的新产品来抢占市场。20世纪80年代末出现的快速成型(Rapid Prototyping,简称RP)就是在这样的背景下提出并逐步得以发展的。RP技术是一种逐层零件制造上艺,它突破传统的材料变形成型和去除材料成型的工艺方法,使用近乎全自动化的工艺从CAD文件直接生产所需要的模型或模具,可以显著减少产品原型的开发时间和成本,极大的提高产品的质量;另外,RP制造过程中不需要任何传统意义上的工装夹具、刀具或模具即可制造出任何复杂形状的零部件。因此。RP技术在现代制造业中越来越具有竞争力,有望成为21世纪的的主流制造技术。

目前典型的快速成型的方法有:光固化立体造型SLA(StereoLithography Apparatus)、分层物件制作LOM(Laminated Object Manufacturing)、选择性激光烧结SLS(Selective Laser Sintering)和熔融沉积造型FDM(Fused Deposition Modeling)等。各种RP方法具有其自身的特点和适用范围。

由于SLS工艺具有粉末选材广泛、适用性广、制造工艺比较简单、成形精度高、无需支撑结构、可直接烧结零件等诸多优点,成为当前发展最快、最为成功的且已经商业化的RP 方法之一,在现代制造业得到越来越广泛的重视。主要综述SLS技术的工艺原理、实际应用、发展历程和现状。

2.SLS工艺的基本原理

SLS工艺又称为选择性激光烧结,由美国德克萨斯大学奥斯汀分校的C.R. Dechard于1989年研制成功。选择性激光烧结加工过程是采用铺粉棍将一层粉末材料平铺在已成型零件的上表面,并加热至恰好低于该粉末烧结点的某一温度,控制系统控制激光束按照该层的截面轮廓在粉末上扫描,使粉末的温度升至熔化点,进行烧结,并与下面已成型的部分实现粘结。当一层截面烧结完成后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。在成型过程中,未经烧结的粉末对模型的空腔和悬臂部分起着支撑作用,不必像SLA工艺那样另行生成支撑工艺结构。SLS使用的激光器是二氧化碳激光器,使用的原料有蜡、聚碳酸酯、尼龙、纤细尼龙、合成尼龙、金属,以及一些发展中的材料等。

当实体构建完成并在原型部分充分冷却后,粉末快速上升至初始位置,将其取出,放置在后处理工作台上,用刷子刷去表面粉末,露出加工件,其余残留的粉末可用压缩空气去除。

3.SLS工艺的特点

选择性激光烧结工艺和其他快速成型工艺相比,其最大的独特性就是能够直接制作金属制品,同时该工艺还具有如下一些优点:可采用多种材料。从原理上来说,这种方法可采用加热时年度降低的任何粉末材料,通过材料或者各类含粘结剂的涂层颗粒制造出任何造型,适应不同的需要。制造工艺比较简单。由于可用多种材料,选择性激光烧结工艺按采用的原料不同,可以直接生产复杂形状的原型、型腔模三维构件或部件及工具。高精度。依赖于使用的材料种类和粒径、产品的几何形状和复杂程度,该工艺一般能达到工件整体范围内±(0.05--2.5)mm的公差。当粉末粒径为0.1mm以下时,成型后的原型精度可达±1%。无需支撑结构。和LOM工艺一样,SLS工艺也无需设计支撑结构,叠层过程中出现的悬空层面可直接由未烧结的粉末来实现支撑。材料利用率高。由于该工艺过程不需要支撑结构,也不像

LOM工艺那样出现许多废料,也不需要制作基底支撑,所以该工艺方法在常见的几种快速成型工艺中,材料利用率是最高的,可以认为是100%。SLS工艺中使用的多数粉末的价格较便宜,所以SLS模型的成本相比较来看也是较低的。生产周期短。从CAD设计到零件的加工完成只需几小时到几十小时,整个生产过程数字化,可随时修正、随时制造。这一特点使其特别适合于新产品的开发。与传统工艺方法相结合,可实现快速铸造、快速模具制造、小批量零件输出等功能,为传统制造方法注入新的活力。应用面广。由于成型材料的多样化,使得SLS工艺适合于多种应用领域,如原型设计验证、模具母模、精铸熔模、铸造型壳和型芯等。

但是,选择性激光烧结工艺的缺点也比较突出,具体如下:表面粗糙。由于SLS工艺的原料是粉末状的,原型的建造是由材料粉层经加热熔化而实现逐层粘结的,因此,严格的来说,原型的表面是粉粒状的,因而表面质量不高。烧结过程中挥发异味。SLS工艺中的粉末粘结是需要激光能源使其加热而达到熔化状态,高分子材料或者粉粒在激光烧结熔化时一般要会发异味气体。有时需要比较复杂的辅助工艺。SLS技术视所用的材料而异,有时需要比较复杂的辅助工艺过程,例如给原材料进行长时间的预先加热、造型完成后需要给模型进行表面浮粉的清理等。做小件或者精件时,精度不如SLA。

4.SLS工艺过程

材料不同,具体的烧结工艺也有所不同。

1)高分子粉末材料烧结工艺

其过程分为前处理、粉层烧结叠加以及后处理三个阶段。

前处理:此阶段主要完成模型的三维CAD造型,并经STL数据转换后输入到粉末激光烧结快速成型系统中。

粉层激光烧结叠加:在这个阶段,设备根据原型的结构特点,在设定的建造参数下,自动完成原型的逐层粉末烧结叠加过程。当所有叠层自动烧结叠加完成后,需要将原型在成型缸中缓慢冷却至40℃以下,取出原型并进行后处理。

后处理:激光烧结后的PS原型件强度很弱,需要根据使用要求进行渗蜡或渗树脂等补强处理。

2)金属零件间接烧结工艺

该工艺的过程主要分为三个阶段:SLS原型件(绿件)的制作、粉末烧结件(褐件)的制作、金属熔渗后处理。

SLS原型件的制作阶段过程为CAD模型——分层切片——激光烧结(SLS)——RP原型(绿件),此阶段的关键在于,如何选用合理的粉末配比和加工工艺参数实现原型件的制作。

“褐件”制作阶段过程为二次烧结(800℃)——三次烧结(1080℃),此阶段的关键在于,烧失原型件中的有机杂质获得具有相对准确形状和强度的金属结构体。

金属熔渗阶段过程为二次烧结(800℃)——三次烧结(1080℃)——金属熔渗——金属件。此阶段的关键在于,选用合适的熔渗材料及工艺,以获得较致密的金属零件。

3)金属零件直接烧结工艺

基于SLS工艺的金属零件直接制造工艺流程为:CAD模型——分层切片——激光烧结(SLS)——RP原型零件——金属件。

5.影响SLS工艺成型精度的因素

影响SLS成型精度的因素很多,例如SLS设备精度误差、CAD模型切片误差、扫描方式、粉末颗粒、环境温度、激光功率、扫描速度、扫描间距、单层层厚等。

烧结工艺参数对精度和强度的影响是很大的。激光和烧结工艺参数,如激光功率、扫描速度和方向及间距、烧结温度、烧结时间以及层厚度等对层与层之间的粘结、烧结体的收缩变形、翘曲变形甚至开裂都会产生影响。

1)激光功率:随着激光功率的增加,尺寸误差正方向增大,并且厚度方向的增大趋势要

相关文档
最新文档