场效应晶体管的结构工作原理和输出特性
场效应晶体管

主要内容1. 场效应管的结构、符号与工作原理2. 场效应管的工作状态和特性曲线3. 场效应管的基本特性4. 场效应管的电路模型5-4场效应晶体管场效应晶体管概述场效应管,简称FET(Field Effect Transistor),主要特点:(a)输入电阻高,可达107~1015 。
(b)起导电作用的是多数(一种)载流子,又称为单极型晶体管。
(c)体积小、重量轻、耗电省。
(d)噪声低、热稳定性好、抗辐射能力强和制造工艺简单。
(e)在大规模集成电路制造中得到了广泛的应用。
场效应管按结构可分为:结型场效应管(JFET )和绝缘栅型场效应管(MOSFET );按工作原理可分为增强型和耗尽型。
场效应管的类型N 沟道P 沟道增强型耗尽型N 沟道P 沟道N 沟道P 沟道(耗尽型)FET场效应管JFET 结型MOSFET绝缘栅型(IGFET)场效应管的电路符号MOSFET 符号增强型耗尽型GS D SG D P 沟道G S DN 沟道GS D U GS =0时,没有漏极电流,U GS =0时,有漏极电流,U GS 高电平导通U GS 低电平导通需要加负的夹断电压U GS(off)才能关闭,高于夹断电压U GS(off)则导通而只在U GS >0时,能导通,低于开启电压U GS(th)截止5-4-1 场效应管结构、符号与工作原理1.场效应管基本结构图5-2-22沟道绝缘栅型场效应管的基本结构与电路符号图N 沟道绝缘栅型场效应管的基本结构与电路符号沟道绝缘栅型场效应管的基本结构与电路符号场效应管与三极管的三个电极的对应关系:栅极g--基极b 源极s--发射极e 漏极d--集电极c 夹在两个PN结中间的区域称为导电沟道(简称沟道)。
=0时是否存在导电沟道是增强型和耗尽型的基本区别。
22例5-10在Multisim 中用IV 分析仪测试理想绝缘栅型场效应管如图5-4-3所示,改变V GS ,观察电压V DS 与i D 之间的关系。
场效应管

MOS管分为四种类型:N沟道耗尽型管、N沟道增强型管、P沟道耗尽型管和 P沟道增强型管。
MOS管的特点
输入阻抗高、栅源电压可正可负、耐高温、易 集成。
N沟道增强型绝缘栅场效应管 (1)结构与符号 增强型的特点
1. 工作原理
绝缘栅场效应管利用 UGS 来控制“感应电荷”
的多少,改变由这些“感应电荷”形成的导电沟道的
一、结型场效应管(JFET)
1 结构与工作原理 (1)构成 结型场效应管又有N沟道和P沟道两种类型。
N沟道结型场效应管的结构示意图
结型场效应管的符号
(a)N沟道管
(b) P沟道管
(2)工作原理 N· JFET的结构及符号
在同一块N型半导体上制作两 个高掺杂的P区,并将它们连 接在一起,引出的电极称为栅 极G,N型半导体的两端引出 两个电极,一个称为漏极D, 一个称为源极S。P区与N区交 界面形成耗尽层,漏极和源极 间的非耗尽层区域称为导电沟 道。
直流输入电阻 RGS :其等于栅源电压与栅极电流之比,结型管的 RGS 大于10^7 欧,而MOS管的大于10^9欧。
二、交流参数
1. 低频跨导 gm 用以描述栅源之间的电压 UGS 对漏极电流 ID 的控 制作用。 ΔI D gm ΔU GS U DS 常数 单位:ID 毫安(mA);UGS 伏(V);gm 毫西门子(mS)
绝缘栅
B端为衬底,与源极短接在一起。
N沟道耗尽型MOS管的结构与符号
(2)N沟道的形成 N沟道的形成与外电场对N沟道的影响 控制原理分四种情况讨论:
① uGS 0时,来源于外电场UGS正极的正电荷使SiO2中原有的正电荷数目增加, 由于静电感应,N沟道中的电子随之作同等数量的增加,沟道变宽,沟道电阻减 小,漏电流成指数规律的增加。
电力电子技术MOSFE

S
G +Vgs
D
N+
N+
耗尽层
P
Vgs <VT
耗尽层形成
1-3
➢栅极正偏>VT,大量电子积聚,反型层形成<与薄N 层等效>与漏源N+形成导电沟道,厚度随栅极电压 增大而层 (N)
D
N+
N+
耗尽层
P
Vgs >VT
1-4
➢漏源电压>0,使导电沟道形成电压梯度,反 型层厚度从源到漏方向逐渐变薄.漏源电流 形成.
MOSFET特性与参数 一、静态特性与参数
输出特性、饱和特性、转移特性及通态电阻、开启电压、 跨导、最大电压定额、最大电流定额.
1.输出特性:
饱和区:放大区,随VGS增 大,ID电流恒流区域.
可变电阻区:ID 随VDS线性变化 区,VGS越大,沟道 电阻越小.
雪崩区:击穿 区,VDS增大,使漏 极PN结击穿.
反型层沟道电阻rCH 栅漏积聚区电阻rACC FET夹断区电阻rjFET 轻掺杂区电阻rD
增大VGS,可减小rCH和rjFET rD减小和提高耐压相矛盾.
Ron与器件耐压、温度关系: 器件耐压越高, Ron越大.随温度升高, Ron增大.
②开启电压VT:阈值电压 反型层建立所需最低栅源电压.
定义:工业上,在漏源短接条件下,ID=1mA时的栅极电压. VT随结温Tj变化,呈负温度系数,Tj每增高45OC,VT下降10%, -6.7mV/OC.
ID/A ID/A
50
50 非
40
饱 40 和
UGS=8V
区
30
30
饱和区 UGS=7V
20 10
《场效应晶体管》课件

六、总结
FET的优点与缺点
总结FET的优点和限制,帮助 您全面了解这一器件。
发展前景和应用前景
展望FET在未来的发展前景, 并探讨其在各个领域的应用 前景。
拟定的改善方案
提出改善FET性能和应用的建 议和方案,促进该技术的进 一步发展。
二、结构和工作原理
FET的结构组成
了解FET的结构和组成对于理解其工作原理至关 重要。
FET的工作原理
详细介绍FET的工作原理,包括导通和截止状态 的转换。
N型和P型FET的区别
掌握不同类型FET之间的区别,并理解其不同的 工作原理。
灵敏度和增益
解释FET的灵敏度和增益,以及对电路性能的影 响。
三、特性参数
2
2. FET振荡器
探索FET作为交流放大器的应用,详细介绍FET振荡器的基本电路和简单振荡电路。
五、FET的变型
M O SFET
MOSFET是一种常见的FET变型, 具有优异的性能和应用范围。
JFET
JFET是另一种重要的FET变型,适 用于一些特定的电路和应用。
基于FET的新型器件
介绍一些基于FET技术的新型器 件,展示FET在未来的发展前景。
《场效应晶体管》PPT课 件
欢迎来到《场效应晶体管》的PPT课件!本课程将介绍场效应晶体管的概述、 结构、工作原理、特性参数、常见的电路以及FET的变型,通过详细的讲解和 实例演示,帮助您深入理解这一关键器件的原理和应用。
一、场效应晶体管概述
场效应晶体管是一种重要的半导体器件,广泛应用于电子领域。它具有独特 的优势和一定的限制,而且可以在各种应用场景中发挥重要作用。
典型的FET参数
介绍常见的FET参数,如漏极电 流、跨导和截止电压。
垂直传输场效应晶体管

垂直传输场效应晶体管垂直传输场效应晶体管(Vertical Transport Field-Effect Transistor,VT-FET)是一种新型的晶体管结构,其工作原理是利用电场作用在垂直方向上传输电子,具有高速、高密度、低功耗等优异特性,是未来半导体器件领域的重要发展方向之一。
一、VT-FET的基本结构VT-FET主要由三个部分组成:源区、漏区和栅极。
源区和漏区在一侧或两侧,由高掺杂的P或N型半导体材料构成。
栅极从上方垂直地贴在源区和漏区之间,由金属或半导体材料制成。
栅极下方垂直穿过源区和漏区,形成了垂直电场通道。
二、VT-FET的工作原理在工作过程中,当给栅极施加正电压时,栅极下方形成了N型区域,形成了势垒。
当施加反向电压时,栅极下方是P型区域,形成空穴势垒。
栅极下方的空穴和电子会在势垒的作用下汇聚,形成垂直电场通道。
当源极给电压VDS时,空间中的电荷被拉入源极和漏极之间,如此大的电压差驱动通道内部的电子,在通道中形成了电流。
电流从源电极流向漏电极,因空间受限而形成垂直的电流。
三、VT-FET的优势1.高速:由于VT-FET的电子传输是在垂直方向上实现的,电子速度快,通道内部不会出现盲道等不良作用,因此具有很高的频率响应。
2.高密度:由于通道宽度较窄,可以将大量的器件装配在同一个芯片上,实现高度的集成。
3.低功耗:VT-FET在设计时可以采用较低的电压和电流,从而实现低功耗的运行。
总之,VT-FET是一种新型的晶体管结构,其具有高速、高密度、低功耗等优秀特性,将在未来的半导体器件领域中扮演重要的角色。
mosfet管工作原理

mosfet管工作原理MOSFET管是一种常用的晶体管,其工作原理基于金属氧化物半导体场效应晶体管(MOSFET)的特性。
MOSFET管以其高速度、低功耗和可靠性等优点,在现代电子器件中得到广泛应用。
本文将从MOSFET 管的结构、工作原理和特性等方面进行详细介绍。
一、MOSFET管的结构MOSFET管的结构主要由源极、漏极、栅极和绝缘层组成。
其中,源极和漏极是两个注入材料的区域,栅极则是一层金属或者多晶硅的薄膜。
绝缘层主要是由氧化硅构成,起到隔离栅极和半导体材料的作用。
二、MOSFET管的工作原理MOSFET管的工作原理基于栅极电压的变化来控制漏极和源极之间的电流。
当栅极电压为零时,绝缘层会阻止电流的流动,此时MOSFET 处于截止状态。
当栅极电压增加,绝缘层会形成一个电场,使得漏极和源极之间形成一个导电通道,电流开始流动,MOSFET处于放大状态。
当栅极电压继续增加,电流也会增加,MOSFET处于饱和状态。
通过调节栅极电压,可以精确地控制MOSFET的导通和截止,从而实现对电流的精确控制。
三、MOSFET管的特性1. 高输入阻抗:MOSFET管的绝缘层能有效地隔离栅极和半导体材料,使得栅极输入电阻非常高,从而减小了对输入信号的负载效应。
2. 低输出阻抗:MOSFET管的漏极和源极之间形成的导电通道具有低阻抗特性,能够输出较大的电流。
3. 高速度:由于MOSFET管的结构简单,电流的流动速度快,因此其响应速度较快。
4. 低功耗:MOSFET管在截止状态时,几乎没有功耗,只有在放大状态时才会有一定的功耗。
5. 可靠性高:MOSFET管的结构简单,且由于绝缘层的存在,能够有效地防止电路短路和漏电现象,提高了器件的可靠性。
四、MOSFET管的应用由于MOSFET管具有高速度、低功耗和可靠性高等特点,因此在现代电子器件中得到了广泛应用。
例如,在数字集成电路中,MOSFET管常用于构建逻辑门电路和存储器单元;在模拟集成电路中,MOSFET 管则用于构建放大器和开关电路等。
第八章 MOS场效应晶体管

VT
MS
TOX
OX
QOX
TOX
OX
QAD 2FB
e) 氧化层中的电荷面密度 QOX
QOX 与制造工艺及晶向有关。MOSFET 一般采用(100) 晶面,并在工艺中注意尽量减小 QOX 的引入。在一般工艺条 件下,当 TOX = 150 nm 时:
QOX 1.8 ~ 3.0 V COX
以VGS 作为参变量,可以得到不同VGS下的VDS ~ID 曲线族, 这就是 MOSFET 的输出特性曲线。
非
饱
饱
和
和
区
区
将各条曲线的夹断点用虚线连接起来,虚线左侧为非饱和区, 虚线右侧为饱和区。
5、MOSFET的类型 P 沟 MOSFET 的特性与N 沟 MOSFET 相对称,即: (1) 衬底为 N 型,源漏区为 P+ 型。 (2) VGS 、VDS 的极性以及 ID 的方向均与 N 沟相反。 (3) 沟道中的可动载流子为空穴。 (4) VT < 0 时称为增强型(常关型),VT > 0 时称为耗尽型
MS
QOX COX
K
2FP VS VB
1
2 2FP VS
注意上式中,通常 VS > 0,VB < 0 。 当VS = 0 ,VB = 0 时:
VT
MS
QOX COX
K
2 FP
1 2
2FP
这与前面得到的 MOS 结构的 VT 表达式相同。
同理可得 P 沟 MOSFET的 VT 为:
电势差,等于能带弯曲量除以 q 。COX 表示单位面积的栅氧化
层电容,COX
OX
TOX
,TOX 为氧化层厚度。
(3)实际 MOS结构当 VG = VFB 时的能带图
mosfet工作原理

MOS晶体管也称为场效应晶体管(FET),它是集成电路中的绝缘FET。
MOS的全名是金属氧化物半导体。
具体地,该名称描述了集成电路中的MOS晶体管的结构,即,将二氧化硅和金属添加到某个半导体器件中以形成栅极。
可以切换MOS晶体管的源极和漏极,这两个都是在p型背栅中形成的n型区域。
1. MOS晶体管的工作原理MOS晶体管也称为场效应晶体管(FET),它是集成电路中的绝缘FET。
MOS的全名是金属氧化物半导体。
具体地,该名称描述了集成电路中的MOS晶体管的结构,即,将二氧化硅和金属添加到某个半导体器件中以形成栅极。
可以切换MOS晶体管的源极和漏极,这两个都是在p型背栅中形成的n型区域。
在大多数情况下,两个区域是相同的。
即使两端进行了切换,设备的性能也不会受到影响。
MOS晶体管2. MOS晶体管的工作原理-MOS晶体管的结构特性MOS晶体管的内部结构如下图所示;导通时,只有一个极性载流子(多载流子)参与导通,这是一个单极晶体管。
传导机制与低功率MOSFET的传导机制相同,但结构差异很大。
低功率MOSFET是横向导电器件。
大多数功率MOSFET采用垂直导电结构,也称为VMOSFET,可大大提高MOSFET的耐压和电流电阻。
它的主要特点是在金属栅与通道之间有一层二氧化硅绝缘层,因此具有很高的输入电阻。
当管打开时,在两个高浓度n扩散区域中形成n型导电通道。
n沟道增强型MOS晶体管必须在栅极上施加正向偏置电压,只有当栅极源极电压大于阈值电压时,才能通过导通沟道来生成n沟道MOS晶体管。
N沟道耗尽型MOSFET是指具有导通沟道而无栅极电压(栅极源极电压为零)的n沟道MOS晶体管。
3. MOS晶体管的工作原理-MOS晶体管的特性3.1mos晶体管的输入输出特性对于具有公共源极连接的电路,源极和基板通过二氧化硅绝缘层隔离,因此栅极电流为0。
当VGSMOS晶体管的特性关于3.2mos晶体管的特性作为开关元件,MOS晶体管还处于截止或导通两种状态。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
结正向偏置,简称为正偏,如图1.8所示。 PN结外加正向电压(也叫正向偏置)时,如左下图所示: 正向偏置时外加电场与内电场方向相反,内电场被削弱,多子的扩 散运动大大超过少子的漂移运动,N区的电子不断扩散到P区,P区 的空穴也不断扩散到N区,形成较大的正向电流,这时称PN结处于 导通状态。
P型半导体中,空穴为多数
载流子(多子),自由电 子为少数载流子(少子)。
P型半导体主要靠空穴导电。
P型半导体共价键结构
6
PN结的形成 多数载流子因浓度上的差异而形成的运动称为扩散运动,如图所示。
由于空穴和自由电子均是带电的粒子,所以扩散的结果使P区和N区原
来的电中性被破坏,在交界面的两侧形成一个不能移动的带异性电荷的离
子层,称此离子层为空间电荷区,这就是所谓的PN结,如图所示。在空
间电荷区,多数载流子已经扩散到对方并复合掉了,或者说消耗尽了,因
此又称空间电荷区为耗尽层。
7
空间电荷区出现后,因为正负电荷的作用,将产生一个从N区指 向P区的内电场。内电场的方向,会对多数载流子的扩散运动起阻碍 作用。同时,内电场则可推动少数流子(P区的自由电子和N区的
空穴)越过空间电荷区,进入对方。少数载流子在内电场作用下有 规则的运动称为漂移运动。漂移运动和扩散运动的方向相反。无外
加电场时,通过PN结的扩散电流等于漂移电流,PN结中无电流流过, PN结的宽度保持一定而处于稳定状态。
8
PN结中的扩散和漂移是相互联系,又是相互矛盾的。在一定条 件(例如温度一定)下,多数载流子的扩散运动逐渐减弱,而少数 载流子的漂移运动则逐渐增强,最后两者达到动态平衡,空间电荷
区的宽度基本稳定下来,PN结就处于相对稳定的状态。
PN结的形成演示
空空间间电电荷荷区区
--- --
+
+
+
++
P区 - - - - -
--- --
+ +
+ +
N区 + + +
+ ++
--- --
+
+
+
++
根据扩散原理,空穴要从浓度高的P区向N区扩散,自由电子要从浓度 高的N区向P区扩散,并在交界面发生复合(耗尽),形成载流子极少的正
4
N型半导体的共价键结构
N型半导体中,自由电子为多数载流子(多子),空穴为少数载流子 (少子)。N型半导体主要靠自由电子导电。
5
P型半导体 在硅(或锗)半导体晶体中,掺入微量的三价元素,如硼(B)、铟 (In)等,则构成P型半导体。
三价的元素只有三个价电子,在与相邻的硅(或锗)原子组成共价键时, 由于缺少一个价电子,在晶体中便产生一个空位,邻近的束缚电子如果获 取足够的能量,有可能填补这个空位,使原子成为一个不能移动的负离子, 半导体仍然呈现电中性,但与此同时没有相应的自由电子产生,如图所示。
本征激发产生电子空穴对
2
杂质半导体 在本征半导体中加入微量杂质,可使其导电性能显著改变。
根据掺入杂质的性质不同,杂质半导体分为两类:电子型(N型) 半导体和空穴型(P型)半导体。
3
N 型半导体 在硅(或锗)半导体晶体中,掺入微量的五价元素,如磷 (P)、砷(As)等,则构成N 型半导体。
五价的元素具有五个价电子,它们进入由硅(或锗)组成 的半导体晶体中,五价的原子取代四价的硅(或锗)原子,在 与相邻的硅(或锗)原子组成共价键时,因为多一个价电子不 受共价键的束缚,很容易成为自由电子,于是半导体中自由电 子的数目大量增加。自由电子参与导电移动后,在原来的位置 留下一个不能移动的正离子,半导体仍然呈现电中性,但与此 同时没有相应的空穴产生,如图所示。
动虽然被加强,但由于数量极小,反向电流 IR一般情况下可忽略不
计,此时称PN结处于截止状态。
12
场效应晶体管简介
场效应晶体管(Field Effect Transistor缩写(FET))简称场效 应管。主要有两种类型: 1.(Junction FET—JFET)结型场效应管; 2.金属-氧化物-半导体场效应管(Metal-Oxide Semiconductor FET,简称MOSFET)绝缘栅型场效应管或者MOS场效应管 结型场效应管和MOS场效应管都有N沟道和P沟道之分,MOS场效应 管还有增强型和耗尽型之分,结型场效应管只有耗尽型,所以场 效应管共有六种类型的管子。场效应管由多数载流子参与导电, 也称为单极型晶体管。它属于电压控制型半导体器件。具有输入 电阻高(107~1015Ω )、噪声小、功耗低、动态范围大、易于集 成、没有二次击穿现象、安全工作区域宽等优点,现已成为双极 型晶体管和功率晶体管的强大竞争者。
负空间电荷区(如上图所示),也就是PN结,又叫耗尽层。
9
扩散与漂移达到动态平衡 形成一定宽度的PN结
多子 扩散
阻止
形成空间电荷区 产生内电场
促使 少子
漂移
P区
N区
+ ++
+ ++
+ ++
载流子的扩散运动
P 区 空间电荷区
N区
++ +
++ + ++ +
内电场方向 PN 结及其内电场
10
(1)PN结外加正向电压
共价键内的两个电子由相邻的原子各用一个价电子 组成,称为束缚电子。图所示为硅和锗的原子结构和共 价键结构。
硅和锗的原子结构和共价键结构 1
两种载流子——自由电子和空穴
温度越高,半导体材料中产生的自由电子便越多。束缚电 子脱离共价键成为自由电子后,在原来的位置留有一个空 位,称此空位为空穴。本征半导体中,自由电子和空穴成 对出现,数目相同。图所示为本征激发所产生的电子空穴 对。
目录:
1. 半导体材料简介 2. 场效应管简介 3. 场效应管分类 4. N沟道增强型MOS场效应管工作原理 5. N沟道耗尽型MOS场效应管工作原理 6. 各种场效应的特性曲线 7. 场效应管与双极型晶体管比较 8. 场效应管的各项参数 9. 场效应管的命名规范
半导体材料简介
本征半导体 完全纯净的、结构完整的半导体材料称为本征半导体。 本征半导体的原子结构及共价键
11
(2)PN结外加反向电压
PN结P端接低电位,N端接高电位,称PN结外加反向电压,又称PN结
反向偏置,简称为反偏,如图所示。
P端引出极接电源负极,N端引出极电源正极的接法称为反向偏置; 反向偏置时内、外电场方向相同,因此内电场增强,致使多子的扩 散难以进行,即PN结对反向电压呈高阻特性;反偏时少子的漂移运