完整版反比例函数与几何的综合应用及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专训1反比例函数与几何的综合应用
名师点金:解反比例函数与几何图形的综合题,一般先设出几何图形中的未知数,然后结合函数的图象用含未知数的式子表示出几何图形与图象的交点坐标,再由函数解析式及几何图形的性质写出含未知数及待求字母系数的方程(组),解方程(组)即可得所求几何图形中的未知量或函数解析式中待定字母的值.
反比例函数与三角形的综合
61.如图,一次函数y=kx+b与反比例函数y=x(x>0)的图象交于A(m,6),B(3,n)两点.
(1)求一次函数的解析式;
6(2)根据图象直接写出使kx+b (3)求△AOB的面 积. (第1题) 2.如图,点A,B分别在x轴、y轴上,点D在第一象限内,DC⊥x轴于点C,AOk=CD=2,AB=DA=,反比例函数y=x(k>0)的图象过CD的中点E. (1)求证:△AOB≌△DCA; (2)求k的值; (3)△BFG和△DCA关于某点成中心对称,其中点F在y轴上,试判断点G是否在反比例函数的图象上,并说明理 由. (第2题) 反比例函数与四边形的综合 反比例函数与平行四边形的综合 63.如图,过反比例函数y=x(x>0)的图象上一点A作x轴的平行线,交双曲33线y=-x(x<0)于点B,过B作BC∥OA交双曲线y=-x(x<0)于点D,交x 轴于点C,的长.OE,求3=OC,若E轴于点y交AD连 接. (第3题) 反比例函数与矩形的综合 4.如图,矩形OABC的顶点A,C的坐标分别是(4,0)和(0,2),反比例函数yk =x(x>0)的图象过对角线的交点P并且与AB, (第4题) BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为________. 5.如图,在平面直角坐标系中,矩形OABC的对角线OB,AC相交于点D,且BE ∥AC,AE∥OB. (1)求证:四边形AEBD是菱形; (2)如果OA=3,OC=2,求出经过点E的双曲线对应的函数解析 式. (第5题) 反比例函数与菱形的综合 6.如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,3A,B两点的纵坐标分别为3,1,反比例函数y=x的图象 (第6题) 经过A,B两点,则菱形ABCD的面积为( ) AB.4 .2 CD.4 .2 7.如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y 轴k的正半轴上,点A在反比例函数y=x(k>0,x>0)的图象上,点D的坐标为(4,3). (1)求k的值; k(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在反比例函数y=x(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距 离. (第7题) 反比例函数与正方形的综合 8.如图,在平面直角坐标系中,点O为坐标原点,正方形OABC的边OA,OCk 分别在x轴,y轴上,点B的坐标为(2,2),反比例函数y=x(x>0,k≠0)的图象经过线段BC的中点D (1)求k的值; (2)若点P(x,y)在该反比例函数的图象上运动(不与点D重合),过点P作PR⊥y 轴于点R,作PQ⊥BC所在直线于点Q,记四边形CQPR的面积为S,求S关于x 的函数解析式并写出x的取值范 围. (第8题) 反比例函数与圆的综合 ) 题9第( kQP,P,Q两点,分别过y=x(k>0)与⊙O在第一象限内交于9.如图,双曲线, 则图中阴影部分的面积为,3)P的坐标为(1两点向x轴和y轴作垂线,已知点 ________.k内做随机某同学在⊙O的图象与⊙O相交.y=x(k<0)10.如图, 反比例函数扎针试验,求针头落在阴影区域内的概 率. ) 题(第10 全章热门考点整合应用专训2 既有与本学科性质是历年来中考的热点,名师点金:反比例函数及其图象、其也 有解答类型.也有与其他学科知识的综合,题型既有选择、填空,知识的综合, 个技巧.个应用及12热门考点可概括为:1个概念,个方法,2 个概念:反比 例函数的概念12-|m|( ) -1)x的取值为是反比例函数,则m1.若y=(m BA1 1 .-.DC.任意实数.±1 hkmkm),一同学骑车从学校到县城的平均速度v(2.某学校到县城的路程为5 /h( ) )与所用时间t(之间的函数解析式是BA5 +=.v.v=5t tt5DC 5.v.v=t =的反比例函数:是x3.判断下面哪 些式子表示y2a21-.a≠0)为常数且=5x;④y=x(ay53①xy=-;②y=-x; ③) 填序号________是反比例函数.(其中个方法:2 画反比例函数图象的方法 x的部分取值如下表:4.已知y与 ------x … 1 2 3 4 5 6 …1 2 3 4 5 6 ---1.1.--- 2 3 6 1.1.…y … 1 2 1 2 6 5 3 2 的函数关系可能是你学过的哪类函数,并写出这个函数的解(1)试猜想y与x析式; (2)画出这个函数的图象. 求反比例函数解析式的方法k的图象在第一象限内相交bx+的图象与一次函数y=xy=5.已知反比例函数 4).试确定这两个函数的解析式.A(1于点,-k+ 的图象和反比例=ykx+b,6.如图,已知A(-4n),B(2,-4)是一次函数m y 的图象的两个交点.求:=x函数反比例函数和一次函数的解析式;(1) AOB 的面积;直线(2)AB与x轴的交点C的坐标及△m -kx+bx=0的解(请直接写出答案);方程(3)m(4)不等式kx+b-x<0的解集(请直接写出答 案). (第6题) 2个应用 反比例函数图象和性质的应用 67.画出反比例函数y=x的图象,并根据图象回答问题: (1)根据图象指出当y=-2时x的值; (2)根据图象指出当-2 (3)根据图象指出当-3 反比例函数的实际应用 8.某厂仓库储存了部分原料,按原计划每小时消耗2吨,可用60小时.由于技术革新,实际生产能力有所提高,即每小时消耗的原料量大于计划消耗的原料量.设现在每小时消耗原料x(单位:吨),库存的原料可使用的时间为y(单位:小时). (1)写出y关于x的函数解析式,并求出自变量的取值范围.