拉氏变换及其性质(精选)
拉氏变换详细解读
![拉氏变换详细解读](https://img.taocdn.com/s3/m/178f7f0d581b6bd97f19ea6f.png)
s+a
(二)、拉氏变换的主要定理 )、拉氏变换的主要定理 1.线性定理
L[ f1(t ) + f2 (t )] = L[ f1(t )] + L[ f2 (t )] = F1(s) + F2 (s)
L[kf (t )] = kL[ f (t )] = kF(s)
2.微分定理
df (t ) L = sF(s) − f (0+ ) dt
n −at
s 2 2 s +ω n! sn+1 n!
( s + a)
1
n+1
( s + a) ( s + b)
1 s ( s + a) ( s + b)
( s + a) ( s + b)
s
序号
−at
f(t)
F(s)
13
e sinωt e cosωt
− at
( s + a ) + ω2
2
ω
14
s + a ) + ω2 (
) 式中 f (−1) (0+ ) 为 ∫ f (t dt 在t时间坐标轴的右端 趋于零时的f 的值,相当于初始条件。 趋于零时的f(t)的值,相当于初始条件。
f (t )(dt )2 = 1 F(s) + 1 f (−1) (0+ ) + 1 f (−2) (0+ ) L ∫∫ s2 s2 s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0
拉氏变换的数学方法解答
![拉氏变换的数学方法解答](https://img.taocdn.com/s3/m/f56e116c443610661ed9ad51f01dc281e53a56df.png)
拉氏变换的数学方法解答拉氏变换是一种重要的数学工具,用于求解微分方程和积分方程。
它通过将时间域的函数转换为频率域的函数,从而简化了微分方程和积分方程的求解过程。
在本文中,我们将介绍拉氏变换的定义、性质以及如何使用拉氏变换来求解常见的微分方程。
首先,我们来介绍拉氏变换的定义。
拉氏变换是一种积分变换,它将一个在时间域上定义的函数f(t)转换为一个在复平面上定义的函数F(s)。
具体地,拉氏变换定义为:F(s) = L(f(t)) = ∫[0,∞] e^(-st) f(t) dt其中,s 是复变量,e^(-st) 是指数函数。
拉氏变换的结果 F(s) 是一个复函数,它描述了函数 f(t) 在频率域上的性质。
下面我们来介绍拉氏变换的一些基本性质。
首先,拉氏变换是线性的,即对于任意的函数f(t)和g(t),以及任意的常数a和b,有:L(af(t) + bg(t)) = aF(s) + bG(s)其中,F(s)和G(s)分别是f(t)和g(t)的拉氏变换。
其次,拉氏变换有一个重要的性质,即微分等式在变换后变为乘法等式。
具体地,对于一个函数f(t)和它的导数f'(t),有:L(f'(t))=sF(s)-f(0)其中,f(0)是函数f(t)在t=0时的值。
另外,拉氏变换还有一个重要的性质,即积分等式在变换后变为除法等式。
具体地,对于函数f(t)的积分F(t)和它的拉氏变换F(s),有:L(F(t))=1/sF(s)通过上述性质,我们可以将微分方程和积分方程通过拉氏变换转化为更简单的代数方程,从而求解微分方程和积分方程。
接下来,我们来介绍如何使用拉氏变换来解决常见的微分方程。
对于一个线性常系数微分方程:a_n*y^(n)(t)+a_(n-1)y^(n-1)(t)+...+a_1*y'(t)+a_0*y(t)=b(t)其中,y(t)是未知函数,a_i和b(t)是已知函数或常数。
我们可以将该微分方程转化为一个代数方程,通过拉氏变换求解。
拉氏变换性质
![拉氏变换性质](https://img.taocdn.com/s3/m/336cf05177232f60ddcca100.png)
F ( s ) f (t )e st dt ( 0 定义方式)
0
0
③本书用 0-,优点是不必考虑跳变过程.
§4.1 拉氏变换定义;拉氏变换性质(上)
[例1]:求 (t ) 的单边拉氏变换:
解:
(t )
第四章 拉氏变换与S域分析
拉氏变换定义;拉氏变换性质(上) 拉氏变换性质(下);拉氏逆变换 拉氏变换法分析电路;系统函数 系统函数零极点∽时域特性和稳定性 系统函数零极点∽频响特性 双边拉氏变换;拉氏变换∽傅里叶变换
§4.1 拉氏变换定义;拉氏变换性质(上)
一,拉氏变换 1.引言 ①赫维塞德 19世纪末(依据:拉普拉斯著作) ②适用:连续线性时不变系统 ③作用:简化线性时不变系统的时域模型 i)同时给出特解和齐次解 ii)微积分 乘除法,微分方程 代数方程 iii)指数,超越 初等函数
②傅立叶变换与拉氏变换基本区别
F ( f (t )
t , 为实数 为频率 频域 时域 只能描述振荡重复频率
F ( s ) f (t ) s t 为实数, 为复数 s为复频率 复数域 时域
s不仅能描述振荡频率,也能反
映振荡幅度的衰减或增长速率
§4.1 拉氏变换定义;拉氏变换性质(上)
③双边拉氏变换:
[例3]:求 ② sin tu (t ), cos tu (t )的拉氏变换 1 解: ② [e j0 t u (t )] ( 0) s j0
j0t
1 ( 0) u (t )] [e s j0 [cos tu (t )] 1 ( 1 1 ) 2 s 2 ( 0) 2 s j s j s 1 1 1 [sin tu (t )] ( ) 2 2 ( 0) 2 j s j s j s
第1节 拉氏变换概念及性质
![第1节 拉氏变换概念及性质](https://img.taocdn.com/s3/m/6f77658902d276a200292e49.png)
提出的问题:
1.拉氏变换如何由傅里叶变换演变而来? 2.傅里叶变换是拉氏变换的特例吗?存在拉氏变换的信 号一定存在傅里叶变换吗? 3.信号拉氏变换F(s)的反变换是否唯一? 单边信号拉氏变换F(s)的反变换是否唯一? 4.拉氏变换求解系统问题的优越性如何体现? 5.拉氏变换应用有局限性吗?
6.微分方程的拉氏变换求解法及其优越性?
1 如信号F ( s) (t ) s
s F ( s) 2 s 4
s F ( s) ( s 1)( s 2 4) 2
例题:
已知:f (t ) (t ) e t (t ) 1 )试确定双边拉氏变换 及其收敛域; 2 )求上述拉氏变换在不 同收敛域下的反变换
设:s = σ + jω(复频率), dω=ds/j
F ( s) f (t )e st dt 1 j st f (t ) j F (s)e ds 2j
(Bilateral LT)
双边拉普拉斯变换 记作:f (t ) F(s)
说明:F s L f t f t e d t F ( j ) F [ f (t )] f (t )e dt
n!
n
5、 (t) 的导函数
s
e
st
dt
n!
0
s
n 1
t (t )
n
n! s
n 1
L t t e
0
st
(n) (t) s n dt s
拉氏变换详解课件
![拉氏变换详解课件](https://img.taocdn.com/s3/m/90f5991a0b4c2e3f56276313.png)
F(s)
1 s2
f (1) (0) 1 f (2) (0) s
若原函数f(t)及其各重积分的初始值都等于0
则有
L[
f
(t)dtn ]
1 sn
F (s)
即原函数 f(t)的n重积分的拉氏变换等于其
象
sn
函数除以
。
6
(4)终值定理 lim f (t) lim sF(s)
t
直接按上式求原函数太复杂,一般都用 查拉氏变换表的方法求拉氏反变换,但F(s)12 必须是一种能直接查到的原函数的形式。
若F(s)不能在表中直接找到原函数,则需 要将F(s)展开成若干部分分式之和,而这 些部分分式的拉氏变换在表中可以查到。
例1: F(s)
1
1 (1 1)
(s a)(s b) b a s a s b
F(s)
M (s) D(s)
b0sm b1sm1 bm1s bm sn a1sn1 an1s an
(m
n)
(1)情况一:F(s) 有不同极点,这时,F(s)
总能展开成如下简单的部分分式之和
F (s) c1 c2 cn
s p1 s p2
2.常用函数的拉氏变换
数学知识回顾
(1)例1.求阶跃函数f(t)=A·1(t)的拉氏变换。
F (s) Ae st dt
A e st
A
0
s
0
s
1
单位阶跃函数f(t)=1(t)的拉氏变换为 s 。
(2)例2.求单位脉冲函数f(t)=δ(t)的拉氏变换。
lim lim
6.2拉氏变换的性质
![6.2拉氏变换的性质](https://img.taocdn.com/s3/m/513be75ebe23482fb4da4ce2.png)
6.S域微分 域微分 (Differentiation in the s-Domain) ) LT Re{s} > σ 1 若 x(t ) ↔ X ( s ),
dX ( s ) 则 −tx(t ) ↔ , Re{s} > σ 1 ds
LT
x ( t ) = te − at u ( t ), 求 LT 例:
LT
则 x (t − t0 ) ↔ X ( s )e − st0 , t0 > 0
ROC不变
例2: x(t ) = e u(t − 5)
−3t
=e e
X(s) = e
−15 −3( t −5)
u (t − 5)
⇓ LT
− 15
e ,σ > −3 s+3
−5s
?
2 −s e , σ > 0 ⇒ x(t) 2 s +4
1 Q e u (t ) ↔ ,σ > −a s+a LT d 1 1 − at ∴ x(t ) = te u (t ) ↔ X ( s ) = − ( )= ds s + a ( s + a)2
− at LT
ROC:σ > −a
x ( t ) = tu ( t ), x ( t ) = t 2 u ( t ) 求 LT 例:
r =0 n −1
−
8. 时域积分 时域积分: (Integration in the Time Domain) ) 若 x ( t ) ↔ X ( s ), ROC : R
1 x ( − 1) (0 − ) 则 ∫ x (τ ) d τ ↔ X ( s ) + −∞ s s LT 1 t ∫0 − x (τ ) dτ ↔ s X ( s )
02第二章拉氏变换的数学方法
![02第二章拉氏变换的数学方法](https://img.taocdn.com/s3/m/2025bfefdc3383c4bb4cf7ec4afe04a1b071b0d8.png)
02第二章拉氏变换的数学方法拉氏变换是一种重要的数学工具,广泛应用于信号与系统、控制理论、电路分析、通信工程等领域。
本文将介绍拉氏变换的数学方法,包括拉氏变换的定义、性质和常见的拉氏变换对列表。
一、拉氏变换的定义拉氏变换是一种将时间域函数转换为频率域函数的数学工具。
对于一个连续时间函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0,∞] f(t)e^(-st)dt其中s是复变量,通常为一个复平面上的点。
拉氏变换可以将一个函数从时间域表示转换为频率域表示,提供了一种更便于分析和处理的数学工具。
二、拉氏变换的性质拉氏变换具有一些重要的性质,如线性性质、平移性质、尺度性质等。
下面简要介绍几个常用的性质:1.线性性质:如果f(t)和g(t)的拉氏变换分别为F(s)和G(s),那么对于任意常数a和b,有a*f(t)+b*g(t)的拉氏变换为a*F(s)+b*G(s)。
2. 平移性质:如果f(t)的拉氏变换为F(s),那么e^(-at)f(t)的拉氏变换为F(s+a)。
3. 尺度性质:如果f(t)的拉氏变换为F(s),那么f(at)的拉氏变换为(1/a)F(s/a)。
这些性质使得我们能够利用拉氏变换进行函数的变换和计算,简化了分析过程。
三、常见的拉氏变换对列表拉氏变换对列表是一些常见的函数及其在拉氏变换下的变换对。
常见的拉氏变换对列表如下:1.常数函数:L{1}=1/s2.单位阶跃函数:L{u(t)}=1/s3.单位冲激函数:L{δ(t)}=14. 指数函数:L{e^(at)} = 1/(s-a),其中a为实数5. 正弦函数:L{sin(ωt)} = ω/(s^2 + ω^2)6. 余弦函数:L{cos(ωt)} = s/(s^2 + ω^2)7. 方波函数:L{rect(t/T)} = (T/s) * sin(Ts/2)8. 指数衰减函数:L{e^(-at)u(t)} = 1/(s+a),其中a为正数这些变换对可以通过拉氏变换的定义进行推导得到,可以用于解决各种信号与系统的分析和计算问题。
拉氏变换.doc
![拉氏变换.doc](https://img.taocdn.com/s3/m/6d7ec317b42acfc789eb172ded630b1c59ee9b80.png)
控制原理补充讲义——拉氏变换拉氏变换是控制工程中的一个基本数学方法,其优点是能将时间函数的导数经拉氏变换后,变成复变量S的乘积,将时间表示的微分方程,变成以S表示的代数方程。
一、拉氏变换与拉氏及变换的定义1、拉氏变换:设有时间函数,其中,则f(t)的拉氏变换记作:称L—拉氏变换符号;s-复变量; F(s)—为f(t)的拉氏变换函数,称为象函数。
f(t)—原函数拉氏变换存在,f(t)必须满足两个条件(狄里赫利条件):1)在任何一有限区间内,f(t)分断连续,只有有限个间断点。
2)当时,,M,a为实常数。
2、拉氏反变换:将象函数F(s)变换成与之相对应的原函数f(t)的过程。
—拉氏反变换符号关于拉氏及变换的计算方法,常用的有:①查拉氏变换表;②部分分式展开法。
二、典型时间函数的拉氏变换在控制系统分析中,对系统进行分析所需的输入信号常可化简成一个或几个简单的信号,这些信号可用一些典型时间函数来表示,本节要介绍一些典型函数的拉氏变换。
注意:六大性质一定要记住1.单位阶跃函数2.单位脉冲函数3.单位斜坡函数4.指数函数5.正弦函数sinwt由欧拉公式:所以,6.余弦函数coswt其它的可见下表:拉氏变换对照表)1sin(122ϕξωξωξω----t e n t nn三、拉氏变换的性质1、线性性质若有常数k1,k2,函数f1(t),f2(t),且f1(t),f2(t)的拉氏变换为F1(s),F2(s), 则有:,此式可由定义证明。
2、位移定理(1)实数域的位移定理若f(t)的拉氏变换为F(s),则对任一正实数a有,其中,当t<0时,f(t)=0,f(t-a)表示f(t)延迟时间a.证明:,令t-a=τ,则有上式=例:求其拉氏变换(2)复数域的位移定理若f(t)的拉氏变换为F(s),对于任一常数a,有证:例:求的拉氏变换3、微分定理设f(t)的拉氏变换为F(s),则其中f(0+)是由正向使的f(t)值。
拉氏变换xin
![拉氏变换xin](https://img.taocdn.com/s3/m/64db482a58fb770bf78a55a1.png)
图象沿t 轴向右平移距离而得。 这个性质表明,时间函数延迟 τ 的拉氏变换等于它的
象函数乘以指数因子 e s 。
28
0, t τ 的拉氏变换。 例 求函数 u (t τ ) 1, t τ
解 由于
f (t ) Mect ,0 t
成立(满足此条件的函数,称它的增大是指数级 的,c为它的增长指数)。
7
则 f (t ) 的拉氏变换
F ( s)
0
f (t ) e st dt
在半平面 Re(s) c上一定存在,右端的积分在 Re(s) c1 c 上绝对收敛而且一致收敛,并且在
0
sin t 1 dt d s arctan s 0 s2 1 t
0
2
22
d.位移性质 若 L f (t ) F (s) ,则有
L e at f (t ) F (s a)
证
(Re(s a) c)
0
L e f (t ) 其中 Nhomakorabea 0
f (t ) dt F ( s )d s 0 t
F (s) L f (t )
这一公式,常用来计算某些积分。
21
例 求积分
0
sin t dt t
1 L sin t 2 s 1
解 因为
且
所以
0
f (t ) dt F ( s )d s 0 t
1 sinh t L L sinh t ds 2 ds s s s 1 t
1 s 1 ln 2 s 1
拉氏变换详细解读
![拉氏变换详细解读](https://img.taocdn.com/s3/m/178f7f0d581b6bd97f19ea6f.png)
φ = arctan
1− 1 1−ζ
2
ζ
e−ζωnt sin ωn 1 − ζ 2 t + φ 1−ζ 2
(
18
φ = arctan
2 ωn 2 s ( s2 + 2ζωn s + ωn )
ζ
根据表格直接写出结果
L [δ (t )] = 1, L e
− at
1 L [1(t )] = , s
ω s L [sin ωt ] = 2 , L [ cos ωt ] = 2 2 2 s +ω s +ω
e sinωt →
−at
1 = s+a,
1 L [t ] = 2 s 1 at L e = s−a
s + a ) + ω2 (
2
ω
e cosωt →
−at
s + a ) + ω2 (
3
2
5s3Y (s) + 6s2Y (s) + sY (s) + 2Y (s) = 4sX(s) + X(s) (5s3 + 6s2 + s + 2)Y (s) = (4s + 1) X(s)
Y (s) 4s + 1 = 3 X (s) 5s + 6s2 + s + 2
3.积分定理 积分定理
f (t )dt = 1 F(s) + 1 f (−1) (0+ ) L ∫ s s
2. 部分分式展开法 (利用逆变化的线性原理)
控制工程中,象函数F(s)通常可以表示有理分式形式 控制工程中,
B(s) bm sm + bm−1sm−1 + bm−2 sm−2 +⋅⋅⋅⋅⋅⋅ +b1s + b0 F(s) = = A(s) an sn + an−1sn−1 + an−2 sn−2 +⋅⋅⋅⋅⋅⋅ +a1s + a0
7.2 拉氏变换的性质
![7.2 拉氏变换的性质](https://img.taocdn.com/s3/m/ddf1680eb52acfc789ebc940.png)
例7-13 求 L[t sin t ] 解 因为L[sin t ]
p
2 2
,由 式(7 10)可 得
d 2 p L[t si n t ] ( 1) ( 2 ) 2 2 dp p ( p 2 )2
(7-9)
性质7 若L[f(t)] =F(p),则 (7-10)
L[t f (t )] (1) F ( p)
n n ( n)
性质8
f (t ) m 存 在, 则 若L[f(t)] =F(p) , 且 lt i 0 t
f (t ) L[ ] F ( p)dp p t
(7-11)
证明
L[a1 f1 (t ) a2 f 2 (t )]
0
[a1 f1 (t ) a2 f 2 (t )]e dt
0
pt
a1
0
f1 (t )e dt a2
pt
f 2 (t ) e dt
pt
a1 L[ f1 (t )] a2 L[ f 2 (t )]
L[e f (t )]
at 0
(7-3)
dt F ( p a)
e f (t ) e dt
at pt
0
f (t ) e
( p a ) t
位移性质表明:象原函数乘以 e at 等于 其象函数左右平移︱a︱个单位.
例7-6 求 L[ t eat ] , L[e -at sin ωt] 和L [e -at cos ω t].
pa cost ] . 2 2 ( p a)
性质3(滞后性质)若L[f(t)]=F(p) ,则
L[f(t-a)]=e-apF(p),(a > 0) 证明 L[ f (t a)]
拉氏变换的基本性质
![拉氏变换的基本性质](https://img.taocdn.com/s3/m/f95d637c66ec102de2bd960590c69ec3d5bbdb1b.png)
频移性质表明信号在时域中乘以指数函数对应于频域中的平移。
微分性质
微分定理
若$f(t)$的拉氏变换为$F(s)$,则$f'(t)$的拉氏变换为$sF(s)-f(0^-)$。
微分性质的意义
微分性质建立了信号时域微分与频域之间的关系,便于通过拉氏变换求解微分方 程的初值问题。
积分性质
积分定理
拉氏变换的基本性质
目录
• 引言 • 拉氏变换的基本性质 • 拉氏变换的收敛域 • 拉氏反变换 • 拉氏变换在电路分析中的应用 • 拉氏变换在信号处理中的应用
01 引言
拉氏变换的定义
拉氏变换是一种线性积分 变换
它将一个有实数变量t(t≥0)的函数转换为 一个复数变量s的函数。
转换公式
对于实数变量t的函数f(t),其拉氏变换F(s)定 义为F(s)=∫[0,∞)f(t)e^(-st)dt,其中s为复数
电路分析
在电路分析中,拉氏反变换常用 于将电路的频率响应转换回时域 响应,以便分析电路的动态行为。
控制系统
在控制系统中,拉氏反变换可用于 将控制系统的传递函数转换回时域, 以便分析系统的稳定性和性能。
信号处理
在信号处理中,拉氏反变换可用于 将信号的频谱转换回时域信号,以 便进行信号的重构和分析。
05 拉氏变换在电路分析中的 应用
确定收敛域。
收敛域与函数性质的关系
函数增长性与收敛域
函数增长越快,其拉氏变换的收敛域越小;反之,函数增长越慢, 其收敛域越大。
函数奇偶性与收敛域
对于偶函数,其拉氏变换的收敛域关于实轴对称;对于奇函数,其 收敛域关于原点对称。
函数周期性与收敛域
周期性函数的拉氏变换在相应的周期内收敛,而在其他区域可能发 散。
拉氏变换_精品文档
![拉氏变换_精品文档](https://img.taocdn.com/s3/m/58dcff91d05abe23482fb4daa58da0116c171ff4.png)
拉氏变换什么是拉氏变换拉氏变换(Laplace Transform)是一种将函数从时间域转换到复频域的数学工具。
它在工程学科和物理学中有广泛的应用,特别是在控制系统分析和信号处理领域。
拉氏变换通过积分运算将一个函数从时间域(t-domain)变换到频域(s-domain),其中s是一个复变量。
拉氏变换的定义给定一个函数f(t),其拉氏变换F(s)定义为:F(s) = L{f(t)} = ∫[0, ∞] e^(-st) f(t) dt这里,s是复变量,e是自然对数的底数,t表示时间。
拉氏变换的性质拉氏变换具有许多有用的性质,以下是一些常见的性质:1.线性性质:L{af(t) + bg(t)} = aF(s) + bG(s),其中a和b是常数。
2.移位性质:L{f(t - a)} = e^(-as)F(s),其中a是常数。
3.初值定理:lim_[s→∞] sF(s) = f(0),其中f(0)是函数f(t)在t=0时的初值。
4.终值定理:lim_[s→0] sF(s) = lim_[t→∞] f(t),即函数f(t)在t→∞时的极限等于F(s)在s=0时的极限。
这些性质使得拉氏变换成为了解决微分方程问题以及计算复杂电路的有效工具。
拉氏变换的应用1. 信号处理在信号处理领域,拉氏变换用于分析和处理连续时间信号。
通过将信号从时间域转换到频域,可以更好地理解信号的频谱特性,并进行滤波、降噪、调制等处理。
2. 控制系统在控制系统分析中,拉氏变换被广泛用于研究和设计控制系统的性能和稳定性。
通过将控制系统表示为拉氏域的传输函数,可以方便地进行频率响应、稳定性分析和控制器设计。
3. 电路分析在电路分析中,拉氏变换用于求解电路的幅频特性、相频特性和传输函数。
通过将电路中的电压和电流转换到拉氏域,可以更方便地进行复杂电路的分析和计算。
4. 信号传输拉氏变换在信号传输中的应用非常广泛。
信号的拉氏变换可以帮助我们理解信号在传输过程中的衰减、失真和干扰等问题,从而优化信号传输的方案。
十三章拉氏变换
![十三章拉氏变换](https://img.taocdn.com/s3/m/af9016156c175f0e7cd13724.png)
= F (s + α )
例:求 解:
e −α t sin ωt
的象函数
ω ∵ L [sin ωt ] = 2 s + ω2
依频域平移性质: 依频域平移性质:
L e
−α t
ω sin ωt = (s + α )2 + ω 2
13-3 拉氏反变换的部分分式展开 F(s)
拉氏反变换
f(t)
N ( s ) a0 s m + a1s m −1 + ⋅⋅⋅ + am F ( s) = = D ( s ) b0 s n + b1s n −1 + ⋅⋅⋅ + bn
将F(s) 分解 若干简单项之和 将各简单项查表
n≥m
原函数
这种方法称为部分分式展开法,或称为分解定理。 这种方法称为部分分式展开法,或称为分解定理。
L t e
2 −α t
2 = ( s + α )3
(7)频域平移性质 )
如果
L[ f (t)] = F(s)
那么 L e
∞ −α t − st 0−
−α t
f (t ) = F ( s + α )
∞ 0−
证: L e −α t f (t ) =
∫
f (t )e e dt = ∫ f (t )e − ( s +α )t dt
(2)利用上式结果及导数性质 )
ω L [ f (t ) ] = 2 s + ω2
cos(ωt ) =
1
ω
(sin ωt )′
f (0− ) = 0
s s2 s d L (cos ωt iε (t )) = s 2 − [ cos ωt iε (t ) ]t =0 = 2 −0 = 2 − s + ω2 s + ω2 s + ω2 dt
拉氏变换
![拉氏变换](https://img.taocdn.com/s3/m/ba5dcc35eefdc8d376ee327d.png)
1 :广义阻抗;运算阻抗; SC
uC (0) Useg (S)=US (S) + LiL (S) :等值电压源象函数。 S
Z(S)I(S)=Useg(S)
5应用拉普拉斯变换法分析线性电路 应用拉普拉斯变换法分析线性电路
应用拉氏变换分析线性电路的步骤: 把电路变换成频域电路; 电路可用结点电压法、网孔法、叠加法等来求解; 利用拉氏反变换得到时域的值。
uC (0 ) 1 U C (S ) = + IC (S ) S SC
U C ( 0 ) 1 : 运算容抗; : 附加电压源; SC S
4 运算电路
duC L [iC ] = L C dt
IC(S)=SCUC(S)CuC(0)
SC : 运算容纳;CU C ( 0 ) : 附加电流源;
K13 = ( S S1 )3 N (S ) D( S )
S = S1
Q
K2 d [ K13 + K12 ( S S1 ) + K11 ( S S1 ) 2 + ( S S1 )3 ] dS S S2 ∴ K12 d 3 N (S ) = [( S S1 ) ] dS D( S ) S = S 1
1 d2 3 N (S ) K11 = 2 [( S S1 ) ] 2! dS D ( S ) S = S
K1( p j )
1
1 dj N (S ) = j [( S S1 ) p ] , j ! dS D ( S ) S = S
1
j = 0,1, 2L ( p 1) , 0! = 1,
5 应用拉普拉斯变换法分析线性电路
例:RC 并联电路,换路前为零状态,t=0 时接通单位阶跃电流源, 求 uC(t)和 iC(t)。
拉氏变换及其性质
![拉氏变换及其性质](https://img.taocdn.com/s3/m/e895d12002020740be1e9bdc.png)
15.3 拉普拉斯变换的基本性质
一、线性(linearity)性质
若 ℒ [f1(t)] F1(s) , ℒ [f2(t)] F2(s)
则 ℒ [a f1(t) b f2(t)] aF1(s) bF2(s)
例1
ℒ [ A]
A s
例2
ℒ [ A(1 et )]
1 A(
f(t) ,t [0,)称为原函数(original function),属时 域(time domain)。原函数 f(t ) 用小写字母表示,如 i(t ), u(t )。
F(s) 称为象函数(transform function),属复频域 (complex frequency domain) 。象函数F(s) 用大写字母 表示 ,如 I(s),U(s)。
n sn1
例 求图示两个函数的拉氏变换式
f1(t)
f2(t)
1 e-t
1 e-t
t
t
0
0
解 由于定义的拉氏变换积分下限是0-,两个
函数的拉氏变换式相同
F(s) 1
s 当取上式的反变换时,只能表示出 t 0 区间的函数式
ℒ 1[ 1 ] e t
s
(t 0)
返回目录
本章重
. 点 常用函数的拉普拉斯变换 . 拉普拉斯变换的基本性质 . 复频域中的电路定律 . 运算阻抗和运算导纳 . 拉普拉斯变换法分析电路的动态响应 . 网络函数
返回目录
15.1 拉普拉斯变换
一、拉氏变换(Laplace transformation)的定义
正变换
F (s) f (t )estdt 0
s 0
t n est e st dt n n t n1estdt
拉氏变换 (3)
![拉氏变换 (3)](https://img.taocdn.com/s3/m/3c2c8260bdd126fff705cc1755270722192e59b4.png)
拉氏变换1. 简介拉氏变换(Laplace Transform)是一种用于解决常微分方程(ODE)的数学工具。
它将一个随时间变化的函数转换为一个复数域中的函数,使得常微分方程可以转化为代数方程来求解。
通过拉氏变换,我们可以将时域中的问题转化到频域中,从而简化问题的分析和求解。
拉氏变换的应用非常广泛,在控制系统、通信系统、信号处理等领域中起着重要的作用。
通过拉氏变换,我们可以分析系统的稳定性、阻尼特性、频率响应等性能指标。
2. 定义与性质拉氏变换是对一个函数f(t)的积分变换。
给定一个函数f(t)和复数s,拉氏变换可以用如下公式来表示:L{f(t)} = F(s) = ∫[0,∞] e^(-st) f(t) dt其中,e是自然常数,s是复变量。
拉氏变换有许多重要的性质。
以下是一些常见的性质:•线性性质:即拉氏变换满足线性运算。
对于任意常数a和b,以及函数f(t)和g(t),有 L{a f(t) + b g(t)} = a F(s) + b G(s)。
•积分性质:对于函数f(t)的导数,有L{f’(t)} = sF(s) - f(0),其中f(0)为f(t)在t=0时的初始值。
类似地,对于f(t)的n阶导数,有 L{f^(n)(t)} = s^n F(s) - s^(n-1) f(0) -s^(n-2) f’(0) - … - f^(n-1)(0)。
•初值定理:初值定理指出,当s趋于无穷大时,拉氏变换是函数f(t)的初始值的一阶逼近。
即lim(s→∞) sF(s) = f(0)。
•终值定理:终值定理指出,当s趋于零时,拉氏变换是函数f(t)的稳态值的一阶逼近。
即lim(s→0) sF(s) =lim(t→∞) f(t)。
3. 拉氏变换的应用3.1. 控制系统在控制系统中,拉氏变换被广泛应用于系统的稳定性分析、阻尼特性分析等。
通过将系统的微分方程转化为拉氏域的代数方程,可以求解系统的传递函数,从而分析系统的频率响应和稳定性。