学术英语翻译
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Text 4 云计算的安全利益
1.网络的未来
现在,我们可以很容易地注意到网络的本质从被用来读网页的地方变为允许用户运行软件应用程序的环境。
诺瓦提出了一个有趣的类比,以如下的形式描述了网络的进化:
1)web 1.0 是只读的,被用来创造几乎静态的网页,比如个人网页、报纸、购物应用程序等。
2)web 2.0 引入了读和写的内容——出版变成了参与,网页变成博客,博客聚集在一起变成大的汇总。
对于网络内容而言,现在互动与合作非常普遍。
Executable: 可执行的
Execute: v. 运行,执行
3)web 3.0 将允许读、写和执行操作,所以内容将变成可执行的网络
The future belongs to the Web 3.0, also called the intelligent web, which is the next stage of the Internet evolution based on the services for data mining, artificial intelligence, independent agents, speech recognition and new computing models (distributed, grid and cloud).
未来属于web 3.0, 也被称为智能网络,它是互联网进化的下一阶段,这种进化以数据挖掘、人工智能、独立代理人、言语识别和新的计算模式(分配计算、网格计算和云计算)为基础。
The Web 3.0 can be seen as a new way of creating and using applications that can run on different devices, like mobile phones or PDAs, and having the data stored into the cloud.
Web 3.0可以被视为一种新的创造和使用应用程序并且让数据存储在云中的方式,这些程序可以在不同的设备上运行,比如手机或掌上计算机。
2.云计算的基本原则
Simply speaking, the cloud means the Internet. The term is derived from the way in which the Internet is often represented into the network diagrams. Cloud computing represents a new paradigm of the Internet computing in which the software is seen as a service and the applications and data are stored on multiple servers that can be accessed from the Internet.
简单地说,云意味着网络,这个术语来自于网络图表中网络常常被代表的方式。
云计算代表着一种新的网络计算范例,其中软件被看作是一种服务,应用程序和数据被储存在多个服务器中,这些服务器可以从网络进入。
The current cloud computing architecture involves the existence of data
centers that are able to provide services to the clients located all over the world. In this context, the cloud can be seen as a unique access point for all the requests coming from the customers/clients.
目前云计算技术涉及这样一个数据中心的存在,这个中心能够为全世界用户提供服务。
在这个背景下,云可以被看作是对于所有来自顾客或客户请求的独特的进入点。
移动电话或掌上计算机可以成功地扮演云客户的角色。
由于这个原因,移动设备可以在安卓或iphone 平台上运行。
同时,网页浏览器,比如谷歌浏览器,毫无疑问也可以是云客户。
云客户可以是普通的电脑,移动手机,掌上计算机或其他任何类似的设备。
基本上,客户是从数据中心租用或直接进入数据中心获取所需的数据处理能力。
服务的品质是云计算成功的关键因素。
要注意客户可以是硬件设备和(或)软件应用程序,比如浏览器。
Cloud computing allows to move the processing effort from the local devices to the data center facilities. In such a way, any phone, for example, could be able to solve complex differential equation systems by simply passing the specific arguments to a data center service that will be capable to give back the results in a very short time. In these conditions, the security of data and applications becomes a very major issue.
云计算允许把数据处理的过程从当地设备移动到数据中心设施。
这样的话,举个例子,任何电话都可以解决复杂的微分方程系统,只要把特定的自变量传到数据服务中心,这项服务可以在很短的时间内返回结果。
在这些条件下,数据和应用程序的安全性变成了一个重要的问题。
云计算的主要优势如下:
1)没必要下载或安装特定的软件,软件的使用成为很快、很简单的任务
2)费用很低,在某些情况下,甚至是免费的,客户只需支付他们实际使用的资源费用
3)如果客户电脑崩溃,因为一切都储存在云中,几乎不会丢失什么
4)当一些新的安装包被释放时,没必要升级本地系统
5)云计算可以被用在有最小硬件需求的客户端上面,如移动电话或掌上计算机6)给不同的软件包授予许可证的问题转到了数据中心层面
7)硬件升级不需花费(或花费很少)
8)用户不用依靠他们的个人电脑,因为他们可以使用任何其他设备,只要这些
设备能够连接上互联网并有一些基本的软件。
当然,也有一些缺点,比如:
1)为了能够进入和使用云,网络连接是必要的,这种对网络的依赖性使离线模式不可能。
另一方面,一些应用程序需要高速网络连接,所以网络速度会影响整体的表现。
2)从长期看,服务的用户费比购买硬件的费用更贵
3)很难整合公司内部现有的基础设施,同时,从云又回到公司内部的模式会很难。
4)现在,在这个领域没有足够的大供应商
5)令人担忧的一个非常大的问题是数据安全,因为数据和软件位于遥远的服务器,而这些服务器可以在没有任何额外警告的情况下崩溃或消失。
在这种背景下,服务质量非常重要,备份的需求也是至关重要的。
3. 安全优势
云计算为个人和公司提供了一些主要的安全优势,比如:
1) Centralized data storage ---- this goes to reduced effects of loosing some hardware items, like a laptop, for example. While the main part of the applications and data is stored into the cloud, loosing a client is not a big issue anymore--- there are no sensitive data lost and a new client can be connected to the cloud very fast;
1) 集中的数据存储——这就减少了由于没有硬件如手提电脑带来的影响。
应用程序和数据的主要部分被储存在云端,失去客户端放松不再是一件严重的事情——没有敏感的数据丢失,新的客户端可以很快被连接到云端。
2)对数据获取的监控变得更简单,因为只要监控一个地方就够了,而不是一家大公司的成千上万台电脑
3)不确定性的增加——小偷几乎不可能决定为了得到一种数字资产究竟该偷哪一个实体成分。
Virtualization allows a rapid replacement of a compromised server located into the cloud without major costs or damages. Also, the downtime for computers in the cloud could be substantially reduced because it is very easy to create a clone by using an image.
4)虚拟化允许位于云端中的受损服务器得到快速替换,而不会有大的破坏或损失。
同时,在云中电脑的停机时间可以大大降低,因为通过使用一个图像,很容易创
造一个一模一样的东西。
5)日志——更多的记录可以被激活,因为云空间足够大,可以储存大量汇总的数据
6)安全变化可以很容易被测试和实施
云计算还处在起步阶段,所以还会有很多新的优点出现在这一清单中。
4. 结论
现在,信息基础设施正在向一个简单而创新的概念发展,它就叫做云计算。
有很多应用程序都能利用云技术,而且很快会有更多的应用程序加入到队伍当中来。
许多设备都是云兼容的,比如传统的计算机,掌上计算机,移动电话,甚至浏览器(google 浏览器),在这个前提下,云计算有潜力能够提供大的安全优势。
Text 8 纳米技术如何工作
How Nanotechnology Works
There's an unprecedented multidisciplinary convergence of scientists dedicated to the study of a world so small, we can't see it -- even with a light microscope. That world is the field of nanotechnology, the realm of atoms and nanostructures. Nanotechnology is so new, no one is really sure what will come of it. Even so, predictions range from the ability to reproduce things like diamonds and food to the world being devoured by self-replicating nanorobots.
有很多致力于研究小到我们无法看见的世界的科学家。
他们从事不同学科,但是他们史无前例地会聚在一起,他们研究的世界小得连借助精致的显微镜都看不见。
那个世界就是纳米技术的世界,一个由原子和纳米结构组成的领域。
纳米技术是如此新以至于没人能够确定它会给我们带来什么。
即便如此,各种预言却都有,比如说复制钻石和食物,又比如说世界会被自我复制的纳米机器人毁灭。
In order to understand the unusual world of nanotechnology, we need to get an idea of the units of measure involved. A centimeter is one-hundredth of a meter, a millimeter is one-thousandth of a meter, and a micrometer is one-millionth of a meter, but all of these are still huge compared to the nanoscale. A nanometer (nm) is one-billionth of a meter, smaller than the wavelength of visible light and a hundred-thousandth the width of a human hair
为了了解纳米技术不同寻常的世界,我们需要了解所涉及的测量单位,一厘米是一米的百分之一,一毫米是一米的千分之一,一微米是百万分之一米,但是和纳米级相比,这些都还是巨大的数字。
一纳米是十亿分之一米,比可见光的波长还要小,还不到人类一根头发宽度的十万分之一。
As small as a nanometer is, it's still large compared to the atomic scale. An atom has a diameter of about 0.1 nm. An atom's nucleus is much smaller -- about 0.00001 nm. Atoms are the building blocks for all matter in our universe. You and everything around you are made of atoms. Nature has perfected the science of manufacturing matter molecularly. For instance, our bodies are assembled in a specific manner from millions of living cells. Cells are nature's nanomachines. At the atomic scale, elements are at their most basic level. On the nanoscale, we can potentially put these atoms together to make almost anything.
尽管纳米很小,但是和原子水平比起来依然很大。
原子的直径大约是0.1纳米。
原子的核更是小得多——大约0.00001纳米。
原子是宇宙所有物质的基石。
你和你身边的一切都是由原子组成的。
自然界从分子水平上完善了制造物质的科学。
比如,我们的身体是从千百万个活细胞以特定的方式聚集在一起的。
细胞是自然界的纳米机器。
在原子的层级,各种元素都处在最基本的水平。
在纳米层面,我们可以把这些原子放在一起做成几乎任何一种物质。
In a lecture called "Small Wonders:The World of Nanoscience," Nobel Prize winner Dr. Horst Stoermer said that the nanoscale is more interesting than the atomic scale because the nanoscale is the first point where we can assemble something -- it's not until we start putting atoms together that we can make anything useful.
在一次名为“小小的奇观:纳米科学的世界”的讲座中,诺贝尔奖得主Horst Stormer 博士说纳米级别比原子级别更有趣,因为纳米级是我们可以把东西放在一起的最初的起始点——直到我们开始把原子放在一起,这个东西才变得有价值。
Nanotechnology is rapidly becoming an interdisciplinary field. Biologists, chemists, physicists and engineers are all involved in the study of substances at the nanoscale. Dr. Stoermer hopes that the different disciplines develop a common language and communicate with one another. Only then, he says, can we effectively teach nanoscience since you can't understand the world of nanotechnology without a solid background in multiple sciences.
纳米技术正在迅速变成一个跨学科的领域。
生物学家、化学家、物理学家和工程师们都要参与纳米层面物质的研究。
Stormer博士希望不同学科可以发展出相同的语言,可以彼此交流。
他说,只有那时我们才能有效地教授纳米科学,因为如果没有多学科科学的扎实背景,你无法理解纳米技术的世界。
One of the exciting and challenging aspects of the nanoscale is the role that quantum mechanics plays in it. The rules of quantum mechanics are very different from classical physics, which means that the behavior of substances at the nanoscale can sometimes contradict common sense by behaving erratically. You can't walk up to a wall and immediately teleport to the other side of it, but at the nanoscale an electron can -- it's called electron tunneling. Substances that are insulators, meaning they can't carry an electric charge, in bulk form might become semiconductors when reduced to the nanoscale. Melting points can change due to an increase in surface area. Much of nanoscience requires that you forget what you know and start learning all over again.
纳米尺度最令人激动和最具挑战性的方面之一就是量子力学在其中起的作用。
量子力学的规则非常不同于经典物理学。
这意味着在纳米层面,物质的有时表现的不稳定,而产生与常识相违背的现象。
你不能走向一面墙,马上又穿墙而过到达墙的另一边,但是在纳米水平电子就可以——这被称为电子隧道效应。
绝缘体物质,其含义是不能携带电荷,但是当降低到纳米水平时,如果大批存在也许会变成半导体。
因为表面面积的增加物体的熔点也会变化。
所以大部分纳米材料要求你忘记你所了解的知识,开始重新学习。
So what does this all mean? Right now, it means that scientists are experimenting with substances at the nanoscale to learn about their properties and how we might be able to take advantage of them in various applications. Engineers are trying to use nano-size wires to create smaller, more powerful microprocessors. Doctors are searching for ways to use nanoparticles in medical applications. Still, we've got a long way to go before nanotechnology dominates the technology and medical markets.
这一切意味着什么?现在,这意味着科学家们正在用纳米水平的物质试验,以了解它们的性质,以及在不同的应用领域我们如何能利用好它们。
工程师们正在尝试用纳米大小的金属线来创造更小、更强大的微处理机,医生们正在寻找在医疗应用领域使用纳米颗粒的方式。
但是,在纳米技术统治技术和医疗市场之前还有很长的路要走。
In the world of "Star Trek," machines called replicators can produce practically any physical object, from weapons to a steaming cup of Earl Grey tea. Long considered to be exclusively the product of science fiction, today some people believe replicators are a very real possibility. They call it molecular manufacturing, and if it ever does become a reality, it could drastically change the world.
在《星际迷航》的世界里,被称为复制者的机器可以生产几乎任何物体,从武器到一杯冒着热气的格雷伯爵茶。
长久以来复制者被认为是科幻小说专属的产品,可是现在有些人相信这些机器是非常真实的并且有可能存在的。
人们把它称为分子制造者,如果这些机器真的变为现实,它们将极大地改变世界。
Atoms and molecules stick together because they have complementary shapes that lock together, or charges that attract. Just like with magnets, a positively charged atom will stick to a negatively charged atom. As millions of these atoms are pieced together by nanomachines, a specific product will begin to take shape. The goal of molecular manufacturing is to manipulate atoms individually and place them in a pattern to produce a desired structure.
原子和分子粘在一起是因为它们有互补的形状,这样的形状锁在一起,或者它们的电荷互相吸引。
就像磁铁一样,带正电的原子会粘住带负电的原子,千百万这样的原子由纳米机器粘在一起,一个特殊的产品就将成形。
分子制造的目标就是控制单个的原子,把它们按照某种样子放置,这样就可以生产出想要的结构。
The first step would be to develop nanoscopic machines, called assemblers, that scientists can program to manipulate atoms and molecules at will. Rice University Professor Richard Smalley points out that it would take a single nanoscopic machine millions of years to assemble a meaningful amount of material. In order for molecular manufacturing to be practical, you would need trillions of assemblers working together simultaneously. Eric Drexler believes that assemblers could first replicate themselves, building other assemblers. Each generation would build another, resulting in exponential growth until there are enough assemblers to produce objects 第一步是研发纳米机器,也被称为装配器。
这样科学家可以按照自己的意愿让这些装配器控制原子和分子。
莱斯大学的Richard 教授指出要组装一定数量的物质,一台纳米装配器要花上几百万年的时间。
为了让分子制造变得更实际一些,你需要让无数的装配器同时工作。
Eric 相信,装配器首先要复制自己,建造其它的装配器,每一代会建造另一代,以指数方式增长,直到有足够的装配器生产物品。
Assemblers might have moving parts like the nanogears in this concept drawing. Trillions of assemblers and replicators could fill an area smaller than a cubic millimeter, and could still be too small for us to see with the naked eye. Assemblers and replicators could work together to automatically construct products, and could eventually replace all traditional labor methods. This could vastly decrease manufacturing costs, thereby making consumer goods plentiful, cheaper and stronger. Eventually, we could be able to replicate anything, including diamonds, water and food. Famine could be eradicated by machines that fabricate foods to feed the hungry.
在上述描绘的概念中,装配器可能有移动的零件比如纳米齿轮,无数的装配器和复制者可以填满一个比立方毫米还要小的区域,并且依然还是太小以至于我们的肉眼看不见。
装配器和复制者可以一起工作,这样可以自动建造产品,可以最终取代所有传统的劳动力方法。
这可以大大降低制造费用,从制造更多,更便宜,功能更强的消费品。
最终,我们能够复制任何东西,包括钻石、水和食物。
饥荒会被消除,因为有机器制造食物来喂养饥饿的人。
Nanotechnology may have its biggest impact on the medical industry. Patients will drink fluids containing nanorobots programmed to attack and reconstruct the molecular structure of cancer cells and viruses. There's even speculation that nanorobots could slow or reverse the aging process, and life expectancy could increase significantly. Nanorobots could also be programmed to perform delicate surgeries -- such nanosurgeons could work at a level a thousand times more precise than the sharpest scalpel. By working on such a small scale, a nanorobot could operate without leaving the scars that conventional surgery does. Additionally, nanorobots could change your physical appearance. They could be programmed to perform cosmetic surgery, rearranging your atoms to change your ears, nose, eye color or any other physical feature you wish to alter.
对于医疗工业纳米技术可能有最大的影响。
病人会喝下含有纳米机器人的液体,这些纳米机器人会按照程序设定来攻击癌细胞和病毒的并且重建它们的分子结构。
甚至有猜测说纳米机器人可以减缓或逆转衰老的过程,寿命预期会大大增加。
纳米机器人也可以被设定用来做精密的手术——这样的纳米外科医师的工作水平可以比最尖锐的解剖刀还要精准一千倍。
通过在这样小的水平上工作,纳米机器人在工作时可以不留下常规手术中会有的伤口。
此外,纳米机器人还可以改变你的外貌。
它们可以被设定来做美容手术,重新安排你的原子,来改变你的耳朵、鼻子、眼睛的颜
色,或者任何你希望改变的外貌特点。
Nanotechnology has the potential to have a positive effect on the environment. For instance, scientists could program airborne nanorobots to rebuild the thinning ozone layer. Nanorobots could remove contaminants from water sources and clean up oil spills. Manufacturing materials using the bottom-up method of nanotechnology also creates less pollution than conventional manufacturing processes. Our dependence on non-renewable resources would diminish with nanotechnology. Cutting down trees, mining coal or drilling for oil may no longer be necessary -- nanomachines could produce those resources.
纳米技术有潜力对环境产生积极的影响。
比如,科学家们可以让空中的纳米机器人重建正在变薄的臭氧层。
纳米机器人可以移除水源中的污染物,清扫溅出的油。
使用纳米技术从细节开始的方法来制造材料,相比常规的制造过程产生的污染更少。
拥有纳米技术后我们对于不可再生资源的依赖性会降低。
砍树、采煤或钻井勘探石油也许不再必要——纳米机器可以生产这些资源。
Many nanotechnology experts feel that these applications are well outside the realm of possibility, at least for the foreseeable future. They caution that the more exotic applications are only theoretical. Some worry that nanotechnology will end up like virtual reality -- in other words, the hype surrounding nanotechnology will continue to build until the limitations of the field become public knowledge, and then interest (and funding) will quickly dissipate.
许多纳米技术专家觉得这些应用都不在可能实施的领域里,至少在可预见的未来是这样。
他们提示说更奇异的应用只是理论性的。
有些人担心纳米技术最终会是虚拟现实——换句话说,围绕在纳米技术周围的炒作将继续增强,直到这个领域的局限性成为公共知识,然后兴趣(和资助)会很快消散。
The most immediate challenge in nanotechnology is that we need to learn more about materials and their properties at the nanoscale. Universities and corporations across the world are rigorously studying how atoms fit together to form larger structures. We're still learning about how quantum mechanics impact substances at the nanoscale. Nanotechnology will definitely continue to impact us as we learn more about the enormous potential of the nanoscale.
纳米技术领域现在面临的挑战是我们需要了解更多有关纳米层面的材料和它
们的性质的知识。
全世界的大学和企业正在仔细地研究原子如何连在一起以构成更大的结构,我们还正在学习量子力学如何在纳米水平影响物质。
当我们了解更多纳米水平巨大的潜力后纳米技术肯定会继续影响我们。
Text 10 全球变暖
Global warming is about much more than hotter summers, winter floods, and farting cows. There is absolutely no question that the earth is warming up fast, and few climate scientists would argue with this. The dispute lies in whether or not the warming we are now experiencing simply reflects a natural turnabout in the recent global temperature trend or results from the polluting impact of human activities since the Industrial Revolution really began to take hold.
全球变暖远远不止是更热的夏天,冬天的洪水,还有放屁的牛。
毫无疑问地球正在快速变暖,几乎没有气候科学家会对此有争议。
这一争论的焦点在于:我们正在经历的变暖仅仅反映了最近全球气温变化趋势的自然转变,还是工业革命真正开始以来人类活动造成污染影响的结果。
预测气候变化时极其困难的,这也解释了为什么未来气温升高和海平面变化的模型要经常进行修订。
但是现在的证据无可辩驳:人类行为正在推动现在的行星变暖周期。
尽管有一些特立独行的科学家,石油公司的支持者,还有世界最大污染国的总统,但是压倒性的一致意见是如果没有减少温室气体的排放,情况真的会变得很糟。
Amazingly,this prospect is still played own and intentionally hidden by some, most recently by Danish statistician, Bjorn Lomborg. In his widely savaged book, The Skeptical Environmentalist, Lomborg denigrates global warming and its future impact, while at the same time, through highly selective references to scientific research, coming to the conclusion that all is right with the world.
但令人惊讶的是,这种可能性依然被淡化,并且被人有意隐藏,最近被丹麦统计学家比约恩.隆伯格隐藏。
在他广受抨击的一书《令人怀疑的环境学家》中,隆伯格诋毁全球变暖和它未来的影响。
与此同时,通过对科学研究成果十分有选择性地查阅,他得出结论说,世界一切都好。
过去的70年间,地球比上个千年的任何时间都要热,就在过去几十年间这种变暖一直在急剧加速。
毫无疑问每个人都至少有一位更年长的亲戚,他经常回想过去
某个时候,那时夏天更热,天空更蓝。
Meteorological records show, however, that this is simply a case of selective memory, and in fact 19 of the hottest years on record have occurred since 1980s, with the late 1990s seeing the warmest years of all across the planet as a whole.
但是气象记录显示,这仅仅是选择性记忆的情况。
实际上,记录中19个最热的年份发生在1980年之后,而二十世纪九十年代末期见证了整个星球上最暖的年份。
地球现在比它46亿年历史上90%多的时间都要暖。
到21世纪末我们的星球将经历比过去15万年来任何时候都更高的温度。
上升的气温趋势不仅仅是气候的小问题,也不能完全由太阳输出的变化来解释。
尽管太阳输出很显然对气候有显著影响。
Rather, it is a consequence of two centuries of pollution, which is now enclosing the earth in an insulating blanket of carbon dioxide, methane, nitrous oxide, and other greenhouse gases.
实际上,这是两个世纪污染的结果,这种污染现在把地球包围在一个由二氧化碳、甲烷、一氧化二氮,还有其他温室气体构成的隔热毯子当中。
自从18世纪晚期以来,我们的种族一直在从事一项巨大的星球试验,最终会有什么样的结果我们也只能仅仅靠猜测。
不幸的是,对于我们而言,现在试验进入了失控的阶段,由于内在的惯性,我们不能马上停下来,只能放慢速度。
即使我们今天能够使温室气体的排放稳定下来,气温和海平面依旧会继续上升几百年。
我们时代的大问题是:我们有决心做这些吗?或者我们会避开这个问题,让情况恶化到落后者遭殃的境地?
We know from studies of polar ice cores that before the hiss of steam and grinding of metal on metal that heralded the arrival of the industrial world, the concentrations of greenhouse gases in the atmosphere had been pretty much constant since the glaciers retreated at the end of the last Ice Age
我们从极地冰核的研究中知道,自从上一次冰川时代结束时冰川不断消融以来,大气中温室气体的浓度一直非常稳定。
这些都是在预示着工业世界的到来的嘶嘶的蒸汽声和金属之间的摩擦声出现之前的状况。
但是,自前工业时代以来,大气中的二氧化碳水平增加了30%,其它温室气体的含量也急剧增加,尤其是甲烷和一氧化二氮。
现在大气中二氧化碳的含量比持续了42万年的水平要高,过去两千万年来也没有被超出过。
气体的增加的速度也是前所未有的,过去100年的增加率比过去两万年的任何时候要高。
As these gases have accumulated in the earth’s atmosphere so they have, quite literally, caused it to act in the manner of a greenhouse, allowing heat from the sun in but hindering its escape back into space. In fact, our atmosphere has operated in this way for billions of years, moderating temperature swings and extremes, but our pollution is now strongly enhancing this greenhouse effect, with the result that the earth has been progressively warming up for most of the last hundred years.
因为这些气体在地球大气中积累,所以,不夸张地说,它们使得大气变得像一个温室一样工作,让来自太阳的热量进来,但阻止热量重新返回太空。
实际上,我们的大气一直以这种方式运转了几十亿年,减缓气温的改变和减少极端气温的出现,但是我们现在的污染大大增强了这种温室效应,结果是过去的一百年来大部分时间地球温度一直在逐步升高。
但是,因为气候机器如此复杂,没有一种单独的影响力可以被孤立出来,还有许多其他因素会影响全球气温。
尤其是太阳的输出,也是随着时间而变化。
太阳有一个有规则变化的11年活动周期,被称为太阳黑子周期,在这期间太阳输出的变化大约是0.1%。
太阳的输出在更长的期间内也会变化,从几百年到几万年。
这些变化在让行星变凉或变暖方面都起着重要的作用。
火山喷发也对地球气候起着重要作用。
尽管详细的情况更加复杂,大规模的爆炸性的喷发会将大量的二氧化硫或其它含硫气体喷射到平流层,这会产生广泛的冷却效应,因为这可以减低太阳辐射到达地球表面的水平。
有时火山和太阳的共同作用可以引起更长久的气候变化。
Attempting to pin down the true variation in global temperatures over the past thousand years is difficult, not least because records prior to the last couple of hundred years are far from reliable. A further complication arises from the fact that while one part of the world might be heating up,。