实验二实验报告参考内容
2-电动机顺序起停控制实验(参考答案)
1、若更改控制要求,要求在电动机M1起动后M2才能起动(M1和M2有单独的起动按钮SB1和SB2),按下停止按钮SB3后两台电动机都停止下来。试问主回路、PLC外部接线图和PLC梯形图是否需要修改,请写出I/O分配表及梯形图。
答:主回路和PLC外部接线均可不改动,只需根据新的控制要求修改梯形图。
I/O分配表:
梯形图:
2、PLC控制系统与继电器-接触器控制系统相比较,优势有哪些?
答:1)可靠性高,抗干扰能力强
2)系统的设计、安装、调试工作量小
3)维修工作量小,维护方便。
4)体积小,能耗低
结
论
年月日
教
师
批
阅年月日
1)主回路
2)I/O分配表及PLC外部硬件接线图
图2两台电动机顺序起停主回路图3 PLC外部接线图
表1 I/O分配表
3、PLC程序
梯形图:
指令表:
4、实验步骤
1)连接主回路,检查。
2)PLC外部硬件接线,检查。
3)编写PLC程序,检查。
4)传送程序至PLC中,调试。
5)观察实验现象,做好相关实验记录。
实验报告专业班级指导教师实验室k1305姓名学号同组人实验名称实验二电动机顺序起停控制实验时间2硬件接线1主回路分配表及plc外部硬件接线图一实验目的理解plc的工作原理及使用方法
实验报告
专业班级指导教师修云实验室K1-305
姓名学号同组人
实验名称实验二电动机顺序起停控制实验时间
一、实验目的
1.理解PLC的工作原理及使用方法。
2.掌握PLC中定时器的工作原理及编程方法。
3.掌握PLC对电动机的顺序起停控制方法。
二、实验设备
计算机基础实验报告实验一二参考模板
计算机基础实验报告实验一二参考模板一、实验目的计算机基础实验一的目的在于让学生熟悉计算机的基本操作和常用软件的使用,培养学生的动手能力和问题解决能力。
实验二则侧重于加深对计算机系统和网络知识的理解,提高学生的综合应用能力。
二、实验环境实验在学校的计算机实验室进行,每台计算机均安装了 Windows 操作系统,并配备了常用的办公软件、编程工具和网络浏览器等。
实验室还提供了稳定的网络环境,以便进行网络相关的实验操作。
三、实验内容与步骤(一)实验一1、计算机硬件的认识打开计算机主机箱,观察主板、CPU、内存、硬盘、显卡等硬件设备的外观和接口。
了解各硬件设备的主要功能和性能指标。
2、操作系统的安装与设置使用安装光盘或 U 盘启动盘,安装 Windows 操作系统。
进行系统初始化设置,如用户名、密码、日期时间等。
安装驱动程序,确保硬件设备正常工作。
3、常用办公软件的使用打开 Word 软件,进行文档的创建、编辑、排版和保存。
使用 Excel 软件进行表格的制作、数据计算和图表绘制。
利用 PowerPoint 软件创建演示文稿,添加文字、图片、动画等元素。
(二)实验二1、计算机网络基础了解计算机网络的组成、分类和拓扑结构。
学习 IP 地址、子网掩码、网关和 DNS 的概念和设置方法。
通过命令提示符(CMD)窗口,使用 Ping 命令检测网络连通性。
2、网络服务与应用配置 Web 服务器和 FTP 服务器,实现网页的发布和文件的上传下载。
学会使用浏览器访问网页、搜索信息和下载文件。
了解电子邮件的工作原理,注册邮箱并进行邮件的收发。
四、实验结果与分析(一)实验一1、硬件认识方面,学生能够准确识别计算机的主要硬件设备,并对其功能有了初步的了解。
但对于一些较新的硬件技术和性能参数的理解还不够深入。
2、操作系统的安装和设置过程较为顺利,大部分学生能够独立完成。
但在驱动程序的安装过程中,少数学生遇到了兼容性问题,需要通过更新驱动或寻求技术支持解决。
萃取实验报告记录(二)2024
萃取实验报告记录(二)引言概述本文旨在记录萃取实验的相关过程和结果。
萃取是一种常用的分离和提取技术,通过溶剂的选择性溶解,将目标物质从混合物中分离出来。
本实验采用的是液液萃取方法,通过有机溶剂和水的两相分离特性,进行了目标物质的萃取。
本报告将依次介绍实验的目的、材料与方法、实验步骤与观察结果、实验数据的处理与分析以及总结与结论。
材料与方法1. 实验材料:包括目标物质、有机溶剂(如甲醇、乙醇等)、水溶液等。
2. 实验仪器:玻璃容器、移液管、离心机等。
3. 实验步骤:包括样品的制备、溶剂的选择、溶剂的添加和混合、两相的分离等。
实验步骤与观察结果1. 样品的制备:对目标物质进行处理和准备,如固态物质的研磨或溶液的制备。
2. 溶剂的选择:根据目标物质的特性,选择合适的有机溶剂,并考虑其溶解度和毒性等因素。
3. 溶剂的添加和混合:将样品溶解于有机溶剂中,通过轻轻摇动或搅拌混合,使目标物质均匀分布。
4. 两相的分离:将混合物置于离心机中进行离心分离,利用两相的密度差异将有机溶剂和水分离开来。
5. 观察结果:观察两相的分离情况,记录有机相和水相的颜色、浊度、体积等变化。
实验数据的处理与分析1. 计算萃取率:根据实验前后样品中目标物质的浓度差异,计算萃取率。
2. 数据统计与图表分析:将不同实验条件下的萃取率进行统计和比较,绘制图表展示结果。
总结与结论通过本实验的萃取操作,成功地将目标物质从混合物中分离出来。
根据实验结果,可以判断出最适合萃取的有机溶剂和萃取条件,为后续的科学实验和工业生产提供了依据。
此外,本实验还发现了某些因素对萃取率的影响,对于进一步优化萃取过程具有指导意义。
因此,液液萃取是一种有效的分离和提取技术,可以在不同领域中得到广泛应用。
注:以上内容为虚拟写作,仅供参考。
数值分析实验报告--实验2--插值法
1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
2-1 螺栓连接性能测试实验报告(已填数据仅供参考)
2-1 螺栓连接性能测试实验报告(已填数据、仅供参考)实验二螺栓组联接性能测试实验报告实验名称班级姓名学号日期成绩一、实验目的 1.掌握螺栓与被联接件的受力-变形规律,并绘制相关曲线; 2.作出螺栓组载荷分布图及应力变化规律分布曲线; 3.了解应变测试原理。
二、实验条件1、实验台型号多功能螺栓组联结综合实验台 2、测试仪器型号及规格(1)静态应变仪CQYJ-12(2)应变片:R=120欧。
灵敏系数2.2 (3)加载负荷: N三、实验内容1.螺栓受力分析及计算; 2.螺栓应变计算; 3.残余预紧力计算;4.利用实测数据描绘螺栓受力―变形图; 5.螺栓组受倾覆力矩时应力变化。
四、实验步骤1.松开联接螺栓,在控制面板上调节ε1-ε调节电位器,使电桥平衡(输出基本为零,或保持5根螺栓的初始值接近)。
2.用扳手给每根螺栓预紧,预紧应变值为120με-200με左右,可在控制面板上读取。
3.按列表中的负载值逐次加载,并记录1―5号螺栓的应变值。
4.计算相关参数并绘制图线。
5.若使用计算机处理,则打开相应界面,每一次加载后,点击界面上的“测试”键后,记录数据。
6.根据实验数据写实验报告。
五、螺栓组静态特性实验数据螺栓号 1 2 0 298 378 3 0 302 300 4 0 298 223 5 0 300 152 6 0 298 447 7 0 298 381 8 0 301 302 9 0 299 224 10 0 298 150 预调零应变(??) 0 预紧应变(??)第一次测试(??) 300 449 第二次测试(??)第三次测试(??)平均值(??)负荷应变(??)应力/1000 预紧拉力F1(N)实验拉力F2(N)负荷拉力△F(N) 447 454 376 375 303 295 224 221 151 151 452 445 380 381 295 294 226 225 152 152 450 150 92700 376 78 77525 299 -3 61663 223 -75 45869 151 -149 31175 448 150 92288 381 83 78417 297 -4 61182 225 -74 46350 151 -147 31175 2050 3075 1025 2036 2571 535 2063 2045 -18 2036 1521 -515 2050 1034 -1016 2036 3061 1025 20362601 565 2057 2029 -27 2043 1537 -506 2036 1034 -1002 六、螺栓组联结受力图螺栓号 1、2、3、4、5 6、7、8、9、10 实验曲线理论曲线七、思考题1、螺栓组连接理论计算与实测的工作载荷间存在误差的原因有哪些?原因是因为实验中用的螺栓它是工业产品,它只能保证测试过程当中一个范围范围内不会受到破坏,所测量得到的数据就是一系列离散的数据。
实验二空间数据库管理及属性编辑实验报告
实验二空间数据库管理及属性编辑实验报告The following text is amended on 12 November 2020.实验报告一、实验名称二、实验目的三、实验准备四、实验内容及步骤五、实验后思考题班级:资工(基)10901姓名:魏文风序号:28实验二、空间数据库管理及属性编辑一、实验目的1.利用ArcCatalog管理地理空间数据库,理解Personal Geodatabse空间数据库模型的有关概念。
2.掌握在ArcMap中编辑属性数据的基本操作。
3.掌握根据GPS数据文件生成矢量图层的方法和过程。
4.理解图层属性表间的连接(Join)或关联(Link)关系。
二、实验准备预备知识:ArcCatalog 用于组织和管理所有 GIS 数据。
它包含一组工具用于浏览和查找地理数据、记录和浏览元数据、快速显示数据集及为地理数据定义数据结构。
ArcCatalog 应用模块帮助你组织和管理你所有的 GIS 信息,比如地图,数据集,模型,元数据,服务等。
它包括了下面的工具:浏览和查找地理信息。
记录、查看和管理元数据。
创建、编辑图层和数据库导入和导出 geodatabase 结构和设计。
在局域网和广域网上搜索和查找的 GIS 数据。
管理 ArcGIS Server。
ArcGIS 具有表达要素、栅格等空间信息的高级地理数据模型,ArcGIS支持基于文件和DBMS(数据库管理系统)的两种数据模型。
基于文件的数据模型包括Coverage、Shape文件、Grids、影像、不规则三角网(TIN)等GIS数据集。
Geodatabase 数据模型实现矢量数据和栅格数据的一体化存储,有两种格式,一种是基于Access文件的格式-称为Personal Geodatabase,另一种是基于Oracle或SQL Server等RDBMS关系数据库管理系统的数据模型。
GeoDatabase是 geographic database 的简写,Geodatabase 是一种采用标准关系数据库技术来表现地理信息的数据模型。
28波尔振动(二)实验报告讲解
实验2.8 波尔振动实验(二)实验人姓名:合作人:学院:物理工程与科学技术学院专业:光信息科学与技术年级:级学号:日期:年月日室温:24℃相对湿度:67%实验数据储存【实验目的】1.观察和研究自由振动、阻尼振动、受迫振动的特性2.观察和研究振动过程的拍频、相图、机械能转换和守恒现象【仪器用具】仪器名称数量型号技术指标扭摆(波尔摆) 1 ZKY-BG 固有振动频率约0.5Hz秒表 1 DM3-008 石英秒表,精度0.01s三路直流稳压稳流电源1 IT6322 三路隔离,0-30V/1mV,0.3A/1mA台式数字万用表 1 DM3051 5-3/4位,1μV-1000V,10nA-10A,准确度为读数的0.025%数据采集器及转动传感器1 SW850及CI6531 最高采样率1000Hz,分辨率0.25°,准确度±0.009°实验测控用计算机 1 IdeaCenterB320i 一体台式计算机【原理概述】1.振动的频谱任何周期性的运动均可分解为简谐振动的线性叠加。
采集一组如图1所示的扭摆摆动角度随时间变化的数据之后,对其进行傅立叶变换,就可以得到一组相对振幅随频率的变化数据。
以频率为横坐标,相对振幅为纵坐标可作出一条如图2所示的曲线,即为波尔振动的频谱。
在自由振动状态下,峰值对应的频率就是波尔振动仪的固有振动频率。
图1 角度随时间变化关系图2 振动的频谱2.拍频3.相图和机械能扭摆的摆动过程存在势能和动能的转换,其势能和动能为其中I 为扭摆的转动惯量。
势能与摆动角度的平方成正比,动能与角速度的平方成正比。
若以角度为横坐标,角速度为纵坐标画出两者的关系曲线,称为相图。
通过相图可直观地看出扭摆振动过程中势能与动能的变化。
图3 所示为阻尼振动的相图,机械能不断损耗,相图逐渐缩小至中心点。
图4 所示为理想的自由振动的相图,势能和动能相互转换,但总的机械能始终保持不变,相图为一个面积保持不变的椭圆。
实验二MATLAB程序设计含实验报告
实验二 MATLAB 程序设计一、 实验目的1.掌握利用if 语句实现选择结构的方法。
2.掌握利用switch 语句实现多分支选择结构的方法。
3.掌握利用for 语句实现循环结构的方法。
4.掌握利用while 语句实现循环结构的方法。
5.掌握MATLAB 函数的编写及调试方法。
二、 实验的设备及条件计算机一台(带有MATLAB7.0以上的软件环境)。
M 文件的编写:启动MATLAB 后,点击File|New|M-File ,启动MATLAB 的程序编辑及调试器(Editor/Debugger ),编辑以下程序,点击File|Save 保存程序,注意文件名最好用英文字符。
点击Debug|Run 运行程序,在命令窗口查看运行结果,程序如有错误则改正三、 实验内容1.编写求解方程02=++c bx ax 的根的函数(这个方程不一定为一元二次方程,因c b a 、、的不同取值而定),这里应根据c b a 、、的不同取值分别处理,有输入参数提示,当0~,0,0===c b a 时应提示“为恒不等式!”。
并输入几组典型值加以检验。
(提示:提示输入使用input 函数)2.输入一个百分制成绩,要求输出成绩等级A+、A 、B 、C 、D 、E 。
其中100分为A+,90分~99分为A ,80分~89分为B ,70分~79分为C ,60分~69分为D ,60分以下为E 。
要求:(1)用switch 语句实现。
(2)输入百分制成绩后要判断该成绩的合理性,对不合理的成绩应输出出错信息。
(提示:注意单元矩阵的用法)3.数论中一个有趣的题目:任意一个正整数,若为偶数,则用2除之,若为奇数,则与3相乘再加上1。
重复此过程,最终得到的结果为1。
如:2?13?10?5?16?8?4?2?16?3?10?5?16?8?4?2?1运行下面的程序,按程序提示输入n=1,2,3,5,7等数来验证这一结论。
请为关键的Matlab 语句填写上相关注释,说明其含义或功能。
实验二戴维南定理实验报告
实验二戴维南定理实验报告实验二:戴维南定理实验报告引言:戴维南定理(D'Alembert's principle)是力学中一项重要的原理,它在分析物体的平衡和运动时起到了关键作用。
本次实验旨在通过实际操作验证戴维南定理,并深入探究其原理和应用。
实验目的:1. 验证戴维南定理的正确性;2. 理解戴维南定理的物理意义;3. 掌握运用戴维南定理解决实际问题的方法。
实验器材:1. 弹簧振子;2. 动力学实验装置;3. 计时器;4. 重物。
实验步骤:1. 将弹簧振子固定在实验装置上,并使其处于静止状态;2. 通过实验装置施加一个水平方向的力,使弹簧振子开始运动;3. 使用计时器记录弹簧振子的运动时间;4. 改变施加的力的大小和方向,重复步骤2和3。
实验结果与分析:通过实验观察和数据记录,我们得到了弹簧振子在不同条件下的运动时间。
根据戴维南定理,物体在平衡或运动状态下所受的合外力矩为零。
我们可以根据实验结果验证这一定理的正确性。
首先,当施加的力为零时,弹簧振子处于静止状态。
根据戴维南定理,此时物体所受的合外力矩为零,即弹簧振子处于平衡状态。
实验结果显示,弹簧振子在此情况下停留在原位,验证了戴维南定理的正确性。
其次,当施加的力不为零且方向与弹簧振子运动方向相反时,根据戴维南定理,物体所受的合外力矩仍为零。
实验结果显示,弹簧振子的运动时间较长,与我们的预期相符。
最后,当施加的力不为零且方向与弹簧振子运动方向相同时,根据戴维南定理,物体所受的合外力矩不为零。
实验结果显示,弹簧振子的运动时间较短,与我们的预期相符。
结论:通过本次实验,我们验证了戴维南定理的正确性。
戴维南定理告诉我们,在平衡或运动状态下,物体所受的合外力矩为零,这是物体保持平衡或运动的必要条件。
实际应用中,我们可以利用戴维南定理解决各种力学问题,例如分析刚体的平衡条件、计算物体的加速度等。
实验中,我们使用弹簧振子作为实验对象,通过改变施加的力的大小和方向,观察弹簧振子的运动时间,并与戴维南定理进行对比分析。
实验报告结果分析参考(3篇)
第1篇一、实验背景本实验旨在探究(实验目的)在(实验条件)下,对(实验对象)的影响。
通过对实验数据的分析,得出结论,为后续研究提供依据。
二、实验方法1. 实验材料:选取(实验材料)作为实验对象。
2. 实验分组:将实验对象分为(实验组)和(对照组),每组(样本数量)。
3. 实验操作:按照(实验步骤)进行操作。
4. 数据采集:在实验过程中,记录相关数据。
三、实验结果1. 实验组数据:(1)指标1:实验组在(指标1)方面的变化为(具体数值),对照组在(指标1)方面的变化为(具体数值)。
(2)指标2:实验组在(指标2)方面的变化为(具体数值),对照组在(指标2)方面的变化为(具体数值)。
2. 对照组数据:(1)指标1:对照组在(指标1)方面的变化为(具体数值)。
(2)指标2:对照组在(指标2)方面的变化为(具体数值)。
四、结果分析1. 实验组与对照组在指标1方面的比较:(1)实验组在指标1方面的变化明显大于对照组,说明(实验目的)对(实验对象)具有显著影响。
(2)分析原因,可能是由于(原因分析)。
2. 实验组与对照组在指标2方面的比较:(1)实验组在指标2方面的变化与对照组相比无明显差异,说明(实验目的)对(指标2)的影响不显著。
(2)分析原因,可能是由于(原因分析)。
五、结论1. 通过本实验,得出以下结论:(1)在(实验条件)下,对(实验对象)具有显著影响。
(2)对(指标2)的影响不显著。
2. 为后续研究提供以下建议:(1)进一步探究(实验目的)对(实验对象)的机理。
(2)优化实验条件,提高实验结果的准确性。
(3)结合其他实验方法,从多个角度验证实验结果。
六、实验不足与展望1. 实验不足:(1)实验样本数量有限,可能存在偶然性。
(2)实验条件控制不够严格,可能影响实验结果的准确性。
2. 展望:(1)扩大实验样本数量,提高实验结果的可靠性。
(2)优化实验条件,提高实验结果的准确性。
(3)深入研究(实验目的)对(实验对象)的影响机理,为实际应用提供理论依据。
大工《水利工程实验(二)》实验报告及要求【内容仅供参考】696
实验名称:土的压缩试验
一、实验目的:通过土的压缩实验得到试样在侧限与轴向排水条件下的孔隙比和压力的关系,即压缩曲线-e~p 曲线,并以此计算土的压缩系数a1-2,判断土的压缩性,为土的沉降变形计算提供依据。
二、实验原理:
1、计算公式
(1)试样初始孔隙比: e
0=(1+w
)G
S
ρ
W
/ ρ
-1
(2)各级压力下试样固结变形稳定后的孔隙比: e
i =e
- (1+e
)/h
*Δh
i
(3)土的压缩系数: a
1-2 =(e
1
– e
2
)/(p
2
- p
1
) = - Δe/Δp
(4)土的压缩模量: E
s1-2=(1+e
)/a
1-2
三、实验内容:
1、实验仪器、设备:支架、变形量测、固结容器、加压设备
2、实验数据及结果
3、实验成果整理
四、实验结果分析与判定:
(1)根据实验结果,该土的压缩类别如何?
土的压缩系数为,按土的压缩性分数规定,该为中压缩性土。
实验名称:钢筋混凝土简支梁实验
一、实验目的:1、分析梁的破坏特征,根据梁的裂缝开展判断梁的破坏形态;
2、观察裂缝开展,记录梁受力和变形过程,画出茶载挠度曲线;
3、根据每级荷。
实验报告2-1
实验(实训)报告项目名称第二次实验时间序列SPSS分析(一)所属课程名称统计学项目类型统计学上机实验实验(实训)日期2014年5月18日班级12计算机1班学号120104200122姓名刘倩颖指导教师陈雄强浙江财经大学教务处制【项目内容】1)动态数列逐期、累计增长量计算;2)动态数列定基、环比发展速度计算;3)动态数列定基、环比增长速度计算;4)移动平均法和最小平方法计算动态数列的长期趋势。
【方案设计】1)搜集数据2)计算浙江省GDP的逐期增长量和累计增长量;3)计算浙江省GDP的环比发展速度和定基发展速度;4)计算浙江省GDP的环比增长速度、定基增长速度以及平均增长速度5)采用移动平均法分别计算浙江省GDP跨距3年和跨距4年的移动平均值;6)采用最小平方法拟合浙江省GDP序列的趋势方程。
【实验(实训)过程】(步骤、记录、数据、程序等)1)搜集数据,在国家统计局的网络上找到1978年-2012年的人均GDP和人均GDP指数,输入到SPSS软件中。
年份人均GDP(亿元)人均GDP指数1978381.23100 1979419.25106.1 1980463.25113 1981492.16117.5 1982527.78126.2 1983582.68137.9 1984695.2156.8 1985857.82175.5 1986963.19188.2 19871,112.38206.6 19881,365.51226.3 19891,519.00231.9 19901,644.00237.3 19911,892.76255.6 19922,311.09288.4 19932,998.36324.9 19944,044.00363.3 19955,045.73398.6 19965,845.89433.9 19976,420.18469.4 19986,796.03501.4 19997,158.50534.9 20007,857.68575.5 20018,621.71618.720029,398.05670.4200310,541.97733.1200412,335.58802.2200514,185.36887.7200616,499.70994.7200720,169.461,129.60200823,707.711,232.10200925,607.531,339.00201030,015.051,471.70201135,197.791,600.90201238,459.471,715.102)计算浙江省GDP的逐期增长量和累计增长量;首先,创建上年度时间序列【转换】-【创建时间序列】-将“人均GDP”添加到“变量->新名称”的文本框中-将“名称”改为“滞后一期”-在“函数”里面选择“滞后”-【确定】。
物理实验报告格式目录
一、实验名称1. 实验一:力的合成与分解2. 实验二:探究动能定理3. 实验三:验证机械能守恒定律4. 实验四:探究光的折射定律5. 实验五:测定金属的电阻率6. 实验六:验证欧姆定律7. 实验七:测定电容器的电容8. 实验八:测定电流的热效应9. 实验九:探究电流的磁效应10. 实验十:验证安培环路定理二、实验目的1. 实验一:掌握力的合成与分解的方法,加深对力的理解。
2. 实验二:验证动能定理,加深对动能和功的关系的理解。
3. 实验三:验证机械能守恒定律,探究机械能的转化。
4. 实验四:验证光的折射定律,加深对光的传播特性的理解。
5. 实验五:测定金属的电阻率,了解电阻率的测量方法。
6. 实验六:验证欧姆定律,掌握电路的测量方法。
7. 实验七:测定电容器的电容,了解电容的测量方法。
8. 实验八:测定电流的热效应,探究电流与热量的关系。
9. 实验九:探究电流的磁效应,了解电流与磁场的关系。
10. 实验十:验证安培环路定理,加深对电磁感应的理解。
三、实验原理1. 实验一:力的合成与分解原理2. 实验二:动能定理原理3. 实验三:机械能守恒定律原理4. 实验四:光的折射定律原理5. 实验五:电阻率测量原理6. 实验六:欧姆定律原理7. 实验七:电容器电容测量原理8. 实验八:电流的热效应原理9. 实验九:电流的磁效应原理10. 实验十:安培环路定理原理四、实验仪器与设备1. 实验一:力学实验平台、测力计、绳索等2. 实验二:滑块、斜面、重锤、打点计时器等3. 实验三:小车、斜面、滑轮、重锤、打点计时器等4. 实验四:光源、玻璃板、刻度尺、量角器等5. 实验五:电阻箱、金属棒、电流表、电压表等6. 实验六:电源、电阻、开关、导线等7. 实验七:电容器、电阻、电源、电流表、电压表等8. 实验八:电流表、电压表、电阻、电热器等9. 实验九:电流表、磁场计、导线等10. 实验十:安培计、磁场计、导线等五、实验步骤1. 实验一:力的合成与分解实验步骤2. 实验二:探究动能定理实验步骤3. 实验三:验证机械能守恒定律实验步骤4. 实验四:探究光的折射定律实验步骤5. 实验五:测定金属的电阻率实验步骤6. 实验六:验证欧姆定律实验步骤7. 实验七:测定电容器的电容实验步骤8. 实验八:测定电流的热效应实验步骤9. 实验九:探究电流的磁效应实验步骤10. 实验十:验证安培环路定理实验步骤六、实验数据记录与分析1. 实验一:力的合成与分解数据记录与分析2. 实验二:探究动能定理数据记录与分析3. 实验三:验证机械能守恒定律数据记录与分析4. 实验四:探究光的折射定律数据记录与分析5. 实验五:测定金属的电阻率数据记录与分析6. 实验六:验证欧姆定律数据记录与分析7. 实验七:测定电容器的电容数据记录与分析8. 实验八:测定电流的热效应数据记录与分析9. 实验九:探究电流的磁效应数据记录与分析10. 实验十:验证安培环路定理数据记录与分析七、实验结果与讨论1. 实验一:力的合成与分解结果与讨论2. 实验二:探究动能定理结果与讨论3. 实验三:验证机械能守恒定律结果与讨论4. 实验四:探究光的折射定律结果与讨论5. 实验五:测定金属的电阻率结果与讨论6. 实验六:验证欧姆定律结果与讨论7. 实验七:测定电容器的电容结果与讨论8. 实验八:测定电流的热效应结果与讨论9. 实验九:探究电流的磁效应结果与讨论10. 实验十:验证安培环路定理结果与讨论八、实验总结与反思1. 实验一:力的合成与分解总结与反思2. 实验二:探究动能定理总结与反思3. 实验三:验证机械能守恒定律总结与反思4. 实验四:探究光的折射定律总结与反思5. 实验五:测定金属的电阻率总结与反思6. 实验六:验证欧姆定律总结与反思7. 实验七:测定电容器的电容总结与反思8. 实验八:测定电流的热效应总结与反思9. 实验九:探究电流的磁效应总结与反思10. 实验十:验证安培环路定理总结与反思注:以上目录仅供参考,具体实验报告内容可根据实际情况进行调整。
实验二60秒倒计时电路设计的实验报告
实验二60秒倒计时电路设计的实验报告一、实验目的1.进一步熟悉Quartus II混合层次化设计方法。
2.学习7段数码管的驱动设计方法。
二、实验内容60秒倒计时电路如图1所示。
其中,模块cnt_d60完成60倒计数,输出结果为2位十进制BCD码。
模块SCNA_LED完成BCD码到7段数码管显示译码功能。
图1 60秒倒计时电路图2 60秒倒计时底层电路60倒计数模块cnt_d60底层电路如图2所示。
主要由2片74192(双向十进制计数器)构成。
模块cnt_d60和SCNA_LED的源设计文档(cnt_d60.bdf和SCAN_LED.vhd)提供给大家。
要求大家建立新工程,为模块cnt_d60和SCNA_LED新建封装(*.bsf),并根据图1完成顶层60秒倒计时电路设计。
完成以上程序设计,编译时器件选择Cyclone系列的EP1C12Q240C8。
引脚锁定参考表1内容。
注意:应把未分配管脚置为三态输入,切记!!表1 实验连线1.原理图设计输入(1)首先将模块cnt_d60和SCNA_LED的源文件放在等一下需要建立的文件中,打开QuartusII软件。
(2)选择路径。
选择File/New Project Wizard。
添写后以后,单击“NEXT”进入下一步。
(3)添加设计文件,在File name中选择路径然后添加模块cnt_d60和SCNA_LED的源文件,点击“Next”。
(4)选择FPGA器件。
Family选择Cyclone,先在Packge选择Any QFP,Pin Count 选择240,Speed grade选择8;然后在Available device中选择EP1C12Q240C8,点击“Next”。
(5)选择外部综合器、仿真器和时序分析器。
设置好后,单击“NEXT”进入下一步。
(6)结束设置。
“工程设置统计”窗口,列出了工程的相关设置情况。
最后单击“Finish”,结束工程设置。
实验一、二实验报告
实验一熟悉VC++开发环境实验一熟悉VC++开发环境一、实验目的1、熟悉VC++开发环境。
2、学会启动Visual C++集成环境;生成和编辑源程序;编译链接源程序;运行程序。
二、实验内容1、启动Visual C++当在桌面上建立了VC++的图标后,可通过鼠标双击该图标启动VC++;若没有建立相应的图标,则可以通过菜单方式启动VC++,即用鼠标单击“开始”菜单,选择“程序”,选择“Microsoft Visual Studio 6.0”,选择“Microsoft Visual C++ 6.0”启动VC++。
VC++启动成功后,就产生如图1.1所示的VC++集成环境。
VC++集成环境是一个组合窗口。
窗口的第一部分为标题栏;第二部分为菜单栏,其中包括“File(文件)”、“Edit(编辑)”、“View(视图)”、“Insert(插入)”、“Project(项目)”、“Build(编译、连接和运行)”、“Tools(工具)”、“Windows (窗口)”、“Help(帮助)”等菜单。
第三部分为工具栏,其中包括常用的工具按钮;第四部分为状态栏。
还有几个子窗口。
图1.1 VC++集成环境2、生成源程序文件生成源程序文件的操作步骤为:(1)选择“File”菜单中的“New”命令,产生“New”对话框,如图1.2所示。
图1.2 新建对话框(2)单击此对话框的左上角的File(文件)选项卡,选择C++ Source File 选项。
如下图所示:图1.3 设置源文件保存路径(3)设置源文件保存路径若将源文件保存在默认的文件存储路径下,则可以不必更改Location(目录)文本框,但如果想在其他地方存储源程序文件则需在对话框右半部分的Location (目录)文本框中输入文件的存储路径,也可以单击右边的省略号(…)来选择路径(例如输入“E:\sperls\vc试验手册\”,表示源程序文件将存放在“E:\sperls\vc 试验手册\”子目录下,当然,这么做还必须有个前提,就是你的电脑上必须已经建立了“E:\sperls\vc试验手册”这个文件夹)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
下次实验时交报告
以下内容仅仅是实验报告里关于数据处理的部分内容,主要是为了帮助有些同学理解,其他内容比如很多酶活力测定曲线图等也需要画出。
实验二 卷心菜中过氧化物酶热稳定性的初步研究
实验数据处理
如图1所示可得直线方程y = 0.0053x + 0.0413,其斜率为0.0053,即过氧化物粗酶的初始酶活为0.0053*60*10/0.1=31.8U ——60指60秒,10指稀释倍数,0.1mL 指酶液体积
相
对残余酶活的计算
表X 相对残余酶活
图18制作方法:做两个系列,系列二包括最后2点或3点,做直线——添加趋势线时在“趋势预测”倒推“6或5”个单位。
比较图19和20的斜率,判定两者的热失活速率常数的大小,明显100℃热处理失活要快得多。