交大硕士研究生必修基础数学-数值分析-插值与拟合方法

合集下载

插值与拟合

插值与拟合

且 f(1.5) ≈L1(1.5) = 0.885。
Lagrange插值法的缺点
• 多数情况下,Lagrange插值法效果是不错的, 但随着节点数n的增大,Lagrange多项式的次 (Runge)现象。
• 例:在[-5,5]上用n+1个等距节点作插值多项 式Ln(x),使得它在节点处的值与函数y = 1/(1+25x2)在对应节点的值相等,当n增大时, 插值多项式在区间的中间部分趋于y(x),但 对于满足条件0.728<|x|<1的x, Ln(x)并不趋 于y(x)在对应点的值,而是发生突变,产生 剧烈震荡,即Runge现象。
总结
• 拉格朗日插值:其插值函数在整个区间 上是一个解析表达式;曲线光滑;收敛 性不能保证,用于理论分析,实际意义 不大。
• 分段线性插值和三次样条插值:曲线不 光滑(三次样条已有很大改进);收敛 性有保证;简单实用,应用广泛。
1.2 二维插值
• 二维插值是基于一维插值同样的思想, 但是它是对两个变量的函数Z=f(x,y)进 行插值。
• n=5; • x0=-1:1/(n-1):1;y0=1./(1+25*x0.^2);y1=lagr(x0,y0,x); • subplot(2,2,2), • plot(x,z,'r-',x,y,'m-'),hold on %原曲线 • plot(x,y1,'b'),gtext('L8(x)','FontSize',12),pause %Lagrange曲线
基函数为
l0 (x)
x x1 x0 x1
x2 1 2
2
x
l1(x)
线性插值函数为

第2章 计算方法插值与拟合

第2章 计算方法插值与拟合

n
( xi ) ( xi x0 )(xi x1 )( xi xi 1 )(xi xi1 )( xi xn )
' n1
Ln( x)
n1 ( x) yi ' i 0 ( x xi )n 1 ( xi )
n
特例:n=1时,根据式(2-9)和(2-10)得出
如果选简单函数 ( x) 作为 y f ( x) 的近似表达式,并要 求满足以下条件:
( xi ) yi ,
i 0,1,..., n
(2 1)
这样的函数近似问题就称为插值问题。 (2-1)式称为插值条件,满足插值条件(2-1)的近 似函数 ( x) 称为插值函数,而 f ( x) 称为被插值函数, 互异点 x0 , x1, , xn 称为插值节点(简称节点),而 x 称 为插值点,区间[a, b]称为插值区间。
插值多项式 Pn ( x) 只是 y f ( x) 的近似值,其误差叫做 插值多项式的余项或截断误差,记作:
Rn ( x) f ( x) Pn ( x)
(2-5)
记 I 为包含 x0 , x1, , xn 的最小闭区间,I 为包含于 I 中的最大开区间,又记:
n1 ( x) ( x xi )
证明: 当 x为某个节点时定理显然成立。
设 x 异于所有的节点,构造辅助函数:
f ( x) Pn ( x) (t ) f (t ) P n (t ) n1 (t ) n1 ( x)
显然, ( x) ( x0 ) ( x1 ) L ( xn ) 0 xn 根据罗尔定理:在n+2个点 x, x0 , x1 ,L ,之间存在n+1 (0 ) (1 ) L ( n ) 0 个 0 , 使得 n , 1 ,L , 在这n+1个点之间存在n个点,使得 n 个点处 0 在这n个点之间存在n-1个点,使得 0 依次类推,在这些点之间存在一点 ,使得 ( n 1) ( ) 0 即: f ( n 1) ( ) P ( n 1) ( ) f ( x) pn ( x) ( n 1) ( ) 0 n n 1 n 1 ( x)

交大硕士研究生必修基础数学-数值分析-插值与拟合方法

交大硕士研究生必修基础数学-数值分析-插值与拟合方法

第5章 插值与拟合方法插值与拟合方法是用有限个函数值(),(0,1,,)i f x i n =⋅⋅⋅去推断或表示函数()f x 的方法,它在理论数学中提到的不多。

本章主要介绍有关解决这类问题的理论和方法,涉及的内容有多项式插值,分段插值及曲线拟合等。

对应的方法有Lagrange 插值,Newton 插值,Hermite 插值,分段多项式插值和线性最小二乘拟合。

1 实际案例2 问题的描述与基本概念先获得函数(已知或未知)()=在有y f x由表中数据构造一个函数P(x)作为f(x) 的近似函数,去参与有关f (x)的运算。

科学计算中,解决不易求出的未知函数的问题主要采用插值和拟合两种方法。

1)插值问题的描述已知函数()y f x =在[a,b ]上的n +1个互异点nx x x ⋅⋅⋅,,10处的函数值()i i y f x =,求f (x ) 的一个近似函数P (x ),满足()()(0,1,,)i i P x f x i n ==⋅⋅⋅ (5.1)● P (x ) 称为f (x )的一个插值函数; ● f (x ) 称为被插函数;点i x 为插值节点; ● ()()(0,1,,)i i P x f x i n ==⋅⋅⋅称为插值条件; ● ()()()R x f x P x =-称为插值余项。

当插值函数P (x )是多项式时称为代数插值(或多项式插值)。

一个代数插值函数P (x )可写为0()()()mkm k k k P x P x a x a R ===∈∑若它满足插值条件(5.1),则有线性方程组20102000201121112012m m m m m n n m n na a x a x a x y a a x a x a x y a a x a x a x y ⎧+++⋅⋅⋅=⎪+++⋅⋅⋅=⎪⎨⎪⎪+++⋅⋅⋅=⎩ (5.2)当m=n ,它的系数行列式为范德蒙行列式)(1110212110200j i ni j n nnnn nx x x x x x x x x x x D -∏==≤≤≤因为插值节点互异,0D ≠,故线性方程组(5.2)有唯一解,于是有定理 5.1 当插值节点互异时,存在一个满足插值条件()()(0,1,,)i i P x f x i n ==⋅⋅⋅的n 次插值多项式。

研究生数值分析-第4章 插值与拟合

研究生数值分析-第4章 插值与拟合

第四章插值与拟合插值法插值法是一种古老的数学方法,早在一千多年前的隋唐时期定制历法时就广泛应用了二次插值。

刘焯将等距节点的二次插值应用于天文计算。

插值理论却是在17世纪微积分产生后才逐步发展起来的,Newton插值公式理论是当时的重要成果。

由于计算机的使用以及航空、造船、精密仪器的加工,插值法在理论和实践上都得到进一步发展,获得了广泛的应用。

§4.1 引言§4.2 拉格朗日插值§4.3 均差与牛顿插值公式§4.4 差分与等距节点插值§4.5 埃尔米特(Hermite)插值与分段插值§4.6 曲线拟合§4.1 引言问题的提出–函数解析式未知,通过实验观测得到的一组数据, 即在某个区间[a, b ]上给出一系列点的函数值y i = f (x i )–或者给出函数表y=f (x )y =p (x )x x 0x 1x 2……x n yy 0y 1y 2……y n插值法的基本原理设函数y =f (x )定义在区间[a,b ]上,是[a,b ]上取定的n+1个互异节点,且在这些点处的函数值为已知,即若存在一个f(x)的近似函数,满足则称为f (x )的一个插值函数, f (x )为被插函数, 点x i 为插值节点, 称(4.1)式为插值条件, 而误差函数R (x )=称为插值余项, 区间[a, b ]称为插值区间, 插值点在插值区间内的称为内插, 否则称外插n x x x ,,,10)(,),(),(10n x f x f x f )(i i x f y )(x ),,2,1()()(n i x f x i i )(x (4.1))()(x x f插值函数在n+1 个互异插值节点(i =0,1,…,n )处与相等,在其它点x 就用的值作为f (x ) 的近似值。

这一过程称为插值,点x 称为插值点。

换句话说, 插值就是根据被插函数给出的函数表“插出”所要点的函数值。

数值分析实验插值与拟合

数值分析实验插值与拟合

《数值分析》课程实验一:插值与拟合一、实验目的1. 理解插值的基本原理,掌握多项式插值的概念、存在唯一性;2. 编写MATLAB 程序实现Lagrange 插值和Newton 插值,验证Runge 现象;3. 通过比较不同次数的多项式拟合效果,理解多项式拟合的基本原理;4. 编写MATLAB 程序实现最小二乘多项式曲线拟合。

二、实验内容1. 用Lagrange 插值和Newton 插值找经过点(-3, -1), (0, 2), (3, -2), (6, 10)的三次插值公式,并编写MATLAB 程序绘制出三次插值公式的图形。

2. 设]5,5[,11)(2-∈+=x xx f 如果用等距节点x i = -5 + 10i /n (i = 0, 1, 2, …, n )上的Lagrange 插值多项式L n (x )去逼近它。

不妨取n = 5和n = 10,编写MATLAB 程序绘制出L 5(x )和L 10(x )的图像。

(2) 编写MATLAB 程序绘制出曲线拟合图。

三、实验步骤1. (1) Lagrange 插值法:在线性空间P n 中找到满足条件:⎩⎨⎧≠===ji j i x l ij j i ,0,,1)(δ的一组基函数{}ni i x l 0)(=,l i (x )的表达式为∏≠==--=nij j ji j i n i x x x x x l ,0),,1,0()(有了基函数{}ni i x l 0)(=,n 次插值多项式就可表示为∑==ni i i n x l y x L 0)()((2) Newton 插值法:设x 0, x 1, …, x n 是一组互异的节点,y i = f (x i ) (i = 0, 1, 2, …, n ),f (x )在处的n 阶差商定义为1102110],,,[],,,[],,,[x x x x x f x x x f x x x f n n n n --=-则n 次多项式)())(](,,[))(](,,[)](,[)()(11010102100100----++--+-+=n n n x x x x x x x x x f x x x x x x x f x x x x f x f x N差商表的构造过程:x i f (x i ) 一阶差商 二阶差商三阶差商 四阶差商x 0 f (x 0) x 1 f (x 1) f [x 0, x 1]x 2 f (x 2) f [x 1, x 2] f [x 0, x 1,x 2]x 3 f (x 3) f [x 2, x 3] f [x 1, x 2,x 3] f [x 0, x 1,x 2,x 3]x 4 f (x 4)f [x 3, x 4]f [x 2, x 3,x 4]f [x 1, x 2,x 3,x 4]f [x 0, x 1,x 2,x 3,x 4]试验结果:2. MATLAB程序实现:试验结果:3. 多项式拟合的一般方法可归纳为以下几步:(1)由已知数据画出函数粗略的图形——散点图,确定拟合多项式的次数n ; (2)列表计算)2,,1,0(0n j xmi ji=∑=和∑==mi i j i n j y x 0),,1,0( ;(3)写出正规方程组,求出),,1,0(n k a k =; (4)写出拟合多项式∑==nk kk n xa x p 0)(。

《插值与拟合》课件

《插值与拟合》课件

拟合的方法
1
最小二乘法
通过最小化残差平方和,找到与数据最匹配的函数。
2
局部加权回归
给予附近数据点更高的权重,拟合接近局部数据点的函数。
3
多项式拟合
用多项式函数逼近数据,通过选择合适的次数实现拟合。
插值与拟合的误差分析
插值和拟合都会引入近似误差,需要评估误差范围和影响因素。
插值与拟合在数据处理与分析中的应用
数据分析
通过插值和拟合方法对数据进 行探索和分析。
数据处理
在数据处理过程中使用插值和 拟合技术来填充缺失值和平滑 数据。
数据建模
利用插值和拟合模型对数据特 征进行捕捉和预测分析。
插值与拟合的推广和发展前景
随着数据科学和人工智能的不断发展,插值和拟合在各个领域的应用前景越 来越广阔。
插值与拟合的应用范围
科学研究
用于数据分析、信号优化设计、近似计算和 效能提升。
经济金融
用于市场分析、预测模型和 风险评估。
插值的方法
1
拉格朗日插值
基于多项式插值公式,用拉格朗日多项式逼近函数。
2
牛顿插值
基于差商的概念,用多项式逼近函数的值。
3
分段插值
将插值区间划分为多个子区间,并在每个子区间上进行插值。
《插值与拟合》PPT课件
插值与拟合是数值计算和数据分析中重要的概念。
插值与拟合的概念
插值
通过已知值的推算,计算在未知点的近似值。
拟合
通过曲线或曲面拟合已知数据,以描述和预 测未知数据。
插值与拟合的区别与联系
1 区别
2 联系
插值重点关注已知点的准确性,而拟合则 着重于整体形状的拟合。
插值和拟合都通过数学模型逼近离散数据, 以实现数据的补全和预测。

插值与拟合方法

插值与拟合方法

插值与拟合方法在实际中,常常要处理由实验或测量所得到的一批离散数据.插值与拟合方法就是要通过这些数据去确定某一类已知函数的参数或寻找某个近似函数,使所得到的近似函数与已知数据有较高的拟合精度.插值问题:要求这个近似函数(曲线或曲面)经过所已知的所有数据点.通常插值方法一般用于数据较少的情况.数据拟合:不要求近似函数通过所有数据点,而是要求它能较好地反映数据的整体变化趋势。

共同点:插值与拟合都是根据实际中一组已知数据来构造一个能够反映数据变化规律的近似函数的方法,由于对近似要求的准则不同,因此二者在数学方法上有很大的差异.插值问题的一般提法:已知某函数)(x f y =(未知)的一组观测(或试验)数据),,2,1)(,(n i y x ii⋅⋅⋅=,要寻求一个函数)(x φ,使iiy x =)(φ),,2,1(n i ⋅⋅⋅=,则)()(x f x ≈φ.实际中,常常在不知道函数)(x f y =的具体表达式的情况下,对于i x x =有实验测量值iy y =),,2,1,0(n i ⋅⋅⋅=,寻求另一函数)(x φ使满足:)()(i i i x f y x ==φ),,2,1,0(n i ⋅⋅⋅=称此问题为插值问题,并称函数)(x φ为)(x f 的插值函数,nx x x x ,,,,21⋅⋅⋅称为插值节点,),,2,1,0()(n i y x ii⋅⋅⋅==φ称为插值条件,即)()(iiix f y x ==φ),,2,1,0(n i ⋅⋅⋅=,则)()(x f x ≈φ.(1) 拉格朗日(Lagrange )插值设函数)(x f y =在1+n 个相异点nx x x x ,,,,21⋅⋅⋅上的函数值为ny y y y ,,,,21⋅⋅⋅,要求一个次数不超过n 的代数多项式nnnx a x a x a a x P +⋅⋅⋅+++=221)(使在节点i x 上有),,2,1,0()(n i y x P ii n ⋅⋅⋅==成立,称之为n 次代数插值问题,)(x P n称为插值多项式.可以证明n 次代数插值是唯一的.事实上: 可以得到j n j n i i j in y x x xx x P j i ∑∏==⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛--=≠00)()( 当1=n 时,有二点一次(线性)插值多项式:101001011)(y x x x x y x x x x x P --+--=当n =2时,有三点二次(抛物线)插值多项式:2120210121012002010212))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x P ----+----+----=(2)牛顿(Newton ) 插值牛顿插值的基本思想:由于)(x f y =关于二节点10,x x 的线性插值为)()()()()()()()()(00101000010101x x x x x f x f x p x x x x x f x f x f x p ---+=---+= 假设满足插值条件)2,1,0()()(2===i x p y x f iii的二次插值多项式一般形式为))(()()(1212x x x x c x x c c x p --+-+= 由插值条件可得⎪⎩⎪⎨⎧=--+-+=-+=)())(()()()()(21202202101011000x f x x x x c x x c c x f x x c c x f c 可以解出⎪⎪⎪⎩⎪⎪⎪⎨⎧------=--==020101121220101100)()()()()()(),(x x x x x f x f x x x f x f c x x x f x f c x f c所以))(()())(()()(10211020102x x x x c x p x x x x c x x c c x p --+=--+-+=类似的方法,可以得到三次插值多项式等,按这种思想可以得到一般的牛顿插值公式.函数的差商及其性质对于给定的函数)(x f ,用),,,(10n x x x f ⋅⋅⋅表示关于节点nx x x ,,,1⋅⋅⋅的n 阶差商,则有一阶差商:01011)()(),(x x x f x f x x f --=,121221)()(),(x x x f x f x x f --= 二阶差商:021021210),(),(),,(x x x x f x x f xx x f --=n 阶差商:0110211),,,(),,,(),,,(x x x x x f x x x f x x x f n n n n -⋅⋅⋅-⋅⋅⋅=⋅⋅⋅-差商有下列性质:(1)差商的分加性:∑∏=≠=-=⋅⋅⋅nk nk j j j kk n x xx f xx x f 0)(01)()(),,,(.(2)差商的对称性:在),,,(1nx x x f ⋅⋅⋅中任意调换jix x ,的次序其值不变.牛顿插值公式: 一次插值公式为))(,()()(01001x x x x f x f x p -+=二次插值公式为))()(,,()())()(,,())(,()()(1021011021001002x x x x x x x f x p x x x x x x x f x x x x f x f x p --+=--+-+=于是有一般的牛顿插值公式为)())()(,,,()()())()(,,,())()(,,())(,()()(11010111010102100100----⋅⋅⋅--⋅⋅⋅+=-⋅⋅⋅--⋅⋅⋅+⋅⋅⋅+--+-+=n n n n n n x x x x x x x x x f x p x x x x x x x x x f x x x x x x x f x x x x f x f x p可以证明:其余项为))(())()(,,,,()(11010n n n x x x x x x x x x x x x f x R --⋅⋅⋅--⋅⋅⋅=-实际上,牛顿插值公式是拉格朗日插值公式的一种变形,二者是等价的.另外还有著名的埃尔米特(Hermite )插值等.(3)样条函数插值方法样条,实质上就是由分段多项式光滑连接而成的函数,一般称为多项式样条.由于样条函数的特殊性质,决定了样条函数在实际中有着重要的应用.样条函数的一般概念定义 设给定区间],[b a 的一个分划b x x x a n=<⋅⋅⋅<<=∆1:,如果函数)(x s 满足条件:(1) 在每个子区间),,2,1](,[1n i x x ii ⋅⋅⋅=-上是k 次多项式; (2) )(x s 及直到k -1阶的导数在],[b a 上连续.则称)(x s 是关于分划△的一个k 次多项式样条函数,nx x x ,,,1⋅⋅⋅称为样条节点,121,,,-⋅⋅⋅n x x x 称为内节点,nx x ,0称为边界节点,这类样条函数的全体记作),(k S P∆,称为k 次样条函数空间.若),()(k S x s P∆∈,则)(x s 是关于分划△的k 次多项式样条函数.k 次多项式样条函数的一般形式为∑∑=-=+-+=ki n j k j jii k x x k i x x s 011)(!!)(βα其中),,1,0(k i i=α和)1,,2,1(-=n j jβ均为任意常数,而)1,,2,1(,0,)()(-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jj kj kj在实际中最常用的是2=k 和3的情况,即为二次样条函数和三次样条函数. 二次样条函数:对于],[b a 上的分划b x x x a n=<⋅⋅⋅<<=∆1:,则)2,()(!2!2)(11222102∆βαααP n j j jS x x x x x s ∈-+++=∑-=+其中)1,2,1(,0,)()(22-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x j j j j . 三次样条函数:对于],[b a 上的分划b x x xa n =<⋅⋅⋅<<=∆10:,则)3,()(!3!3!2)(1133322103∆βααααP n j j jS x x x x x x s ∈-++++=∑-=+其中)1,2,1(,0,)()(33-=⎪⎩⎪⎨⎧<≥-=-+n j x x x x x x x x jjj j .1 二次样条函数插值)2,()(2∆∈P S x s 中含有2+n 个待定常数,故应需要2+n 个插值条件,因此,二次样条插值问题可分为两类:问题(1):已知插值节点ix 和相应的函数值),,2,1,0(n i y i⋅⋅⋅=,以及端点0x (或n x )处的导数值0'y (或ny '),求)2,()(2∆∈PS x s 使得⎩⎨⎧'=''='⋅⋅⋅==))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.1)问题(2):已知插值节点ix 和相应的导数值),,2,1,0(n i y i⋅⋅⋅=',以及端点0x (或n x )处的函数值0y (或ny ),求)2,()(2∆∈P S x s 使得⎩⎨⎧==⋅⋅⋅='='))(()(),,2,1,0()(20022n n i i y x s y x s n i y x s 或(5.2)事实上,可以证明这两类插值问题都是唯一可解的.对于问题(1),由条件(5.1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=+='==-+++==++==++=∑-=00210211222102121211112020201002)(,,3,2,)(2121)(21)(21)(y x x s n j y x x x x x s yx x x s y x x x s j j i i j i jj j ααβααααααααα 引入记号T n ),,,,,(11210-=ββααα X 为未知向量,T nn y y y y ),,,,(10'= C 为已知向量, ⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=-0010)(21)(21211)(212110211211021212212222211200x x x x x x x x x x x x x x x n n n n n A 于是,问题转化为求方程组C AX =的解Tn ),,,,,(1121-=ββααα X 的问题,即可得到二次样条函数的)(2x s 的表达式.对于问题(2)的情况类似.2.三次样条函数插值由于)3,()(3∆∈P S x s 中含有3+n 个待定系数,故应需要3+n 个插值条件,因此可将三次样条插值问题分为三类: 问题(1):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,n x 处的导数值0'y ,ny ',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧='='⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.3)问题(2):已知插值节点jx 和相应的函数值),,2,1,0(n j y j⋅⋅⋅=,以及两个端点0x ,nx 处的二阶导数值0y '',n y '',求)3,()(3∆∈PS x s 使满足条件⎪⎩⎪⎨⎧=''=''⋅⋅⋅==),0()(),,1,0()(33n j y x s n j y x s j j j j(5.4)问题(3):类似地,求)3,()(3∆∈PSx s 使满足条件⎪⎩⎪⎨⎧=+=-==)2,1,0)(0()0(),,1,0()(0)(3)(33k x s x s n j y x s k n k j j(5.5)这三类插值问题的条件都是3+n 个,可以证明其解都是唯一的〔8〕.一般的求解方法可以仿照二次样条的情况处理方法,在这里给出一种更简单的方法.仅依问题(1)为例,问题(2)和问题(3)的情况类似处理.由于在)3,()(3∆PS x s ∈区间],[b a 上是一个分段光滑,且具有二阶连续导数的三次多项式,则在子区间],[1+j jx x 上)(3x s ''是线性函数,记),,,1,0)((3n j x s d jj =''=为待定常数.由拉格朗日插值公式可得nj x x h h x x d h x x d x s j j j jj j jj j ,,1,0,,)(1113=-=-+-=''+++显然jjj h d dx s -='''+13)(在],[1+j jx x上为常数.于是在],[1+j j x x 上有31233)(6)(2))(()(j jjj j j j j j x x h d d x x d x x x s y x s --+-+-'+=+(5.6)则当1+=j x x 时,由(5.6)式和问题(1)的条件得121231362)()(+++=-++'+=j j jj j j j j j j y h d d h d h x s y x s故可解得)2(6)(113+++--='j j j jjj j d d h h y y x s(5.7)将(5.7)式代入(5.6)式得)1,,1,0](,[,)(6)(2)()2(6)(1312113-=∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=++++n j x x x x x h d d x x d x x d d h h y y y x s j j j jj j j jj j j j j j j j(5.8) 在],[1j j x x-上同样的有),,2,1](,[,)(6)(2)()2(6)(131112111111113n j x x x x x h d d x x d x x d d h h y y y x s j j j j j j j j j j j j j j j j =∈--+-+-⎥⎥⎦⎤⎢⎢⎣⎡+--+=------------(5.9) 根据)(3x s的一阶导数连续性,由(5.9)式得)()2(6)0(311113j j j j j j j j x s d d h h y y x s '=++-=-'---- 结合(5.7)式整理得⎪⎪⎭⎫ ⎝⎛---+=++++--+-+----11111111162j j j j j j j j j j j j j j j j j h y y h y y h h d h h h d d h h h 引入记号⎪⎪⎭⎫ ⎝⎛---+=+=--+--111116,j j j j j j j j j j j j j h y y h y y h h c h h h a ,111--+=-j j j j h h h a .则)1,,2,1(,2)1(11-==++-+-n j c d a d d a j j j j j j(5.10)再由边界条件:nny x s y x s '=''=')(,)(33得⎪⎪⎩⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛--'=+⎪⎪⎭⎫ ⎝⎛'--=+----111100010106262n n n n n n n h y y y h d d y h y y h d d(5.11)联立(5.10),(5.11)式得方程组C D A =⋅(5.12)其中⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡---=----2121212112112200n n n n a a a a a aA ,⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=-n n d d d d 110 D ,⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--'⎪⎪⎭⎫ ⎝⎛'--=----111110001066n n n n n n hy y y h c c y h y y h C 由方程组(6.12)可以唯一解出),,1,0(n j d j=,代入(5.8)式就可以得三次样条函数)(3x s 的表达式.B样条函数插值方法磨光函数实际中的许多问题,往往是既要求近似函数(曲线或曲面)有足够的光滑性,又要求与实际函数有相同的凹凸性,一般插值函数和样条函数都不具有这种性质.如果对于一个特殊函数进行磨光处理生成磨光函数(多项式),则用磨光函数构造出样条函数作为插值函数,既有足够的光滑性,而且也具有较好的保凹凸性,因此磨光函数在一维插值(曲线)和二维插值(曲面)问题中有着广泛的应用.由积分理论可知,对于可积函数通过积分会提高函数的光滑度,因此,我们可以利用积分方法对函数进行磨光处理.定义 若)(x f 为可积函数,对于0>h ,则称积分⎰+-=22,1)(1)(hx h x h dt t f h x f为)(x f 的一次磨光函数,h 称为磨光宽度.同样的,可以定义)(x f 的k 次磨光函数为)1()(1)(22,1,>=⎰+--k dt t f h x f hx h x h k h k事实上,磨光函数)(,x f h k 比)(x f 的光滑程度要高,且当磨光宽度h 很小时)(,x f h k 很接近于)(x f .等距B样条函数对于任意的函数)(x f ,定义其步长为1的中心差分算子δ如下:⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=2121)(x f x f x f δ在此取0)(+=x x f ,则002121+++⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+=x x x δ是一个单位方波函数(如图5-1),记0)(+=Ωx x δ.并取1=h ,对)(0x Ω进行一次磨光得++++-+++-+++--+-+=-=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛+==⎰⎰⎰⎰)1(2)1(2121)()(11212100212101x x x dt t dt t dt t t dt t x x xx x x x x x ΩΩ显然)(1x Ω是连续的(如图5-2).)(1x Ωo1-1/2 0 1/2 x -1 0 1 x 图5-1图5-2类似地可得到k 次磨光函数为kk j jk j k j k x k C x ++=+⎪⎭⎫ ⎝⎛-++-=Ω∑21!)1()(11 实际上,可以证明:)(x kΩ是分段k 次多项式,且具有1-k 阶连续导数,其k 阶导数有2+k个间断点,记为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j x j.从而可知)(x kΩ是对应于分划+∞<<⋅⋅⋅<<<-∞∆+110:k x x x 的k 次多项式样条函数,称之为基本样条函数,简称为k 次B样条.由于样条节点为)1,,2,1,0(21+⋅⋅⋅=+-=k j k j xj是等距的,故)(x k Ω又称为k 次等距B样条函数.对于任意函数)(x f 的k 次磨光函数,由归纳法可以得到 [4,8] :⎪⎭⎫⎝⎛+≤≤--Ω=⎰∞+∞--22)()(1)(1,h x t h x dt t f htx h x f k h k 特别地,当1)(=x f 时,有1)(11⎰+∞∞--=-dt htx hk Ω,从而1)(⎰+∞∞-=dx x k Ω,且当k ≥1时有递推关系⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-Ω⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛+Ω⎪⎭⎫ ⎝⎛++=Ω--212121211)(11x x k x k x k x k k k一维等距B样条函数插值等距B样条函数与通常的样条如下的关系: 定理设有区间],[b a 的均匀分划nab h n j jh x x j -=⋅⋅⋅=+=),,,1,0(:0∆,则对任意 k 次样条函数),()(k S x S p k ∆∈都可以表示为B样条函数族1021-=-=⎭⎬⎫⎩⎨⎧⎪⎭⎫⎝⎛+---n j k j k k j h x x Ω的线性组合[14].根据定理 5.1,如果已知曲线上一组点()jjy x ,,其中),,1,0,0(0n j h jh x x j⋅⋅⋅=>+=,则可以构造出一条样条磨光曲线(即为B样条函数族的线性组合)⎪⎭⎫⎝⎛--=∑--=j h x x c x S n kj k j k 01)(Ω 其中)1,,1,(-⋅⋅⋅+--=n k k j c j为待定常数.用它来逼近曲线,既有较好的精度,又有良好的保凸性.实际中,最常用的是3=k 的情况,即一般形式为⎪⎭⎫ ⎝⎛--=∑+-=j h x x c x S n j j 01133)(Ω 其中3+n 个待定系数)1,,0,1(+⋅⋅⋅-=n j c j可以由三类插值条件确定.由插值条件(5.3)得()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'='==-='=-'='∑∑∑+-=+-=+-=n n j j n i n j j i n j j y j n c h x S ni y j i c x S y j c h x S 113311330113031)(,,1,0,)(1)(ΩΩΩ(5.13)注意到)(3x Ω的局部非零性及其函数值:61)1(,32)0(33=±=ΩΩ,当2≥x 时0)(3=x Ω;且由)21()21()(223--+='x x x ΩΩΩ知,21)1(,0)0(33=±'='ΩΩ,当2≥x 时0)(3='x Ω.则(5.13)中的每一个方程中只有三个非零系数,具体的为⎪⎩⎪⎨⎧'=+-==++'=+-+-+--n n n i i i i y h c c n i y c c c y h c c 2,,1,0,6421111011(5.14)由方程组(5.14)容易求解出)1,,0,1(+⋅⋅⋅-=n j c j,即可得到三次样条函数)(3x S 表达式.类似地,由插值条件(5.4)得待定系数的)1,,0,1(+⋅⋅⋅-=n j c j所满足的方程组为⎪⎩⎪⎨⎧''=+-==++''=+-+-+--nn n n i i i i y h c c c n i y c c c y h c c c 21111021012,,1,0,642(5.15)由插值条件(5.5)得待定系数的)1,,0,1(+⋅⋅⋅-=n j cj所满足的方程组为⎪⎪⎩⎪⎪⎨⎧==++=-+---=-++-=-+-+-+-+--+--+--ni y c c c c c c c c c c c c c c c c c c c i i i i n n n n n n n n ,,1,0,640)()(2)(0)(0)(0)()(4)(1111011111111011(5.16)方程组(5.15),(5.16)也都是容易求解的.注:上述等距B样条插值公式也适用于近似等距的情形,但在端点0x 和n x 处误差可能较大,实际应用时,为了提高在端点0x 和nx 处的精度,可以适当向左右延拓几个节点.二维等距B样条函数插值设有空间曲面),(y x f z =(未知),如果已知二维等距节点()()τj y ih x y x ji++=0,,)0,(>τh 上的值为),,2,1,0;,,2,1,0(m j n i z ij⋅⋅⋅=⋅⋅⋅=,则相应的B样条磨光曲面的一般形式为⎪⎭⎫ ⎝⎛--⎪⎭⎫⎝⎛--=∑∑--=--=j y y i h x x c y x s l m lj k ij n ki τΩΩ0011),( 其中),,2,1,0;,,2,1,0(m j n i c ij⋅⋅⋅=⋅⋅⋅=为待定常数,l k ,可以取不同值,常用的也是2,=l k 和3的情形.这是一种具有良好保凸性的光滑曲面(函数),在工程设计中是常用的,但只能使用于均匀分划或近似均匀分划的情况.(4) 最小二乘拟合方法最小二乘拟合方法的思想:由于一般插值问题并不总是可解的(即当插值条件多于待定系数的个数时,其问题无解),同时,问题的插值条件本身一般是近似的,为此,只要求在节点上近似地满足插值条件,并使它们的整体误差最小,这就是最小二乘拟合法.最小二乘拟合方法可以分为线性最小二乘拟合方法和非线性最小二乘拟合方法.线性最小二乘拟合方法设{}m k kx 0)(=φ是一个线性无关的函数系,则称线性组合∑==mk k k x a x 0)()(φφ为广义多项式.如三角多项式:∑∑==+=mk k mk kkx b kx ax 0sin cos )(φ.设由给定的一组测量数据),(iiy x 和一组正数),,2,1(n i w i⋅⋅⋅=,求一个广义多项式∑==mk k k x a x 0)()(φφ使得目标函数[]21)(∑=-=ni i i i y x w S φ(5.17)达到最小,则称函数)(x φ为数据),,2,1)(,(n i y x ii⋅⋅⋅=关于权系数),,2,1(n i w i⋅⋅⋅=的最小二乘拟合函数,由于)(x φ关于待定系数ia 是线性的,故此问题又称为线性最小二乘问题. 注意:这里{}m k kx 0)(=φ可根据实际来选择,权系数iw 的选取更是灵活多变的,有时可选取1=i w ,或nw i 1=,对于nw i1=,则相应问题称为均方差的极小化问题.最小二乘拟合函数的求解要使最小二乘问题的目标函数(5.17)达到最小,则由多元函数取得极值的必要条件得),,2,1,0(0m k a Sk==∂∂ 即),,2,1,0(0)()(10m k x y x a w i k ni i m k i k k i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡-∑∑==φφ 亦即),,2,1,0()()()(001m k x y w a x x w n i i k i i j mj n i i k i j i ⋅⋅⋅⋅==⎥⎦⎤⎢⎣⎡∑∑∑===φφφ(5.18)是未知量为ma a a a ,,,,21⋅⋅⋅的线性方程组,称(5.18)式为正规方程组.实际中可适当选择函数系{}m k kx 0)(=φ,由正规方程组解出ma a a a ,,,,210⋅⋅⋅,于是可得最小二乘拟合函数∑==mk kk x a x 0)()(φφ.一般线性最小二乘拟合方法将上面一元函数的最小二乘拟合问题推广到多元函数,即为多维线性最小二乘拟合问题.假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=和一组线性无关的函数系{}N k nk x x x 021),,,(=⋅⋅⋅φ,求函数∑=⋅⋅⋅=⋅⋅⋅Nk n k k n x x x a x xx 02121),,,(),,,(φφ对于一组正数mw w w ,,,21⋅⋅⋅,使得目标函数[]2121),,,(∑=⋅⋅⋅-=mi ni i i i i x x x y w S φ达到最小.其中待定系数N a a a a,,,,210⋅⋅⋅由正规方程组),,2,1,0(),(),(0N k y a Nj k j k j⋅⋅⋅==∑=φφφ确定,此处ini i i k mi i k ni i i k mi ni i i j i k j y x x x w y x x x x x x w ),,,(),(),,,(),,,(),(21121121⋅⋅⋅=⋅⋅⋅⋅⋅⋅=∑∑==φφφφφφ注:上面的函数φ关于ia 都是线性的,这就是线性最小二乘拟合问题,对于这类问题的正规组总是容易求解的.如果φ关于ia 是非线性的,则相应的问题称为非线性最小二乘拟合问题.非线性最小二乘拟合方法假设已知多元函数),,,(21nx x x f y ⋅⋅⋅=的一组测量数据);,,,(21iniiiy x x x ⋅⋅⋅),,2,1(m i ⋅⋅⋅=,要求一个关于参数),,2,1,0(N j a j⋅⋅⋅=是非线性的函数),,,;,,,(1021Nn a a a x x x ⋅⋅⋅⋅⋅⋅=φφ对一组正数mw w w ,,,21⋅⋅⋅使得目标函数[]21102110),,,;,,,(),,,(∑=⋅⋅⋅⋅⋅⋅-=⋅⋅⋅mi N ni i i i i N a a a x x x y w a a a S φ达到最小,则称之为非线性最小二乘问题.这类问题属于无约束的最优化问题,一般问题的求解是很复杂的,通常情况下,可以采用共轭梯度法、最速下降法、拟牛顿法和变尺度法等方法求解.实例:黄河小浪底调水调沙问题问题的提出2004年6月至7月黄河进行了第三次调水调沙试验,特别是首次由小浪底、三门峡和万家寨三大水库联合调度,采用接力式防洪预泄放水,形成人造洪峰进行调沙试验获得成功.整个试验期为20多天,小浪底从6月19日开始预泄放水,直到7月13日恢复正常供水结束.小浪底水利工程按设计拦沙量为75.5亿立方米,在这之前,小浪底共积泥沙达14.15亿吨.这次调水调试验一个重要目的就是由小浪底上游的三门峡和万家寨水库泄洪,在小浪底形成人造洪峰,冲刷小浪底库区沉积的泥沙.在小浪底水库开闸泄洪以后,从6月27日开始三门峡水库和万家寨水库陆续开闸放水,人造洪峰于29日先后到达小浪底,7月3日达到最大流量2700立方米/每秒,使小浪底水库的排沙量也不断地增加.下面是由小浪底观测站从6月29日到7月10日检测到的试验数据:表5-1: 试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米·84··85·注:以上数据主要是根据媒体公开报道的结果整理而成的,不一定与真实数据完全相符.现在,根据试验数据建立数学模型研究下面的问题:(1) 给出估算任意时刻的排沙量及总排沙量的方法;(2) 确定排沙量与水流量的变化关系.模型的建立与求解对于问题(1),根据所给问题的试验数据,要计算任意时刻的排沙量,就要确定出排沙量随时间变化的规律,可以通过插值来实现.考虑到实际中排沙量应该是随时间连续变化的,为了提高精度,我们采用三次B样条函数进行插值.下面构造三次B样条函数)(x S y =.由试验数据,时间是每天的早8点和晚8点,间隔都是12个小时,共24个点)24,,2,1(⋅⋅⋅=i t i.为了计算方便,令)23,,,1,0(122128⋅⋅⋅=+⎥⎦⎤⎢⎣⎡⋅+-=i i t x i i(5.19)则it 对应于)23,,1,0(1⋅⋅⋅=+=i i x i.于是以)23,,1,0(⋅⋅⋅=i x i为插值节点(等距),步长1=h .其相应的排沙量为)23,,1,0(⋅⋅⋅=i y i 对应关系如下表:·86·表5-2: 插值数据对应关系单位:排沙量为公斤函数)(x S y =所满足的条件为 (1)23,,1,0,)(⋅⋅⋅==i y x S ii;(2) 3500)(,56400)(2223222323231212-=--≈'='=--≈'='x x y y x S y x xy yx S y .取)(x S 的三次B样条函数一般形式为∑-=⎪⎭⎫⎝⎛--=24103)(j j j h x x c x S Ω·87·其中)24,,1,0,1(⋅⋅⋅-=j cj为待定常数,1=h .在这里⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<<+-+-≤+-=Ω2,021,342611,3221)(23233x x x x x x x x x且易知⎪⎪⎪⎩⎪⎪⎪⎨⎧≥±===Ω2,01,610,32)(3x x x x和⎪⎪⎩⎪⎪⎨⎧≥±===Ω'2,01,210,0)(3x x x x 根据B样条函数的性质,)(x S ''在[]23,x x 上连续,则有()∑-=--'='='2413)(j jj xx c x S y Ω由插值条件(1),(2)可得到下列方程组()()()⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧'=-'=''=-'='⋅⋅⋅==-=∑∑∑-=-=-=23241323024130241323)()(23,,1,0,)(y j c x S y j c x S i y j i c x S j j j j i j j i ΩΩΩ 即⎪⎩⎪⎨⎧'=+-'=+-⋅⋅⋅==++-+-23242311112223,,1,0,64y c c y c c i y c c c i i i i 将232324112,2y c c y c c '+='-=-代入前24个方程中的第一个和最后一个,便可得到方程组F AC =,其中·88·⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅⋅⋅⋅⋅⋅=⨯232102424,421410141014124c c c c C A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡'-'+=3400048000684000458400266626232322100 y y y y y y F显然A 为满秩阵,方程组F AC =一定有解,用消元法求解可得问题的解为56044.39830=c , 4117111.2031=c , 2159510.7882=c , 9189845.6433=c ,1203106.6364=c , 8239727.8115=c ,8249182.1166=c , 1263543.7217=c ,9287842.9988=c , 2302284.2839=c ,4317419.86810=c , 1304836.24311=c ,3307635.15912=c ,6305423.11913=c ,2270672.36214=c ,4240287.43115=c ,0154177.91216=c ,4103000.92017=c ,99818.406218=c , 43725.454719=c ,49279.775020=c ,32155.445221=c , 2098.444222=c ,7450.777923=c ,-450.777924311.2034,2232324011='+=='-=-y c c y c c . 将)24,,1,0,1(⋅⋅⋅-=j c j代入()∑-=--==24131)(j jj x c x S y Ω(5.20)即得排沙量的变化规律.由(5.19)和(5.20)式可得到第i 时间段(12小时为一段)内,任意时刻]12,0[∈t 的排沙量.则总的排沙量为()dt j t c dx x S Y j j⎰∑⎰-=--Ω==284824132411)(经计算可得1110844.1⨯=Y 吨,即从6月29日至7月10日小浪底水库排沙总量大约为1.844亿吨,此与媒体报道的排沙量基本相符.对于问题(2),研究排沙量与水量的关系,从试验数据可以看出,开始排沙量是随着水流量的增加而增长,而后是随着水流量的减少而减少.显然,变化规律并非是线性的关系,为此,我们问题分为两部分,从开始水流量增加到最大值2720立方米/每秒(即增长的过程)为一段,从水流量的最大值到结束为第二段,分别来研究水流量与排沙量的关系.具体数据如表5-3和5-4.表5-3: 第一阶段试验观测数据 单位:水流为立方米/每秒,含沙量为公斤/立方米表5-4: 第二阶段试验观测数据单位:水流为立方米/每秒,含沙量为公斤/立方米对于第一阶段,由表5-3用Matlab作图(如图5-3)可以看出其变化趋势,我们用多项式作最小二乘拟合.·90··91·图5-3设拟合函数为∑==mk kk x a x 1)(φ确定待定常数),,1,0(m k ak=使得211111102])([∑∑∑===⎥⎦⎤⎢⎣⎡-=-=i i i m k k i k i i y x a y x S φ有最小值.于是可以得到正规方程组为m k x y a x mj i k i i j i j k i ,,1,0,0111111 ==⎪⎭⎫⎝⎛∑∑∑===+ 当3=m 时,即取三次多项式拟合,则3,2,1,0,1113111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑==+=+=+=k x y a x a x a x a x i k i i i k i i k i i k i i k i求解可得73321108423.1,103172.1,3.1784,-2492.9318--⨯=⨯-===a a a a .于是可得拟合多项式为332213)(x a x a x a a x +++=φ,最小误差为847.72=S ,拟合效果如图所示.·92·图:三次拟合效果,带*号的为拟合曲线.类似地,当4=m 时,即取四次多项式拟合,则正规方程组为4,3,2,1,0111411143111321112111110111==⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑∑∑∑∑==+=+=+=+=k x y a x a x a x a x a x i ki i i k i i k i i k i i k i i k i求解可得104633210109312.1,1094.1,102626.7,12.0624,-7434.6557---⨯-=⨯=⨯-===a a a a a 于是可得拟合多项式为443322104)(x a x a x a x a a x ++++=φ,最小误差为102.66=S ,拟合效果如图5-5所示.图5-5:四次拟合效果,带*号的为拟合曲线.从上面的三次多项式拟合和四次多项拟合效果来看,差别不大.基本可以看出排沙量与水流量的关系.图5-6:第二段三·93··94· 次多项式拟合效果对于第二阶段,由表5-4可以类似地处理.我们用线性最小二乘法作三次和四多项式拟合.拟合效果如图5-6和5-7所示,最小误差分别为5.459=S 和1.236=S . 从拟合效果来看,显然四次多项式拟合要比三次多项式拟合好的多.图5-7:第二段四次多项式拟合效果。

数值分析中的插值和拟合

数值分析中的插值和拟合

数值分析中的插值和拟合数值分析是一门运用数学方法和计算机技术来解决实际问题的学科,其中的插值和拟合是其中的两个重要概念。

一、插值在数值分析中,插值是指在已知数据点的情况下,利用一定的数学方法来估计在此数据范围之外任意一点的函数值。

常用的插值方法有拉格朗日插值、牛顿插值和分段线性插值等。

以拉格朗日插值为例,假设已知数据点(x0, y0), (x1, y1), …, (xn, yn) ,其中 xi 不相同,Lagrange 插值问题就是要找到一个函数p(x),使得:p(xi) = yi (0 <= i <= n)并且 p(x) 在区间 [x0, xn] 上为连续函数。

然后,根据拉格朗日插值多项式的定义,拉格朗日插值多项式Lk(x) 可以定义为:$$ L_k(x) = \prod_{i=0, i \neq k}^n \frac{x - x_i}{x_k - x_i}$$然后,定义插值多项式 p(x) 为:$$ p(x) = \sum_{k=0}^n y_k L_k(x) $$这样,我们就可以通过计算插值多项式来估计任意一点 x 的函数值了。

二、拟合拟合是在给定一组离散数据点的情况下,通过一定的数学方法来找到一个函数 f(x),使得该函数可以较好地描述这些数据点之间的关系。

拟合方法主要包括最小二乘法和非线性拟合等。

以最小二乘法为例,假设有 m 个数据点(x1, y1), (x2, y2), …, (xm, ym) ,要找到一个函数 f(x),使得该函数与这些数据点的误差平方和最小,即:$$ S = \sum_{i=1}^m (y_i - f(x_i))^2 $$最小二乘法就是要找到一个函数 f(x),使得 S 最小。

假设这个函数为:$$ f(x) = a_0 + a_1 x + a_2 x^2 + ... + a_n x^n $$则 S 可以表示为:$$ S = \sum_{i=1}^m (y_i - a_0 - a_1 x_i - a_2 x_i^2 - ... - a_nx_i^n)^2 $$接下来,我们需要求解系数a0, a1, …, an,在满足式子 (2) 的情况下,使得 S 最小。

《数值分析》第二讲插值法PPT课件

《数值分析》第二讲插值法PPT课件

1 xn xn2 xnn Vandermonde行列式
即方程组(2)有唯一解 (a0, a1, , an)
所以插值多项式
P (x ) a 0 a 1 x a 2 x 2 a n x n
存在且唯一
第二章:插值
§2.2 Lagrange插值
y
数值分析
1、线性插值
P 即(x)ykx yk k 1 1 x yk k(xxk)
l k ( x k 1 ) 0 ,l k ( x k ) 1 ,l k ( x k 1 ) 0 l k 1 ( x k 1 ) 0 ,l k 1 ( x k ) 0 ,l k 1 ( x k 1 ) 1
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) lk(x)((xx k x xk k 1 1))((x xkxx k k1)1)
第二章:插值
数值分析
3、Lagrange插值多项式
令 L n ( x ) y 0 l 0 ( x ) y 1 l 1 ( x ) y n l n ( x )
其中,基函数
lk (x ) (x ( k x x x 0 ) 0 ) (( x x k x x k k 1 1 ) )x x k ( ( x x k k 1 ) 1 ) (( x x k x n x )n )
因此 P (x ) lk (x )y k lk 1 (x )y k 1

P (x k ) y k P (x k 1 ) y k 1
lk(x), lk1(x) 称为一次插值基函数
数值分析
第二章:插值
2、抛物线插值 令
y (xk , yk )
f (x)
lk1(x)(x(k x 1 x xk k))x x ((k 1x k x 1k )1) p( x) (xk1,yk1)

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告(数值计算)

插值法和拟合实验报告一、实验目的1.通过进行不同类型的插值,比较各种插值的效果,明确各种插值的优越性;2.通过比较不同次数的多项式拟合效果,了解多项式拟合的原理;3.利用matlab 编程,学会matlab 命令;4.掌握拉格朗日插值法;5.掌握多项式拟合的特点和方法。

二、实验题目1.、插值法实验将区间[-5,5]10等分,对下列函数分别计算插值节点kx 的值,进行不同类型的插值,作出插值函数的图形并与)(x f y =的图形进行比较:;11)(2x x f += ;arctan )(x x f = .1)(42x x x f +=(1) 做拉格朗日插值; (2) 做分段线性插值; (3) 做三次样条插值.2、拟合实验给定数据点如下表所示:分别对上述数据作三次多项式和五次多项式拟合,并求平方误差,作出离散函数),(i i y x 和拟合函数的图形。

三、实验原理1.、插值法实验∏∑∏∏∏∑∑≠==≠=≠=≠=+-==--==-===-=-=----==++==ji j ji i i i i ni i n nji j jnji j ji i nji j jn i i i ni i n nn o i ni i n x x x x x y x l x L x x c ni x x c x x x cx x x x x x x x c y x l x L y x l y x l y x l x L ,00,0,0,0110000)(l )()()(1,1,0,1)()(l )()())(()()()()()()()(,故,得再由,设2、拟合实验四、实验内容1.、插值法实验1.1实验步骤:打开matlab软件,新建一个名为chazhi.m的M文件,编写程序(见1.2实验程序),运行程序,记录结果。

1.2实验程序:x=-5:1:5;xx=-5:0.05:5;y1=1./(1+x.^2);L=malagr(x,y1,xx);L1=interp1(x,y1,x,'linear');S=maspline(x,y1,0.0148,-0.0148,xx);hold on;plot(x,y1,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y2=atan(x);L=malagr(x,y2,xx);L1=interp1(x,y2,x,'linear');S=maspline(x,y2,0.0385,0.0385,xx);hold on;plot(x,y2,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');figurex=-5:1:5;xx=-5:0.05:5;y3=x.^2./(1+x.^4);L=malagr(x,y3,xx);L1=interp1(x,y3,x,'linear');S=maspline(x,y3,0.0159,-0.0159,xx);hold on;plot(x,y3,'b*');plot(xx,L,'r');plot(x,L1,'g');plot(xx,S,'k');1.3实验设备:matlab软件。

插值与拟合(最小二乘法)

插值与拟合(最小二乘法)

二者区别:插值必须精确的经过所给定的点 x,f(x); 但是拟合不需要,拟合允许f(x) , p(x) 之间有误差的存在,但是误差不能太大,要尽可能的 小, 到底怎么来最小化误差,可以: error = |f(x) - p(x)|, min(error), 或者 min(error^2)........ 因为最小化误差的平方和, 所以叫 least square method, 其实翻译的不好,应该叫 最小平方和法。。。。。。
网络错误400请刷新页面重试持续报错请尝试更换浏览器或网络环境
插值与拟合(最小二乘法)
插值与拟合都是给பைடு நூலகம்一组y = f(x)数据的前提下,用函数 p(x) 近似表示 f(x)的方法;
插值用很多种方法,比如多项式插值,三角函数插值等,意思就是选取哪种函数作为插值的函数; 拟合方法很多,其中包括最小二乘法等;

数值分析法--曲线拟合法、插值建模法

数值分析法--曲线拟合法、插值建模法

数值分析法相关知识在生产和科学实验中,自变量x 与因变量y 间的函数关系()y f x =有时不能写出解析表达式,而只能得到函数在若干点的函数值或导数值,或者表达式过于复杂而需要较大的计算量。

当要求知道其它点的函数值时,需要估计函数值在该点的值。

为了完成这样的任务,需要构造一个比较简单的函数()y x ϕ=,使函数在观测点的值等于已知的值,或使函数在该点的导数值等于已知的值,寻找这样的函数()y x ϕ=有很多方法。

根据测量数据的类型有以下两类处理观测数据的方法。

(1)测量值是准确的,没有误差,一般用插值。

(2)测量值与真实值有误差,一般用曲线拟合。

曲线拟合法已知离散点上的数据集1122{(,),(,),,(,)}n n x y x y x y ,即已知在点集12{,,,}n x x x 上的函数值12{,,,}n y y y ,构造一个解析函数(其图形为一曲线)使()f x 在原离散点i x 上尽可能接近给定的i y 值,这一过程称为曲线拟合。

曲线拟合的一般步骤是先根据实验数据,结合相关定律,将要寻求的最恰当的拟合曲线方程形式预测出来,再用其他的数学方法确定经验公式中的参数。

对于事先给定的一组数据,确定经验公式一般可分为三步进行:(1)、确定经验公式的形式:根据系统和测定的数据的特点,并参照已知图形的特点确定经验公式的形式。

(2)、确定经验公式中的待定系数:计算待定系数的方法有许多常用的法有图示法、均值法、差分法、最小二乘法、插值法等。

(3)、检验:求出经验公式后,还要将测定的数据与用经验公式求出的理论数据作比较,验证经验公式的正确性,必要时还要修正经验公式。

关于确定经验公式的形式,可从以下几个方面入手:(1)、利用已知的结论确定经验公式形式,如由已知的胡克定律可以确定在一定条件下,弹性体的应变与应力呈线性关系等。

(2)、从分析实验数据的特点入手,将之与已知形式的函数图形相对照,确定经验公式的形式。

数值分析—第4章 插值法与最小二乘拟合法

数值分析—第4章 插值法与最小二乘拟合法
2013年12月21日10时39分 第5章 插值法与最小二x an x n 由插值条件得关于系数 a0 , a1 , , an的 n 1元线性方程组
n a0 a1 x0 a n x0 y0 , n a0 a1 x1 a n x1 y1 , a a x a x n y , 1 n n n n 0
x
y
x0
其中 l0(x)和l1(x)满足: l0(x)+ l1(x)≡1.
实质上l0(x)和 l1(x) 满足函数表
x
y
x0
x1
x1
1
0
0
1
l0(x0)=1, l0(x1)=0, l1(x0)=0, l1(x1)=1, 称l0(x)和l1(x)为以x0, x1为节点的基本插值多项式,也称为线
性插值的插值基函数 。
2013年12月21日10时39分 第5章 插值法与最小二乘拟合法 15
数值分析
例 造数学用表 ——平方根表
给定函数在100、121两点的平方根如下表,试用线性 插值求115的平方根。
x y 100 10 121 11
解 x0=100, x1=121, x=115
x x0 x x1 P ( x) y0 y 1 1 x0 x1 x x 1 0
115 121 115 101 115 P (115) 10 11 10.914 1 100 121 121 100
2013年12月21日10时39分
第5章 插值法与最小二乘拟合法
16
数值分析
n = 2 抛物线(二次)插值: (三点二次插值) 1. 定义 已知f(x)在三个互异点x0 ,x1 ,x2的函数值y0 ,y1 ,y2

数值分析实验插值与拟合

数值分析实验插值与拟合

数值分析实验插值与拟合插值是指根据已知的数据点,通过其中一种数学方法来构造一个函数,使得该函数在已知的数据点上与被插值函数相等。

插值方法可以分为两类:基于多项式的插值和非多项式插值。

基于多项式的插值方法中,最常用的是拉格朗日插值和牛顿插值。

拉格朗日插值方法通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的所有点。

牛顿插值方法则通过一个n次多项式来逼近被插值函数,该多项式通过n个已知数据点中的前m+1个点。

非多项式插值方法中,最常用的是分段线性插值和样条插值。

分段线性插值方法将插值区间划分为多个小段,在每一段内使用线性函数来逼近被插值函数。

样条插值方法则使用分段低阶多项式来逼近被插值函数,保证了插值函数和原函数在插值区间内的连续性、光滑性。

拟合是指在给定的离散数据点集合上,通过选取一个函数,使得该函数与数据点之间的误差最小化。

拟合方法可以分为两类:线性拟合和非线性拟合。

线性拟合方法中,最简单的是最小二乘法。

最小二乘法拟合是通过最小化观测数据与拟合函数的残差平方和来选择最佳函数参数。

在实验中,最小二乘法常用于线性回归问题,例如估计一个直线或者平面来拟合数据。

非线性拟合方法中,最常用的是非线性最小二乘法和局部加权回归。

非线性最小二乘法通过将非线性拟合问题转化为线性问题,使用最小二乘法来寻找最佳参数。

局部加权回归方法则通过给予不同数据点不同的权重,以更好地逼近数据点。

在数值分析实验中,插值与拟合可以应用于各种实际问题。

例如,在地理信息系统中,通过已知的地理坐标点来插值出未知点的地理信息。

在气象学中,通过已知的气象数据点来插值出未知点的气象信息。

在工程学中,通过已知的测量数据点来拟合出一个最佳的拟合函数来预测未来的测量值。

需要注意的是,插值和拟合的精度在很大程度上取决于数据的分布和拟合函数的选择。

如果数据点过于稀疏或者数据点中存在异常值,可能导致插值和拟合结果不准确。

因此,在进行插值和拟合之前,需要对数据进行预处理,例如去除异常值、平滑数据等。

2插值与拟合方法

2插值与拟合方法
函数类{(x) }有多种取法,常用的有代数多项式、 三角函数和有理函数。 最简单的插值函数是代数多项式,相应的插值 问题称为多项式插值。
2.2.2 多项式插值的理论基础
根据所给函数表(1),求一个次数不高于n的多项 式 Pn(x)=a0+a1x+…+anxn, 使 pn(xi)=yi,, ( i= 0,1,2,…,n) (4) (3)
2.抛物插值 线性插值仅仅用两个节点以上的信息,精确度较差。为 了提高精确度,我们进一步考察以下三点的插值问题(n=2):
这时 l ( x ) ( x x1 )( x x2 ) 0
( x0 x1 )( x0 x2 ) ( x x0 )( x x2 ) l1 ( x ) ( x1 x0 )( x1 x2 )
( x x0 )( x x1 ) l2 ( x ) ( x2 x0 )( x2 x1 )
由此得到抛物插值多项式
L2 ( x) y0l0 ( x) y1l1 ( x) y2l2 ( x)
抛物插值又称三点插值.
例2 已知 y ln x 的函数表 10 11 12 x y 2.3026 2.3979 2.4849
定义1.
a x0 , x1 ,, xn b为区间 [a, b]的一个分割 如果函数S( x)在区间 [a, b]上满足条件:
(1) S( x), S( x), S( x)都在区间 [a, b]上连续,即S( x) C 2 [a, b]
l0 ( x ) x x1 x0 x1
P1(x0)=y0 ,
l1 ( x )
P1(x1)=y1 ,
x x0 x1 x0
于是线性插值多项式为
x x0 x x1 L1 ( x ) y0 y1 x0 x1 x1 x0 y y0 即 Ln ( x ) y0 1 ( x x0 ) x1 x0 它就是通过M0(x0,y0)和M1(x1,y1)两点的线段.

数值计算中的插值和拟合方法

数值计算中的插值和拟合方法

在数值计算中,插值和拟合是两种常用的方法,用于通过已知数据点推测未知数据点的数值。

插值是一种通过已知数据点构建一个函数,以便在这些数据点之间进行预测。

而拟合是一种将一个函数与已知数据点进行匹配,以便预测未知数据点的数值。

插值的目标是通过经过已知数据点的连续函数来准确地估计未知数据点的数值。

最简单的插值方法是线性插值,它假设两个相邻数据点之间的函数值是线性变化的。

线性插值可以用于计算两个已知数据点之间的任何位置的函数值。

如果我们有更多的数据点,可以使用更高阶的插值方法,如二次插值或三次插值。

这些方法使用多项式来表示数据点之间的函数,以便更准确地预测未知数据点。

然而,插值方法并不总是最理想的选择。

在某些情况下,通过已知数据点精确地构建一个连续函数是不可能的。

这可能是因为数据点之间的差异太大,或者数据点的数量太少。

在这种情况下,拟合方法可以提供更好的预测结果。

拟合的目标是找到一个函数,使其与已知数据点的误差最小。

最常用的拟合方法是最小二乘拟合,它通过最小化数据点的残差的平方和来找到最佳拟合函数。

最小二乘拟合可以用于各种不同的函数类型,如线性拟合、多项式拟合、指数拟合等。

根据数据点的分布和特性,我们可以选择适当的拟合函数来获得最准确的预测结果。

在实际应用中,插值和拟合方法经常同时使用。

例如,在地理信息系统中,我们可能需要通过已知地点的气温数据来估计未知地点的气温。

我们可以使用插值方法来构建一个连续函数,以便在已知地点之间预测未知地点的气温。

然后,我们可以使用拟合方法来匹配这个连续函数与其他已知数据点,以提高预测的准确性。

插值和拟合方法在科学、工程、金融等各个领域都有广泛的应用。

在科学研究中,它们可以用于数据分析和预测,以帮助我们理解和解释实验结果。

在工程中,它们可以用于控制系统设计、信号处理和机器学习等领域。

在金融领域,它们可以用于市场预测和风险管理等重要任务。

总而言之,插值和拟合是数值计算中常用的方法,用于通过已知数据点推测未知数据点的数值。

数值分析中的插值与拟合

数值分析中的插值与拟合

数值分析中的插值与拟合插值和拟合是数值分析中常用的技术,用于估计或预测数据集中缺失或未知部分的数值。

在本文中,我们将讨论插值和拟合的概念、方法和应用。

一、插值插值是通过已知数据点之间的连续函数来估计中间数据点的数值。

插值方法可以根据不同的数据和需求选择合适的插值函数,常用的插值方法包括拉格朗日插值、牛顿插值和埃尔米特插值。

1.1 拉格朗日插值拉格朗日插值是一种基于多项式的插值方法。

通过已知的n个数据点,可以构建一个n-1次的插值多项式。

这个多项式通过已知数据点上的函数值来准确地经过每一个点。

1.2 牛顿插值牛顿插值方法也是一种多项式插值方法,通过差商的概念来构建插值多项式。

差商是一个递归定义的系数,通过已知数据点的函数值计算得出。

牛顿插值可以通过递推的方式计算出插值多项式。

1.3 埃尔米特插值埃尔米特插值是一种插值方法,适用于已知数据点和导数值的情况。

它基于拉格朗日插值的思想,通过引入导数信息来逼近数据的真实分布。

埃尔米特插值可以更准确地估计数据点之间的值,并且可以保持导数的连续性。

二、拟合拟合是通过一个模型函数来逼近已知数据点的数值。

拟合方法旨在找到最适合数据集的函数形式,并通过最小化误差来确定函数的参数。

常见的拟合方法包括最小二乘法、多项式拟合和曲线拟合。

2.1 最小二乘法最小二乘法是一种常用的拟合方法,通过最小化数据点到拟合函数的误差平方和来确定最佳拟合曲线或曲面。

最小二乘法适用于线性和非线性拟合问题,可以用于拟合各种类型的非线性函数。

2.2 多项式拟合多项式拟合是一种基于多项式函数的拟合方法。

通过多项式的线性组合来近似已知数据集的数值。

多项式拟合可以通过最小二乘法或其他优化算法来确定拟合函数的系数。

2.3 曲线拟合曲线拟合是一种用曲线函数来逼近已知数据点的拟合方法。

曲线函数可以是非线性的,并且可以根据数据的特点进行选择。

曲线拟合可以通过优化算法来确定拟合函数的参数。

三、应用插值和拟合在数值分析中有广泛的应用。

插值与拟合方法

插值与拟合方法

插值与拟合方法插值和拟合是数学中常用的方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。

插值和拟合方法是经典的数学问题,应用广泛,特别是在数据分析、函数逼近和图像处理等领域。

1.插值方法:插值方法是通过已知数据点的信息,推断出两个已知数据点之间的未知数据点的数值。

插值方法的目的是保证插值函数在已知数据点处与实际数据值一致,并且两个已知数据点之间的连续性良好。

最常用的插值方法是拉格朗日插值法和牛顿插值法。

拉格朗日插值法根据已知数据点的横纵坐标,构造一个多项式函数,满足通过这些数据点。

拉格朗日插值法可以用于任意次数的插值。

牛顿插值法是使用差商的概念进行插值。

差商是指一个多项式在两个数据点之间的斜率。

牛顿插值法通过迭代计算得到与已知数据点一致的多项式。

插值方法的优点是可以精确地经过已知数据点,但是在两个已知数据点之间的插值部分可能会出现震荡现象,从而导致插值结果不准确。

2.拟合方法:拟合方法是通过已知数据点的信息,找出一个函数或曲线,使其能够最好地拟合已知数据点。

拟合方法的目标是寻找一个函数或曲线,尽可能地逼近已知数据点,并且能够在未知数据点处进行预测。

最常用的拟合方法是最小二乘法。

最小二乘法是通过求解最小化残差平方和的问题来进行拟合。

残差是指已知数据点与拟合函数的差异。

最小二乘法的目标是找到一个函数,使得所有数据点的残差平方和最小。

拟合方法的优点是可以得到一个光滑的函数或曲线,从而可以预测未知数据点的数值。

但是拟合方法可能会导致过拟合问题,即过度拟合数据点,导致在未知数据点处的预测结果不准确。

除了最小二乘法,还有其他的拟合方法,如局部加权回归和样条插值等。

局部加权回归是一种基于最小二乘法的拟合方法,它通过赋予不同的数据点不同的权重,来实现对未知数据点的预测。

样条插值是一种基于多项式插值的拟合方法,它将整个数据集分段拟合,并且在分段部分保持连续性和光滑性。

总结:插值和拟合方法是数学中的经典方法,用于根据已知数据点的信息,推断出未知数据点的数值或函数的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第5章 插值与拟合方法插值与拟合方法是用有限个函数值(),(0,1,,)i f x i n =⋅⋅⋅去推断或表示函数()f x 的方法,它在理论数学中提到的不多。

本章主要介绍有关解决这类问题的理论和方法,涉及的内容有多项式插值,分段插值及曲线拟合等。

对应的方法有Lagrange 插值,Newton 插值,Hermite 插值,分段多项式插值和线性最小二乘拟合。

1 实际案例2 问题的描述与基本概念先获得函数(已知或未知)()=在有y f x由表中数据构造一个函数P(x)作为f(x) 的近似函数,去参与有关f (x)的运算。

科学计算中,解决不易求出的未知函数的问题主要采用插值和拟合两种方法。

1)插值问题的描述已知函数()y f x =在[a,b ]上的n +1个互异点nx x x ⋅⋅⋅,,10处的函数值()i i y f x =,求f (x ) 的一个近似函数P (x ),满足()()(0,1,,)i i P x f x i n ==⋅⋅⋅ (5.1)● P (x ) 称为f (x )的一个插值函数; ● f (x ) 称为被插函数;点i x 为插值节点; ● ()()(0,1,,)i i P x f x i n ==⋅⋅⋅称为插值条件; ● ()()()R x f x P x =-称为插值余项。

当插值函数P (x )是多项式时称为代数插值(或多项式插值)。

一个代数插值函数P (x )可写为0()()()mkm k k k P x P x a x a R ===∈∑若它满足插值条件(5.1),则有线性方程组20102000201121112012m m m m m n n m n na a x a x a x y a a x a x a x y a a x a x a x y ⎧+++⋅⋅⋅=⎪+++⋅⋅⋅=⎪⎨⎪⎪+++⋅⋅⋅=⎩ (5.2)当m=n ,它的系数行列式为范德蒙行列式)(1110212110200j i ni j n nnnn nx x x x x x x x x x x D -∏==≤≤≤因为插值节点互异,0D ≠,故线性方程组(5.2)有唯一解,于是有定理 5.1 当插值节点互异时,存在一个满足插值条件()()(0,1,,)i i P x f x i n ==⋅⋅⋅的n 次插值多项式。

定理 满足插值条件(5.1)的n 次插值多项式是唯一的。

证明 设(),()P x Q x 是两个满足插值条件(5.1)的n 次插值多项式,于是有()()()(0,1,,)i i i P x Q x f x i n ===⋅⋅⋅令()()()H x P x Q x =-显然有()H x 是次数≤n 的多项式,且()()()()()0(0,1,,)i i i i i H x P x Q x f x f x i n =-=-==⋅⋅⋅说明()H x 有n +1个零点,由代数基本定理有H (x ) ≡ 0,由此得()()P x Q x ≡。

插值的一个目的是对函数作近似计算。

假设[a, b ] 是包含插值点01,,,n x x x 的最小闭区间,当用插值函数P (x )来近似计算x 在[a, b ]的函数值时,称为内插计算,否则称为外插或外推计算。

2)拟合问题的描述已知()y f x =在[a,b ]上的n +1个(互异或不互异)点nx x x ⋅⋅⋅,,10处的函数值()i i y f x =,求f (x ) 的一个近似函数)(x ϕ,满足拟合条件min =δ这里δ是n +1维向量,是某种范数,T n ),,(10δδδδ =,)()(i i i x x f ϕδ-=。

求出的)(x ϕ称为拟合函数。

3)插值函数和拟合函数的几何解释1) 插值函数图示2)拟合函数图示5.3插值法grange插值Lagrange插值是n次多项式插值。

基本思想将待求的n次多项式插值函数)(xPn改写成用已知函数值为系数的n+1个待定n次多项式的线性组合型式,再利用插值条件和函数分解技术确定n+1个待定n次多项式形式求出插值多项式。

1) 构造原理已知数表设n 次插值多项式00110()()()()()nn n n n nn i in i L x y l x y l x y l x y l x ==+++=∑ (5.3)式中()(0,1,,)in l x i n =是与i y 无关的n 次多项式。

由插值条件(5.1),有()()()nn k k kn k i in k ki i kL x y l x y l x y =≠=+=∑(0,1,,)k n =⋅⋅⋅由于k y 与()(0,1,2,,)in l x i n =无关,可得()()1,0,1,2,,0in k ik i kl x i k n i kδ=⎧===⎨≠⎩ (5.4)为确定()x l in ,注意到()x l in 是n 次多项式,由式(5.4)可知()()k ni k k in x x a x l -∏=≠=0式中a 为待定常数,由()1in i l x =确定,于是有)0,1,2,n (5.5)代入式(5.3),有(5.6)L x 由n次插值多项式的唯一性,可知()n就是所求的n次插值多项式。

式(5.6)称为n次Lagrange插值多项式,而()l x称为Lagrange插值基函数。

in2) 分析定理3. 设函数()y f x =在[a,b ]上有n +1阶导数,()n P x 是满足插值条件的n 次插值多项式,则有对任何[]b a x ,∈成立式中()()10(),,nn k k k x x x x a b ω+==∏-∈。

证明 因为()()n k k P x f x =,故有()()0,0,1,,n k R x k n ==于是R n (x )可分解为()()()1n n R x k x x ω+= (5.8)为求出k (x ),做辅助函数()()()()()1n n g t f t P t k x t ω+=-- (5.9)则有在01,,,,n t x x x x =时,g(t)=0,即g(t)在[a,b ]上有n +2个零点。

显然g(t)在由01,,,,n x x x x 组成的n +1个小闭区间上满足Rolle 中值定理,故g'(t) 在[a,b ]上有n +1个零点。

类似的有g "(t) 在[a,b ]上有n 个零点,反复运用Rolle 中值定理,有()()1n g t +在[a,b ]上有1个零点,设为ξ,则有()()10n g ξ+=。

在式(5.9)两边对t 求n +1阶导数,有()()()()()()1101!n n gt ft n k x ++=--+将t =ξ 代入上式,解得()()()()1/1!n k x f n ξ+=+代入式(5.8),即得定理结果。

定理3中若能算出()()1n f x +在[a,b ]上的最(在一点的误差估计)若想估计函数在插值区间[a,b ]上的误差,此时有区间[a,b ]上的误差估计为由n次插值多项式的唯一性及式(5.7),得到有如下重要结果定理4 若函数f ( x )在[a,b]上有n+1阶导数,则f ( x )可表示为对n=1的插值多项式,称为线性插值;n=2的插值多项式称为抛物线插值或辛普森插值.例1 已知()ln f x x =的函数表为试用线性插值和抛物线插值分别计算(3.27)f 的近似值,并估计相应的误差。

解 线性插值需要两个节点,内插比外推好,因为3.27(3.2,3.3)∈,故选013.2, 3.3x x ==,由1n =的Lagrange 插值公式,有1 3.3 3.2() 1.163151 1.1939223.2 3.3 3.3 3.2x x L x --=⨯+⨯--0.3077100.178479x =+所以有1ln 3.27(3.27) 1.1846907L ≈=为保证内插,对抛物线插值,选取三个节点为0123.2, 3.3, 3.4,x x x ===由n=2的Lagrange 插值公式,有2( 3.3)( 3.4)() 1.163151 1.193922(3.2 3.3)(3.2 3.4)x x L x --=⨯+⨯--( 3.2)( 3.4)( 3.2)( 3.3)1.223775(3.3 3.2)(3.3 3.4)(3.4 3.2)(3.4 3.3)x x x x ----+⨯----20.04590.606060.306225x x =-+-故有2ln 3.27(3.27) 1.18478709L ≈=考虑误差.当[3.2,3.3]x ∈时,有21() 3.2f x ''≤,所以线性插值计算ln3.27的误差估计为而当[3.2,3.4]x ∈时,32() 3.2f x '''≤,故抛物线插值计算ln3.27的误差估计为例2在[]4,4-上给出xe 的等距节点函数 表,若想用二次插值来计算xe 的近似值,并要求截断误差不超过610-,问此函数表的步长h 应为多少?解 设(0,1,,)k x k n =为[]4,4-上的等距节点。

二次插值需要三个节点,为满足一般性,这里取三个相邻的节点构造二次插值函数。

设12,,i i i x x x ++是[]4,4-上的任何三个相邻节点,则当2[,]i i x x x +∈时,有(02)i x x tht =+≤≤注意到12,2i i i i x x h x x h ++=+=+。

利用n =2的Lagrange 余项定理,有函数xe 在2[,]i i x x +的插值余项为因为所以要62()10R x -<,只需3610-≤,得20.00578h -≤≈取h=0.0057可满足要求.由8/n≈,故造h n=得1405表时取1405个等距节点来计算函数值()kf x即可。

2.Newton 插值Newton插值也是n次多项式插值。

1) 构造原理已知数表设n 次插值多项式为010201011()()()()()()()n n n N x a a x x a x x x x a x x x x x x -=+-+--+⋯+--⋯-为求出 )(x N n 的系数,借助插值条件有当0x x =时,有000)(y a x N n ==,得出00a y =;当1x x =时,有101101)()(y x x a a x N n =-+=,得)()(01011x x y y a --=依次取n x x x ,,,32⋯并利用插值条件就可依次解出n a a a ,,,32⋯,从而求出)(x N n 的具体形式。

为将解出的系数012,,,,n a a a a ⋯用公式表示出来,引进差商的概念。

相关文档
最新文档